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Using on-shell amplitude methods, we derive a rotating black hole solution in a generic theory of
Einstein gravity with additional terms cubic in the Riemann tensor. We give an explicit expression for the
metric in Einsteinian cubic gravity and low-energy effective string theory, which correctly reproduces the
previously discovered solutions in the zero-angular-momentum limit. We show that at first order in
the coupling, the classical potential can be written to all orders in spin as a differential operator acting on the
nonrotating potential, and we comment on the relation to the Janis-Newman algorithm. Furthermore, we
derive the classical impulse and scattering angle for such a black hole and comment on the
phenomenological interest of such quantities.
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I. INTRODUCTION

We have recently entered the era of gravitational wave
astronomy, where one of the key subjects of observation
will be black holes [1,2]. Analyses of the initial black hole
data suggests further confirmation of general relativity
(GR) as the correct low-energy description of gravity.
Having said this, there still remain pressing open issues
in cosmology, such as the dark sector of the Universe and
more recently, the H0 problem. From a theoretical view-
point, it is reasonable to expect that GR is not the final say
on gravity, and therefore it is prudent to study gravitational
theories that extend beyond GR. This can be considered
either in an effective field theory (EFT) sense, in which one
considers the higher-order curvature terms expected from
e.g., low-energy string theory, or simply as modified
theories of gravity. In this paper, we shall study the effects
of adding cubic curvature contributions to the Einstein-
Hilbert action, specifically considering rotating black hole
solutions to the field equations. Such analyses are impor-
tant in order to test the validity of GR in the strong gravity
regime of black holes, and further, to identify if such
modifications to GR are necessary.
Since angular momentum is conserved, we would expect

that nearly all astrophysical black holes in the Universe will

be spinning, irrespective of the specific theory of gravity
under consideration. In a recent paper, two of the present
authors used modern amplitude methods to derive non-
rotating black hole solutions in cubic theories of gravity [3].
In this work, we extend this analysis to include rotating
solutions by considering scattering amplitudes involving
particles with arbitrary spin. In general, finding solutions to
the field equations in covariant theories of gravity is fraught
with difficulty, due to the nonlinearity of gravity, the choice
of coordinate systems and the sheer number of terms one
often has to consider, not to mention the unwieldy
complications of rotating solutions. Modern amplitude
techniques have been extremely useful in this regard
[4–22], due partly to their manifest gauge invariance and
partly to the technology that has been developed over the
last decade to greatly simplify computations. One particu-
larly efficient method to compute the classical (perturbative)
solutions that arise from amplitudes is the so-called leading
singularity (LS) [8], the highest codimension singularity of a
given amplitude that allows one to efficiently compute the
classical contributions by taking appropriate limits.
In theories of gravity, spin effects can be found in post-

Newtonian or post-Minkowskian multipole expansions
[7,23–30]. At first post-Minkowskian order, classical
effective matching gives rise to an all order in spin
expansion [28] in the two-body problem in general rela-
tivity. A similar analysis can be obtained directly from the
amplitudes, as we will do here, by matching the results
obtained from the amplitude calculations with an effective
action [11,12,16,17].
We will consider a light scalar particle of mass mA and

momentum p1 probing the spacetime generated by a heavy
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spinning particle of massmB, momentum p3 and spin s (cf.
the diagram given in Fig. 1).
In order to compute the classical contributions from such

an interaction, we will compute the leading singularities in
the holomorphic classical limit (HCL) [31]. Cubic gravity
is well studied in the literature [32–38], and in this paper we
will consider a generic six-derivative theory in four
dimensions described by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
2

