
 

General-relativistic rotation laws in fluid tori around spinning black holes
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We obtain rotation laws for axially symmetric, self-gravitating and stationary fluids around spinning
black holes. They reduce—in the Newtonian limit—to monomial rotation curves. For spinless black holes,
one obtains in the first post-Newtonian (1PN) approximation the hitherto known results, that can be
interpreted as the geometric dragging and material antidragging. We find new 1PN effects, that are due to
spins of black holes.
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I. INTRODUCTION

In axially symmetric, stationary Newtonian hydrody-
namic configurations, consisting of a massive central body
and a (barotropic) fluid toroid circulating around a fixed
axis, the angular momentum per unit mass j can be any
function of r. Here r is the distance from the rotation axis.
This is known as the integrability condition of Wavre
and Poincaré [1]. Other restrictions are due to a stability
condition (see a discussion in [1]). In particular, the angular
velocity can have the monomial form Ω0 ¼ w0=r

2
1−δ, where

−∞ < δ ≤ 0 and w0 is a real number. Prescribing the
angular velocity (giving the rotation curve or the rotation
law, in the specialists’ terminology) turns the Euler-Poisson
equations of stationary hydrodynamics into a closed
system, that can be analyzed numerically.
An integrability condition exists also, in axially sym-

metric stationary (barotropic) fluids, for general relativistic
systems; in such a case the angular momentum per unit
mass j is any function j ¼ jðΩÞ [2]; here Ω is the angular
velocity. As before, the analytic problem becomes closed
once a rotation law jðΩÞ is specified. The main challenge is
to find a rotation law that is realistic and at the same time
solvable numerically. Uniformly (rigidly) rotating gaseous
disks in general-relativistic hydrodynamics have been
discussed in [2,3]. A more realistic angular velocity profile
has been studied since 1980’s—in the context of rotating
stars—with the angular momentum density being a linear
function of the frequency [4–6]. We should mention a later
investigation of the rigid rotation by members of the Jena
group [7–9]. Quite recently various differential (nonlinear)
rotation laws have been analyzed [10–13].
The present paper is a continuation of the work [14]

which gives rotation laws for polytropic fluids in motion
around spinless black holes. In what follows, we find a

generalized rotation curve, that includes also spinning
black holes. Its special case is the recently found gen-
eral-relativistic Keplerian rotation, that appeared to be
solvable numerically [15,16]. It appears that in the non-
relativistic limit one gets a monomial angular velocity
Ω0 ¼ w0=r

2
δ−1.

II. HYDRODYNAMICAL EQUATIONS

Below we write down, after [4], the hydrodynamic
equations. Einstein equations, with the signature of the
metric ð−;þ;þ;þÞ, read

Rμν − gμν
R
2
¼ 8π

G
c4

Tμν: ð1Þ

Tμν denotes the stress-momentum tensor. The metric is
stationary, and it is given by

ds2 ¼ −e
2ν
c2ðdx0Þ2 þ r2e

2β

c2

�
dϕ −

ω

c3
dx0

�
2

þ e
2α
c2ðdr2 þ dz2Þ: ð2Þ

Here c is the speed of light, x0 ¼ ct is the time coordinate,
and r, z, ϕ are cylindrical coordinates. We assume axial
symmetry and use the stress-momentum tensor

Tαβ ¼ ρðc2 þ hÞuαuβ þ pgαβ; ð3Þ
where ρ is the baryonic rest-mass density of a fluid, h is the
specific enthalpy, and p is the pressure. The 4-velocity uα is
normalized, gαβuαuβ ¼ −1. The coordinate (angular) three-
velocity reads v⃗ ¼ Ω∂ϕ, where Ω ¼ uϕ=ut.
We take the polytropic equation of state pðρ; SÞ ¼

KðSÞργ , where S is the specific entropy of fluid. Then
one finds hðρ; SÞ ¼ KðSÞ γ

γ−1 ρ
γ−1. The entropy is constant.

