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In this paper we continue earlier investigations [F. Beyer et al., Classical Quantum Gravity 34, 205014
(2017); F. Beyer et al., Classical Quantum Gravity 36, 175005 (2019); K. Csukás and I. Rácz,
arXiv:1911.02900] of evolutionary formulations of the Einstein vacuum constraint equations originally
introduced by Rácz. Motivated by the strong evidence from these works that the resulting vacuum initial
data sets are generically not asymptotically flat we analyze the asymptotics of the solutions of a modified
formulation by a combination of analytical and numerical techniques. We conclude that the vacuum initial
data sets generated with this new formulation are generically asymptotically flat.
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I. INTRODUCTION

The Einstein vacuum constraint equations are a subset
of the full Einstein field equations (EFE). The triple
ðΣ; γab; KabÞ of a three-dimensional differentiable manifold
Σ, Riemannian metric γab and a smooth symmetric tensor
field Kab on Σ is called a vacuum initial data set if it
satisfies the Einstein vacuum constraint equations
ð3ÞR − KabKab þ K2 ¼ 0; ∇aKa

c −∇cK ¼ 0; ð1:1Þ
everywhere on Σ, where ∇a is the covariant derivative
associated with γab, ð3ÞR is the corresponding Ricci scalar,
and K ¼ Ka

a is the mean curvature. For this whole paper
we agree that spatial abstract indices a; b;…, are raised and
lowered with the metric γab.
Owing to the work of Choquet-Bruhat and Geroch [1,2]

we know that for every solution of the Einstein vacuum
constraints there exists a unique maximal globally hyper-
bolic development (a solution of the full vacuum EFE).
Constructing solutions of the Einstein vacuum constraints
is therefore the first crucial step in exploring solutions to
the full vacuum EFE. The Einstein vacuum constraints
Eq. (1.1) comprise a set of four nonlinear partial differential
equations that constrain the 12 independent components
of the two tensor fields γab, Kab. Solving Eq. (1.1) is
therefore an underdetermined problem, and to the best of
our knowledge, there is no clear physically or geometrically
preferred way to construct solutions.
One of the most successful methods for solving the

constraints is the Lichnerowicz-York conformal approach

(see [3] and references therein) which allows one to cast the
constraints as a set of nonlinear elliptic partial differential
equations, which can in principle be solved as a boundary
value problem. Solving the equations in this way can be
challenging. However, there are several well established
methods for doing this that have been very successful from
both the analytical and the numerical perspectives [4,5].
Nevertheless, this approach is not without limitation. For
example, mathematical problems have been known to arise
when solutions with large mean curvatures are sought (see
[6,7] for an overview and references). Other more physical
problems, such as spurious radiation [8,9] also occur. Some
researchers have therefore sought other methods of solving
the constraints [10–13].
In this work we focus on one such alternative approach,

namely, the evolutionary formulations of the vacuum
constraints introduced by Rácz in [14–17]. In his work,
Rácz introduced two ways to write the vacuum constraints:
as a hyperbolic-algebraic system of partial differential
equations (PDEs) on the one hand, and as a parabolic-
hyperbolic system of PDEs on the other hand. In all these
cases the constraints are solved as a Cauchy problem
similar to earlier work in [11,18]. First steps in investigat-
ing whether this approach has any advantages over more
established methods have been carried out in [19] for the
constraints of the Maxwell equations and in [20,21] for the
Einstein vacuum constraint equations. The main principal
disadvantage of Rácz’s approach (in comparison to solving
the vacuum constraints as an elliptic boundary value
problem) is that it does not directly allow one to control
the asymptotics of the resulting vacuum initial data sets at
spacelike infinity. This is problematic because certain
physical quantities such as the total mass or the center
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of mass (see, for example, [22,23]) are well defined only
if the data sets satisfy particular asymptotic conditions.
With no control over the asymptotics it is therefore
possible that the method generates initial data sets that
lack a physical interpretation. Exactly this issue has been
explored recently in [24–26]. It was confirmed that
generic solutions of these equations are not asymptoti-
cally flat (this notion is defined in Sec. IV below). This is
the case even for small (nonlinear) perturbations of
asymptotically flat vacuum initial data sets. Other issues
have been observed in [27].
In [25] we proposed an iterative approach to address, at

least partly, the asymptotic flatness problem. In contrast to
this, this paper provides strong analytical and numerical
evidence that a small change of how the free data for Rácz’s
parabolic-hyperbolic formulation are specified is sufficient
to guarantee asymptotic flatness of the vacuum initial data
sets generated by this method. We note that a different, but
similarly spirited modification was suggested in [26]. As in
[24,25], we restrict most of our attention to Σ being the
exterior region of an isolated gravitational source, and we
mostly assume that Σ is foliated by 2-spheres. This allows
us to use the same numerical pseudospectral methods
developed in [28–31] based on the ð- and the spin-weight
formalism. We shall discuss that foliations based on
topological 2-spheres imply the restriction that the con-
straint equations must be solved “toward spatial infinity”
away from the sources of the gravitational field. We shall
label this direction as the increasing ρ direction where ρ is
the evolution parameter. We remark that our focus here (as
well as that of earlier works [24,25]) on the asymptotics of
these vacuum initial data sets will be overcome in future
work. In this work we are indeed not concerned with the
properties of the solutions in the strong field regime, e.g., of
apparent horizons. We also remark that the setup in [20],
where foliations in terms of 2-planes are considered
allowing for evolutions “toward the sources of the gravi-
tation field,” is not well suited to study the asymptotics
because of the necessity of finite boundary conditions on
the 2-planes.
The paper is outlined as follows: In Sec. II we briefly

summarize the framework of 2þ 1 decompositions and
introduce Kerr-Schild-like data sets. After a quick summary
of Rácz’s original parabolic-hyperbolic formulation of the
vacuum Einstein constraints in Sec. III A, we discuss our
new modified version of these equations in Sec. III B.
Section IV is then devoted to the discussion of the
asymptotics; we define the concept of asymptotic flatness
and what it means for the 2þ 1 quantities introduced
above. Now Sec. VA yields analytical evidence for our
claim that the vacuum initial data sets obtained with our
modified parabolic-hyperbolic formulation are better
behaved than those with the original formulation in as
much as generic solutions are asymptotically flat. We then
support these analytical results by numerics in Sec. VI.

II. PRELIMINARIES

A. The 2 + 1 decomposition of initial data sets

We now discuss Rácz’s original parabolic-hyperbolic
formulation of the Einstein vacuum constraints. Further
details can be found in [14–17]. We use the same
conventions as in [25].
Consider an arbitrary three-dimensional manifold Σ,

Riemannian metric γab, and smooth symmetric tensor field
Kab; at this stage these are not required to satisfy any
equation (such as the vacuum constraints). As before the
Levi-Civita covariant derivative associated with γab is
labeled ∇a. We suppose there exists a smooth function
ρ∶Σ → R whose collection of level sets Sρ forms a
foliation of Σ. This foliation yields a decomposition of
ðΣ; γab; KabÞ, in full analogy to standard 3þ 1 decom-
positions of spacetimes [32], as follows. The unit conormal
of any of the 2-surfaces Sρ is

Na ¼ A∇aρ; ð2:1Þ

where A > 0 is the lapse. The induced first and second
fundamental forms are therefore, respectively,

hab ¼ γab − NaNb; ð2:2Þ

kab ¼ −
1

2
LNhab: ð2:3Þ

We shall label the covariant derivative associated with hab
as Da. The tensor field

hab ¼ δab − NaNb

is the map that projects an arbitrary tensor defined at any
point p in Σ orthogonally to a tensor that is tangent to Sρ at
p. If each index of a tensor field defined on Σ contracts to
zero with Na or Na at all p ∈ Σ, then we call that intrinsic
(to the foliation of surfaces Sρ). Given an arbitrary tensor
field on Σ, we can create an intrinsic tensor field by
contracting each index with hab. In fact, any tensor can be
uniquely decomposed into its intrinsic and its orthogonal
parts, e.g.,