κ2
Rþ λP

�
; ð1Þ

where the coupling has mass dimension ½λ� ¼ −2 and

P ¼ β1Rμ
ανβRαλβσRλμσ

ν þ β2Rμν
αβRαβ

λσRλσ
μν

þ β3RμναβRμαRνβ þ β4Rμ
νRν

αRα
μ; ð2Þ

where the βi are generic coefficients which we will leave
undetermined for the time being. In the particular case
where β1 ¼ −β3 ¼ 12 and β2 ¼ 1, β4 ¼ 8, the theory
reduces to Einsteinian cubic gravity (ECG) [34]. This
recently constructed theory is of interest as an extension
to GR that preserves the number of physical degrees of
freedom in gravity. In fact, it is the unique extension of GR
up to cubic order in curvature that propagates only massless
spin-2 degrees of freedom on shell (i.e., its linearized
spectrum coincides with that of GR on maximally sym-
metric backgrounds) [34].
Before proceeding, we should note that while we have

kept the generic form of P for generality, it has been shown
that the terms involving the Ricci curvature tensor do not
contribute to on-shell amplitudes [39].1 Therefore, the
terms proportional to β3 and β4 in P will play no role
in the following discussion.

A. HCL parametrization

We will make heavy use of the HCL parametrization,
which we will review here along with our conventions and
notation. The incoming and outgoing particles have
momentum

p2
1 ¼ p2

2 ¼ m2
A; p2

3 ¼ p2
4 ¼ m2

B; ð3Þ

and the usual Mandelstam relations are given by

s ≔ ðp1 þ p3Þ2; t ≔ ðp1 − p2Þ2; u ≔ ðp1 − p4Þ2:
ð4Þ

Since we are computing scattering amplitudes on shell, we
will use spinor-helicity variables throughout, which make
the little group properties of the amplitudes manifest. For
massless particle momentum, we define the momentum
bispinor as

pμ
i σ

α _α
μ ¼ λαi λ̃

_α
i : ð5Þ

The two-spinors λ and λ̃ represent the positive- and
negative-helicity states respectively, and contractions are
performed using ϵαβ or ϵ _α _β. Importantly, we will use angle
and square bracket notation where contractions are denoted
by

ϵαβλ
α
i λ

β
j ≔ hiji; ϵ _α _βλ̃

_α
i λ̃

_β
j ≔ ½ij�: ð6Þ

For massless particles, the little group is Uð1Þ, and the
helicity of a given on-shell particle is given by simply
scaling a given two-spinor by phase, where the amplitude
satisfies

Mðtλi; t−1λ̃iÞ ¼ t−2hiMðλi; λ̃iÞ: ð7Þ

For massive particles, the little group is SUð2Þ and so we
need an additional index that transforms appropriately. We
will use the formalism developed in Ref. [40], where
massive particle momentum can be decomposed as

pμ
i σ

α _α
μ ¼ λIαi λ̃J _αi ϵIJ: ð8Þ

Wewill, however, adopt the bold notation used in Ref. [40],
suppressing the massive little group indices I; J; K… in
favor of bold angle and square bracket notation, e.g.,

ϵαβλ
Iα
i λJβj ≔ hiji; ϵ _α _βλ̃

I _α
i λ̃J

_β
j ≔ ½ij�; ð9Þ

where it is understood that the bold notation implies that
each bold spinor has an index which can be restored from
the fact that all indices must be fully symmetrized over.
Having dispensed with the relevant notation, we can

define the massless exchanged momentum as

FIG. 1. Gravitational probe of spinning particles in cubic
gravity.

1This is due to the reparametrization invariance of the Smatrix:
we can perform a field redefinition of the metric that removes all
possible cubic curvature invariants other than those proportional
to β3 and β4 in Eq. (2) without affecting the on-shell amplitudes.
Note that, in principle there are two further cubic terms that are
a priori present in the action; however, due to the reason above,
these also play no role on shell. Since we are interested in “ECG-
like” theories of gravity, we neglect these additional terms in
Eq. (2).
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K≔p1−p2¼jλ�hλj¼ ð0;qÞ; K2¼ t¼−jqj2; ð10Þ

and work in a parametrization that makes the classical
pieces explicit, e.g.,

p3 ¼ jη�hλj þ jλ�hηj;

p4 ¼ βjη�hλj þ 1

β
jλ�hηj þ jλ�hλj;

t
m2

B
¼ ðβ − 1Þ2

β
;

