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We consider R2 inflation in the Palatini gravity assuming the existence of scalar fields coupled to gravity
in the most general manner. These theories, in the Einstein frame, and for one scalar field h, share common
features with K-inflation models. We apply this formalism for the study of popular inflationary models,
whose potentials are monomials, V ∼ hn, with n a positive even integer. We also study the Higgs model
nonminimally coupled to gravity. Although these have been recently studied, in the framework of the
Palatini approach, we show that the scalar power spectrum severely constrains these models. Although we
do not propose a particular reheating mechanism, we show that the quadratic ∼h2 and the Higgs model can
survive these constraints with a maximum reheating temperature as large as ∼1015 GeV when reheating is
instantaneous. However, this can be attained only at the cost of a delicate fine-tuning of couplings.
Deviations from these fine-tuned values can still yield predictions compatible with the cosmological data
for couplings that lie in very tight range, giving lower reheating temperatures.
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I. INTRODUCTION

It has long been known that the Palatini formulation of
general relativity (GR), or first-order formalism, is an
alternative to the well-known metric formulation, or sec-
ond-order formalism. In the latter the space time connection
is determined by the metric while in the Palatini approach
the connection Γμ

λσ is treated as an independent variable [1–8]
(see also [9], and references therein). It is through the use of
the equations of motion that Γμ

λσ receive the well-known
form of the Christoffel symbols, thus describing a metric
connection. Within the context of GR the two formulations
are equivalent. However, in the presence of fields that are
coupled in a nonminimal manner to gravity this no longer
holds [1–3]. In that case the two formulations describe
different physical theories.
Encompassing the popular inflation models into Palatini

gravity, in an effort to describe the cosmological evolution
of the Universe, leads to different cosmological predictions,
from the metric formulation, due to the fact that the
dynamics of the two approaches differ. A notable example
is the Starobinsky model, for instance, where except the
graviton there exists an additional propagating scalar
degree of freedom, the scalaron, whose mass is related
to the coefficient of the R2 term. In the Einstein frame this
shows up as a dynamical scalar field, the inflaton, moving
in a potential, the celebrated Starobinsky potential [10–12].
Within the framework of the Palatini gravity, in any fðRÞ

theory [3], there are no extra propagating degrees of
freedom that can play the role of the inflaton, and hence
the inflaton has to be put in by hand as an additional field
coupled to fðRÞ gravity.
The differences between metric and Palatini formulation

in the cosmological predictions, as far as inflation is
concerned, arise from the nonminimal couplings of the
scalars that take up the role of the inflaton. These couplings
are different in the two approaches. This was first pointed
out in [13] and has attracted the interest of many authors
since [14–42], with still continuing activity [43–49].
The measurements of the cosmological parameters, by

various collaborations, have tightened the allowed limits of
these observables which in turn constrain severely, or even
exclude, particular inflationary models [50–52]. In particu-
lar, the spectral index ns and the bounds on the tensor-to-
scalar ratio r impose severe restrictions and not all models
can be compatible with the observational data.1 Within the
class of fðRÞ theories the Starobinsky model, which is an
R2 theory, is singled out, although other popular models
can also successfully pass the tests provided by the recent
cosmological observations. The measurements of the pri-
mordial scalar perturbations and the associated power
spectrum amplitude As constrain the scale of inflation in
models encompassed in the framework of the metric
formulation. We will show that in the Palatini formalism
this imposes restrictions that are more stringent, at least in
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1In this work, standard assumptions are made for neutrino
masses and their effective number. Relaxing these induces
substantial shifts in ns [53].

PHYSICAL REVIEW D 101, 084007 (2020)

2470-0010=2020=101(8)=084007(28) 084007-1 © 2020 American Physical Society

https://orcid.org/0000-0002-2957-5276
https://orcid.org/0000-0002-2293-8396
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.084007&domain=pdf&date_stamp=2020-04-03
https://doi.org/10.1103/PhysRevD.101.084007
https://doi.org/10.1103/PhysRevD.101.084007
https://doi.org/10.1103/PhysRevD.101.084007
https://doi.org/10.1103/PhysRevD.101.084007


some cases, than the ones arising from the observables ns; r
and should be duly taken into account. In this work we will
consider R2 theories, in the framework of the Palatini
gravity, and study the cosmological predictions of some of
the popular models existing in the literature. We will show
that these do not comfortably stand, unless the parameters
describing the models are fine-tuned, the main source of
this fine-tuning being the power spectrum amplitude.
This paper is organized as follows:
In Sec. II, we present the salient features and give a

general setup of the fðRÞ theory,2 in the presence of an
arbitrary number of scalar fields, coupled to gravity in a
nonminimal manner in general. Although this is not new, as
this effort has been undertaken by other authors as well, we
think that the general and model-independent expressions
we arrive at are worth discussing. We will then focus on the
case of R2 theories for which the passage to the Einstein
frame is easily implemented. These theories have a gravity
sector, specified by two arbitrary functions, sourcing in
general nonminimal couplings of the scalars involved in
Palatini gravity and a third function which is the scalar
potential. In the Einstein frame, and when a single field is
present, these models have much in common with the
K-inflation models [54].
In Sec. III, we discuss the arising equations of motion