Kab ¼ κNaNb þ Napb þ Nbpa þ qab; ð2:4Þ

with

κ ¼ NaNbKab; pa ¼ hcaNbKcb; qab ¼ hcahdbKcd:

ð2:5Þ

The field qab is symmetric and can be further decomposed
into its trace and trace-free parts (with respect to hab) as
follows:
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qab ¼ Qab þ
1

2
qhab; Qabhab ¼ 0; ð2:6Þ

where the relations

q ¼ habqab; Qabhab ¼ 0 ð2:7Þ

hold and Qab is symmetric.
Now pick an arbitrary vector field ρa such that

ρa∇aρ ¼ 1: ð2:8Þ

According to Eq. (2.1) there must exist a unique intrinsic
vector field Ba, called the shift, such that

ρa ¼ ANa þ Ba; ð2:9Þ

where A is the lapse in Eq. (2.1). Given ρa, we can write
Eq. (2.3) as

kab ¼ −A−1
�
1

2
Lρhab −DðaBbÞ

�
≕A−1k

⋆
ab: ð2:10Þ

We also define

k
⋆
≔ habk

⋆
ab: ð2:11Þ

Finally, the Ricci scalar ð3ÞR associated with γab can be
written as

ð3ÞR ¼ ð2ÞR − ðA−2k
⋆2 þ A−2k

⋆
abk

⋆ab þ 2A−1DaDaA

− 2ðA−1LNk
⋆
− A−2LNAÞÞ; ð2:12Þ

where the Ricci scalar associated with the induced metric
hab is called ð2ÞR. The intrinsic acceleration vector is

vb ¼ Na∇aNb ¼ −A−1DbA: ð2:13Þ

B. Kerr-Schild-like data sets

In this subsection we introduce data sets (without
imposing the constraints yet) of Kerr-Schild form. Such
data sets were the basis of our previous work in [24,25], and
we shall continue to use them in particular in Sec. VI A. In
this paper we introduce such data sets as follows.
Definition 1. A data set ðΣ; γab; KabÞ is called Kerr-

Schild-like if Σ ¼ R3nB̄ where B is a ball in R3 and there
exists a smooth function V∶ Σ → R with V < 1, a smooth
covector field la, and a symmetric tensor field _γab such that

γab ¼ δab − Vlalb;

Kab ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − V

p

2
ð∇aðVlbÞ þ∇bðVlaÞ − _γabÞ; ð2:14Þ

where δab is the flat metric on Σ, ðδ−1Þab is its inverse, and
la satisfies the condition

ðδ−1Þablalb ¼ 1: ð2:15Þ

An example of a Kerr-Schild-like data set is the standard
ingoing Kerr-Schild Schwarzschild slice given by
la ¼ ∇ar, V ¼ −2m=r, and _γab ¼ 0.
Let us now proceed by providing some useful formulas

derived from this definition. For

l̃a ¼ ðδ−1Þablb; ð2:16Þ

it follows

l̃ala ¼ ðδ−1Þablalb ¼ 1; ð2:17Þ

γab ¼ ðδ−1Þab þ V
1 − V

l̃al̃b; ð2:18Þ

la ¼ 1

1 − V
l̃a; lala ¼

1

1 − V
: ð2:19Þ

Suppose now we have chosen a smooth function ρ on Σ
with the properties discussed in Sec. II A giving rise to a
foliation S in terms of level sets Sρ diffeomorphic to the 2-
sphere. We restrict to the case where la is normal to Sρ, i.e.,

la ¼ �f∇aρ; ð2:20Þ

with

f ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδ−1Þab∇aρ∇bρ

p ; ð2:21Þ

as a consequence of Eq. (2.15). From Eqs. (2.1), (2.20), and
(2.19), we find that

Na ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − V

p
la; ð2:22Þ

which means that the lapse defined in Eq. (2.1) is

A ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − V

p
: ð2:23Þ

It now follows from Definition 1 and Eq. (2.2) that

hab ¼ δab − lalb: ð2:24Þ

Since

Kab ¼
2 − V

4ð1 − VÞ ð∇aVNb þ∇bVNaÞ

þ V
2
ð∇aNb þ∇bNaÞ −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − V

p

2
_γab; ð2:25Þ
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Eq. (2.5) yields

κ ¼ 2 − V

2ð1 − VÞ3=2 l̃
a∇aV −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − V

p

2
_γabNaNb; ð2:26Þ

pa ¼
2 − V

4ð1 − VÞDaV þ V
2
va −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − V

p

2
_γcbhcaNb; ð2:27Þ

qab ¼ −Vkab −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − V

p

2
_γcdhcahdb; ð2:28Þ

where va can be calculated from Eq. (2.13) and kab from
Eq. (2.10) once a shift vector field Ba, and thereby the
vector field ρa ¼ ANa þ Ba, has been chosen. Notice that
we can calculate Ba as

Ba ¼ ρbhab: ð2:29Þ

The quantities q andQab are given by Eq. (2.6) and k
⋆
ab and

k
⋆
are obtained from Eqs. (2.10) and (2.11).

III. PARABOLIC-HYPERBOLIC FORMULATIONS
OF THE VACUUM CONSTRAINTS

A. Rácz’s parabolic-hyperbolic formulation
of the vacuum constraints

Given the function ρ and the foliation in terms of
2-surfaces Sρ generated by it as in Sec. II A, the vacuum
constraints Eq. (1.1) can now be decomposed into their
normal and intrinsic components, and, according to [16],
yield the following system of equations:

k
⋆
LρAþ A2DaDaA − k

⋆
BaDaA ¼ 1

2
A3Eþ 1

2
AF; ð3:1Þ

Lρq − BaDaq − ADapa − 2paDaA ¼ k
⋆ab

Qab þ
1

2
qk
⋆
− k

⋆
κ;

ð3:2Þ

Lρpc − BaDapc −
1

2
ADcq − κDcAþQa

cDaA

þ 1

2
qDcA ¼ paDbBa − ADaQa

c þ k
⋆
pc þ ADcκ;

ð3:3Þ

where

E ¼ ð2ÞRþ 2κq − 2papa −QabQab þ 1

2
q2; ð3:4Þ

F ¼ 2ð∂ρk
⋆
− BaDak

⋆
Þ − k

⋆
abk

⋆ab
− k

⋆2
: ð3:5Þ

Observe that all quantities here are smooth intrinsic
tensor fields. It is clear that while this means that all

contractions with Na or Na vanish, contractions with ρa do
not, e.g., pρ ≔ paρ

a ¼ paBa as a consequence of Eq. (2.9).
However, such “components” pρ clearly do not constitute a
further degree of freedom of the field pa since pρ ¼ paBa

is fully determined by its “intrinsic components.”
Consistently with this, it is easy to check that the equation
for pρ obtained by contracting Eq. (2.9) with ρc fully
decouples from the remaining equations. We remark that
instead of thinking of each field in the equations above
as an intrinsic field on Σ, we could equivalently think of
it as a one-parameter family of fields on S2 defined by
the pullback along the ρ-dependent map Φρ∶S2 → Σ,
p ↦ ðρ; pÞ to S2. In the following we shall use abstract
indices A; B;…, for such ρ-dependent tensor fields on S2.
Indeed, all indices a; b;…, in the equations above could be
replaced by A; B;…, and, at the same type, each Lie
derivative along ρa by the derivative with respect to
parameter ρ. All this is well-known for 3þ 1 decomposi-
tions of spacetimes and is therefore not discussed any
further here.
Equations (3.1)–(3.3) suggest to group the various fields

introduced above as follows:
Free data The fields Ba, Qab, hab, and κ are considered

as freely specifiable everywhere on Σ. All of k
⋆
, Da,

ð2ÞR, Qab, and F (together with all of the index
versions of these) as well as all coefficients in
Eqs. (3.1)–(3.3) are fully determined by these on Σ.

Unknowns The quantities A, q, and pa are considered as
the unknowns of Eqs. (3.1)–(3.3) once free data have
been specified.