The square of the linear velocity in the locally stationary
coordinate system is given by*malec@th.if.uj.edu.pl
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V2 ¼ r2
�
Ω −

ω

c2

�
2

e2ðβ−νÞ=c2 : ð4Þ

The potentials α, β, ν, and ω satisfy equations that have
been found by Komatsu, Eriguchi and Hachisu [4]. They
constitute an overdetermined, but consistent, set of equa-
tions. The general-relativistic Euler equations are solvable,
assuming an integrability condition—that the angular
momentum per unit mass,

j ¼ uϕut ¼
V2

ðΩ − ω
c2Þð1 − V2

c2 Þ
; ð5Þ

depends only on the angular velocity Ω: j≡ jðΩÞ [2]. In
such a case the Euler equations reduce to a general-
relativistic integro-algebraic equation that embodies the
hydrodynamic information carried by the continuity equa-
tions ∇μTμν ¼ 0 and the baryonic mass conservation
∇μðρuμÞ ¼ 0. It is given by the expression

ln

�
1þ h

c2

�
þ ν

c2
þ 1

2
ln

�
1 −

V2

c2

�
þ 1

c2

Z
dΩjðΩÞ ¼ C:

ð6Þ

The quantity on the left-hand side of (6) is constant not only
along the flow of fluid (as in the case of the Bernoulli
equation), but within the whole fluid volume. Nevertheless,
we shall sometimes use the name “Bernoulli equation”
when referring to (6).

III. NEW ROTATION LAWS

The new family of rotation laws reads

jðΩÞ≡ −
c2

1 − 3δ

d
dΩ

ln

�
1 −

�
aΩ
c

�
2

−
κ

c2
w1−δΩ1þδ

�
1 −

aΩ
c

�
1−δ

�
: ð7Þ

Here J, M and a ¼ J=ðMcÞ are the angular momentum
mass and the spin parameter of the central black hole,
respectively. δ is a free parameter and κ ¼ 1−3δ

1þδ .
In the Newtonian limit c → ∞ one arrives at

Ω0 ¼
w0

r
2

1−δ
; ð8Þ

where Ω0 ¼ limc→∞Ω and w0 ¼ limc→∞w. δ can be freely
chosen within the interval ð−∞; 0�, with the reservation
that δ ≠ −1 (this condition can be removed at least for
tori circulating around spinless black holes [17]). The
two limiting cases δ ¼ 0 and δ ¼ −∞ correspond to the
constant angular momentum per unit mass (Ω0 ¼ w0=r2

and j ¼ w0) and the rigid rotation (Ω0 ¼ w0 in the spinless
case), respectively.
We would like to stress that the constant w is any real

number, but it is not free, excepting for testlike tori; for
massive tori the value of w actually is a part of the solution
[15,16]. The choice of δ ¼ −1=3 yields the generalization
of the Keplerian rotation that has been investigated in
[15,16]. In the Newtonian limit we have, for massless disks,
w2
0 ¼ GMc and Ω0 ¼

ffiffiffiffiffiffiffiffiffiffi
GMc

p
=r3=2, whereMc is the central

mass [18].
Notice that (7) coincides with the formerly found

rotation curve [14], if the black-hole spin parameter
vanishes, a ¼ 0. The present rotation law is valid in the
same interval of δ, but it applies both to spinning and
spinless black holes.
The next two sections are dedicated to the description of

a reasoning that yields (7).

IV. ANGULAR VELOCITY VIA POST-
NEWTONIAN EXPANSION: 1PN CORRECTIONS

In the first post-Newtonian (1PN) approximation one
chooses the metric exponents α ¼ β ¼ −ν ¼ −U with
jUj ≪ c2 [19]. Define Aϕ ≡ r2ω. The spatial part of the
obtained metric,

ds2 ¼ −
�
1þ 2U

c2
þ 2U2

c4

�
ðdx0Þ2 − 2c−3Aϕdx0dϕ

þ
�
1 −

2U
c2

�
ðdr2 þ dz2 þ r2dϕ2Þ; ð9Þ

becomes now conformally flat. One needs to solve the full
system of 1PN approximations of Einstein and hydrody-
namical equations, in order to find numerical values of 1PN
corrections to the angular velocity. We want, however, to
find only the functional form of corrections to the angular
velocity; in this case it suffices to consider the hydro-
dynamic equations.
Let ρ and h be the mass density and the specific enthalpy

of a fluid, respectively. As in [19,20], we split ρ, h and
the potential U into their Newtonian (denoted by the
subscript 0) and 1PN (denoted by the subscript 1) parts:

ρ ¼ ρ0 þ
ρ1
c2

;

h ¼ h0 þ
h1
c2

;