and the slow-roll mechanism and give the pertinent slow-
roll parameters adapted to the particular setup. This is
necessary since it is our aim to employ a scheme in which
the passage to canonically normalized fields is not man-
datory. In fact, using canonically normalized fields leads, in
most of the cases, to expressions that cannot be cast in a
closed form.
The discussion of the cosmological observables is the

subject of Sec. IV. We focus, in particular, on the power
spectrum amplitude which, as already advertised, puts
severe constraints on the inflation models that we are
going to discuss. We find it necessary to include higher
order corrections in the slow-roll parameters of the power
spectrum, since these may account for contributions com-
parable in magnitude to the errors associated with the
power spectrum. Although we will not adopt a particular
reheating mechanism, the dependence of the number of e-
folds on the reheating temperature is of paramount impor-
tance for the study of the cosmological predictions. This is
also reviewed in Sec. IV.
In Sec. V, we consider particular inflation models,

namely, the class of models in which the scalar field h
is characterized by monomial potentials ∼hn, with n a
positive even integer, and the Higgs model. Although these
have been much studied, we will show that the cosmo-
logical data put severe restrictions on the associated

couplings leading to fine-tuned adjustments of the param-
eters involved when the power spectrum data are taken into
account. The reheating mechanism can be instantaneous at
the cost of an unnatural fine-tuning of the couplings
pertinent to the potential, describing the aforementioned
models. For the models discussed, the instantaneous
reheating temperature T ins, which sets the maximum
temperature, can be as large as ∼1015 GeV. Departing
from these fine-tuned values, we can still be in agreement
with all data with temperatures that are significantly lower
than the instantaneous reheating temperature. This requires
that the couplingof the potential lieswithin avery tight range.
Outside this range these models cannot be made compatible
with the power spectrum data for any value of the equation of
state parameter w in the range −1=3 < w < 1.
In Sec. VI we end with our conclusions.

II. THE MODEL

We will consider an action where scalar fields hJ are
coupled to gravity in the following manner:

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
fðR;hÞþ1

2
GIJðhÞ∂hI∂hJ−VðhÞ

�
: ð1Þ

In it R is the scalar curvature in the Palatini formalism and
fðR; hÞ and arbitrary function of the scalars hJ andR. This
action is reminiscent of an fðRÞ theory in which scalar
fields are involved with kinetic terms written in the most
general way resembling σ models. Following standard
procedure we write this action in the following manner,
introducing the auxiliary field Φ:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
fðΦ; hÞ þ f0ðΦ; hÞðR −ΦÞ

þ 1

2
GIJðhÞ∂hI∂hJ − VðhÞ

�
: ð2Þ

In this f0ðΦ; hÞ denotes the derivative with respect to Φ.
One can define ψ in the following way:

ψ ¼ ∂fðΦ; hÞ
∂Φ ; with inverse Φ ¼ Φðψ ; hÞ; ð3Þ

so the action is written as follows:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
ψRþ 1

2
GIJðhÞ∂hI∂hJ

− ψΦþ fðΦ; hÞ − VðhÞ
�
: ð4Þ

One can go to the Einstein frame by performing a Weyl
transformation of the metric

2Throughout this paper we use different symbols for the Ricci
scalar which in the metric formulation we denote by R and in the
Palatini approach by R.
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gμν ¼ λḡμν; with λψ ¼ 1

2
: ð5Þ

That done the theory in the Einstein frame receives the
following form:

S ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
R̄
2
þ 1

4ψ
GIJðhÞ∂hI∂hJ

−
1

4ψ2
ðψΦ − fðΦ; hÞ þ VðhÞÞ

�
: ð6Þ

The last step is to eliminate the field ψ whose equation of
motion is trivially found to be

ψð∂hÞ2 ¼ ψΦ − 2fðΦ; hÞ þ 2VðhÞ; ð7Þ

where, in order to speed up notation, we have
denoted GIJðhÞ∂hI∂hJ ¼ ð∂hÞ2.
Note that Eq. (7) is not solvable, in general, but we will

exemplify it in R2 theories where this can be analytically
solved. In the followingwewill focus on such theories which
can be considered as generalizations of the Starobinsky
action. However, there are two major differences, first the
coefficients of the linear and quadratic, in the curvature R,
terms are not in general constants, and second the framework
is the Palatini formalism in which the connection is not the
well-known Christoffel connection but it is treated as an
independent field.
We will apply the previous formalism when only a single