According to [14], it can be shown that given arbitrary
smooth Cauchy data1 for A, q, and pa on an arbitrary ρ ¼
ρ0 leaf of the 2þ 1 decomposition of Σ, in addition to
smooth free data everywhere Σ, the Cauchy problem of
Eqs. (3.1)–(3.3) in the increasing ρ direction is well-posed;
i.e., the equations have a unique smooth solution A, q, and
pa at least in a ρ ≥ ρ0 neighborhood of the initial leaf Sρ0 ,
provided the parabolicity condition holds everywhere on Σ:

k
⋆
< 0: ð3:6Þ

Clearly, if k
⋆
is positive instead, then the Cauchy problem is

well-posed in the decreasing ρ direction instead. In any
case, Eqs. (3.1)–(3.3) is a quasilinear parabolic-hyperbolic
system provided Eq. (3.6) holds everywhere.
It is important to remember that since the equation for the

lapse is essentially a nonlinear heat equation, there is a
significant difference between evolving in the “forward”
and “backward” directions—a notion determined by the

sign of k
⋆
here. The Cauchy problem being well-posed in the

1The Cauchy datum for A is assumed to be strictly positive
everywhere without further notice.
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forward direction (the increasing ρ direction if k
⋆
< 0)

means that the solutions are guaranteed to be smooth
and well-behaved, while in the backward direction (the

decreasing ρ direction if k
⋆
< 0) they generically become

“arbitrarily nonsmooth after arbitrarily small evolution
times.” Certain particular regular solutions may still be
found in the backward direction, but the general lack of
stability makes the backward problem unsuitable for
numerical investigations. We therefore fully focus on the
forward Cauchy problem here.

It is interesting to notice that k
⋆
is fully determined by the

free data. The condition Eq. (3.6) can therefore be verified
prior to solving Eqs. (3.1)–(3.3). From Eqs. (2.3), (2.10),

and (2.11) we deduce that k
⋆
has the opposite sign than the

mean curvature of the leaves of the foliation. Given
Eq. (2.1) and the assumption that the lapse A is positive,
it follows that the Cauchy problem of Eqs. (3.1)–(3.3) is
well-posed in the ρ direction of the increasing area of the
leaves of the foliation. In the particular case that the
foliation is of 2-sphere topology, as we shall restrict to
for most of this paper, we shall align Na with the outward-
pointing direction. Since we expect this to be the direction
of increasing area (at least asymptotically), we therefore
anticipate Eq. (3.6) to hold and the increasing ρ direction
therefore to agree with the outward-pointing direction
toward spatial infinity. In this setting all evolutions of
Eqs. (3.1)–(3.3) must therefore be performed in the
increasing ρ direction.

B. Modified parabolic-hyperbolic formulation
of the vacuum constraints

The system Eqs. (3.1)–(3.3) has been used in several
works among which are [20,21,25,26,33]. The particular
choice of how to split the fields into free data and
unknowns is, however, not the only possibility. Moti-
vated by previous studies [25,26], which indicate an
instability of these equations in the asymptotically flat
setting, we now propose a small modification. The main
result of our paper is that we can provide evidence that
this instability observed for Eqs. (3.1)–(3.3) is resolved by
this modification.
Recall that κ is one of the free data in the formulation

introduced in Sec. III A while q is one of the unknowns.
Here now we propose to introduce a new free data field R
and then set

κ ¼ Rq; ð3:7Þ
where q continues to be an unknown. The equations
resulting from this are obtained from Eqs. (3.1)–(3.3) by
replacing all instances of κ with Rq:

k
⋆
LρAþ A2DaDaA − k

⋆
BaDaA ¼ 1

2
A3Eþ 1

2
AF; ð3:8Þ

Lρq − BaDaq − ADapa − 2paDaA

¼ k
⋆ab

Qab þ
1

2
qk
⋆
− k

⋆
Rq; ð3:9Þ

Lρpc − BaDapc − A

�
1

2
þR

�
Dcq ¼ paDbBa

− ADaQa
c þ qRDcA −Qa

cDaA

þ k
⋆
pc þ AqDcR −

1

2
qDcA; ð3:10Þ

where F takes the same form as before and E becomes

E ¼ ð2ÞR − 2papa −QabQab þ
�
2Rþ 1

2

�
q2: ð3:11Þ

We shall refer to these equations as the modified parabolic-
hyperbolic system while Eqs. (3.1)–(3.3) shall often be
labeled as the original parabolic-hyperbolic system.
First we observe that this modification has changed the

principal part of the system. It turns out that Eqs. (3.8)–
(3.10) is still parabolic-hyperbolic. First, the principal part
of Eq. (3.8) is unchanged [and is therefore parabolic
provided the same parabolicity condition Eq. (3.6) as
before holds], and, second, the subsystem Eqs. (3.9) and
(3.10) is symmetrizable hyperbolic with symmetrizer

� 1
2
þR 0

0 hce

�
ð3:12Þ

provided

1

2
þR > 0; ð3:13Þ

where hce is the intrinsic inverse of hab. We refer to
Eq. (3.13) as the hyperbolicity condition. This now sug-
gests the following choice:

Free data: The fields Ba, Qab, hab, and R are free data
everywhere on Σ.

Unknowns: The fields A, q, and pa are the unknowns.
It follows that for arbitrary free data, for which both the
parabolicity condition Eq. (3.6) and the hyperbolicity
condition Eq. (3.13) hold, Eqs. (3.8)–(3.10) is a quasilinear
parabolic-hyperbolic system and the Cauchy problem in the
increasing ρ direction is therefore well-posed (at least
locally). Both conditions Eqs. (3.6) and (3.13) are con-
ditions on the free data as before. We remark that our
hyperbolicity condition here should not be confused with
the hyperbolicity condition found by Rácz in his so-called
algebraic-hyperbolic formulation [16].
It is not obvious why Eqs. (3.8)–(3.10) should be “any

better” than Eqs. (3.1)–(3.3). The rest of the paper is about
exactly this issue.
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IV. ASYMPTOTICS AND RADIAL EXPANSIONS
OF DATA SETS (WITHOUT IMPOSING THE

VACUUM CONSTRAINTS YET)

As in [24,25] we restrict now to the case Σ ¼ R3nB̄
where B is an arbitrary fixed ball in R3 in all of what
follows. Moreover, we assume that the level sets of ρ are
diffeomorphic to 2-spheres. This implies that we can
assume that

Σ ¼ ðρ−;∞Þ × S2

for some ρ− > 0 and we write the points in Σ as ðρ; pÞ with
ρ ∈ ðρ−;∞Þ and p ∈ S2. Observe carefully that we often
use the same symbol ρ for the real parameter ρ ∈ ðρ−;∞Þ
and for the function ρ defined by ðρ; pÞ ↦ ρ used for the
2þ 1 decomposition. Consider now the manifold Σ ¼
ðρ−;∞Þ × S2 for some ρ− > 0 as before. An initial data
set (not necessarily a solution of the vacuum constraints2) is
equivalently specified by a Riemannian metric γab and
smooth symmetric tensor field Kab on Σ or by the fields
ðA; κ; q; pa; Ba;Qab; habÞ on Σ as in Sec. II A. We shall
often speak of ðA; κ; q; pa; Ba;Qab; habÞ as the 2þ 1 fields
associated with ðγab; KabÞ or equivalently of ðγab; KabÞ as
the initial data set associated with the 2þ 1 quan-
tities ðA; κ; q; pa; Ba;Qab; habÞ.
Let us now introduce some more notation and further

structure. Given any ρ ∈ ðρ−;∞Þ, let Φρ∶ S2 → Σ be the
map p ↦ ðρ; pÞ introduced earlier. Recalling the index
conventions before, we let ðΩ−1ÞAB be the contravariant
round unit metric on S2. Sometimes it is useful to use
standard polar coordinates ðϑ;φÞ on S2 in terms of which
the components of ðΩ−1ÞAB take the form of the matrix
diagð1; sin−2 ϑÞ. Given now an arbitrary smooth intrinsic
tensor field Ta���b on Σ, let TA���B be the (ρ-dependent)
pullback to S2 as discussed before. We then define the
ρ-dependent norm

jTa���bj2 ≔ TA0���B0TA���BðΩ−1ÞAA0 � � � ðΩ−1ÞBB0
: ð4:1Þ

Notice that this is a norm only for intrinsic tensor fields on
Σ. Given this, we write Ta���b ¼ Oð 1