hληi ¼ ½λη� ¼ mB: ð11Þ

Using these variables, the classical limit of an amplitude is
given by taking the β ⟶ 1 limit. We also define the useful
parameters

u ≔ ½λjp1jηi; v ≔ ½ηjp1jλi; ð12Þ

with uþ v ¼ 2p1 · p3 in the HCL. These are related to the
Mandelstam variables in the HCL via

u ¼ mAmB

�
ρþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 1

q �
;

v ¼ mAmB

�
ρ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 1

q �
; ð13Þ

where

mAmB

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 1

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − ðmA þmBÞ2Þðs − ðmA −mBÞ2Þ

q

and the nondispersive limit is given by ρ → 1.
Given these definitions and kinematics, we find the

following relations:

hλjp1jλ� ¼ −
ðβ − 1Þ2

β
m2

B þ ð1 − βÞ
�
v −

u
β

�
;

hηjp1jη� ¼
uv −m2

Am
2
B

ðu − vÞðβ − 1Þ þOðβ − 1Þ0: ð14Þ

Spin effects are given in terms of the Pauli-Lubanski spin
vector, which we will use in its mass-rescaled form, given
by

aμ ¼ −
1

m2
ðPν

i σ̄μνÞ: ð15Þ

The spin dependence is characterized by identifying [4]

ϵμνρσp
μ
1p

ν
3K

ρaσ ¼ ðEA þ EBÞða · p × qÞ; ð16Þ

where p is the relative momentum. We will work in the
antichiral HCL basis, meaning that we choose a basis that
contains only dotted indices (we can always exchange

dotted for undotted indices using the momentum bispinor).
Working in such a basis allows us to efficiently extract the
spin dependence of the amplitudes that is otherwise
obscured in the mixed basis. For example, the spin
dependence of a three-particle amplitude with two spinning
particles coupled to a massless particle of (positive) helicity
h can be exposed by a change of basis of the form

Ms;h
3 ¼ gðmxÞh h12i

2s

m2s

¼ −gðmxÞh
�
½1j

�
1 −

j3�½3�
mx

�
j2�

�
2s
; ð17Þ

where the second term on the right-hand side represents the
spin contribution and is the on-shell avatar of the Gordon
decomposition [4,20].
For convenience, we will also define the relative

momentum dependence of the amplitudes in terms of the
rapidity w. By working in the antichiral basis, we lose any
information that might have been contained in the polari-
zation tensors of the external spinning particles, which are
only defined in the mixed representation. In order to restore
this lost information, we will turn to the generalized
expectation value (GEV) introduced in Ref. [11], which
in our case amounts to normalizing the amplitude via

hMi ¼ e−K·aM: ð18Þ
Armed with the HCL parametrization and this normaliza-
tion, we can compute the amplitudes relevant to derive the
classical potential.

II. TREE LEVEL LS

At tree level, there is no OðλÞ contribution, and we need
only to consider the diagram in Fig. 2.
The minimally coupled three-particle amplitude with one

graviton and two spin-s particles is given by [40]

M3½1; 2; Kþ2� ¼ κ

2
ðmx12Þ2

h12i2s
m2s ;

M3½1; 2; K−2� ¼ κ

2

�
m
x12

�
2 ½12�2s
m2s ; ð19Þ

FIG. 2. Tree-level graviton exchange.
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where xij is defined via

xijλαi ¼
λ̃i _αp _αα

j

m
;

λ̃ _αi
xij

¼ p _αα
j λiα
m

: ð20Þ

The tree-level leading singularity is simply the residue in
the t channel, in this case given by the product of the above
amplitudes. Considering the HCL parametrization and
working in the chiral representation, this is given by

Ms
4 ¼ −

�
κ

2

�
2m2

Am
2
B

t

�
x234
x212

�
1þ K · a

s

�
2s
þ x212
x234

�
;

