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In this paper, we consider wormhole geometries in the context of the teleparallel equivalent of general
relativity (TEGR) as well as fðTÞ gravity. The TEGR is an alternative geometrical formulation of Einstein’s
general relativity, where modified teleparallel gravity or fðTÞ gravity has been invoked as an alternative
approach for explaining an accelerated expansion of the universe. We present the analytical solutions under
the assumption of spherical symmetry and the existence of a conformal Killing vectors to proceed a more
systematic approach in searching for exact wormhole solutions. More preciously, the existence of a
conformal symmetry places restrictions on the model. Considering the field equations with a diagonal
tetrad and anisotropic distribution of the fluid, we study the properties of traversable wormholes in TEGR
that violates the weak and the null energy conditions at the throat and its vicinity. In the second part,
wormhole solutions are constructed in the framework of fðTÞ gravity, where T represents torsion scalar. As
a consistency check, we also discuss the behavior of energy conditions with a viable power-law fðTÞmodel
and the corresponding shape functions. In addition, a wide variety of solutions are deduced by considering
a linear equation of state relating the density and pressure, for the isotropic and anisotropic pressure,
independently of the shape functions, and various phantom wormhole geometries are explored.
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I. INTRODUCTION

Wormholes are popular tools in science fiction which act
as a tunnellike structure connecting different universes or
widely separated regions lie in the same universe. These
geometrical model can be considered as a way for rapid
interstellar travel, time machines and warp drives. In this
direction investigation led by Einstein and Rosen [1] in the
middle of the 1930s, where they constructed an elementary
particle model represented by a bridge linking two identical
sheets: Einstein-Rosen bridge (ERB). This mathematical
representation of physical space was an unsuccessful
particle model. Twenty years later Wheeler [2] interested
in topological issues in general relativity (GR), which he
denoted “gravitational-electromagnetic entity” in short
geons. These were considered as a configuration of the
gravitational field, possibly coupled to other zero-mass

fields such as massless neutrinos [3] or the electromagnetic
field [4]. Dubbing Einstein-Rosen bridges, Wheeler [5]
sought a way that particles would emerge from a kind of
spacetime foam connecting different regions of spacetime
at the Planck scale. However, the terminology of “worm-
hole” was first coined by Wheeler [6] in 1957. In late 1962,
Fuller and Wheeler [7] were able to prove that ERB would
collapse instantly upon formation. In fact, ERB is a
nontraversable wormhole, even by a photon.
Modern interest in wormholes are mainly based on the

seminal work by Morris and Thorne [8] and subsequently
Morris, Thorne, and Yurtsever [9]. This issue was inves-
tigated after introducing a static spherically symmetric
metric with the desired structures and then recovered the
matter fields through Einstein’s equation. The character of a
wormhole is asymptotically flat with a constant or variable
radius which depends on its configuration. These authors
have shown that wormholes can be traversable provided
that they are supported by “exotic” matter with a minimal
surface area linked to satisfy flare-out condition, which is
called the throat of the wormhole. It turns out that the
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energy-momentum tensor to violate the null energy con-
ditions (NEC) called exotic matter; in fact wormhole
solutions violate all of the standard energy conditions
[10]. However, this type of matter sounds to be unusual
in general relativity (GR), but from a quantum gravitational
perspective, they are seen as a natural consequence if the
topology of spacetime fluctuates in time [2]. As a conse-
quence, it is important and useful to minimize the vio-
lation of the energy conditions or reduce the encounter
of exotic matter at the throat. The energy conditions of
dynamical wormholes in general relativity were explored in
Refs. [11–13].
A notable result was the “volume integral quantifier”

proposed by Visser et al. [14]. They showed that the
amount of exotic matter can be made infinitesimally small
by choosing the geometry of the wormhole in a very
specific and appropriate way. In the same direction another
interesting proposal came from Kuhfittig [15,16] by impos-
ing a condition on b0ðrÞ to be close to one at the throat. It
has been demonstrated that an evolving wormhole without
violation of the weak energy condition (WEC) could
exist within classical GR [17,18]. They consider a metric
with a conformal time-dependent factor, whose spacelike
sections are R × S2 with a wormhole metric. The thin-
shell formalism is another approach to minimize the exotic
matter, where the exotic matter is concentrated at the
throat [19,20].
It goes without saying that violation of NEC is an

unavoidable consequence within GR. However, in the
context of modified gravity and higher dimensional theo-
ries, it was shown that the normal matter threading the
wormhole satisfies all of the energy conditions. In this
regard, the study of wormhole solutions in modified
theories of gravity enchanted researchers in avoiding the
presence of these nonstandard fluids. More precisely, all
known modifications to Einstein gravity introduce new
degrees of freedom in the gravitational sector. In particular,
it was shown that wormhole throats can be constructed
without the presence of exotic matter in fðRÞ gravity [21].
In this context, wormhole geometries have been studied
assuming different fluids with specific shape functions and
examined the validity of energy conditions in [22–25].
Author of Ref. [26] studied the wormhole geometries
supported by a nonminimal curvature-matter coupling. It
turns out that the matter threading the solution satisfies the
null energy condition. These types of solutions were also
found in Einstein-Gauss-Bonnet theory [27–30], Born-
Infeld gravity [31] and Lovelock gravity [32–34]. In the
curvature-matter coupled theory, fðR; TÞ gravity, exact
solutions were found [35–38].
Motivated by the above discussion, our aim is to find

wormhole solutions in fðTÞ gravity. Inspired by the
formulation of higher-order gravity theories, such as
fðRÞ theories, teleparallel equivalent of general relativity
(TEGR) has been generalized to fðTÞ gravity. Interestingly,

TEGR [39–42] is a gravity theory based on spacetime
torsion, replacing a zero torsion Levi-Civita connection by
a zero curvature Weitzenböck connection with the vierbein
as a fundamental tool. The Weitzenböck linear connection
furnishes a null Riemann curvature tensor, and characterize
a globally flat space-time endowed with a nonzero torsion
tensor. It is important to mention that this connection is
metric-compatible, and the dynamics of the theory is
based only on the torsion. This is one of the main
differences between GR and TEGR, and comparing with
GR, TEGR has some advantages [43] over the conventional
formulation.
In analogy to the above theory, the so-called fðTÞ gravity

has been introduced as a straightforward modification
of teleparallel gravity by changing in the TEGR action.
These fðTÞ gravity models, where T is the torsion scalar,
the Lagrangian is taken to be a nonlinear function of the
TEGR Lagrangian T [44–46]. This construction crucially
depended on an appropriate ansatz for the tetrad field. In
contrast to this, the equations of motion of the torsion-
based fðTÞ theory involve only the usual second order
derivatives of the tetrad fields. However, the curvature-
based fðRÞ gravity leads to fourth order derivative of the
metric in the resulting equations of motion. Subsequently,
in the pure tetrad formalism (absence of the spin con-
nection), fðTÞ gravity exhibits violation of the local
Lorentz invariance [46] (for more review see [44]).
Other potentially helpful approaches in this respect must
be explored, as the proposals of covariant formulation of
teleparallel gravities where the spin connection is taken
different from zero [47–49]. Thus, the choice of the tetrad is
always a sensitive issue in fðTÞ theory and different tetrads
might give rise to different solutions. The good and bad
tetrads in fðTÞ gravity has been widely studied in [50]. In
this context, fðTÞ theories can potentially be used to
explain the late-time cosmic accelerating expansion with-
out invoking dark energy [51–54], cosmological perturba-
tions [55,56], spherically symmetric solutions [57], solar
system constraints [58], and so on.
Additionally, the application of fðTÞ gravity are not