U ¼ U0 þ
U1

c2
: ð10Þ

The angular velocity is decomposed as

Ω ¼ w

r
2

1−δ
þ Ω1

c2
: ð11Þ
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Notice that, up to the 1PN order,

1

ρ
∂ip ¼ ∂ih0 þ c−2∂ih1þOðc−4Þ; ð12Þ

where the 1PN correction h1 to the specific enthalpy can be
written as h1 ¼ dh0

dρ0
ρ1. For the polytropic equation of state

this gives h1 ¼ ðγ − 1Þh0ρ1=ρ0.
The expression for the angular velocity can be written in

yet another form

Ω ¼ w

r2=ð1−δÞc

−
2

c2ð1 − δÞΩ0U0 þ
Ω1

c2
; ð13Þ

notice that in the Newtonian gauge that is assumed in (9),
the geometric (circumferential) distance to the rotation axis
is given by rc ¼ rð1 −U0=c2Þ, in the leading order.
The Newtonian hydrodynamic equation reads [20]

h0 þU0 þ
1 − δ

2ð1þ δÞΩ
2
0r

2 ¼ C0; ð14Þ

where C0 is a constant that can be interpreted as the binding
energy per unit mass. This is supplemented by the Poisson
equation for the gravitational potential

ΔU0 ¼ 4πGðMcδðxÞ þ ρ0Þ; ð15Þ

where Δ denotes the flat Laplacian. Mc is the central
mass; U0 is a superposition of the central potential
−GMc=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
and the potential generated by a torus.

The 1PN equation for the metric function U1 reads [20]

ΔU1 ¼ 4πGðMcU0δðxÞ þ ρ1 þ 2p0

þ ρ0ðh0 − 2U0 þ 2r2Ω2
0ÞÞ: ð16Þ

The component Aϕ of the shift vector satisfies the following
equation [21]:

ΔAϕ − 2
∂rAϕ

r
¼ −16πGr2ρ0Ω0: ð17Þ

The 1PN hydrodynamical equations shall be given in terms
of a scalar function Ψ, that is defined as follows:

Ψ ¼ −h1 −U1 − Ω0Aϕ þ 2r2ðΩ0Þ2h0
−
3

2
h20 − 4h0U0 − 2U2

0 −
Z

dr r3ðΩ0Þ4: ð18Þ

The 1PN hydrodynamic equations read now,

∂zΨ ¼ 0; ð19aÞ

∂rΨþ 2rΩ0Ω1 þ Aϕ∂rΩ0 − 2r2∂rðΩ0Þ2h0 ¼ 0: ð19bÞ

There emerges a consistency condition, that yields the form
of Ω1. Namely, differentiating the first and second equation
in (19) with respect r and z, respectively, and subtracting
the obtained equations, one arrives at

2rΩ0∂zΩ1 þ ð∂rΩ0Þð∂zAϕÞ − 2r2∂rðΩ0Þ2∂zh0 ¼ 0: ð20Þ

This constraint is resolved by

Ω1 ¼ −
Aϕ

2rΩ0

∂rΩ0 þ 2rh0∂rΩ0 þ χðrÞ; ð21Þ

as can be checked by direct inspection. The function χðrÞ is
not determined at this stage; in fact, it seems to be arbitrary.
This is obviously not acceptable, because the angular
velocity is a physical observable.
The full expression for the angular velocity, up to the

terms Oðc−4Þ, is now given by:

Ω ¼ w

r2=ð1−δÞc

−
2

c2ð1 − δÞΩ0U0 þ
Ω1

c2
; ð22Þ

where Ω1 is given by

Ω1 ¼
Aϕ

r2ð1 − δÞ −
4

ð1 − δÞΩ0h0 þ χðrÞ: ð23Þ

We shall split the function χ into two parts,

χ ¼ −
2

ð1 − δÞΩ
3
0r

2 þ χ1ðr; aÞ; ð24Þ

where by assumption χ1ðr; a ¼ 0Þ ¼ 0. Thence the angular
velocity is given by:

Ω ¼ w

r2=ð1−δÞc

−
2

c2ð1 − δÞΩ0ðU0 þ Ω2
0r

2Þ

þ Aϕ

r2c2ð1 − δÞ −
4

c2ð1 − δÞΩ0h0 þ
χ1ðr; aÞ

c2
: ð25Þ

The last three terms vanish identically in the case of a
massless disk of dust around a Schwarzschild black hole.
The rotation law for the disk of dust in a Schwarzschild
spacetime is the same as for a test particle that is Keplerian