¼ −
�
κ

2

�
2 1

t

�
u2
�
1þ K · a

s

�
2s
þ v2

�
; ð21Þ

where we have formally defined the spin vector a ¼ 2sã
and noted that

u ¼ mAmB
x34
x12

; v ¼ mAmB
x12
x34

: ð22Þ

For spin zero, in the nonrelativistic limit, we then find the
amplitude

M0
4 ¼ −

�
κ2

2

�
m2

Am
2
B

t
: ð23Þ

III. ONE-LOOP LS

In order to derive a black hole solution at order OðλÞ for
cubic gravity, we only need to consider the one-loop
diagram given in Fig. 3.
We label the internal graviton momentum k3 and k4 and

the massive internal scalar L. We cut every internal
propagator and integrate over the internal momentum,
which will now be fully localized since we are only
considering the LS,

L ¼ zlþωK; jl� ¼ jη� þ Bjλ�; hlj ¼ hηj þ Ahλj:
ð24Þ

Demanding the on-shell cut conditions k23;4 ¼ L2 −m2
B

(and imposing l2 ¼ 0) fixes ω ¼ − 1
z with A ¼ −B ¼

− 1
z

2β
1þβ. Given this parametrization, the LS is given by a

contour integral where the integrand is a product of tree-
level on-shell amplitudes

I ¼ 1

16
ffiffiffiffiffi
−t

p
mB

I
Γ

dy
y
Mþ

3 M
þ
3 M

−−
4 ; ð25Þ

where we have taken the β ⟶ 1 limit.
We will again use the HCL parametrization to express

the internal momentum spinor helicity variables as

jk3� ¼
1

β þ 1
ðjη�ðβ2 − 1Þyþ jλ�ð1þ βyÞÞ;

hk3j ¼
1

β þ 1

�
hηjðβ2 − 1Þ − 1

y
hλjð1þ βyÞ

�
;

jk4� ¼
1

β þ 1
ð−βjη�ðβ2 − 1Þyþ jλ�ð1 − β2yÞÞ;

hk4j ¼
1

β þ 1

�
1

β
hηjðβ2 − 1Þ þ 1

y
hλjð1 − yÞ

�
: ð26Þ

A. Tree-level components

We now work out the tree-level components that go into
the loop, expressed in terms of the HCL parameters. For a
particle of generic spin s emitting a graviton, the three-
particle amplitude is given by

M3½1s; 2s; Kþ2� ¼ −
κ

2
m2x212

�
1þ K · a

s

�
2s
; ð27Þ

M3½1s; 2s; K−2� ¼ −
κ

2

�
m2

x212

�
; ð28Þ

where we have chosen to work in the purely antichiral basis
and expose the spin dependence of positive-helicity ampli-
tudes. We can therefore work out the product of three-
particle amplitudes that go into the LS

M3½3s;−Ls;kþ2
3 �M3½4s;Ls;kþ2

4 �

¼
�
κ

2

�
2

m4
By

4×

�
1þð1þyÞ2

4y
K ·a
s

�
2s
�
1−

ð1−yÞ2
4y

K ·a
s

�
2s

;

ð29Þ
where we have used the fact that x3L ¼ x4L ¼ −y in this
parametrization.
We can also determine the four-point that goes into the

LS in terms of these parameters. Noting that we can express

k3:p1 ¼ k3:p2 þOðβ − 1Þ2 ¼ ðβ − 1Þ ð1 − y2Þðv − uÞ
8y

;

ð30ÞFIG. 3. One-loop leading singularity.
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we find