restricted only for cosmological solutions, but there is a
wide range of applications in astrophysics also. In this
theory, static and spherically symmetric solutions were
considered [59–61]. By analyzing different tetrads in detail,
Boehmer et al. [62] proved the existence of relativistic stars
in fðTÞ gravity and explicitly constructed several classes of
static perfect fluid solutions. Furthermore, in a recent
paper [63], we proposed a new approach to find
Einstein’s cluster solution that mimics the behaviors of
compact star. In fact compact stars have been theoretically
modelled within the frame work of fðTÞ gravity (for
reviews see Refs. [64–66]).
The main aim of this paper is to present a class of

wormhole solutions with a diagonal tetrad and assuming
different hypotheses for their matter content in both TEGR
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and fðTÞ gravity. In [67] an off-diagonal tetrad has
considered to explore traversable wormhole geometries
are supported by fðTÞ gravity. It was demonstrated that
obtained solution satisfies the weak and the null energy
conditions at the throat and its vicinity. In this line of
direction several solutions have been thoroughly analyzed
for wormholes [68–70]. It should be stressed that, dynami-
cal wormhole in fðTÞ gravity was found in [71].
Here, we focus on a new class of traversable wormholes

where the spacetime is assumed to be spherically sym-
metric and to possess a conformal symmetry. Nevertheless,
an exact solutions of traversable wormholes were found
under the assumption of nonstatic conformal symmetry
[72]. To be more precise, conformal symmetry gives a
natural link between geometry and matter through the
Einstein field equations. Our work reveals the feature of
conformal Killing operator L associate with the metric g is
a linear mapping from the space J ðξÞ of vector fields on ξ,
which yield

Lξgik ¼ ψgik; where ξ ∈ J ðξÞ; ð1Þ

where ψ is the conformal factor and the metric g is
conformally mapped onto itself along ξ. Note that for ψ
is zero, we refer to this as a true Killing vector and the
metric is completely invariant as it is dragged along the
curves with that true Killing vector as their tangent vector.
In favor of this mathematical technique was applied by
Herrera et al. [73,74] and in [75] to show that for a one-
parameter group of conformal motions, the EoS is uniquely
determined by the Einstein equations. Further, strange
quark stars with respect to one class of admissible trans-
formations was explored in Ref [76].
Meanwhile, this approach has been utilized very suc-

cessfully in wormhole geometry [77–80]. The main moti-
vation comes from a recent article by us [38], where
wormholes were found under the assumption of spherically
symmetric and to possess a conformal symmetry in fðR; TÞ
gravity. This paper is outlined in the following manner:
After the introduction in Sec. I, we briefly review the basics
of the fðTÞ gravity model in Sec. II. In Sec. III, we give an
overview about the general geometries and constraints of
traversable wormholes. Section IV, is devoted to studying
the field equations of the fðTÞ theory with a linear and
power-law model of fðTÞ functions, respectively. In Sec. V,
exact general solutions are deduced using static conformal
symmetries for both TEGR and fðTÞ gravity. In Sec. VI,
we explore the wormhole geometries in TEGR by assuming
suitable conditions. In the case of TEGR wormholes matter
violates the null and weak energy conditions at the throat
and its vicinity. While, in Sec. VII, we devoted to explore
the wormhole solutions by assuming a power-law fðTÞ
model as well as different shape functions. Summary and
conclusions are reported in Sec. VIII.

II. TELEPARALLEL GRAVITY AND ITS
MODIFICATIONS: BASIC EQUATIONS

AND ACTION

Before starting our considerations on fðTÞ gravity and
its astrophysical realization, it is useful to briefly review the
fðTÞ gravitational paradigm. The notation is as follows:
Greek indices μ; ν;… run over the coordinate space-time
and lower case Latin indices i; j;… run over the tangent
space-time. We begin by recalling that the dynamical
variables in teleparallel gravity are the vierbein or tetrad
fields, eiμ, which satisfy

eiμeνi ¼ δμν and eiμe
μ
j ¼ δji ; ð2Þ

where δ is the Kronecker tensor. Thus, the spacetime metric
tensor and the tetrads are related by

gμνðxÞ ¼ ηijeiμðxÞejνðxÞ; ð3Þ

where ηij is the Minkowski metric of the tangent space with
the form of ηij ¼ diagð1;−1;−1;−1Þ. The metric g is used
to raise and lower coordinate indices and η raises and
lowers frame indices.
Since, teleparallel gravity carries a fundamental distinc-

tion from curvature based descriptions of gravity. Instead of
using the torsionless Levi-Civita connection in GR, one
uses the Weitzenböck connection, which is given by

T̃σ
μν ¼ eσi ∂νeiμ ¼ −eiμ∂νeσi : ð4Þ

With the above consideration, the covariant derivative, Dμ,
of the tetrad fields

Dμeiν ≡ ∂μeiν − T̃σ
μνeiσ; ð5Þ

vanishes identically, leads to a vanishing scalar curvature
but nonzero torsion.
Now, introducing the torsion and contorsion tensors, to

clarify the interrelations between Weitzenböck and Levi-
Civita connections, which are

Tσ
μν ¼ T̃σ

νμ − T̃σ
μν ¼ eσi ð∂νeiμ − ∂μeiνÞ; ð6Þ

Kμν
σ ≡ Tσ

μν − T̃σ
μν ¼

1

2
ðTμν

σ þ Tνμ
σ − Tμν

σ Þ; ð7Þ

respectively. Furthermore, the superpotential tensor relates
the torsion and contorsion tensors, as follows

Sμνσ ¼ Kμν
σ − δνσT

αμ
α þ δμσTαν

α ; ð8Þ

Finally, we define the torsion scalar T, as

T ≡ Tσ
μνS

μν
σ ; ð9Þ
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which used in the action and varied in terms of the vierbeins
give rise to the same equations with GR. Thus, the torsion-
based variant of the theory is known as the teleparallel
equivalent of general relativity (TEGR). Analogous to fðRÞ
gravity, Teleparallel gravity has been extended by con-
structing gravitational Lagrangians to a function fðTÞ of a
torsion scalar T.
Therefore, the corresponding action of fðTÞ gravity

reads as (with geometrized units c ¼ G ¼ 1)

S ¼ 1

16π

Z
efðTÞd4xþ

Z
eL d4x; ð10Þ

where e is the determinant of eiμ and L is the matter
Lagrangian.
Now, varying the resultant action with respect to the

tetrads eiμ, one obtains the following field equation for fðTÞ
gravity:

Sμνi fTT∂μTþ e−1∂μðeSμνi ÞfT −Tσ
μiS

νμ
σ fT −

1

4
eνi f¼−4πT ν

i ;

ð11Þ

where fT ¼ dfðTÞ=dT and fTT ¼ d2fðTÞ=dT2, and the
tensor T ν

i represents the energy-momentum tensor of the
matter source L. When fðTÞ ¼ T, the action is the same as
in TEGR, and fðTÞ ¼ T − 2Λ, the equations of motion
(11) are the same as that of the Teleparallel theory with a
cosmological constant, and this is dynamically equivalent
to the GR.
Since, the field equation (11) appears very different from

Einstein’s equations due to partial derivatives and tetrad
components.