ρk
Þ provided there is a

uniform constant C such that jTa���bj ≤ Cρ−k sufficiently
close to ρ ¼ ∞. We say that Ta���b has an asymptotic radial
expansion of order k (near ρ ¼ ∞) provided

Ta���b ¼
Xk−1
i¼0

TðiÞ
a���bρ−i þO

�
1

ρk

�
; ð4:2Þ

where the coefficients TðiÞ
a���b are smooth intrinsic tensor

fields on Σ that do not depend on ρ, i.e., LρTðiÞ
a���b ¼ 0. If

Ta���b ¼ Oð1Þ, then we say Ta���b as an asymptotic radial
expansion of order 0. To simplify the notation, we some-
times use these notions of the norm and the O symbol for
general tensor fields on Σ even when they are not intrinsic.
In this case observe that this norm and this O symbol are
“completely blind” to all “transversal components” of the
tensor field.
For the following it is also useful to define Ωab as the

tensor field on Σ with the property ρaΩab ¼ 0 whose
pullback along the map Φρ above equals the covariant
round unit metric on the 2-sphere for each ρ, i.e., the inverse
of ðΩ−1ÞAB. Notice carefully that Ωab defined this way is
not intrinsic to the foliation (unless the shift vector field Ba

vanishes). Its components with respect to adapted coor-
dinates ðρ; ϑ;φÞ on Σ as introduced before correspond to
the matrix diagð0; 1; sin2 ϑÞ.
In all of what follows we shall assume without further

notice that ρ− is sufficiently large so that all 2þ 1
quantities are well-defined. Recall that asymptotically flat
data sets have been studied by us before in [24,25] where
we have used the same definitions originally from [34].
Definition 2. The triple ðΣ; γab; KabÞ with Σ ¼ R3nB̄

where B is a ball inR3 is called an asymptotically flat initial
data set provided there exist coordinates fxig on Σ such that
the components of γab and Kab with respect to these
coordinates satisfy, respectively,

γij ¼
�
1þ 2M

R

�
δij þO

�
1

R2

�
; Kij ¼ O

�
1

R2

�
; ð4:3Þ

in the limit

R ¼
�X3

a¼1

ðxiÞ2
�1=2

→ ∞; ð4:4Þ

where δij ¼ diagð1; 1; 1Þ. The quantityM ∈ R is called the
Arnowitt-Deser-Misner (ADM) mass.
Asymptotic flatness therefore implies conditions on the

asymptotics of 2þ 1 quantities associated with an initial
data set ðΣ; γab; KabÞ; see also [24–26].
Result 1 (Asymptotically flat data sets). A data set

ðΣ; γab; KabÞ is asymptotically flat with ADM mass M
provided all corresponding 2þ 1 fields have the following
asymptotic radial expansions:
(1) The expansion of A is of order 2 with Að0Þ ¼ 1

and Að1Þ ¼ M ¼ const.
(2) The expansion of Ba is of order 1 with Bð0Þ

a ¼ 0.
(3) The expansion of hab is of the form ρ−2hab ¼

Ωab þOðρ−2Þ.
(4) The expansion of q is of order 2 with qð0Þ ¼

qð1Þ ¼ 0.
(5) The expansion of pa is of order 1 with pð0Þ

a ¼ 0.
(6) The expansion of Qab is Qab ¼ Oð1Þ.
(7) The expansion of κ is of order 2 with κð0Þ ¼ κð1Þ ¼ 0.

2Initial data sets that are solutions of the vacuum constraints
are discussed in the sections following this one.
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Proof.—As before we assume that Σ ¼ ðρ−;∞Þ × S2

with radial parameter ρ. For the following it is useful to
introduce coordinates ðρ;ϑ;φÞ on Σ where ðϑ;φÞ are
standard polar coordinates on each leaf diffeomorphic to
S2. As mentioned before the components of Ωab with
respect to these coordinates take the form diagð0; 1; sin2 ϑÞ.
Under the assumptions above, the components of γab with
respect to these coordinates are

γαβ ¼ diag

�
1þ 2Að1Þ

ρ
; ρ2; ρ2sin2ϑ

�

þ

0
BBB@

Oð 1
ρ2
Þ Oð1ρÞ Oð1ρÞ

Oð1ρÞ Oð1Þ Oð1Þ
Oð1ρÞ Oð1Þ Oð1Þ

1
CCCA;

where theO symbol for each component here is interpreted
as that for scalar functions on R3. With respect to the new
radial coordinate

R ¼ ρ − Að1Þ;

the components of γab are therefore

γα0β0 ¼ ω2diagð1;R2;R2sin2ϑÞ þ

0
BB@

Oð 1
R2Þ Oð1RÞ Oð1RÞ

Oð1RÞ Oð1Þ Oð1Þ
Oð1RÞ Oð1Þ Oð1Þ

1
CCA;

where ω2 ¼ 1þ 2Að1Þ
R . Transforming the polar coordinates

ðR;ϑ;φÞ to Cartesian coordinates in the standard way, we
finally obtain

γij ¼ ω2diagð1; 1; 1Þ þ

0
BB@

Oð 1
R2Þ Oð 1

R2Þ Oð 1
R2Þ

Oð 1
R2Þ Oð 1

R2Þ Oð 1
R2Þ

Oð 1
R2Þ Oð 1

R2Þ Oð 1
R2Þ

1
CCA;

as required for asymptotic flatness. We can therefore iden-
tify Að1Þ with the quantity M. The same arguments applied
to Kab yield that the condition for asymptotic flatness is

satisfied provided κð0Þ ¼ κð1Þ ¼ 0, pð0Þ
a ¼ 0, and qab ¼

Oð1Þ (which is equivalent to assumptions 4 and 6). ▪
Given an arbitrary initial data set (not necessarily solving

the constraints), then we can show that3 k
⋆
¼ −2=ρþOð1Þ,

and therefore k
⋆
< 0 for sufficiently large ρ; cf. Eq. (3.6).

Since general asymptotically flat data sets of the form in
Result 1 imply that R ¼ Oð1Þ, they can only be used as

backgrounds for solving the modified system Eqs. (3.8)–
(3.10), if we impose additional conditions to ensure
Eq. (3.13). We discuss this issue below.
Here now we return briefly to Kerr-Schild-like data sets

introduced in Sec. II B. To this end we introduce an
arbitrary smooth function r on Σ with the property that

r ¼ ρþOðρ−1Þ; ð4:5Þ

notice carefully that we demand that no Oð1Þ term is
present in this expansion. In terms of this function r, we
assume that the flat metric δab in Definition 1 takes the form

δab ¼ ∇ar∇brþ r2Ωab; ð4:6Þ

where Ωab was introduced above. Given this, it is straight-
forward to show that the function f in Eqs. (2.20) and
(2.21) is f ¼ 1þOðρ−2Þ, that ρ−2hab ¼ Ωab þOðρ−2Þ as
a consequence of Eq. (2.24), and that Ba ¼ Oðρ−1Þ from
Eq. (2.29). It follows from Result 1 and the formulas in
Sec. II B that the Kerr-Schild-like data set is asymptotically
flat provided V has an asymptotic radial expansion of order
2 where Vð0Þ ¼ 0 and Vð1Þ ¼ const. In this case the ADM
mass is M ¼ −Vð1Þ=2.