(notice that δ ¼ −1=3): Ω ¼
ffiffiffiffiffiffi
GM

p
r3=2c

[22]. Thus the second

term must vanish in the leading order, as it does, in fact.
The term χ1ðr; aÞ depends on the angular momentum of the
black hole J ¼ acM. It should be fixed by analyzing the
motion of test particles in the Kerr geometry. Unfortunately,
the spatial forms of the metric for the Kerr solution in
Boyer-Lindquist or Kerr-Schild coordinates, are not con-
formally flat up to the 1PN order, and the formulas derived
above do not hold. It appears, however, that the Kerr
solution expressed in harmonic coordinates [23] does
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possess a conformally flat spatial metric in the 1PN
approximation (see Appendix).
One can check, by a straightforward calculation, that the

angular velocity Ω of test particles in a Kerr spacetime
reads as follows at the equatorial plane (again up to the 1PN
approximation—see Appendix):

Ω ¼
ffiffiffiffiffiffiffiffi
GM

p

r3=2c

þ c−2
�

3J2
ffiffiffiffi
G

p

4M3=2r7=2c

−
GJ
r3c

�
: ð26Þ

The function Aϕ—again at the equatorial plane—is
given by

Aϕ ¼ 2GJ
r

; ð27Þ

taking this into account and comparing (25) with (26), one
obtains for massless dust

χ1ðr; aÞ ¼
�

3J2
ffiffiffiffi
G

p

4M3=2r7=2c

−
5GJ
2r3c

�
: ð28Þ

In conclusion, the 1PN approximation to the Kerr geometry
suggests the following form of the correction to the angular
velocity:

Ω ¼ w

r2=ð1−δÞc

−
2

c2ð1 − δÞΩ0U0 þ
Ω1

c2

¼ w

r2=ð1−δÞc

−
2

c2ð1 − δÞΩ0ðU0 þ Ω2
0r

2Þ

þ Aϕ

r2c2ð1 − δÞ −
4

c2ð1 − δÞΩ0h0

þ λ1ðδÞ
J2Ω0

c2M2r2
− λ2ðδÞ

JΩ2
0

c2M
: ð29Þ

The functional dependence of λ1 and λ2 on the parameter δ
is found in the next section, and it is given below

λ1 ¼
2

ð1 − 3δÞð1 − δÞ ;

λ2 ¼
ð2þ δÞ
1þ δ

: ð30Þ

In the case of the Kerr geometry one has λ1ðδ ¼ −1=3Þ ¼
3=4 and λ2ðδ ¼ −1=3Þ ¼ 5=2; this agrees with (28), as it
should.

V. PRESCRIBING ROTATION LAWS: ANGULAR
VELOCITY OF FLUIDS AROUND SPINNING

BLACK HOLES

The equality jðΩÞ ¼ uϕu0 allows one—prescribing a
rotation law jðΩÞ—to find the coordinate representation
of the angular velocity Ω. Using (5) and (7), one arrives at
the equation

−
c2

1− 3δ

d
dΩ

ln

�
1−

�
aΩ
c

�
2

−
κ

c2
w1−δΩ1þδ

�
1−

aΩ
c

�
1−δ

þ 4C0

c2

�
¼ V2

ðΩ− ω
c2Þð1− V2

c2 Þ
:

ð31Þ

Here the velocity V2 is given by Eq. (4). C0 is the same
constant that appears in (14).
Let us expand metric functions and the angular velocity

Ω ¼ w

r
2

1−δ
þ Ω̃1

c2
ð32Þ

in powers of c−2, as in (9) and (10).
Then, keeping terms up to c−2, replacing a by J=ðcMÞ

and using (32), one gets (after suitable reordering and
simplification) the left-hand side of Eq. (31),

w

r
2δ
1−δ

þ 1

c2

�
1 − 3δ

1þ δ

w3

r
2ð1þ2δÞ
1−δ

þ δr2Ω̃1 − 4C0

w

r
2δ
1−δ

þ 2

ð1 − 3δÞ
w

r
2

1−δ

J2

M2
−
ð1 − δÞð2þ δÞ

1þ δ

w2

r
2ð1þδÞ
1−δ

J
M

�
; ð33Þ

whereas the right-hand side of Eq. (31) yields

r2
w

r
2

1−δ
þ 1

c2

�
r4

w3

r
6

1−δ
− Aϕ − 4r2U0

w

r
2

1−δ
þ r2Ω̃1

�
:

We shall compare separately c0 and c−2 terms. There
appear two terms in the zeroth order that cancel identically.
The c−2 order yields

0 ¼ 1 − 3δ

1þ δ

w3

r
2ð1þ2δÞ
1−δ

þ δr2Ω̃1 − r4
w3

r
6

1−δ
þ Aϕ

þ 4r2U0

w

r
2

1−δ
− r2Ω̃1 þ

2

ð1 − 3δÞ
J2

M2

w

r
2

1−δ

−
ð1 − δÞð2þ δÞ

ð1þ δÞ
w2

r
2ð1þδÞ
1−δ

J
M

− 4C0

w

r
2δ
1−δ

: ð34Þ

From Eq. (34) we get the 1PN correction Ω̃1,

Ω̃1 ¼ −
2

1 − δ
r2Ω3

0 þ
1

1 − δ
r−2Aϕ þ

2

1þ δ
r2Ω3

0

þ 4

1 − δ
U0Ω0 −

4

1 − δ
C0Ω0

þ 2

ð1 − 3δÞð1 − δÞ
J2

r2M2
Ω0 −

ð2þ δÞ
1þ δ

J
M

Ω2
0: ð35Þ

Notice that in (35) the term w

r
2

1−δ
is replaced by Ω0; that is

permissible, since this replacement impacts only terms
beginning from the 2PN order.
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The third, fourth and fifth terms can be replaced by
− 4

1−δ h0Ω0—see (14). Finally one arrives at

Ω̃1 ¼ −
2

1 − δ
r2Ω3

0 þ
1

1 − δ
r−2Aϕ −

4

1 − δ
h0Ω0

þ 2

ð1 − 3δÞð1 − δÞ
J2

r2M2
Ω0 −

ð2þ δÞ
1þ δ

J
M

Ω2
0: ð36Þ

The comparison of (35) with (29) allows us to
conclude that

Ω̃1 ¼ Ω1;

provided that λ1 and λ2 are as in (30). The full angular
velocity up to the 1PN order is given by (29). The rotation
law (7) can be obtained from the left-hand side of (31), by
setting C0 ¼ 0 in there.
There are two known cases when a solution Ω of (31) is

actually an exact solution; both of them correspond to
δ ¼ −1=3, C0 ¼ 0 and a massless disk of dust. It was
proven in [14] that in the Schwarzschild spacetime Eq. (31)
yields Ω ¼ ffiffiffiffiffiffiffiffi

GM
p

=R3=2, the angular velocity for circular
orbits of particles of dust in a massless disk. Similarly, in
the Kerr spacetime, one gets from (31) an exact and analytic
angular velocity Ω of a disk of dust [15].

VI. DISCUSSION

We can now interpret the meaning of various contribu-
tions to the angular velocity Ω given by (29). The first term
is the Newtonian (monomial) rotation law, written as a
function of the geometric distance from the rotation axis, in
the 1PN order. The second term in (29) vanishes at the
plane of symmetry, z ¼ 0, for circular Keplerian motion of
test fluids in the monopole potential −GM=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
. It

depends both on the contribution of the disk’s self-gravity
at the plane z ¼ 0, as well on the deviation from the strictly
Keplerian motion Ω ¼ ffiffiffiffiffiffiffiffi

GM
p

=r3=2c .
Before continuing, let us define the notions of dragging

and antidragging within a a rotating gaseous torus. We shall
say, that a torus is dragged by a particular effect, if the
corresponding term in (29) is non-negative. If the term is
negative then we shall refer to the related effect as
“antidragging”.
The third term is explicitly positive for the Kerr

geometry—see Eq. (A3). It is also proven to be positive
for spinless black holes [20]. Thus in these two cases a
torus is being dragged (forward). The next term is explicitly
negative—it reveals the antidragging effect that agrees
(for monomial angular velocities Ω0 ¼ r−2=ð1−δÞw0) with
the result obtained earlier in [14,20]. The next to last term,
proportional to the square of the black hole spin, is strictly
positive, hence it drags gas particles forward. The last term
slows gas particles in the comoving case (when the
direction of the rotation of the torus agrees with the spin)

and increases their angular velocities if the torus rotates in
the opposite direction to the spin of the black hole.
Let us remark, that a massless disk made of dust in the