III. TRAVERSABILITY CONDITIONS AND
GENERAL REMARKS FOR WORMHOLES

The spacetime ansatz for seeking traversable wormholes
are described by a static and spherically symmetric metric
which is in the usual spherical ðt; r; θ;ϕÞ coordinates, and
the corresponding line element can be written as [8],

ds2 ¼ eνðrÞdt2 −
�
1 −

bðrÞ
r

�
−1
dr2 − r2ðdθ2 þ sin2θdϕ2Þ;

ð12Þ

where νðrÞ and bðrÞ are the redshift and the shape
functions, respectively. The function bðrÞ in Eq. (12) is
called the shape function, since it represents the spatial
shape of the wormhole. The shape function bðrÞ should
obey the boundary condition bðr ¼ r0Þ ¼ r0 at the throat r0
where r0 ≤ r ≤ ∞. In order to describe the wormhole
solution, the shape function must satisfy the flaring-out
condition that can be obtained from the embedding
calculation, and reads

bðrÞ − rb0ðrÞ
b2ðrÞ > 0: ð13Þ

Mathematically the above condition can be also written in a
short way, namely, b0ðr0Þ < 1 at the throat r ¼ r0. Since,
the geometry is static and spherically symmetric, we
assume that νðrÞ should be finite everywhere in order to
avoid the presence of an event horizon [8]. The condition
1 − bðrÞ=r ≥ 0 is also imposed. Another important cri-
terion is the proper radial distance lðrÞ, defined as

lðrÞ ¼ �
Z

r

r0

drffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − bðrÞ

r

q ; ð14Þ

is required to be finite everywhere. Thus, the proper
distance decreases from the upper universe l ¼ þ∞ to
the throat of the wormhole l and then from l ¼ 0 to l ¼
−∞ in the lower universe. Moreover, “l” should greater
than or equal to the coordinate distance, i.e., ∣lðrÞ∣ ≥
r − r0; the � signs denote the upper and lower parts of the
wormhole which are connected by the wormhole throat.
The embedding surface of the wormhole can be observed
by determining the embedding surface zðrÞ at a fixed time
t ¼ const and θ ¼ π=2. With this constraint the metric of
Eq. (12) becomes,

z0ðrÞ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=bðrÞ − 1

p : ð15Þ

Considering the conformal symmetry, the above equation
turns out to be

zðrÞ ¼ �
Z

c3
ψ

�
1 −

ψ2

c23

�
dr: ð16Þ

In the present situation, we consider the matter is
described by an anisotropic stress-energy tensor of the form

T ν
i ¼ ðρþ ptÞuνui þ ptgνi þ ðpr − ptÞχiχν; ð17Þ

where uν is the four-velocity and χν is the unit spacelike
vector in the radial direction. In the following expression
ρðrÞ is the energy density, pr ¼ prðrÞ and pt ¼ prðrÞ are
the radial and transverse pressures, respectively. If matter is
considered to be isotropic then pr ¼ pt. Throughout the
discussion prime denotes the derivative with respect to the
radial coordinate r.

IV. WORMHOLE SOLUTIONS IN DIFFERENT
FORMS OF f ðTÞ

Since, by considering different forms of fðTÞ’s we arrive
at different field equations with the choice of a set of
diagonal tetrads. Here, we will consider two classes of
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solution, (i) linear function in fðTÞ, i.e., TEGR, and (ii) a
viable power-law form of the fðTÞ model.

A. Field equations in teleparallel gravity f ðTÞ= aT +B

In order to compute the field equations, we employ the
following diagonal tetrad [81,82],

½eiμ� ¼ diagðeν=2; ð1 − b=rÞ−1=2; r; r sin θÞ; ð18Þ
and its determinant is jeiμj ¼ r2 sin θeν=2ð1 − b=rÞ−1=2. As a
consequence, the torsion scalar becomes

TðrÞ ¼ 2

r

�
1 −

bðrÞ
r

��
ν0ðrÞ þ 1

r

�
; ð19Þ

where the prime denotes the derivative with respect to r.
Since we know that the off diagonal components of the

field equations vanish in the static case of GR, whereas for
fðTÞ gravity there exists a ðr; θÞ component which gives an
extra equation T 0f;TT ¼ 0. But this equation does not
appear in the corresponding curvature-based equations of
motion. It rises from the specific choice of tetrad in spite of
that they are diagonal. According to the Ref. [50], this
equation leads to satisfy either f;TT ¼ 0 or T 0 ¼ 0, where
the former reduces the theory to TEGR. In what follows,
the choice of f;TT ¼ 0 leads to the following linear model
fðTÞ ¼ aT þ B [82], which are of physical interest in this
context.
Now, inserting the vierbein choice (18) into the field

equations (11) we obtain the set of equations for an
anisotropic fluid as

4πρ ¼ 1

4

�
2ab0

r2
þ B

�
; ð20Þ

4πpr ¼
r2ð2aν0 − BrÞ − 2bðarν0 þ aÞ

4r3
; ð21Þ

4πpt ¼
1

8r3
½rðab0ðaν0 þ 2Þ þ rf2arν00 þ aν0ðrν0 þ 2Þ

− 2BrgÞ − abfν0ðaþ r2ν0 þ 2rÞ þ 2r2ν00 þ 2g�;
ð22Þ

where ρ is the energy density with pr and pt are the radial
and tangential pressure of the matter sector, respectively.

B. Field equations in f ðTÞ= aT2 +B

Here, we will study for the choice of a set of diagonal
tetrads with a particular power-law form of fðTÞmodel i.e.,
fðTÞ ¼ aT2 þ B, where a and B are constants. It has been
shown that the power-law inflation model can easily
accommodate with the regular thermal expanding history
including the radiation and cold dark matter dominated
phases. Utilizing the model along with Eq. (12), we obtain
the following expression

4πρ¼ 1

4r6
½r2ð24ab0−36aþBr4Þ−24arbðb0−3Þ−36ab2�;

ð23Þ

4πpr ¼
27ab2

r6
−
48ab
r5

þ 21a
r4

−
B
4
; ð24Þ

4πpt ¼
1

4r6
½r2ð60a − 24ab0 − Br4Þ

þ 24arbðb0 − 4Þ þ 36ab2�: ð25Þ

The choice of fðTÞ in this case does not satisfy f;TT ¼ 0

and T 0 ¼ 0. So, the field equations are not corresponding
to TEGR.
Notice that above field equations for both models give

three independent equations with five unknown quantities,
i.e., ρðrÞ, prðrÞ, ptðrÞ, νðrÞ, and bðrÞ. Therefore, system of
equations is underdetermined, and we shall reduce the
number of unknown functions by assuming suitable
conditions.