scalar, h, is present and fðh;RÞ is quadratic in the
curvature having the form

fðR; hÞ ¼ gðhÞ
2

Rþ R2

12M2ðhÞ : ð8Þ

Since a single scalar field is assumed its kinetic term can
always be brought to the form ð∂hÞ2=2, that is, in the action
(1) the field can be taken canonically normalized.
Therefore, in this theory there are three arbitrary functions,
namely, gðhÞ, M2ðhÞ, VðhÞ, and any choice of them
specifies a particular model. We have set the reduced
Planck mass mP ¼ ð8πGNÞ−1=2 dimensionless and equal
to unity and thus all quantities in Eq. (8) are dimensionless.
When we reinstate dimensions the functions g, V have
dimensions mass2, mass4, respectively, while M2 is
dimensionless. Note that a nontrivial field dependence of
the functions gðhÞ and/or M2ðhÞ is a manifestation of the
nonminimal coupling of the scalar h to Palatini gravity.
Note that since we employ a Palatini formalism, there is not
a scalaron field, associated with an additional propagating
degree of freedom, which in the Einstein frame of the
metric formulation plays the role of the inflaton.
With the function fðR; hÞ as given by (8) we get from

Eq. (3),

ψ ¼ gðhÞ
2

þ Φ
6M2ðhÞ ; ð9Þ

whose inverse is

Φ ¼ 6M2ðhÞ
�
ψ −

gðhÞ
2

�
: ð10Þ

Using these we can solve Eq. (7) in terms of ψ in a trivial
manner,

ψ ¼ 4V þ 3M2g2

2ð∂hÞ2 þ 6M2g
; ð11Þ

that is, ψ , and hence Φ from Eq. (10), are expressed in
terms of h; ð∂hÞ2. Plugging ψ , Φ into (6) we get, in a
straightforward manner,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2
þ KðhÞ

2
ð∂hÞ2

þ LðhÞ
4

ð∂hÞ4 − VeffðhÞ
�
: ð12Þ

In this action we have suppressed the bar in the scalar
curvature and also

ffiffiffiffiffiffi−gp
, and in order to simplify notation

we have denoted ∂μh∂μh by ð∂hÞ2 and ð∂μh∂μhÞ2 by
ð∂hÞ4. Note the appearance of quartic terms ð∂hÞ4 in the
action. As for the functions K;L; Veff , appearing in (12),
they are analytically given by

LðhÞ ¼ ð3M2g2 þ 4VÞ−1; KðhÞ ¼ 3M2gL;

VeffðhÞ ¼ 3M2VL: ð13Þ

Observe that since terms up toR2 have been considered, in
the fðRÞ gravity, higher than ð∂hÞ4 terms do not appear in
the action.
The above Lagrangian may feature, under conditions,

K-inflation models [54], which involve a single field,
described by an action whose general form is

S ¼
Z ffiffiffiffiffiffi

−g
p �

R
2
þ pðh; XÞ

�
d4x; ð14Þ

where X ≡ ð1=2Þ∂μh∂μh. The cosmological perturbations
of such models were considered in [55]. However, the
importance of a time-dependent speed of sound cs in
K-inflation models was emphasized in [56] and cosmo-
logical constraints were derived, using improved expres-
sions for the density perturbations power spectra. Specific
models with pðh; XÞ ¼ FðXÞ − VðhÞ were considered in
[57]. In Eq. (12) the Lagrangian density involving the scalar
field is identified with pðh; XÞ, but the function FðXÞ is
now replaced by KðhÞX þ LðhÞX2, which depends in
addition to X on the field h as well as through KðhÞ, LðhÞ.
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In a flat Robertson-Walker metric, where the background
field h is only time dependent, the energy density and
pressure are given by

ρðh; XÞ ¼ KðhÞX þ 3LðhÞX2 þ VeffðhÞ;
pðh; XÞ ¼ KðhÞX þ LðhÞX2 − VeffðhÞ; ð15Þ

with X being, in this case, half of the velocity squared
X ¼ _h2=2.
We will assume that the function LðhÞ is always positive

to avoid phantoms, which may lead to an equation of state
with w < −1. This may occur when L < 0 and X becomes
sufficiently large. However, there is no restriction for the
sign of KðhÞ which may be negative in some regions of the
field space, signaling that the kinetic term has the wrong
sign in those regions. Obviously the sign of KðhÞ should be
positive at the minimum of the potential. Options where K
is negative in some regions, although interesting, will not
be pursued in this work. Besides, we will assume that the
potential is positive VeffðhÞ ≥ 0 and it has a Minkowski
vacuum. This ensures that the energy density is positive
definite. When inflation models are considered, the inflaton
will roll down toward this minimum signaling the end of
inflation and the beginning of universe thermalization.
These are rather mild conditions.
Concerning the potentialVeff , appearing in the Lagrangian

(12) in the Einstein frame, from the last of (13) we see that
due to the fact that we have assumed L;M2 > 0, the
positivity of Veff ≥ 0 entails V ≥ 0. Moreover one can
trivially show, from (13), that Veff be cast in the following
form:

Veff ¼
3M2

4

�
1 −

K2

3M2L

�
: ð16Þ

From this it is seen that besides being positive the potential is
bounded from above by

Veff ≤
3M2

4
: ð17Þ

This upper bound can be easily saturated, for large h, by
appropriately choosing the functions involved, namely, g,
M2, andV. Actually the asymptotic values of these functions,
for large h, control the behavior of the potential in this
regime.3 If we opt for the functionM2 to approach a plateau,
or is constant, so does the potentialwhichmay therefore drive
successful inflation. The requirement to have a Minkowski
vacuum can also be easily satisfied, and therefore many
options are available for potentials bearing the characteristics
demanded for the inflationary slow-roll mechanism to be

implemented. This will be exemplified in specific models to
be discussed later.
Concluding this section, we presented a general, and

model independent, framework of R2 theories in the
Palatini formulation of gravity, which may be useful for
the study of inflation models and may support slow-roll
inflation. In the Einstein frame these theories have much in
common with the K-inflation models. This formalism will
be implemented for the study of various models of inflation
in the following sections.

III. THE EQUATIONS OF MOTION
AND THE SLOW ROLL

When noncanonical kinetic terms are present the equa-
tions of motion for the would-be inflaton scalar field h
differ from their standard form. As a result, the cosmo-
logical parameters describing the slow-roll evolution
should be modified appropriately. Certainly one can nor-
malize the kinetic term of the scalar field appropriately but
this is not always convenient. Actually the integrations
needed in order to pass from the noncanonical to the
canonical field are not easy in most of the cases to be
carried and the results cannot be presented in a closed form.
Therefore, it proves easier to work directly with the
noncanonical fields and express the pertinent cosmological
observables in a manner that is appropriate for this
treatment.
It is not hard to see that the field h satisfies the equation

of motion given by

ðK þ 3L _h2Þḧþ 3HðK þ L _h2Þ _hþ V 0
effðhÞ

þ 1

4
ð2K0 þ 3L0 _h2Þ _h2 ¼ 0: ð18Þ

In Eq. (18) all primes denote derivatives with respect to h. If
the field were canonical, K ¼ 1, and there were no quartic
in the velocity terms, that is, L ¼ 0, then the equation above
receives its well-known form. In this, the effect of using a
noncanonical, in general, field h is encoded in the function
K. The effect of the presence of terms ð∂hÞ4 in the action is
encoded within the function L. The terms that depend on L
are multiplied by an extra power of the velocity squared as
compared to the K terms. These cannot be neglected
although, as we discuss later, they are small in particular
models during inflation.
We can gain more insight if we momentarily use a

canonically normalized field, say ϕ, defined by

ϕ ¼
Z ffiffiffiffiffiffiffiffiffiffi

KðhÞ
p

dh: ð19Þ

To avoid ghosts we will assume that K > 0 so that the
integration above makes sense. Actually ifK is negative the
kinetic term of the field ϕ will have the wrong sign, i.e.,
−ð∂ϕÞ2=2. It could happen, however, that this function is

3It is fairly easy to see that saturation of the bound (17), for
large field values, is easily obtained if g2

V → 0, and g2M2

V ≪ 1, as
h → large.
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negative in some region but at the Minkowski vacuum is
strictly positive. In this way ghosts are also avoided. This
case, interesting as it might be, is not discussed and we
prefer to take a rather conservative viewpoint of having
K > 0 in the entire region. Then in terms of the field ϕ the
equation of motion (18) takes the form

�
1þ 3L

K2
_ϕ2

�
ϕ̈þ 3H

�
1þ L

K2
_ϕ2

�
_ϕ

þ dVeff

dϕ
þ 3L
4K2

dlnðL=K2Þ
dϕ

_ϕ4 ¼ 0: ð20Þ

From this form it appears that the smallness of the ∂h4
terms in the action is quantified by the smallness of the ratio
L
K2

_ϕ2 ≪ 1, which is equivalent to L
K
_h2 ≪ 1. Neglecting this

in the equation above we recover the well-known form of
the equation of motion for the canonical field ϕ.
However, it should be stressed that our numerical study

duly takes into account the contribution of these terms and
no approximation whatsoever is made, although we have
found numerically that they are small at least in the models
under consideration in this work. This was also pointed out
in [31–33,38]. In order to show this and anticipating
conclusions based on our numerical treatment that are
presented in forthcoming sections, in Fig. 1 we plot in the
left panel the evolution of the field h versus the number of
e-folds N ¼ lnðaend=aðtÞÞ from the time the number of e-
folds reached N ¼ 70 to the end of inflation corresponding
to N ¼ 0. On the right panel, we display the parameter
ϵ1 ¼ − _H