V. VACUUM INITIAL DATA SETS OBTAINED
BY THE MODIFIED PARABOLIC-

HYPERBOLIC SYSTEM

A. The spherically symmetric case

In this section we analyze the asymptotics of vacuum
initial sets obtained as solutions of Eqs. (3.8)–(3.10). Recall
that Eqs. (3.1)–(3.3) have been analyzed in [25,26]. We
present evidence that all the instabilities regarding asymp-
totic flatness, which were found for the original system, are
resolved by this modification.
The general idea here and in the following is to pick a

background initial data set (in general not a solution of the
constraints) which is asymptotically flat according to
Result 1 in the first step. From this background data set,
we then read off the free data for solving Eqs. (3.8)–(3.10)
in a second step. We start this subsection with the simpler
spherically symmetric case in which Eqs. (3.8)–(3.10)
reduces to a system of ordinary differential equations.
To this end we consider backgrounds in Kerr-Schild-like
form as in Sec. II B with Eqs. (4.5)–(4.6). We impose
spherical symmetry by requiring that V depends only on ρ
and that r ¼ ρ. We also choose _γab ¼ 0. The 2þ 1
quantities defined by this are

Qab ¼ 0; hab ¼ ρ2Ωab; Ba ¼ 0; R ¼ ð2− VÞρ
4ð1− VÞ

∂ρV

V
;

ð5:1Þ

and

3Without going into technical details we assume here that the
O symbol does not only control the fields themselves as
discussed before but also sufficiently many of their derivatives
in the natural way.
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q ¼ 2V

ρ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − V

p ; pa ¼ 0; A ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − V

p
: ð5:2Þ

To ensure that R is a smooth quantity, we assume that
∂ρV=V is well-defined and finite for all ρ > 0.
We use Eq. (5.1) now as a background to determine the

free data for the modified parabolic-hyperbolic system
Eqs. (3.8)–(3.10). Since q, pa, and A are supposed to be
found as solutions of the equations, we therefore ignore
Eq. (5.2). To appeal to spherical symmetry, we look for
solutions under the restriction pa ¼ 0 and where the
unknowns A and q depend only on ρ. With this,
Eqs. (3.8)–(3.10) take the form

∂ρq ¼ −
2

ρ

�
1

2
−R

�
q; ð5:3Þ

∂ρA ¼ −
ρ

4

�
2

ρ2
þ
�
2Rþ 1

2

�
q2
�
A3 þ 1

2ρ
A: ð5:4Þ

It is surprising4 that for any function V that satisfies the
previous restrictions, we can write down the general
solution explicitly as

q ¼ 2CV

ρ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − V

p ; ð5:5Þ

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − VÞρ
ρ − 2m − ðρ − 2mÞV þ ρC2V2

s
; ð5:6Þ

wherem; C ∈ R are free constants. It is interesting to notice
that this agrees with Eq. (5.2) only if C¼1 and V¼−2m=ρ.
Irrespective of the choice of V, the Hawking mass [35] of
each surface Sρ of the resulting vacuum initial data set turns
out to be

mH ¼ m ð5:7Þ

and is therefore independent of ρ.
Since we study vacuum solutions in somewhat more

detail in the next subsection, let us now consider the
following specific choice of the function V:

V ¼ −
V
ρ
; ð5:8Þ

for an arbitrary constant V ∈ R. From the discussion at the
end of Sec. IV, the background data set above is therefore
asymptotically flat with mass V=2. With this choice the
solutions Eqs. (5.5) and (5.6) have the following asymp-
totic expansions:

A ¼ 1þm
ρ
þO

�
1

ρ2

�
; q ¼ −

2CV
ρ2

þO

�
1

ρ3

�
;

κ ¼ Rq ¼ CV
ρ2

þO

�
1

ρ3

�
: ð5:9Þ

It is a consequence of Result 1 that the resulting vacuum
initial data set is therefore asymptotically flat with ADM
massm ∈ R irrespective of the choice of V > 0 and C ∈ R.
In contrast to our findings in [25] for the original system, this
demonstrates that the modified parabolic-hyperbolic system
“performs significantly better” and in a far more stable
manner in the asymptotically flat setting. It is interesting that
the background mass V=2 and the ADM mass m of the
resulting vacuum data set are generally distinct.

B. Asymptotic radial expansions of vacuum
initial data sets (without symmetries)

In this section we use asymptotic expansions to study the
asymptotics of vacuum initial data sets obtained by the
modified system Eqs. (3.8)–(3.10) for a large class of
backgrounds without imposing symmetries. Assuming
certain asymptotic radial expansions are valid and the free
data satisfy appropriate assumptions, we demonstrate that
the solutions of the constraints are always asymptotically
flat in consistency with our findings in the spherically
symmetric case in Sec. V B. In the section following this
one, we then support the strong assumptions that we are
required to make here by numerical computations. We
focus on the modified system Eqs. (3.8)–(3.10). We refer to
[25] for a corresponding result for the original system
Eqs. (3.1)–(3.3) which demonstrates that general solutions
of the original system are not asymptotically flat.
Result 2. Let Σ ¼ ðρ−;∞Þ × S2 for some ρ− > 0.

Consider arbitrary smooth free data fields R, Ba, Qab,
and hab on Σ with the properties:
(1) The scalar function R has an asymptotic radial

expansion of order 2 such that Rð0Þ ¼ −1=2 and
Rð1Þ is a strictly positive function.

(2) The intrinsic covector field Ba has an asymptotic

radial expansion of order 1 with Bð0Þ
a ¼ 0.

(3) The symmetric trace-free intrinsic tensor field Qab
has an asymptotic radial expansion of order 2

with Qð0Þ
ab ¼ Qð1Þ

ab ¼ 0.
(4) The symmetric intrinsic tensor field hab has an

asymptotic radial expansion of the form ρ−2hab ¼
Ωab þOðρ−2Þ.

Then the parabolicity and the hyperbolicity conditions [see
Eqs. (3.6) and (3.13)] hold for sufficiently large ρ and for
any solution A, q, pa of the modified parabolic-hyperbolic
system Eqs. (3.8)–(3.10) with the properties:
(1) A is strictly positive and has an asymptotic radial

expansion of order 2,
(2) q has an asymptotic radial expansion of order 2,4This is not possible for the original system; see [25].
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(3) pa is an intrinsic covector field with an asymptotic
radial expansion of order 2,

we find

qð0Þ ¼ qð1Þ ¼ 0; pð0Þ
a ¼ pð1Þ

b ¼ 0;

Að0Þ ¼ 1; Að1Þ ¼ const:

The vacuum initial data set corresponding to the 2þ 1-
quantities ðA; q; pa;R; Ba;Qab; habÞ is therefore asymp-
totically flat with ADM mass Að1Þ.
The conditions for the free data fields are compatible

with Result 1. Observe, however, that the restrictions for
Qab and R are in fact stronger than the ones required
by Result 1. The additional condition on R ensures that
Eq. (3.13) holds in addition to Eq. (3.6). It is a nontrivial
outcome of the analysis that Result 2 would in general not
hold if Rð0Þ ≠ −1=2
Proof of Result 2.—We have discussed before

k
⋆
¼ −

2

ρ
þO

�
1

ρ2

�
; ð5:10Þ

as a consequence of the hypothesis and that therefore
Eq. (3.6) holds for sufficiently large ρ. We also find that

Rþ 1

2
¼ Rð1Þ

ρ
þO

�
1

ρ2

�
ð5:11Þ

and that the assumptionRð1Þ > 0 therefore implies Eq. (3.13)
for sufficiently large ρ as well. Equations (3.8)–(3.10) is
therefore parabolic-hyperbolic asymptotically. Now we
attempt to solve Eqs. (3.8)–(3.10) order by order in ρ. The
two leading orders of Eq. (3.9) immediately imply
qð0Þ ¼ qð1Þ ¼ 0. Given this, the leading order of Eq. (3.8)
yields the equation

Δ̂Að0Þ ¼ −
1 − ðAð0ÞÞ2

Að0Þ ≕F½Að0Þ�; ð5:12Þ

where Δ̂ is the Laplace operator associated with the round
2-sphere metric ΩAB. It is clear that A0Þ ¼ 0 cannot be a
solution, andwe rule out all negative solutions by assumption.
One positive solution is Að0Þ ¼ 1; in fact, this is the only
smooth strictly positive solution: Suppose there were two
different smooth strictly positive solutions Að0Þ and Ãð0Þ of
Eq. (5.12). Then a standard integration by parts argument
implies

−kD̂ðAð0Þ − Ãð0ÞÞk2 ¼ hAð0Þ − Ãð0Þ; F½Að0Þ� − F½Ãð0Þ�i;
ð5:13Þ

where the norm and the scalar product here are the standard
L2-normandL2-scalar product on the2-spherewith respect to
Ωab. One can easily check that

F½Að0Þ� − F½Ãð0Þ� ¼ Að0ÞÃð0Þ þ 1

Að0ÞÃð0Þ ðAð0Þ − Ãð0ÞÞ: ð5:14Þ

Since the fraction on the right-hand side is strictly positive if
Að0Þ and Ãð0Þ are strictly positive, the right-hand side of
Eq. (5.13) is therefore non-negative. Since the left-hand side,
however, is nonpositive, it implies thatAð0Þ and Ãð0Þ can differ
at most by a constant. However, one can easily check that
Að0Þ ¼ 1 is the only positive constant solution. Given this, the

two leading orders of Eq. (3.10) imply that pð0Þ
a ¼ pð1Þ

a ¼ 0.
Finally,we lookat the thirdorder (ρ−3) termofEq. (3.10) toget

Δ̂Að1Þ ¼ 0; ð5:15Þ

from which we conclude that Að1Þ is an arbitrary constant.
Result 1 now implies that these solutions are asymptotically
flat and that Að1Þ is the ADM mass. ▪.