V. CONFORMAL KILLING VECTORS

Despite the success of numerical computation, exact
solutions are still important in GR as well as modified
gravity, because they allow a global acceptance without
specifying the choice of parameters and initial conditions.
In addition, conformal symmetries provide important
insight and information into the general properties of
self-gravitating matter configurations. Guided by the
above motivations we assume that the static and spherically
symmetric spacetime admit a conformal motion. According
to Refs. [73,75], we simplify the problem and build up its
basic mathematical structure.
In general, conformal motion (CM) is a map M → M

such that the metric g of the spacetime transforms under
the rule

g → g̃ ¼ 2eψg; with ψ ¼ ψðxaÞ;

which can be expressed as

Lξgab ¼ ξa;b þ ξb;a ¼ ψgab; ð26Þ

where L signifies the Lie derivative along ξa and ψðxaÞ is
the conformal factor. In [73], authors assumed that the
vector field generating the conformal symmetry is static
and spherically symmetric within the framework of GR,
which yield

ξ ¼ ξ0r
∂
∂tþ ξ1r

∂
∂r : ð27Þ

Using this form of the conformal vector in Eq. (26), one
obtains
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ξrν0 ¼ ψðrÞ; ξt ¼ const;

ξr ¼ ψr
2
; ξrλ0 þ 2ξr0 ¼ ψðrÞ:

These vectors are of physical significance as (i) ψ ¼ 0 then
Eq. (26) gives the Killing vector, (ii) ψ ¼ constant gives
homothetic vector, and (iii) when ψ ¼ ψðx; tÞ having a
conformal motion.
Thus, conformal equation (26) for the metric (12)

provides the following set of equations

eν ¼ c22r
2; ð28Þ

1 −
bðrÞ
r

¼
�
ψ

c3

�
2

; ð29Þ

ξi ¼ c1δi4 þ
�
ψr
2

�
δir; ð30Þ

where c1, c2, and c3 are constants of integration.
Interestingly, if we rearrange the Eq. (29) in terms of the
shape function, then the conformal factor is zero at the
throat, i.e., ψðr0Þ ¼ 0.

A. Field equations with conformal symmetry
in teleparallel gravity

With the assumption (1) the gravitational field equations
describing the interior of a wormhole geometry will be
imposed by the existence of conformal killing vector, so
that the components of stress-energy tensor are written
solely in terms of the conformal factor. Substituting
Eqs. (28)–(29) into the field Eqs. (20)–(22), we obtain

4πρ ¼ 1

4

�
B −

2aψð2rψ 0 þ ψÞ
c23r

2
þ 2a

r2

�
; ð31Þ

4πpr ¼
1

4

�
6aψ2

c23r
2
−
2a
r2

− B

�
; ð32Þ

4πpt ¼
aψ ½ψ − ðaþ rÞψ 0�

2c23r
2

−
B
4
: ð33Þ

It becomes clear from Eq. (29) that we impose the
following condition ðψ2Þ0 > 0 when evaluated at the throat.
The NEC asserts that for any null vector kμ, we have
Tμνkμkν ≥ 0. Using the Einstein field equations (31) and
(32) provide the following relation

4πðρþ prÞ ¼
aψðψ − rψ 0Þ

c23r
2

: ð34Þ

The NEC at the throat is given by

4πðρþ prÞjr0 ¼ −
a2

2r40
ð1 − b0ðr0ÞÞ < 0: ð35Þ

Taking into account the condition b00 < 1, one verifies the
general condition ðρþ prÞjr0 < 0. Therefore, the flaring-
out condition entails the violation of the NEC.

B. Field equations with conformal symmetry
in f ðTÞ= aT2 +B

Proceeding the same, the field Eqs. (23)–(25) are written
solely in terms of the conformal factor, and the stress
energy-momentum components are the following form

4πρ ¼ 1

4

�
B −

2aψ ½2rψ 0 þ ψ �
c23r

2
þ 2a

r2

�
; ð36Þ

4πpr ¼
1

4

�
6aψ2

c23r
2
−
2a
r2

− B

�
; ð37Þ

4πpt ¼
aψðψ − ðaþ rÞψ 0Þ

2c23r
2

−
B
4
: ð38Þ

Now the NEC condition can be determine from the addition
of density and pressure as

4πðρþ prÞ ¼
aψðψ − rψ 0Þ

C2
3r

2
: ð39Þ

and the violation of NEC requires ðψ2Þ0 > 0. The NEC at
the throat is given by

4πðρþ prÞjr0 ¼
aðr0 − b0Þðr0b00 − 2b0 þ r0Þ

r40
; ð40Þ

Note that the NEC, evaluated at the throat, r0, is
identically zero for arbitrary r, i.e., ðρþ prÞjr0 ¼ 0. The
same situation was found in Ref. [83] due to violation of
flaring-out condition of the throat when axisymmetric
traversable wormholes coupled to nonlinear electrodynam-
ics. But, the main aim in our wormhole construction is that
throughout the wormhole solution the matter obeying the
NEC or not. This needs some explanation, and we will
discuss later.
Since the solutions analyzed in this work are not

asymptotically flat, so that one needs to match these
interior geometries to an exterior vacuum spacetime in
the asymptotic limit by taking into account thin shells,
using the cut-and-paste technique [84]. The appropriate
framework to match the interior to the exterior solution we
need the junction conditions across a timelike hypersurface
for the fðTÞ gravity. In particular, the junction conditions
for fðTÞ gravity has been performed in [85] via the
variational principle. It is known that the conditions for
matching of two spacetime in a region given by r > R, if
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the interior metric is matched to this vacuum spacetime at
r ¼ R > r0. In contradistinction for regular geometry with
an interior wormhole spacetime, r0 ≤ r ≤ R, and a
Schwarzschild-like vacuum, rh < R ≤ r < ∞, at a junction
interface. In addition, the junction conditions in this theory
have been worked out [86].

VI. TEGR WORMHOLES

For the simplest linear function fðTÞ ¼ aT þ b, we will
discuss some particular wormhole solutions. To start with,
we shall first consider the isotropic case and then various
choices for the form function.

A. Isotropic wormhole solution

First, we shall restrict our investigation in isotropic
condition, i.e., pr ¼ pt, which on imposing to the field
equations (32) and (33), one can get the following solution:

ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c23ðaþ rÞ4 þ e

p
ffiffiffi
2

p ðaþ rÞ2 ; ð41Þ

thus substituting this value into (29), we have

bðrÞ ¼ r
2

�
1 −

e
c23ðaþ rÞ4

�
; ð42Þ

where e is the constant of integration.
It becomes clear that this form of the shape function

gives nonasymptotically flat geometries, i.e., bðrÞ=
r → 1=2 as r → ∞ and b0ðr0Þ≮1. This implies that there
are no wormhole solutions sustained for isotropic pressure
in TEGR.