H2, the sound of speed squared c2s and the evolution

of L
K
_h2. For reference, we have also included a vertical band

to mark the region N ¼ 50–60, usually quoted in literature.
These plots regard the minimally coupled model for which

g ¼ 1, M2 ¼ 1
3a, and V ¼ m2

2
h2. The values of the

parameters a, m2, used in producing Fig. 1, correspond
to Model I (C case), discussed later in Sec. V for which
a ¼ 2.0 × 109 and m ¼ 6.32 × 10−6. However, similar
findings hold for the other models studied in this work
as well.
In Fig. 1, left panel, one notices the rapid damped

oscillations ofh after the end of inflationwhen it starts falling
to the minimum of the potential. These are clearly visible in
the inset. In Fig. 1, right panel, one can see that ϵ1 ≪ 1.0,
c2s ≃ 1.0, and L

K
_h2 ∼Oð10−2Þ for any number of e-folds that

is larger than about 5 or even smaller. ForN ≲ 5 the function
ϵ1 starts growing and L

K
_h2 increases significantly; however,

its magnitude stays small to the end of inflation.
On the other hand, the scales of interest from cosmic

microwave background (CMB) observations are within the
range 10−4 ≲ k≲ 10−1 Mpc−1 and the number of e-folds
that are left to the end of inflation, from time tk a scale k
crossed the sound horizon, is Nk ¼ lnðaend=aðtkÞÞ. Even
for the largest scale, in the aforementioned range, the
number of e-folds cannot be less than about≃20 as we have
found numerically. Therefore, any scale k in the range of
interest crossed the sound horizon long before the end of
inflation, when ϵ1 ≪ 1.0, c2s ≃ 1.0, and L

K
_h2 was small

Oð10−2Þ. Therefore, for the cosmological scales of interest
the contribution of the L terms is small.
Although small, for a broad range of the parameters and

for the class of models studied here, the role of L
K
_h2 is

important in the determination of the energy density ρend at
the end of inflation, which in turn affects the instantaneous
reheating temperature T ins. This delicate issue will be
discussed later in Sec. V. Even in this case, however, we
have found that the values of ρend deviate from those
obtained approximately by factors of order Oð1Þ.
The previous arguments state that, for the cases of

interest to us, one can use the slow-roll approximation

FIG. 1. (Left panel) The evolution of the field h with the number of e-folds is shown. (Inset) The rapid oscillations of h, as it
approaches the minimum of the potential, are shown magnified. (Right panel) We display the parameter ϵ1, the sound speed squared c2s ,
and the quantity 102L _h2=K.
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and at the same time neglect the L terms, provided their
omission is adequately justified. We repeat that our results
are based on a numerical study and no such approximation
is made. However, this does not deprive us from the right,
and for an analytic treatment of the models under consid-
eration, to present qualitative arguments, based on this
approximate scheme, aiming at a better understanding of
the results that are reached based on a numerical study in
which all terms are included and no approximation is made.
Provided that the contribution of the L term is small, and

with K > 0, the first slow-roll parameters as defined in
terms of the potential are given by in terms of the
noncanonical field h,

ϵV ¼ 1

2KðhÞ
�
V 0
eff

Veff

�
2

; ηV ¼ ðK−1=2V 0
effÞ0

K1=2Veff
: ð21Þ

In these equations the primes denote derivatives with
respect to the field h. It is trivial to show that these
definitions indeed coincide with the well-known definitions
if the canonically normalized field ϕ of Eq. (19) is used. As
for the number of e-folds, left to the end of inflation, this is
given by

N� ¼
Z

h�

hend

KðhÞVeffðhÞ
V 0
effðhÞ

dh: ð22Þ

In this h� is the pivot value and hend is the value of the field
at the end of inflation.

IV. COSMOLOGICAL OBSERVABLES

Concerning the cosmological observables, we start by
discussing the scalar and tensor power spectra which
play an important role in inflationary cosmology. The
CMB observations considerably restrict the predictions
of inflationary models, in general, and also put severe
constraints on specific models, encompassed in the frame-
work of the Palatini gravity as we will analyze in forth-
coming sections.
There is a long history of studies toward this direction,

and the first calculations were performed in [58–60]. Since
then there has been intense activity in the field using
different methods and improvement of the calculations by
considering higher order corrections, demanded by the
precise measurements of the cosmological parameters, or
tackle theories with a variable speed of sound [56,61–77].
Choosing an arbitrary pivot scale, k�, that exited the

sound horizon at t�, that is, k�csðt�Þ ¼ aðt�ÞHðt�Þ, the
scalar and tensor power spectra can be expanded about this
pivot. Keeping the first-order terms in the slow-roll
parameters, one has

PζðkÞ ¼
H2�

8π2m2
Pϵ

�
1c

�
s
A

�
1 − 2ðDþ 1Þϵ�1 −Dϵ�2 − ð2þDÞs�1 þ ð−2ϵ�1 − ϵ�2 − s�1Þ ln

k
k�

�
ð23Þ

and

PhðkÞ ¼
2H2�
π2m2

P
A

�
1 − 2ðDþ 1 − lnc�sÞϵ�1 þ ð−2ϵ�1Þ ln

k
k�

�
:

ð24Þ

A subtle point concerns the dependence of the tensor
power spectrum on the sound velocity cs. Usually this
is calculated evaluating all quantities at the time of the
Hubble horizon crossing, which differs, in general,
from the time of the sound horizon crossing. However,
if we want to compare the scalar and tensor spectra
using the results of cosmological measurements the
same pivot should be used, for consistency, as has been
emphasized in [56,74–76]. Using a pivot scale
k�csðt�Þ ¼ aðt�ÞHðt�Þ in the scalar spectrum a depend-
ence on cs emerges in the tensor spectrum as well.
In these equations the Hubble flow functions

(HFF), usually referred to as slow-roll parameters,
are defined in the usual manner, in terms of the
Hubble rate,

ϵ1 ≡ −
d lnH
dN

¼ −
_H
H2

; ϵ2 ≡ d ln ϵ1
dN

¼ _ϵ1
ϵ1H

;

s1 ≡ dlncs
dN

¼ _cs
csH

;

where dN ¼ Hdt. A star in the HFF in the expressions
above means that these are evaluated at t�. Equations (23)
and (24) can be found in Refs. [56,73,75,76]. In those
references a slightly different pivot scale is usually quoted,
k⋄cs⋄ðη⋄Þ ¼ −1=η⋄, where η⋄ is the conformal time, and
the corresponding expressions are given in terms of k⋄.
However, to first order, in HFF, they have the same form
when the quantities denoted by a diamond symbol are
replaced by the corresponding starred ones. It is only the
second-order terms that are affected and the corresponding
coefficients differ. Note that higher order corrections have
been calculated but here we retain the next to leading
corrections, that is first order in the slow-roll parameters. In
[75] the constants A, D are analytically given. In fact their
values are A ¼ 18e−3 and D ¼ 1=3 − ln 3, as they follow
using the uniform approximation, a method that is suitable
for theories with varying speed of sound cs, which
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resembles the WKB method. Taking next order corrections
in the adiabatic approximation these constants are dressed
(renormalized) and A turns out to be very close to unity
while D becomes D ¼ 7=19 − ln 3. For our numerical
treatment we will therefore use the renormalized values.
For details we point the reader to Ref. [75] where a detailed
study is presented, encompassing also higher order cor-
rections, and a comparison with other calculations is made.
The corresponding amplitudes, for scalar and tensor

perturbations, are then given by

Asðk�Þ ¼ Pζðk�Þ; Atðk�Þ ¼ Phðk�Þ: ð25Þ

Concerning the spectral index of the scalar power
spectrum, following standard definitions, this is given by

ns ¼ 1 − 2ϵ�1 − ϵ�2 − s�1 ð26Þ

while the tensor-to-scalar ratio is given by

r≡ Phðk�Þ
Pζðk�Þ

¼ 16ϵ�1c
�
sð1þ 2lnc�sϵ�1 þDϵ�2 þ ð2þDÞs�1Þ;

ð27Þ

to the same order of approximation.
As for the number of e-folds left, Nk ¼ ln aend

aðtÞ, from the
time t some scale k crossed the sound horizon to the end of
inflation, this is given by

Nk ¼ ln

��
π2

30

�1
4 ðg�;0s Þ13ffiffiffi

3
p T0

H0

�
− ln

�
k

a0H0

�
− lncs

þ 1

4

�
ln
3H2

m2
P
þ ln

3H2m2
P

ρend

�

þ 1 − 3w
12ð1þ wÞ ln

ρreh
ρend

−
1

12
ln g�ðrehÞs þ 1

4
ln

�
g�ðrehÞ

g�ðrehÞs

�
:

ð28Þ

The Hubble rate, as well as cs on the right-hand side (rhs) of
it, are evaluated at the crossing time t. See [78,79], and also
[80,81]. Note that a − ln cs is included in the expression for
Nk, due to the fact that the speed of sound may not be unity,
as is the case inK-inflation models. All other terms are well
known. In this equation g�, g�s are the energy density and
entropy density degrees of freedom. In all quantities
superscripts or subscripts labeled by 0 or reh denote
evaluations at present epoch and end of reheating, respec-
tively. In this the parameter w is the effective equation of
state parameter in the reheating period. The last line
depends on the reheating values. The first term in the
equation for Nk, takes the well-known value 66.89 when
the reduced Hubble constant h is equal to h ¼ 0.676. In the
expression above we prefer to present it analytically as in
[81]. Taking a different value for h, always within

observational limits, the first term will be replaced by
66.89 − lnðh=0.676Þ. Concerning the last term, this is very
small and can be omitted, due to the fact that entropy and
energy degrees of freedom are very close to each other for
temperatures T > 500 keV. Therefore, we will drop it in
the discussion that follows. The term before the last is also
small but we will retain it. In fact assuming the SM content

this takes values g�ðrehÞs ¼ 106.75, for temperatures above
∼1 TeV, being smaller for lower temperatures. Therefore,
this term contributes little, less that Oð1%Þ. The term,
∼ lnð3H2m2