VI. NUMERICAL INVESTIGATIONS

A. Black hole background data sets

Our analytical results in Sec. V suggest that general
solutions of the modified parabolic-hyperbolic system
Eqs. (3.8)–(3.10) are asymptotically flat provided the free
data satisfy certain asymptotic conditions, in contrast to
solutions of the original system Eqs. (3.8)–(3.10); see [25].
In this section we now support these results by numerical
calculations.
In [25] we introduced a framework to construct, in

principle, multiple black hole background data sets, which
then provide the free data to solve the constraint equations
in a next step. Here we give a short summary of our
procedure, which is based on the formalism presented in
Sec. II B. Inspired by the ideas presented in [11] we
imagine to have N black hole–like bodies at coordinate
positions ðxi; yi; ziÞ with massesMi for i ¼ 1;…; N. Using
ðx; y; zÞ to label Cartesian coordinates on Σ and setting

uðx; y; zÞ ¼
XN
i¼0

Mi

riðx; y; zÞ
; ð6:1Þ

where

riðx; y; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − xiÞ2 þ ðy − yiÞ2 þ ðz − ziÞ2

q
; ð6:2Þ

we define the function ρ as

ρðx; y; zÞ ¼
P

N
i¼0Mi

uðx; y; zÞ : ð6:3Þ

Here we restrict to the binary case N ¼ 2 and write
M1 ¼ Mþ, M2 ¼ M−, r1 ¼ rþ, and r2 ¼ r−, where
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r� ¼ ð0; 0;�Z�Þ; ð6:4Þ

for constants Z� ≥ 0. In contrast to [25] we now impose a
“center of mass condition” (the reason for this is given
below)

ZþMþ − Z−M− ¼ 0; ð6:5Þ

and therefore choose

Z− ¼ Z; Zþ ¼ M−

Mþ
Z; ð6:6Þ

for some Z ≥ 0. Notice that M− ¼ 0 together with Z ¼ 0
yields the case of a single black hole. Figure 1 shows
examples of contour plots of the function ρ. It is clear from
Fig. 1 that there is a critical value of ρ where the surfaces
undergo a topology change (a bifurcation). For ρ < ρcrit,
each contour is the union of two disconnected 2-spheres
where

ρcrit ¼ Z
ðMþ þM−Þ2

Mþð
ffiffiffiffiffiffiffiffi
Mþ

p þ ffiffiffiffiffiffiffi
M−

p Þ2 : ð6:7Þ

However, each ρ ¼ const surface is diffeomorphic to a
single 2-sphere if ρ > ρcrit. Equation (6.7) holds under the
assumption that Mþ > 0 and M−; Z ≥ 0. In all of what
follows we restrict to this latter exterior regime ofR3 where
the collection of ρ ¼ const surfaces give rise to a foliation.
We emphasize that there certainly exist regular foliations
with 2-sphere topology other than the one given by
Eqs. (6.1)–(6.3) which extend arbitrarily close to the black
holes in a regular fashion as well as to the asymptotic
regime. Exploring the wide range of possibilities here will
be important in future studies of both the strong field
regime close to the black holes and the asymptotic far field
regime. In this work we focus on the latter in which case the

exterior foliation given by Eqs. (6.1)–(6.3) and Eq. (6.7) is
sufficient.
Finally, given all this, we pick

V ¼ −2u; _γab ¼ 0; ð6:8Þ

and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

q
; ð6:9Þ

as in [25] and then obtain an initial data set (not necessarily
a solution of the constraints) in the Kerr-Schild form using
Sec. II B together with Eq. (4.6). We find that the resulting
data set agrees with the Schwarzschild Kerr-Schild data set
with mass Mþ in the single black hole case M− ¼ Z ¼ 0.
Moreover, we see easily that Eq. (4.5) holds as a conse-
quence of the center of mass condition Eq. (6.5).
We can now show by direct calculations that for anyMþ,

M−, and Z as above, the hypothesis of Result 2 for R, Ba,
Qab, and hab are satisfied at least for all sufficiently large ρ.
The hypothesis about the unknown fields A, q, and pa can,
however, as a matter of principle, not be verified a priori.
The main purpose of the following numerical experiments
is to provide evidence that the conclusions of Result 2,
namely that the resulting vacuum initial data sets are always
asymptotically flat, hold nevertheless.

B. Numerical setup

Given a background data set in Sec. VI A, the next task is
to numerically solve the Cauchy problem of Eqs. (3.8)–
(3.10) with free data determined by this background. We
explain below that we use two different ways to specify
Cauchy data in the two following numerical examples.
As discussed in more detail in [25], while the background
data sets are given in Cartesian coordinates ðx; y; zÞ on
Σ or, equivalently, in corresponding spherical coordinates
ðr; θ;ϕÞ using Eq. (6.9), the evolutions of Eqs. (3.8)–(3.10)

FIG. 1. Contour plots of the function ρðx; y; zÞ defined by Eqs. (6.1)–(6.3) forMþ ¼ M− > 0 and Z > 0. The left plot shows ρ close to
the two black hole positions, while the right figure shows contours for large distances. Both plots restrict to the x-z plane. It is evident
that the contours become round 2-spheres in the limit of large distances.
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must be performed in adapted 2þ 1 coordinates ðρ;ϑ;φÞ
where ρ is given by Eqs. (6.1)–(6.3) and where ðϑ;φÞ are
intrinsic polar coordinates on each ρ ¼ const surface
diffeomorphic to S2. As in [25] we choose

ϑ ¼ θ; φ ¼ ϕ:

This completely fixes the coordinate transformation between
the two coordinate systems ðr; θ;ϕÞ and ðρ; ϑ;φÞ on Σ.
Since the exterior region is foliated by 2-spheres, we can

apply the spin-weight formalism following [24,29–
31,36,37]. A brief summary is given in the appendix.
We express the covariant derivative operator Da (defined
with respect to the intrinsic metric hab) in terms of the
covariant operator D̂a defined with respect to the round
unit-sphere metric Ωab; recall that Da − D̂a can be
expressed by some smooth intrinsic tensor field. Using
Sec. A, we can then express the covariant derivative
operator D̂a in terms of the ð and ð0 operators [36].
Once all of this has been completed for all terms in
Eqs. (3.8)–(3.10), each of these equations and each term
end up with a consistent well-defined spin weight. Most
importantly, however, all terms are explicitly regular:
Standard polar coordinate issues at the poles of the 2-
sphere disappear when all quantities are expanded in terms
of spin-weighted spherical harmonics and Eqs. (A5) and
(A6) are used to calculate the intrinsic derivatives. From the
numerical point of view this gives rise to a (pseudo)spectral
scheme. We can therefore largely reuse the code presented
in [25] subject to two minor changes: (1) the definition of ρ
now allows that Zþ ≠ Z− in agreement with Eq. (6.6), and
(2) all instances of κ in the equations are now replaced with
Rq in agreement with our modification which leads to
Eqs. (3.8)–(3.10). These two changes do not significantly
affect our numerical methods. Once the appropriate
changes were made to the code, convergence tests (analo-
gous to the ones presented in [25]) were carried out and the
appropriate behavior was observed. All of the following
simulations were carried out using the adaptive SciPy ODE
solver odeint.5

Notice that the background data sets constructed in
Sec. VI A are axially symmetric, and hence there is no
dependence on the angular coordinate φ ¼ ϕ. Motivated by
this we restrict to numerical solutions of Eqs. (3.8)–(3.10)
with that same symmetry in all of what follows. We can
therefore restrict to the axisymmetric case of the spin-
weight formalism in Sec. A.