B. Wormhole (WH1) solution with pr =ωρ

To solve the field equations (31)–(33), we assume an
additional information as a linear equation of state (EoS)
pr ¼ ωρ, and the corresponding solutions can be written as

ψðrÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6aðωþ 3Þp ½6aAðωþ 3Þr−ωþ3

ω þ c23f6aðωþ 1Þ

þ Br2ðωþ 3Þg�1=2; ð43Þ

where A is an integrating constant. Note that the solution
given by (42) holds for ω ≠ −3 only.
Immediately, one can write down the corresponding

shape function as

bðrÞ ¼ 2r
ωþ 3

−
Br3

6a
−
Ar−3=ω

c23
: ð44Þ

It is clear that the solutions are asymptotically flat,
i.e., bðrÞ=r → 0 as r → ∞. Note that from Eq. (44) when

ω ¼ 0, one obtains bðrÞ ¼ 2
3
r − Br3

a which presents a

nonasymptotically flat wormhole geometry. Further, to
be a wormhole solution, we deduce b0ðrÞ ¼ 2

ωþ3
− Br2

2a þ
3Ar−3=ω−1

C2
3
ω

, and impose the condition b0ðr0Þ < 1. In fact, we

fix the range of parameters from the criterion.
We now discuss the possibility of sustaining a travers-

able wormhole in spacetime via exotic matter made out of
phantom energy EoS, pr ¼ ωρ with ω < −1, and the
stress-energy tensor components are given by

ρ ¼ a
8πr3

�
3Ar−3=ω

c23ω
þ 2r
ωþ 3

�
; ð45Þ

ρþ pr ¼
aðωþ 1Þ
8πr3

�
3Ar−3=ω

c23ω
þ 2r
ωþ 3

�
; ð46Þ

ρþ pt ¼
1

48πr4

�
3aAðωþ 3Þðaþ 3rÞr−3=ω

c23ω
þ ar2

× ð6 − BrÞ − 3Br4
�
; ð47Þ

ρþ pr þ 2pt ¼
1

24πr4

�
3aAr−3=ωðaðωþ 3Þ þ 6rðωþ 1ÞÞ

c23ω

þ r2
�
12aðωþ 1Þ

ωþ 3
− aBr − 3Br2

��
: ð48Þ

To check the NEC evaluated at the throat is given by

ðρþ prÞjr0 ¼
aðωþ 1Þ
8πr30

�
3Ar−3=ω

c23ω
þ 2r0
ωþ 3

�
: ð49Þ

Clearly, in this case for ω ≠ −1 and ω ≠ −3, we consider
the interval −3 < ω < −1, implying the violation of the
NEC at the throat i.e., the throat needs to open with
phantom energy.

FIG. 1. Variation of shape functions with radial coordinate for
a ¼ 0.1, A ¼ −2, B ¼ 0.5, ω ¼ −1.4, c3 ¼ 1.88 (WH1) and
a ¼ 0.2, d ¼ −0.014, B ¼ 0.5, n ¼ 0.14, c3 ¼ 0.13 (WH2).
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In Figs. 1–4, we plot bðrÞ, bðrÞ=r, bðrÞ − r and b0ðrÞ
respectively, for a ¼ 0.1, A ¼ −2, B ¼ 0.5, ω ¼ −1.4,
c3 ¼ 1.88 (WH1). Note that, bðrÞ − r cuts r-axis at r0 ¼
0.9825 corresponds to the throat radius of WH1. This
situation is shown graphically in Fig. 7. In fact, wormhole
geometries fulfilling the required condition b0ð0.9825Þ≈
0.843 < 1, that can see directly from Fig. 4.

On the other hand, Fig. 5 depicts the behavior of the
energy conditions using the field Eqs. (45)–(43). One may
also see that a matter content with a radial pressure having a
phantom EoS i.e., ω < −1 and everywhere positive energy
density ρ > 0. Note that it will be valid far from the throat.
More specifically, NEC is violated due to ρþ pr < 0.
The embedded surface can be evaluated from Eq. (16). The
Eq. (16) is strongly dependent on numerical values of the
model parameters and thereby adopting the numerical
approach using a Mathematica command we plot the
embedding surface Fig. 7.
Since the redshift function νðrÞ does not tend to zero

when r → ∞ due to the conformal symmetry. Thus, a
constant limit for νðrÞ would also allow us to obtain
asymptotically at solutions under time reparametrization.
Leading to Ref. [72], the conditions for matching of two
spacetimes in a region given by r > R, if the interior metric
is matched to the vacuum spacetime at r ¼ R > r0. Several
examples of conformal symmetry have been found mainly
in wormhole physics [77,78,87,88].

C. Wormhole (WH2) solution with pt =npt
Another closed-form solution is derived by taking pt ¼

npr (see Refs. [35,89] for more details) and then deduce the
following relationship:

ψðrÞ ¼ ðaþ bÞ
�
c23
a

�
a2Bðn − 1Þ þ 2an
2ð3n − 1Þðaþ rÞ2 −

2aBðn − 1Þ
ð6n − 1Þðaþ rÞ

þ Bðn − 1Þ
6n

�
þ dðaþ rÞ−6n

�
1=2

; ð50Þ

where the state parameter n is a constant. We obtain from
Eq. (50) yielding for the shape function

bðrÞ ¼ r
6

�
−
Bðn − 1Þðaþ rÞ2

an
þ 12Bðn − 1Þðaþ rÞ

6n − 1

−
3½aBðn − 1Þ þ 2n�

3n − 1
−
6dðaþ rÞ2−6n

c23
þ 6

�
: ð51Þ

FIG. 2. Variation of b=r with radial coordinate.

FIG. 3. Variation of b − r with radial coordinate.

FIG. 4. Variation of b0ðrÞ with radial coordinate.