P=ρendÞ, is also not expected to be large. The
largest contributions stem from the term ∼ lnð3H2=m2

PÞ and
the reheating term, in most of the models, in which the
speed of sound is unity. With varying speed of sound the
contribution from the − ln cs term is positive and may also
give a significant contribution in general. The constant w
characterizes an effective equation of state parameter. In the
following, whenever the pivot scale k� is used in Eq. (28),
Nk is denoted by N�.
Given an inflationary model, the largest uncertainties in

Nk are mainly due to the period of Universe reheat after this
exited from inflation. For a review, see, for instance, [82].
For the scales of interest, these uncertainties yield values of
Nk in the range 50–60, usually quoted in the literature. The
reheating temperature the Universe reached after its ther-
malization has been extensively studied and various mech-
anisms and models have been put under theoretical scrutiny
[80–91]. The number of e-folds accrued during the reheat-
ing period, ΔNreh, is given by

ΔNreh ≡ ln
areh
aend

¼ −
1

3ð1þ wÞ ln
ρreh
ρend

: ð29Þ

The subscripts (reh), (end) in the cosmic scale factor and
the energy densities denote that these quantities are
evaluated at the end of the reheating period and inflation,
respectively. The effective equation of state parameter w in
the reheating period we consider as a free parameter. At the
end of inflation w ¼ −1=3 while the value w ¼ 1=3
corresponds to the onset of radiation dominance. In the
canonical reheating scenario w ¼ 0, but values in the range
≃0.0–0.25, or larger, right after inflation, are also possible
in some models [81,92].
For any model given a value of Nk, we have a prediction

of ΔNreh and in this sense (28) serves as a probe of the
reheating process. Inversely, given a reheating mechanism,
within the context of any particular inflationary model, the
value of ΔNreh is fixed, and hence N� is predicted. In terms
ofΔNreh, for given w, one has for the reheating temperature
(see, for instance, [88])

Treh ¼
�
30

π2
ρend
g�ðrehÞ

�
1=4

exp

�
−
3ð1þ wÞΔNreh

4

�
: ð30Þ
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In our numerical studies we will adopt the common values

g�ðrehÞ ¼ g�ðrehÞs ¼ 106.75, corresponding to the SM con-
tent, as discussed before, for temperatures above ∼1 TeV.4

Note that since areh > aend we have that ΔNreh ≥ 0, and
therefore due to w > −1 the reheating temperature Treh is
bounded from above

Treh ≤
�
30

π2
ρend
g�ðrehÞ

�
1=4

: ð31Þ

The bound on the right-hand side of this defines the
instantaneous reheating temperature, T ins. The temperature
Treh reaches this upper bound when the reheating process is
instantaneous, in which case ΔNreh ¼ 0. Note that for rapid
thermalization we have ρend ¼ ρreh from Eq. (29). The
reheating temperature should be larger than ∼1 MeV so
that big bang nucleosynthesis (BBN) is not upset. Lower
values on Treh have been established in [93] and recently
in [94].
In terms of the reheating temperature the number

of e-folds N�, corresponding to a pivot scale say k�, is
written as

N� ¼ 66.89− lnc�s − ln

�
k�

a0H0

�

þ1

4

�
ln
3H2�
m2

P
þ ln

3H2�m2
P

ρend

�
−

1

12
lng�ðrehÞs

þ 1−3w
3ð1þwÞ

�
ln
Treh

mP
−
1

4
ln
ρend
m4

P
−
1

4
ln
30

π2
þ lng�ðrehÞ

4

�
;

ð32Þ

which we use in the following. On the right-hand side of it
H�, c�s are the Hubble rate and the speed of sound,
respectively, evaluated at t�, the time of sound horizon
crossing of the mode k�. In this we have taken h ¼ 0.676.
Uncertainties in the value of h little affect N�, and for this
reason we have also dropped the dependence of N�
on lnðh=0.676Þ.
The appearance of the sound of speed parameter cs is due

to the fact that in the Palatini formulation of R2 gravity
higher in the velocity _h terms unavoidably appear, and its
value deviates from unity. In fact cs is defined by

c2s ¼
∂p=∂X
∂ρ=∂X ; ð33Þ

where X, defined after Eq. (14), is half the velocity squared.
In terms of the field h and its velocity _h this receives
the form

c2s ¼
1þ L _h2=K

1þ 3L _h2=K
: ð34Þ

cs is controlled by L _h2=K, the same combination that
appears in the equation of motion for the field h, and
approaches unity when L _h2=K ≪ 1.
The Planck 2018 data [50,51] yield a value for As

logð1010AsÞ ≃ 3.04; ð35Þ

at a pivot scale k� ¼ 0.05 Mpc−1. In slow-roll inflation, in
models with cs ¼ 1, this pivot crossed the horizon at times
t� that are well within the slow-roll regime. Then to lowest
order in HFF the scalar amplitude of (25) is written as