C. Axisymmetric perturbations of single Schwarzschild
black hole initial data

In this section now we use the background data set given
in Sec. VI A for Mþ ¼ 1 and M− ¼ Z ¼ 0 (the “single

black hole case”). The free data for Eqs. (3.8)–(3.10) are
therefore given by Eq. (5.1) with V ¼ −1=ρ. It follows
from Sec. V that

q
∘ ¼ −

2

ρ3=2
ffiffiffiffiffiffiffiffiffiffiffi
ρþ 1

p ; A
∘ ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ρ

s
; p

∘
a ¼ 0; ð6:10Þ

is a particular solutions of Eqs. (3.8)–(3.10) representing
single Schwarzschild black hole initial data of unit mass (in
spherical symmetry). The point is now to generate axisym-
metric (nonlinear) perturbations of this solution by solving
Eqs. (3.8)–(3.10) with the same free data, but with the
following perturbed Cauchy data imposed at6 ρ0 ¼ 3:

qjρ¼ρ0
¼ q

∘ jρ¼ρ0
þ ε sinðθÞ; Ajρ¼ρ0

¼ A
∘
jρ¼ρ0

þ ε sinðθÞ;
pajρ¼ρ0

¼ 0; ð6:11Þ

for some freely specifiable constant ε ∈ R. For small values
of ε, we can interpret the resulting vacuum initial data sets
as perturbations of single Schwarzschild black hole ini-
tial data.
Given these background data and Cauchy data, we then

numerically solve Eqs. (3.8)–(3.10). Using the formalism
in Sec. A these equations take the form

∂ρA ¼ −
ρ

4

�
2

ρ2
ð1 − 2pp̄Þ þ

�
2Rþ 1

2

�
q2
�
A3

þ 1

2ρ
ð1þ Aððð̄ðAÞÞÞA; ð6:12Þ

∂ρq ¼ 1ffiffiffi
2

p
ρ2

ðð̄ðpÞ þ ððp̄ÞÞA −
2

ρ

�
1

2
−R

�
q

þ 2

ρ2
ffiffiffi
2

p ðpð̄ðAÞ þ p̄ððAÞÞ; ð6:13Þ

∂ρp ¼ A

�
1

2
þR

�
ððqÞ − 2

ρ
pþ 1ffiffiffi

2
p

�
R −

1

2

�
qððAÞ;

ð6:14Þ

∂ρp̄ ¼ A

�
1

2
þR

�
ð̄ðqÞ − 2

ρ
p̄þ 1ffiffiffi

2
p

�
R −

1

2

�
qð̄ðAÞ;

ð6:15Þ

where

p ¼ 1ffiffiffi
2

p pað∂a
ϑ − i csc θ∂a

φÞ; p̄ ¼ 1ffiffiffi
2

p pað∂a
ϑ þ i csc θ∂a

φÞ;

ð6:16Þ

5See https://docs.scipy.org/doc/scipy/reference/generated/
scipy.integrate.odeint.html.

6For the single black-hole case the foliation does not bifurcate
[see Eq. (6.7)], and so all values ρ0 > 0 are allowed.
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and [see Eq. (5.1)]

R ¼ −
1

2
þ 1

4ð1þ ρÞ :

The quantities A and q have spin-weight zero, while p and
p̄ have spin-weight 1 and −1, respectively. For this
particular symmetry (and the particular representation of
the underlying bundle) we can assume that

p ¼ p̄:

To present our numerical calculations now and use them
to check the predictions from Result 2 we consider the sup-
norm over S2 defined, for any smooth scalar function
F ðρ; ϑÞ (such as A and q above), as

kFkðρÞ ¼ max
ϑ∈½0;π�

jF ðρ; ϑÞj: ð6:17Þ

For pa, this norm is defined as

kpkðρÞ ¼ max
ϑ∈½0;π�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωabpaðρ; ϑÞpbðρ; ϑÞ

q
¼ max

ϑ∈½0;π�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðρ; ϑÞp̄ðρ; ϑÞ

p
: ð6:18Þ

In the first instance, we expect the following behavior:

kA − 1kðρÞ ¼ O

�
1

ρ

�
; kqkðρÞ ¼ O

�
1

ρ2

�
;

kpkðρÞ ¼ O

�
1

ρ2

�
ð6:19Þ

for all of the solutions above according to Result 2. Figure 2
shows that the numerical solutions are indeed consistent
with this. The particular numerical solution shown there

was produced with ε ¼ 10−2, an absolute and relative error
tolerance for the adaptive ordinary differential equation
(ODE) solver of 10−12, and for N ¼ 11, where N is the
number of spatial points in the ϑ direction. We have
repeated the same numerical experiments with smaller
values of ε as well and found the same qualitative behavior
in agreement with Result 2.
However, to demonstrate full consistency with Result 2

we must show that

A ¼ 1þ Að1Þ

ρ
þO

�
1

ρ2

�
; ð6:20Þ

for a constant Að1Þ (which then represents the ADM mass).
We proceed as follows to numerically support the claim that
this is indeed true. If the first two orders of A are constant
with respect to ϑ, then the quantity [see Eqs. (A9) and
(A10)]

1 −
4πjAðρÞj2

kAðρÞkL2ðS2Þ
¼ kAðρÞkL2ðS2Þ − 4πjAðρÞj2

kAðρÞkL2ðS2Þ

¼
P∞

l¼1 jAlðρÞj2P∞
l¼0 jAlðρÞj2

ð6:21Þ

must decay as Oðρ−4Þ. In Fig. 3 we see that this is indeed
the case for ε ¼ 10−2.
Let us now discuss how we numerically calculate the

ADM mass. In accordance with Result 2, we have

AðρÞ ¼ 1þ Að1Þ

ρ
þO

�
1

ρ2

�
ð6:22Þ

[see Eq. (A8)]. Since Að1Þ ¼ Að1Þ follows from the above,
we therefore find

FIG. 2. Decay plots of the numerical solution for the “single black hole case” obtained with ϵ ¼ 10−2, N ¼ 11, and a numerical error
tolerance of 10−12.
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Að1Þ ¼ ρðAðρÞ − 1Þ þO

�
1

ρ

�
: ð6:23Þ

This suggests that we define

mNðρÞ ¼ ρðAðρÞ − 1Þ ð6:24Þ

as a numerical estimate for the ADM mass mADM. In
particular, we get

mNðρÞ ¼ mADM þO

�
1

ρ

�
; ð6:25Þ

as confirmed by Fig. 4. Given all this, it becomes clear that
the numerical estimate for the massmN becomes better as ρ

becomes larger. We find, however, that the numerical errors
in numerically solving the constraints become significant if
we go further than ρ ∼ 103. It is natural then to wonder how
good the approximation mADM ¼ mNð103Þ is. For this we
consider the quantity

EA½mADM� ¼ jmNð2ρÞ −mNðρÞj; ð6:26Þ

which is calculated for ρ ¼ 103 as a measure of the absolute
error. For our example case, with ϵ ¼ 10−2, we find

mADM ¼ 0.9942; EA½mADM� ¼ 2.34 × 10−6: ð6:27Þ

Notice that the relative error is of order ∼10−6. As was
mentioned above, this is likely due to the error associated
with measuring mADM at a finite value of ρ. However,
because of the errors generated by numerically solving the
constraints for very large values of ρ, we need to accept

FIG. 4. Estimate the ADMmass for the “single black hole case”
obtained with the same parameters as Fig. 2.

FIG. 3. Mode decay plot of the numerical solution for the
“single black hole case” obtained with the same parameters
as Fig. 2.