FIG. 5. Variation of energy conditions for WH1 with radial
coordinate.
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In this case for n < 1 implies bðrÞ=r → 0 as r → ∞ ı.e.
asymptotically flat spacetimes.
Using the Einstein field equations (31)–(33) with the

following shape function, one obtains

ρ ¼ 1

48πr2

�
f1ðrÞ=ð3n − 1Þ

nð6n − 1Þ −
6adða − 6nrþ 3rÞ

c23ðaþ rÞ6n−1
�
; ð52Þ

ρþpr ¼
a

24πr2

�
6dðaþ 3nrÞðaþ rÞ1−6n

c23

þaBðn− 1Þ−Bðn− 1Þð3n− 1Þrþ 6ð6n− 1Þn2
nð3n− 1Þð6n− 1Þ

�
;

ð53Þ

ρþ pt ¼
ðaþ rÞ−6n

48πc23nð6n − 1Þr2 ½c
2
3ðaþ rÞ6nfa2Bðn − 1Þ

− 2aBðn − 1Þð3n − 2Þrþ 6anð6n − 1Þ − 3B

× ðn − 1Þð6n − 1Þr2g þ 6adnf9nð2n − 1Þ þ 1g
× ðaþ 3rÞðaþ rÞ�: ð54Þ

ρþprþ2pt¼
ðaþ rÞ−6n

24πc23nð3n−1Þð6n−1Þr2 ½c
2
3f3ðrÞðaþ rÞ6n

þ6adnf9nð2n−1Þþ1g
× ðaþ rÞð3anþaþ6nrÞ�: ð55Þ

Note we have used the notations

f1ðrÞ ¼ a2ðB−BnÞ þ 4aBðn− 1Þð3n− 1Þrþ 6an

× ð2n− 1Þð6n− 1Þ þ 3Bð9nð2n− 1Þ þ 1Þr2
f2ðrÞ ¼ a2Bðn− 1Þ− 2a½nfBð3n− 4Þr− 6nþ 1gþBr�

þBf9ð1− 2nÞn− 1gr2
f3ðrÞ ¼ a2Bðn− 1Þð3nþ 1Þ− aBðn− 1Þð3n− 1Þð6nþ 1Þ

× rþ 12an2ð6n− 1Þ− 3Bnf9nð2n− 1Þ þ 1gr2:
The above expression must be investigated at the throat

r0 to check the NEC, which is given by

ðρþprÞjr0 ¼
a

24πr20

�
6dðaþ3nr0Þðaþr0Þ1−6n

c23

þaBðn−1Þ−Bðn−1Þð3n−1Þr0þ6ð6n−1Þn2
nð3n−1Þð6n−1Þ

�
:

ð56Þ
We plot the quantities bðrÞ, bðrÞ=r, bðrÞ − r, and b0ðrÞ

in Figs. 1–4. For the figures we consider a ¼ 0.2,
d ¼ −0.014, B ¼ 0.5, n ¼ 0.14, c3 ¼ 0.13 (WH2). We
can see from Figs. 3 and 7 that bðrÞ − r cuts r-axis at
r0 ¼ 0.603, which is the throat of WH2. One verifies,
b0ð0.603Þ ≈ 0.534 < 1 is shown in Fig. 4.

Let us emphasize again the energy conditions. This
situation differs from the above discussion that ρþ pr and
ρþ pt both are negative, whereas ρ is positive throughout
the spacetime. As shown in Fig. 6, for some fixed para-
metric values, the NEC is violated in a small region around
r0. The embedding surface zðrÞ in 3-D Euclidean space can
be obtained from Eq. (16). In Fig. 7 we show the wormhole
embedding diagrams for the values of WH2. However, for
this solution as well it is not integrable and therefore
adopting the numerical approach using “NIntegrate” com-
mand within the limits r0 ≤ r ≤ R. It becomes clear that all
embedding surfaces flare outward.

D. Wormhole (WH3) solution with bðrÞ= r0ðr=r0Þn
To proceed further we ansatz the shape function as

bðrÞ ¼ r0ðr=r0Þn. In this case, we need to impose
0 < n < 1, and corresponding conformal factor takes the
form

ψ ¼ c3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
r

�
r
r0

�
n

s
: ð57Þ

FIG. 6. Variation of energy conditions for WH2 with radial
coordinate.

FIG. 7. Embedding surfaces of the two wormholes in two
dimensional space slices in R3.
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Our aim here is to explore the local energy conditions, and
we examine the WEC. Taking into account the diagonal
energy momentum tensor, the WEC implies ρ ≥ 0,
ρþ pr ≥ 0 and ρþ pt ≥ 0. Note that last two inequalities
reduce to the null energy condition (NEC). The compo-
nents of the energy-momentum tensor (31)–(33) then take
the form

ρ ¼ 2anr0ðr=r0Þn þ Br3

16πr3
; ð58Þ

ρþ pr ¼
a½ðn − 3Þr0ð rr0Þn þ 2r�

8πr3
; ð59Þ

ρþ pt ¼
aðn − 1Þr0ðaþ 3rÞ; ð rr0Þn þ 2ar2

16πr4
ð60Þ

ρþ pr þ 2pt ¼
1

8πr4

�
ar0½aðn − 1Þ þ 2ðn − 3Þr�

×

�
r
r0

�
n
þ 4ar2 − Br4

�
: ð61Þ

Note that at the throat, Eq. (59) reduces to

ðρþ prÞjr0 ¼
aðn − 1Þ
8πr20

: ð62Þ

Taking into account the condition b0ðr0Þ < 1, and for
0 < n < 1, one may verify that ðρþ prÞjr0 < 0. Figure 8
shows the behavior of bðrÞ, bðrÞ − r, b0ðrÞ, and bðrÞ=r,
respectively. In this case, bðrÞ − r cuts the r-axis at r0 ¼ 2,
which is the throat radius for WH3 (see Fig. 13).
From the graphical behavior of the energy conditions in

terms of (58)–(61) are presented in Figs. 9 and 10. From
Fig. 9, we see that the energy density is positive throughout
the whole spacetime, while the radial and transverse
pressures are negative, and both tend to zero in the
asymptotic limit by construction. Moreover, we observe

that for fixed values of the parameters a ¼ 0.6, R ¼ 2,
B ¼ 0.5, c3 ¼ 1.165 the NEC is violated due ρþ pr < 0;
note also that ρ > 0 for different values of n. The embed-
ding surface zðrÞ in 3-D Euclidean space obtained by using
Eq. (16) through “NIntegrate” in Mathematica and shown
in Fig. 13.

E. Wormhole (WH5) solution with bðrÞ=αð1− r0=rÞ+ r0
Now, we will consider the wormhole solution gene-

rated by imposing the shape function in the form
bðrÞ ¼ αð1 − r0=rÞ þ r0. For this specific case, b0ðr0Þ ¼
α=r0 < 1 when α < 1, and Eq. (29) provides the following
solution

ψ ¼ c3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

αRð1 − R
rÞ þ R

r

s
: ð63Þ

In this case the stress energy components are given by

ρ ¼ 2aαr20 þ Br4

16πr4
; ð64Þ

ρþ pr ¼
að2r2 − 3ðαþ 1Þrr0 þ 4αr20Þ

8πr4
; ð65ÞFIG. 8. Characteristics of the shape function of WH3 for

a ¼ 0.6, R ¼ 2, B ¼ 0.5, c3 ¼ 1.165.

FIG. 9. Trends of density and pressures for WH3.