M4½p1; p2; k−23 ; k−24 � ¼ 3

16

κ4λhk3k4i4
ðp1 − p2Þ2

½β1ððk3 · p1 þ k3 · p2Þ2 −m2
Ak3 · k4Þ þ 8β2ðk3 · p1Þðk3 · p2Þ�

¼ −
3

64

κ4λ

t
m4

Bðβ − 1Þ6
y4

�
2β1m2

Am
2
B − ðβ1 þ 2β2Þ

ð1 − y2Þ2ðv − uÞ2
4y2

�

¼ −
3

64
κ4λ

t2

m2
By

4

�
2β1m2

Am
2
B − ðβ1 þ 2β2Þ

ð1 − y2Þ2ðv − uÞ2
4y2

�
: ð31Þ

Putting this all together, we find the LS to be evaluated is

I s ¼ −
3

4096
κ6λmBð−tÞ3=2

I
dy
y

�
1þ ð1þ yÞ2

4y
K · a
s

�
2s
�
1 −

ð1 − yÞ2
4y

K · a
s

�
2s

× ½2β1m2
Am

2
B − ðβ1 þ 2β2Þðv − uÞ2ð1þ yÞ2�: ð32Þ

In order to check that this is the correct expression, we
first choose s ¼ 0 to ensure we are able to recover the
results obtained in Ref. [3]. Taking the first term in Eq. (32),
and summing together with mA ↔ mB, we find

Is¼0
β1

¼ −
3

1024
β1κ

6λm2
Am

2
BðmA þmBÞq3: ð33Þ

This precisely matches the small-t expansion of the pure β1
term of Eq. (5.2) in Ref. [3]. Moving on to the second term,
we find that the LS is

Is¼0
β1þ2β2

¼ −
3

4096
ðβ1 þ 2β2Þκ6λðmA þmBÞðv − uÞ2q3

¼ −
3

1024
ðβ1 þ 2β2Þκ6λðmA þmBÞ3p2q3; ð34Þ

which agrees with the pure ðβ1 þ 2β2Þ term of Eq. (5.2) in
Ref. [3]. This leaves us confident that Eq. (32) is indeed the
correct expression, and thus we shall move on to consider
cases in which s ≠ 0.

IV. ALL-ORDER IN SPIN CLASSICAL POTENTIAL

In momentum space, the classical potential is a related to
the amplitude M by

Vðq;pÞ ¼ hMi
4EAEB

; ð35Þ

where Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ p2 þ q2

4

q
.

A consistent classical limit is only reached by taking
s ⟶ ∞ as ℏ ⟶ 0 keeping sℏ fixed, since the intrinsic
angular momentum of a spin-s particle is proportional to sℏ
[41]. We now make a further identification for the variables
u and v as being

u ¼ mAmBew; v ¼ mAmBe−w; ð36Þ

where w is the rapidity. Plugging this into the tree-level
four-point and taking the infinite-spin limit gives

M∞
4 ¼ −

κ2

4

m2
Am

2
B

t
ðe2we2K·a þ e−2wÞ: ð37Þ

After normalization with the GEV, we then find

hM∞
4 i ¼ −

κ2

4

m2
Am

2
B

t
ðe2weK·a þ e−2we−K·aÞ: ð38Þ

Doing the same for the loop amplitude yields

I∞ ¼ −
3κ6λ

2048
ð−tÞ3=2m2

Am
3
BβðwÞð1þ e2K·aÞ; ð39Þ

where we have defined βðwÞ ≔ β1 þ 2ðβ1 þ 2β2Þ sinh2 w.
Again normalizing this using the GEV gives

hI∞i ¼ −
3κ6λ

1024
m2

Am
3
BβðwÞq3 coshq · a: ð40Þ

The momentum space potential is therefore given by

V ¼ κ2

16

mAmB

q2
ðe2weq·a þ e−2we−q·aÞ

−
3κ6λmAm2

B

4096
βðwÞq3 coshq · a: ð41Þ

Since we want to compare with the nondispersive Kerr
black hole solution we at this point restrict the potential to
the nondispersive terms (i.e., w ¼ 0) and taking the Fourier
transform, we then find that the all-order in spin potential is
given by
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VðrÞ ¼ −
κ2

32π
mAmB cos ða · ∇Þ

�
1

r
−
9κ4λβ1
32π

mA þmB

r6

�

¼ −GmAmB cos ða ·∇Þ
�
1

r
− 288πG2λβ1

mA þmB

r6

�
:

ð42Þ

We note that this form of the potential allows us to interpret
the attachment of spin factors to the amplitudes generating
the spacetime as the on-shell avatar of the Newman-Janis
algorithm for higher-derivative gravity, in precisely the
same way as it does in the Kerr and Kerr-Newman cases
[19,20]. This is because the attachment of such factors
gives rise to a differential operator which performs a
complex deformation of the coordinates r → rþ ia
(a simple extension of the translation operator), i.e.,

cosða · ∇ÞfðrÞ ¼ 2ℜðfðrþ iaÞÞ; ð43Þ

sinða ·∇ÞfðrÞ ¼ 2ℑðfðrþ iaÞÞ; ð44Þ

for any holomorphic function fðrÞ.