FIG. 5. Decay plots of the numerical solution for the “binary black hole case” obtained with Mþ ¼ M− ¼ 1=2, Z ¼ 1, N ¼ 11,
ρ0 ¼ 3, and a numerical error tolerance of 10−12.
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whatever error we have at that point in the measurement of
the mass.

D. Binary black hole–like initial data sets

In this subsection we repeat essentially the same numeri-
cal experiments as before with two changes: (1) the back-
ground data set is now determined with parameters
Mþ ¼ M− ¼ 1=2 and Z ¼ 1 (an “equal mass binary black
hole case”), and (2) instead of the “perturbed” Cauchy data
as in Eq. (6.11), we now choose the values obtained from
the background data set at ρ0 ¼ 3. For this particular case
Eq. (6.7) gives that the bifurcation occurs at ρcrit ¼ 1.
Our numerical findings, as shown in Fig. 5, are again

consistent with the prediction

kA − 1kðρÞ ¼ O

�
1

ρ

�
; kqkðρÞ ¼ O

�
1

ρ2

�
;

kpkðρÞ ¼ O

�
1

ρ2

�
ð6:28Þ

from Result 2. Similarly, as with the single black hole case,
we expect the quantityP∞

l¼1 jAlðρÞj2P∞
l¼0 jAlðρÞj2

ð6:29Þ

to decay as Oðρ−4Þ. In Fig. 6 we observe exactly this
behavior. As before, we interpret this as strong evidence
that the obtained vacuum initial data sets are indeed
asymptotically flat. One may therefore use Eq. (6.24) to
numerically estimate the ADM mass; the behavior pre-
dicted by Eq. (6.25) is verified in Fig. 7. We find

mADM ¼ 0.9423; EA½mADM� ¼ 5.01 × 10−6: ð6:30Þ

We have repeated the calculations for similar parameter
sets and came to the same conclusions: The resulting
vacuum initial data sets are always asymptotically flat.
Given fixed values of Mþ and M−, say, Mþ ¼ M− ¼ 1=2
as before, one expects the resulting ADMmasses to depend
strongly on the separation distance Z. To investigate this we
numerically calculate the resulting vacuum initial data sets
and ADM masses for a range of separation distances Z.
Note that since we treat ρ0 ¼ 3 as fixed, Eq. (6.7) intro-
duces an upper bound for the possible values for Z, namely
Z < ρcrit. The results are shown in Fig. 8, where we see that
the ADM mass is a decreasing function of the separation
distance Z. Notice that the same dependence of the ADM

FIG. 7. Estimate of the ADM mass for the “binary black hole
case” obtained with the same parameters as Fig. 5.

FIG. 8. Dependence of mADM on Z in the “binary black hole
case” with Mþ ¼ M− ¼ 1=2, ρ0 ¼ 3, N ¼ 11, and numerical
error tolerance of 10−12.

FIG. 6. Mode decay plot of the numerical solution for the
“binary black hole case” obtained with the same parameters
as Fig. 5.
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mass on Z had been observed in [25] for asymptotically
Euclidean data sets.

VII. CONCLUSIONS

In this paper we propose a new parabolic-hyperbolic
formulation of the Einstein vacuum constraints based on a
formulation originally given by Rácz. Using analytical and
numerical methods we provide strong evidence that the
main major drawback of these kinds of evolutionary
formulations, namely to generically produce vacuum initial
data sets that violate asymptotically flatness [24–26], has
now finally been overcome.
In Secs. VI C and VI D we have numerically constructed

particular vacuum initial data sets as solutions of our new
equations, which could potentially be interpreted as per-
turbed Schwarzschild initial data and as binary black hole
initial data, respectively. As we discussed, the particular
choice of foliation (see Sec. VI A) leads to the restriction
ρ > ρcrit with Eq. (6.7). This means that we only have
limited access to the strong field regime close to the black
holes. Strictly speaking it is therefore not even clear
whether the resulting vacuum initial data sets really
represent black holes. To resolve this issue, we need to
find, for example, apparent horizons in the strong field
regime. Given that the asymptotics of the resulting initial
data sets are under control now, future studies will therefore
have to focus on a remedy for the issues associated with the
strong field regime. A natural starting point for such studies
would be to try to come up with a different 2-sphere
foliation than the one in Sec. VI A, which matches the one
above for sufficiently large values of ρ, but which allows
one to place the initial 2-surface arbitrarily close to the
black holes. All this would need to be done in a way which

guarantees that k
⋆
is strictly negative, which might be a

nontrivial condition given how involved and nontrivial
typical strong field geometries can be. In any case, if this
can be achieved, then we can use Eqs. (3.8)–(3.10) to
construct asymptotically flat vacuum initial data sets and
analyze in great detail the resulting strong field black hole–
like regimes.
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APPENDIX: SPIN-WEIGHT AND SPIN-
WEIGHTED SPHERICAL HARMONICS

We say that a function f defined on S2 has spin weight s
if it transforms as f → eisξf under a local rotation by an
angle ξ in the tangent plane at any point in S2. Let ðϑ;φÞ be
standard polar coordinates on S2. If f has spin weight s and
is sufficiently smooth, it can be written as

fðϑ;φÞ ¼
X∞
l¼jsj

Xl

m¼−l
flmsYlmðϑ;φÞ; ðA1Þ

where sYlmðϑ;φÞ are the spin-weighted spherical harmon-
ics (SWSH) and where flm are complex numbers. Using the
conventions in [24,29–31,36,37], these functions satisfyZ

S2
sYl1m1

ðϑ;φÞ∶ ¯
sYl2m2

ðϑ;φÞdΩ ¼ δl1l2δm1m2
; ðA2Þ

where δlm is the Kronecker delta and dΩ is the area element
of the metric of the round unit sphere. Using this we find
that the coefficients flm in Eq. (A1) can be calculated as

flm ¼
Z
S2

fðϑ;φÞsȲlmðϑ;φÞdΩ: ðA3Þ

The eth operators ð and ð0 are defined by

ðf ¼ ∂ϑf −
i

sinϑ
∂φf − sf cotϑ;

qð0f ¼ ∂ϑf þ i
sin ϑ

∂φf þ sf cotϑ; ðA4Þ

for any function f on S2 with spin weight s. We have

ðsYlmðϑ;φÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − sÞðlþ sþ 1Þ

p
sþ1Ylmðϑ;φÞ; ðA5Þ

ð0sYlmðϑ;φÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞðl − sþ 1Þ

p
s−1Ylmðϑ;φÞ; ðA6Þ

ð0ðsYlmðϑ;φÞ ¼ −ðl − sÞðlþ sþ 1ÞsYlmðϑ;φÞ: ðA7Þ

Thus, using the properties above it is easy to see that ð
raises the spin weight by one while ð0 lowers it by one.
The average of a function f with spin weight 0 on S2 is

defined by

f ¼ 1

4π

Z
S2

fdΩ: ðA8Þ

Expressing f in terms of SWSH and using Eq. (A2) it
follows that

f ¼ 1

4π

Z
S2

X∞
l¼0

Xl

m¼−l
flm0Ylmðϑ;φÞ dΩ

¼
ffiffiffiffiffiffi
4π

p

4π

Z
S2

X∞
l¼0

Xl

m¼−l
flm0Ylmðϑ;φÞ0Ȳ00ðϑ;φÞ dΩ

¼ 1ffiffiffiffiffiffi
4π

p f00; ðA9Þ

where we have used the fact that 0Y00ðϑ;φÞ ¼ ð4πÞ−1=2.
Another quantity of interest is the L2-norm with respect to
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the standard round metric on S2. The Parseval identity
states that

kfk2L2ðS2Þ ¼
X∞
l¼0

Xl

m¼−l
jflmj2: ðA10Þ

Finally we notice that many quantities considered in this
paper are axially symmetric and therefore do not depend on

the angle φ. For such functions, all coefficients with flm
with m ≠ 0 vanish, and we use the following shorthand
notation to write Eq. (A1) as

fðϑÞ ¼
X∞
l¼jsj

flsYlðϑÞ: ðA11Þ
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