FIG. 10. Variations of energy conditions for WH3.
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ρþ pt ¼
a

16πr5
½2r3 − αr0ðaþ 3rÞðr − 2r0Þ

− rr0ðaþ 3rÞ�; ð66Þ

ρþ pr þ 2pt ¼ −
1

8πr5
½a2r0ðαrþ r − 2αr0Þ þ 2arf−2r2

þ 3ðαþ 1Þrr0 − 4αr20g þ Br5�: ð67Þ

We now check the energy condition at the throat of the
wormhole, which is

ðρþ prÞjr0 ¼
aðα − 1Þ
8πr02

; ð68Þ

One can easily check that for 0 < α < 1 the condition
ðρþ prÞjr0 < 0. Figure 11 depicts bðrÞ, bðrÞ − r, b0ðrÞ and
bðrÞ=r, in terms of r for a ¼ 0.2, r0 ¼ 1.3, α ¼ 0.25, B ¼
0.3 and c3 ¼ 1.165, respectively. It can be noted that bðrÞ
cuts the r-axis at r0 ¼ 1.3 for WH5 (see Fig. 13).
Moreover, from the Fig. 12, we see that ρþ pr < 0 and
ρþ pt < 0, while ρ > 0 throughout the spacetime lead to
the violation of WEC, and consequently NEC also. The

embedding surface can be determined using (16), and
found to

zðrÞ ¼ 2r0

�
ðαþ 1Þ log ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r − αr0
p þ ffiffiffiffiffiffiffiffiffiffiffiffi

r − r0
p Þ − ffiffiffi

α
p

× tanh−1
� ffiffiffi

α
p ffiffiffiffiffiffiffiffiffiffiffiffi

r − r0
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − αr0

p
��

: ð69Þ

The embedding surface is shown in Fig. 13. For a full
visualization of the surface sweep through a 2π rotation
around the z-axis, as depicted in Fig. 14.

VII. f ðTÞ WORMHOLES

In this section we proceed in an attempt to analytically
solve the basic equations by considering a power-law
fðTÞ ¼ aT2 þ B function, and for the anisotropic fluid.
Here we assume different shape function in finding worm-
hole solutions. Since solving the differential equations (36)–
(38) in general, are too complicated for the choices of
pr ¼ ωρ or pt ¼ npr. Therefore, in order to simplify the
analysis, we will consider restrictions on the choice of
shape functions.

FIG. 11. Characteristics of the shape function of WH5 for
a ¼ 0.2, R ¼ 1.3, α ¼ 0.25, B ¼ 0.3, c3 ¼ 1.165.

FIG. 12. Trends of energy conditions for WH5.

FIG. 13. The figure shows three dimensional wormhole em-
bedding diagrams for WH3, WH4, and WH5.

FIG. 14. The embedding diagram for WH5.
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A. Wormhole (WH6) with bðrÞ= r0ðr=r0Þn
Here, we assume the simplest and viable power-law

form of the fðTÞ ¼ aT2 þ B model with a and B are
constants. Consider the specific shape function given by
bðrÞ ¼ r0ðr=r0Þn, we obtain the conformal factor as
follows:

ψðrÞ ¼ c3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0ðr=r0Þn
r

r
; ð70Þ

Inserting these functions into the stress-energy tensor
profile, Eqs. (36)–(38), provides the following expressions

ρ ¼ Br6 − 12a
16πr6

�
3r − ð2nþ 3Þr0

�
r
r0

�
n
�

×
�
r − r0

�
r
r0

�
n
�
; ð71Þ

ρþ pr ¼
3a
2πr6

�
ðn − 3Þr0

�
r
r0

�
n
þ 2r

�

×

�
r − r0

�
r
r0

�
n
�
; ð72Þ

ρþ pt ¼
3a½r − r0ð rr0Þn�

2πr5
; ð73Þ

ρþ pr þ 2pt ¼
1

8πr6

�
12a

�
r − r0

�
r
r0

�
n
�

×

�
7r − ðnþ 6Þr0

�
r
r0

�
n
�
− Br6

�
: ð74Þ

The geometrical properties and characteristics for these
shape function is depicted in Fig. 15. In this case, bðrÞ − r
cuts the r-axis at r0 ¼ 1.3, which is the throat radius for
WH6 when n < 1.

Let us focus the case when n < 1 to visualise better the
behavior of the energy conditions. Indeed, one may see that
ðρþ prÞjr0 ¼ 0 at the throat of the wormhole (as men-
tioned in Sec V B), however Fig. 16 shows the validity of
ρ > 0. Thus, one can in principle construct wormhole
solutions that satisfy the NEC at the wormhole throat.
In Figs. 16 and 17 we plot the quantities ρ, ρþ pr,

ρþ pt, and ρþ pr þ 2pt. For the figures we have con-
sidered a ¼ 0.5, r0 ¼ 1.3, c3 ¼ 1.165, and B ¼ 0.2,
respectively. For these choices, the quantities outside the
throat ρþ pr < 0 but ρþ pt > 0, which in principle
violation of the NEC implying that the WEC is also
violated. Therefore, the range of 0 < r < r0, the solution
obeys the NEC, whereas for any value of r > r0, violation
of the NEC outside the throat radius and goes up to the
radius R as we need to match at some r ≤ R, so that we can
use the junction conditions to match the interior wormhole
solution to the exterior vacuum spherically symmetric
solution for finite redshift function. The embedding surface
zðrÞ is calculated numerically in Mathematica using the
“NIntegrate” package for r ≥ r0, and shown in Fig. 24.

B. Wormhole (WH7) with bðrÞ=αr30 log ðr0=rÞ+ r0
Consider the specific shape function bðrÞ ¼

αr30 log ðr0=rÞ þ r0. For this choice, the conformal factor
becomes

ψ ¼ c3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

αr30 log ðr0=rÞ þ r0
r

r
; ð75Þ

and corresponding the stress energy components are

ρ ¼ 1

16πr6

�
Br6 − 36aα2r60log

2

�
r0
r

�
− 12aðr − r0Þð3r

þ 2αr30 − 3r0Þ þ 24aαr30ð3rþ αr30 − 3r0Þ log
�
r0
r

��
ð76Þ

FIG. 15. Characteristics of shape functions for WH6 with
a ¼ 0.5, R ¼ 1.3, c3 ¼ 1.165, and B ¼ 0.2.

FIG. 16. Variations of density and pressures for WH6.
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ρþpr ¼
3a
2πr6

�
3α2r60log

2

�
r0
r

�
þαr30ð6r0− 5rþαr30Þ

× log

�
r0
r

�
þðr− r0Þf2r− r0ðαr20þ 3Þg

�
ð77Þ

ρþ pt ¼
3aðr − αr30 logðr0r Þ − r0Þ

2πr5
; ð78Þ

ρþprþ2pt¼
1

8πr6

�
72aα2r60log

2

�
r0
r

�
þ12aðr−r0Þ

×ð7rþαr30−6r0Þ

−12aαr30ð13rþαr30−12r0Þ log
�
r0
r

�
−Br6

�
:

ð79Þ

In light of the flaring-out condition at the wormhole throat
b00 < 1, the parameters α have to meet the requirement
α < 1. With a ¼ 0.5, R ¼ 1.8, c3 ¼ 1.165, and B ¼ 0.2,
we plot bðrÞ, bðrÞ − r, b0ðrÞ, and bðrÞ=r in Fig. 18. In
addition to this, the wormhole throat located at r0 ¼ 1.8.
Here also the situation is same as in the previous

discussion, i.e., at the throat ðρþ prÞjr0 ¼ 0 and
ðρþ ptÞjr0 ¼ 0, however ρ > 0 inside and outside the
throat for the specific value of a ¼ 0.5, R ¼ 1.8,
c3 ¼ 1.165, and B ¼ 0.2 with different values of α.
Moreover, in Fig. 19, we plot ρ, pr, and pt, while in
Fig. 20 the behavior of the energy conditions are shown
outside the throat radius. The fundamental wormhole
conditions, namely, NEC is violated outside the throat,
as can be readily verified from Fig. 19. We explore the
geometrical properties of these solutions via the embedding
diagram which is calculated numerically in Mathematica
using “NIntegrate” package for r ≥ r0 and shown in
Fig. 24.