Kerr geometry is special—the first correction term in (29)
and the specific enthalpy h0 vanish and the disk is exposed
only to the interaction with the spin; there are three spin
terms, which combine into the second term in the rhs of
Eq. (26). It is easy to check that this term is strictly negative
for disks comoving with angular momentum—thus we
have antidragging in the sense defined above. In the case of
counter-rotation, the term is strictly positive; hence a
massless disk of dust is being dragged.
It is well known that a test disk of dust in the

Schwarzschild spacetime rotates in the strictly
Keplerian way.
In both cases, that correspond to δ ¼ −1=3 in the

rotation law (7) and w2 ¼ GM, we have strict analytic
solutions of Einstein and hydrodynamical equations. We
should add that the general-relativistic Keplerian law (with
δ ¼ −1=3) has been already investigated in [15,16], both
for light or heavy fluid disks.
For the rigid (uniform) rotation, those correction terms

Ω1 that are proportional to 1=ð1 − δÞ do vanish, because
now δ¼−∞. There remains, however, one term: −JΩ2

0=M.
That means that the angular velocity jumps from the
Newtonian value Ω0 to the shifted one—we stress again:
up to the 1PN order—Ω0 − JΩ2

0=ðMc2Þ, but the rotation is
still uniform.
In Figs. 1–6 we show an exemplary dependence of the

angular momentum density j on the angular velocity Ω, for
selected values of parameters. Let us point out that, in the
case of the Keplerian rotation, w2 is very close to the
product GM, for disks much lighter than the black hole.

FIG. 1. The general-relativistic Keplerian rotation (δ ¼ −1=3),
a disk corotating with the black hole. The angular momentum
density j is put on the ordinate, in terms of the angular velocity Ω
plotted along the abscissa. Here w ¼ 1 and the massless spin
parameter a ¼ 0, 0.2, 0.4, 0.6, 0.8, 0.95. Maximal values of Ω
correspond to innermost stable circular orbits (ISCO) in the Kerr
geometry.
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The interesting feature of the first 4 figures (δ ¼ −1=3;
−1=7) is that each curve jðΩÞ exhibits a minimum for
some value of Ω. In contrast to that, in the last 2 figures
(δ ¼ 0) we observe a monotonic behavior of jðΩÞ.

VII. CONCLUDING REMARKS

In summary, we have obtained the rotation law by the
combination of two different methods. In Sec. IV the 1PN
method has been used. In Sec. V we employed the rotation
law and the definition of the angular momentum density j
(31). In both cases the c−2 correction is the same, after
fixing the 1PN procedure and some adjustment of coef-
ficients in the rotation law. The rotation law (7) is consistent
with the 1PN approximation.
We formulate—in a reasoning, that can be described

as an educated guess—a family of non-Keplerian general-
relativistic rotation laws that describe the motion of fluid
tori around spinning black holes. Weak field limit reveals
the formerly discovered effects [14,20]—dragging and

FIG. 2. The case of δ ¼ −1=3, a disk and black hole spin in
opposite directions (the counter-rotation). The angular momen-
tum density j is put on the ordinate, in terms of the angular
velocity (put on the abscissa). Here w ¼ 1 and the massless spin
parameter a ¼ −0.2;−0.4;−0.6;−0.8;−095. Maximal values of
Ω correspond to ISCO in the Kerr geometry.

FIG. 3. The case of δ ¼ −1=7, a disk corotating with the black
hole. j as a function of Ω is put on the ordinate, in terms of the
angular velocity (put on the abscissa). Here w ¼ 1 and the
massless spin parameter a ¼ 0, 0.2, 0.4, 0.6, 0.8, 0.95.

FIG. 4. The case of δ ¼ −1=7 and counter-rotation. j as a
function of Ω. Here w ¼ 1 and the massless spin parameter
−0.2;−0.4;−0.6;−0.8;−0.95.

FIG. 5. The case of δ ¼ 0, a disk corotating with the black hole.
j as a function of Ω. Here w ¼ 1 and the massless spin parameter
a ¼ 0, 0.2, 0.4, 0.5, 0.6, 0.8.