V. METRIC CONSTRUCTION

In momentum space, the classical potential for a grav-
itomagnetic system is of the form

VðqÞ ¼ mΦðqÞ þ p ·A; ð45Þ

where Φ is the gravitoelectric field, A is the gravitomag-
netic vector potential and p is the kinetic momentum. The
perturbative metric can be decomposed in terms of these
fields as

h00 ¼ 2Φ; h0i ¼ −Ai; hij ¼ 2Φδij: ð46Þ

We can then identify the relevant components of the metric

Φ ¼ lim
mA⟶0

1

mA
V; Ai ¼ lim

mA⟶0
2
∂V
∂pi ; ð47Þ

where we note that we will often write pi ¼ mAui in the
limit we are interested in.
In order to identify the spin components, we are required

to identify the dispersive terms that multiply K · a via

mAmB sinhwK · a ¼ iϵμνρσp
μ
1p

ν
3K

ρaσ: ð48Þ

In the center-of-mass frame, we can use this on-shell
condition to write

K · a ¼ iϵμνρσp
μ
1p

ν
3K

ρaσ

mAmB sinhw
¼ −iu · ða × qÞ; ð49Þ

where u is the relative four-velocity.

With this in hand, we can therefore rewrite the potential,
keeping only the necessary dispersive terms, as

V¼ cosðu ·ða×qÞÞ
�
κ2

8

mAmB

q2
−
3κ6λmAm2

B

4096
βðwÞq3

�
: ð50Þ

We then find, in momentum space,

Φ ¼ coshðq · aÞ
�
κ2

8

mB

q2
−

3

4096
βðwÞκ6λm2

Bq
3

�
; ð51Þ

Ai ¼ − sinhðq · aÞ

×

�
κ2

4

mB

q2
−
3κ6λm2

B

2048
βðwÞq3

�
ðia × qÞi; ð52Þ

which in position space is

Φ ¼ cosða ·∇Þ
�
GmB

r
−
288G3πλβðwÞm2

B

r6

�

¼ cosða ·∇ÞðΦKerr þΦR3Þ; ð53Þ

Ai ¼ − sinða · ∇Þ
�
2GmB

r
− 3456

G3πλβðwÞm2
B

r6

� ða × rÞi
r2

¼ −2 sinða ·∇ÞðΦKerr þ 6ΦR3Þ ða × rÞi
r2

; ð54Þ

from which the components of the metric can be deter-
mined. Specialising now to the case of ECG [33,34], we
choose β1 ¼ 12, β2 ¼ 1 and λ ¼ − Gλ̃

16π, such that we find
the following perturbative expansion for the metric:

gECG00 ¼ 1 −
2GM
r

− 432
G4M2λ̃

r6
þ � � � ;

gECG0i ¼
�
1þ 2GM

r
þ 2592

G4M2λ̃

r6

� ða × rÞi
r2

þ � � � ;

gECGij ¼
�
1þ 2GM

r
þ 432

G4M2λ̃

r6

�
δij þ � � � : ð55Þ

Note that these results found for Φ, Ai [Eq. (53)], and the
metric components (55), reduce to the previously known
nonrotating counterparts in the zero-angular-momentum
limit. Indeed, in the limit a ⟶ 0, we find that Φ ¼
ΦKerr þΦR3 and Ai ¼ 0, and correspondingly gECG0i ¼ 0,
which is in exact agreement with the results found in
Refs. [3,33]. Furthermore, taking the λ → 0 limit gives the
all order in spin Kerr metric [28].