C. Wormhole (WH8) with bðrÞ=αr0ð1− r0=rÞ+ r0
We consider wormhole with the following shape func-

tion bðrÞ ¼ αr0ð1 − r0=rÞ þ r0. Thus, the conformal factor
becomes

ψ ¼ c3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

αr0ð1 − r0=rÞ þ r0
r

r
; ð80Þ

Using Eqs. (80) and (36)–(38), we can obtain the energy
density and pressure components as

ρ ¼ 1

16πr8
½Br8 − 12aðr − r0Þf3r3 − 3r2ð2αr0 þ r0Þ

þ αð3αþ 4Þrr20 − α2r30g�; ð81Þ

ρþ pr ¼
3aðr − r0Þ

2πr8
½2r3 − ð5αþ 3Þr2r0

þ αð3αþ 7Þrr20 − 4α2r30�; ð82Þ

ρþ pt ¼
3aðr − r0Þðr − αr0Þ

2πr6
; ð83Þ

FIG. 17. Variations of energy conditions for WH6.

FIG. 18. Characteristics of shape function for WH7 with
a ¼ 0.5, R ¼ 1.8, c3 ¼ 1.165, B ¼ 0.2.

FIG. 19. Variation of density and pressures for WH7.
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ρþ pr þ 2pt ¼
1

8πr8
½12aðr − r0Þf7r3 − ð13αþ 6Þr2r0

þ αð6αþ 11Þrr20 − 5α2R3g − Br8�: ð84Þ
Based on Eq. (80) and (29), the behaviors of bðrÞ,

bðrÞ − r, b0ðrÞ and bðrÞ=r are displayed in Fig. 21. The
bðrÞ − r cuts the r-axis at r0 ¼ 1.4, which is the throat of
the wormhole WH8.
According to Eqs. (81)–(84) we discuss about the energy

conditions. The corresponding results for the pressure and
density profile are shown in Figs. 22 and 23, respectively.
As mentioned in the above discussion, one can find that
ρ > 0 inside and outside the throat for the specific value of
a ¼ 0.5, r0 ¼ 1.4, c3 ¼ 1.165, B ¼ 0.2 and for different
values of α. In this analogy, the energy density has regions
of positive magnitude near the throat, and regions with
negative radial pressure which tend to zero from above in
the asymptotic region. Our results show that NEC is
violated when r ≥ r0 and hence the WEC is violated also.
The other embedding surface zðrÞ requires numerical
integration, and for that purpose we use the NIntegrate
package which is depicted in Fig. 24. Figure 25 shows the
revolution of the embedding surface zðrÞ by rotating 2π
about Z-axis.

VIII. RESULTS AND DISCUSSIONS

In this paper, we have discussed wormhole geometries in
the context of teleparallel equivalent of general relativity
(TEGR) and its straightforward extension of fðTÞ gravity.
Since the teleparallel models of gravity are based on the
torsion tensor, while GR is based on the curvature.

FIG. 20. Variation of energy conditions for WH7.

FIG. 21. Characteristics of shape function forWH8with a¼0.5,
R ¼ 1.4, c3 ¼ 1.165, B ¼ 0.2.

FIG. 23. Variation of energy conditions for WH8.

FIG. 22. Variation of density and pressures for WH8.

FIG. 24. Plots of the embedded surface zðrÞ for WH6, WH7
and WH8.
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Motivated by the attempts to explain the observed late time
accelerated expansion of the universe, fðTÞ theories of
gravity have been extensively applied to cosmology with-
out invoking the dark energy. An important argument is that
when fðTÞ ¼ T we recover the well-known conservation
equation of TEGR. However, in the pure tetrad formalism,
fðTÞ gravity exhibits violation of the local Lorentz
invariance.
In this paper, we have discussed wormhole configuration

in the TEGR and fðTÞ context. In particular, wormhole
physics possesses a peculiar property, namely exotic
matter, involving a stress-energy tensor that violates the
null energy condition. We have developed the wormhole
solution under the assumption of spherical symmetry and
the existence of a conformal symmetries. Since we know
that if a spacetime admits conformal symmetry then there
exists a conformal killing vector field in the spacetime,
which reduces the number unknown quantities also. We
have studied various type of solutions with the exotic
matter restricted at the throat neighborhood applying the
cut-and-paste approach of the stress-energy tensor at a
junction interface. This approach is motivated for finding
asymptotically flat geometries.
For this purpose, we explore wormhole solutions in

TEGR gravity, and shows that stress-energy tensor violates
the null energy condition [see Eq. (35)] to maintain the
flaring out condition. Furthermore, we also consider

phantom energy EoS, which violates the null energy
condition. In this manner, in TEGR, an exact solution
was found for the case of ω ≠ −1;−3, and the interval
−3 < ω < −1. An interesting feature of the phantom
regime is that ρ > 0 throughout the spacetime. More
specifically, for the case of phantom wormholes, it was
found that infinitesimal amounts of phantom energy may
support traversable wormholes. By carefully constructing
specific and different shape functions, we have analyzed
the wormhole geometries and discussed some of the
properties of the resulting spacetime.
In the second part of this article, is based on the power-

law of fðTÞ model. Considering the field equations with a
diagonal tetrad and the anisotropic fluid matter distribution,
a plethora of asymptotically flat exact solutions were found
for different shape functions. This analysis shows that NEC
is identically zero at the throat r0 i.e., ðρþ prÞjr0 ¼ 0 [see
Eq. (40)]. However, the energy density is positive inside
and outside the throat radius. One important property of the
solutions is that the matter obeys the NEC at the throat, but
outside the throat radius NEC is violated and goes up to the
radius r ≤ R. This situation is quite different from TEGR
solution, but not new in wormhole physics. Since, the
redshift function is not finite when r → ∞ due to the
conformal symmetry. Therefore, one needs a cutoff of
the stress-energy by matching the interior solution to an
exterior vacuum spacetime, at a junction interface.
Thus, it is safe to conclude that for the choice of diagonal

tetrad, we found several solutions of wormhole geometries
that violate the NEC at the throat and its neighborhood in
both TEGR and fðTÞ gravity theories. However, the
wormhole geometries in teleparallel gravity is more appeal-
ing than the fðTÞ gravity.
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