FIG. 6. δ ¼ 0 and counter-rotation. j as a function of Ω. Here
w ¼ 1 and the massless spin parameter a ¼ −0.2;−0.4;−0.5;
−0.6;−0.8.
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antidragging—and new ones, related to the spin of the
black hole.
These new rotation laws would allow the investigation of

self-gravitating fluid bodies in the regime of strong gravity
for general-relativistic versions of non-Keplerian rotation
curves. This is not a subject of theoretical interest only—
there exists a number of active galactic nuclei that are
known to posses gaseous disks or toroids in their centers,
and that move according to non-Keplerian rotation laws
[24–27]. Our rotation curves might be helpful in modeling
these systems.
Approximately stationary disks can exist in tight accre-

tion systems with central black holes. These highly
relativistic systems can be created in the merger of compact
binaries consisting of pairs of black holes and neutron stars
[28–30]. In the case of light disks—with disks’s masses
much smaller than the mass of a black hole—their motion
is quite likely ruled by the general-relativistic Keplerian
rotation law [15,16].
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APPENDIX: THE CONFORMAL KERR
METRIC IN 1PN APPROXIMATION

In this work we use metrics that have conformally flat
spatial parts in the 1PN order. The Kerr solution in standard
coordinates—Boyer-Lindquist or Kerr-Schild—does not
belong to this class. Fortunately, the Kerr geometry in
harmonic coordinates [23] possesses a conformally flat
spatial metric in the 1PN approximation. For that reason we
use it in this paper.
The Kerr metric in harmonic coordinates takes the

following form [23]:

ds2 ¼ −c2dt2 þ R2ðRþ GM
c2 Þ2 þ a2z2

ðR2 þ a2

R2 z2Þ2
×

�ðXidXi þ a2

R2 zdzÞ2
R2 þ a2 − G2M2

c4
þ z2

R2

ðXidXi − R2

z dzÞ2
R2 − z2

�
þ 2 GM

c2 ðRþ GM
c2 Þ

ðRþ GM
c2 Þ2 þ a2

R2 z2

×

�
RG2M2

c4 a2ðR2 − z2ÞðXidXi þ a2

R2 zdzÞ
ðR2 þ a2 − G2M2

c4 ÞðR2 þ a2ÞðR4 þ a2z2Þ þ
aðydx − xdyÞ

R2 þ a2
þ cdt

�
2

þ ðRþ GM
c2 Þ2 þ a2

R2 − z2

�
R2 G2M2

c4 aðR2 − z2ÞðXidXi þ a2

R2 zdzÞ
ðR2 þ a2 − G2M2

c4 ÞðR2 þ a2ÞðR4 þ a2z2Þ þ
Rðydx − xdyÞ

R2 þ a2

�
2

; ðA1Þ

where ðXiÞ ¼ ðx; y; zÞ, ðdXiÞ ¼ ðdx; dy; dzÞ and R is given
by the following equation:

x2 þ y2

R2 þ a2
þ z2

R2
¼ 1:

The metric (A1) in the 1PN approximation reads, in
cylindrical coordinates (x ¼ r cosϕ, y ¼ r sinϕ),

ds2 ¼ −
�
1þ 2U0

c2
þ 2

c4
ðU2

0 þ U1Þ
�
c2dt2 −

2

c2
Aϕdtdϕ

þ
�
1 −

2U0

c2

�
ðdr2 þ dz2 þ r2dϕ2Þ: ðA2Þ

Here,

U0 ¼ −
GMffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p

U1 ¼ −
GJ2ðr2 − 2z2Þ
2Mðr2 þ z2Þ5=2

Aϕ ¼ 2GJr2

ðr2 þ z2Þ3=2 : ðA3Þ

The circumferential radius rc is obtained from the gϕϕ
component of the metric (A2)

rc ¼ r

�
1 −

U0

c2

�
:

One can check that the angular velocity Ω of dust
particles takes the following form at the equatorial plane
(again up to the 1PN approximation):

Ω ¼ Ω0 þ
Ω1

c2
;

where

Ω0 ¼
ffiffiffiffiffiffiffiffi
GM

p

r3=2c

;

Ω1 ¼
3J2

ffiffiffiffi
G

p

4M3=2r7=2c

−
GJ
r3c

: ðA4Þ
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