VI. CLASSICAL IMPULSE AND
SCATTERING ANGLE

We can also derive the classical impulse imparted to a
scalar probe particle, given in terms of the scattering
amplitude by [42]
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Δpμ
1 ¼

1

4mAmB

Z
d̂4q̄ δ̂ðq̄ · u1Þδ̂ðq̄ · u3Þe−iq̄·biq̄μhM∞i:

ð56Þ

The impulse is given in terms the incoming probe particle
momentum p1 ¼ mAu1 and that of its colliding partner
p3 ¼ mBu3, and is simply a measure of the total change in
momentum of particle 1 as a result of the collision. The
impact parameter bμ is a spacelike vector orthogonal to u1
and u3, and the delta functions ensure that we pick out the
plane in which this lives. Plugging in hM∞i ¼ hM∞

4 i þ
hI∞i and performing the integral transforms, we find

Δpμ
1 ¼ −

2GmAmB

sinhw
ℜ

�
b̃μ⊥ cosh 2wþ 2i coshwζμ

jb̃⊥j2

þ 135G2λπ2mB

�
β1b̃

μ
⊥ þ 2iðβ1 þ 2β2Þ sinhwζμ

jb̃⊥j7
��

ð57Þ

where ζμ ≔ ϵμνρσb̃νu1ρu3σ and b̃⊥ ¼ b⊥ þ iΠa, in which

Πμ
ν ¼ ϵμαραβϵνργδ

u1αu3βu
γ
1
uδ
3

γ2−1 is the projector into impact

parameter space (i.e., into the plane orthogonal to both
incoming velocities u1 and u3) [41].
We can also derive the scattering angle, given in terms of

the LS by [11,43,44]

θ ≃ 2 sin
�
θ

2

�
¼ −E

ð2mAmB sinhwÞ2
∂
∂b hM

∞ðbÞi; ð58Þ

where hM∞ðbÞi is the LS in impact parameter space.The
tree-level LS is given by

hM∞
4 ðbÞi ¼

�
κ2

8π

�
m2

Am
2
B

X
�
e�2w ln jb� aj; ð59Þ

and the loop LS (40) by

hI∞ðbÞi ¼ −
27κ6λ

4096π
m2

Am
3
B

X
�

βðwÞ
ðb� aÞ5 : ð60Þ

Plugging these back into Eq. (58) we find the angle

θ ¼ −GE
sinh2w

X
�

�
e�2w

b� a
þ 270π2G2λmB

βðwÞ
ðb� aÞ6

�
: ð61Þ

It can also be checked that this angle is reproduced directly
from the classical impulse in Eq. (57), by considering [28]

θ ¼ Δp⊥
jp⊥j

; ð62Þ

where Δpμ ¼ Δp⊥b̂μ and jp⊥j ¼ m sinhw.

VII. ROTATING STRINGY BLACK HOLES

Having so far considered a generic cubic theory of
gravity given by the action (69), we can naturally extend
our analysis to consider the corrections to the potential that
arise from the α02 part of the low-energy four-dimensional
effective action in bosonic string theory (with a constant
dilaton), given by [39]

S ¼ −
2α02

κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

48
I1 þ

1

24
G3

�
; ð63Þ

where I1 is the β2 term in our case, and

G3 ¼ Rμν
αβRαβ

λσRλσ
μν − 2Rμ

ανβRαλβσRλμσ
ν; ð64Þ

is the well known cubic Gauss-Bonnet invariant, which
arises from setting β1 ¼ −2β2. We note that in the case
considered there is no contribution at order α0 on shell,
since the second Gauss-Bonnet invariant is a surface term
unless nonminimally coupled to a dynamic dilaton [45,46].
See Ref. [47] for an analysis from the on-shell amplitude
perspective.
To compute the I1 correction, we take λ ¼ − 2α02

κ2
and then

β1 ¼ 0, β2 ¼ 1
48

which gives

ΦI1 ¼ 3ðGα0Þ2
2

sinh2w cosða ·∇Þm
2
B

r6
; ð65Þ

AI1
i ¼ −18ðGα0Þ2m2

Bsinh
2w sinða ·∇Þ ða × rÞi

r8
: ð66Þ

Then to compute the G3 contribution we take β1 ¼
−2β2 ¼ − 1

24
to find

ΦG3 ¼ 3ðGα0Þ2 cosða ·∇Þm
2
B

r6
; ð67Þ

AG3

i ¼ −9ðGα0Þ2m2
B sinða ·∇Þ ða × rÞi

r8
: ð68Þ

We can also readily derive the scattering angle in this case,
which we find to be

θα02 ¼
45π

32
ðGMα0Þ2

X
�

1

ðb� aÞ6 : ð69Þ

VIII. DISCUSSION

In this paper, we have derived a new black hole solution
in cubic gravity using modern amplitude methods. In
particular, we presented the all-order (in spin) classical
potential, to leading order in the cubic coupling λ. Further,
we have shown how the form of this potential allows for an
interpretation of the on-shell avatar of the Newman-Janis
algorithm, extending it to higher-derivative gravity. This is
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certainly good motivation to try and establish the precise
algorithm that deforms coordinates in some particular
coordinate system and allows one to derive the rotating
solution directly from the static one. As an additional
exercise, we broadened our discussion slightly to consider
the leading-order corrections to the potential arising from
the α02 part of the low-energy effective action in string
theory. We also noted that taking the a ⟶ 0 limit
reproduces the results that can be found elsewhere in the
literature [3,14,33–35,48,49], at least for those quantities
that have already been computed.
It should be emphasized that deriving such a black hole

solution using traditional geometric methods is a difficult
endeavor, a fact which highlights the benefits of using
modern amplitude techniques to understand gravitational
phenomena. Indeed, this is a rare case in which it has been
possible to derive a novel result via modern amplitude
methods before it has been done so through the geometric
approach, in which the presence of cubic-order curvature
terms makes the task almost intractable.
In addition to finding the black hole solution, we also

presented results for pertinent classical observables, namely
the impulse and scattering angle. Given some reliable
observational data, these quantities could be used to place
a bound on the coupling λ, whose parameter space has been
only partially constrained [37]; in the model presented, λ
can assume arbitrarily large or small values.
There are a number of interesting future directions that

immediately present themselves as natural follow-ups to
this work. It is certainly plausible to consider a binary
rotating black hole system cubic gravity, which would
amount to including spin on all external particles in the
scattering amplitudes and keeping the particle masses
general. Furthermore, one could consider gravitational
radiation in this setup, which would give rise to observa-
tional signatures that could, at least in principle, be detected
by LIGO or future gravitational wave experiments, such
as LISA.
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Note added.—We note with interest that, submitted simul-
taneously to the arXiv along with this paper was Ref. [50],
in which the authors studied the extremal near-horizon
geometry of rotating black holes in ECG. Interestingly, they
noted that a forthcoming publication will study rotating
solutions to ECG in general, and we eagerly look forward
to their results and the comparison to those we have derived
using amplitude techniques.

APPENDIX: INTEGRAL TRANSFORMS

Here we quote the relevant integral transforms that we
make use of in this paper:

Z
d3q
ð2πÞ3 e

iq·r 1

q2
¼ 1

4πr
ðA1Þ

Z
d3q
ð2πÞ3 e

iq·r qi
q2

¼ ixi
4πr3

ðA2Þ

Z
d3q
ð2πÞ3 e

iq·rjqjn ¼ ðnþ 1Þ!
2π2r3þn sin

�
3πn
2

�
; ðA3Þ

Z
d3q
ð2πÞ3e

iq·rqijqjn¼ i
ðnþ1Þ!ð3þnÞxi

2π2r5þn sin

�
3πn
2

�
; ðA4Þ

Z
d4q
ð2πÞ3δðq

0Þδðγq1−βγq3Þeiq·bqμjqjn

¼−
i

2πjβγjH1½rnþ1�b̂μ; ðA5Þ

Hν½rn� ¼
Z

∞

0

rnþ1JνðkrÞ ¼
2nþ1

knþ2

Γð1
2
ð2þ νþ nÞÞ

Γð1
2
ðν − nÞÞ : ðA6Þ
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