As ≃
1

24π2m4
P

Veff�
ϵ�1

: ð36Þ

Then in this approximation, and using (35), we get

V�
eff

m4
P
¼ 4.97 × 10−7ϵ�1: ð37Þ

The corresponding amplitude for the tensor perturba-
tions, in leading order, is found to be

At ≃
2Veff�
3π2m4

P
; ð38Þ

resulting in a tensor-to-scalar ratio

r ¼ At

As
¼ 16ϵ�1; ð39Þ

which yields, on account of (36),

V�
eff

m4
P
¼ 3π2

2
Asr; ð40Þ

a well-known result. The Planck 2018 data, when com-
bined with the BICEP2/Keck Array BK15 data (see
[51,52]), yield an upper bound r < 0.063, which when
the pivot scale k� ¼ 0.002 Mpc−1 is used, decreases to
r0.002 < 0.058. With r < 0.063 we have an upper bound on
the value of the potential given by

V�
eff

m4
P
≲ 2.0 × 10−9; ð41Þ

which constrains the scale of inflation. In terms of the
Hubble rate this is actually the boundH�=mp < 2.5 × 10−5

quoted in [50,51].
The bound r < 0.063 translates to a bound on ϵ�1, which

actually follows from (39), given by4With g�ðrehÞ ¼ 100 Eq. (30) coincides with that given in [88].
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ϵ�1 < 0.004: ð42Þ

In models with varying speed of sound cs the previous
arguments do not hold, in general, and the role of cs has to
be taken duly into account. This is done in our numerical
analysis which will be presented later on. However, as
already discussed in the previous section, we have found
numerically that cs is constant and very close to unity for
times until the time t� of the horizon crossing and only at
the late stages of inflation deviation of cs from unity starts
to show up. Therefore, on these grounds the arguments
given before can be used to have a first estimate of the
bounds put in the parameters of the models that we will
study in the forthcoming sections. However, our final
results do not rely on these qualitative arguments but rather
on a numerical study where the dependence on cs is duly
considered. Note that separate lower bounds on cs are
obtained from the absence of non-Gaussianities, which are
however satisfied in all models considered in this work, due
to the fact that c�s is very close to unity as we have already
mentioned.

V. MODELS

Before embarking on considering specific models and
presenting our results, we find it appropriate to briefly
outline the procedure followed in this section. As already
stated, toward the end of Sec. III, our predictions are based
on a study that solves Friedmann equations and the
evolution equation (18) numerically with no approxima-
tions made. However, before doing that we find it useful to
first employ the slow-roll approximation, neglecting the
contribution of L terms. This is made for comparison with
the numerical results which are the only reliable source to
reach physics conclusions. In the models under consid-
eration in this work, the numerical study reveals that this
approximate scheme makes sense since it is justified by the
results of the numerical treatment. For this reason it
explains at a very satisfactory level the results that are
derived by our numerical treatment. However, it should be
remarked that this may not be a generic feature and may not
be valid for other models encompassed within the frame-
work of the Palatini R2 gravity.
Concerning our numerical analysis, the approximate

scheme employed is also useful toward having a first
estimate of the magnitudes of the parameters involved,
which are consistent with the limits imposed by the
measurements of the cosmological parameters. In our
numerical approach we scan the parameter space starting
from the initial values of the parameters that fall within the
range suggested by this analysis.
In our procedure the time corresponding to the end of

inflation, tend, is determined, as usual, by the condition
ϵ1ðtendÞ ¼ 1, or same äðtendÞ ¼ 0. The time t�, correspond-
ing to the sound horizon crossing, for a chosen pivot scale
k�, for any given reheating temperature Treh, and effective

equation of state parameter w, is then found by solving
Eq. (32). This is a fairly easy task to implement numeri-
cally. That done all quantities at t�, which refer to the pivot
scale k�, are easily calculated.

A. Minimally coupled models with potentials ∼hn

In this section we consider specific models using the
formalism presented in previous sections and discuss their
predictions. An interesting class of models is the one in
which the potential V is a monomial in the field h, V ∼ hn,
with n the even integer, and g, M2 are constants, that is the
scalar h couples to gravity in a minimal manner. We set5

g ¼ 1 and hence these models are described by

gðhÞ ¼ 1; M2ðhÞ ¼ 1

3a
;

VðhÞ ¼ λ

n
hn; with n ¼ positive even integer: ð43Þ

Therefore, two parameters a and λ are involved which are
in principle unknown. Cosmological data will constrain
their allowed values as we shall see shortly. In order to
facilitate the analysis we define the parameter c defined by
the combination,

c ¼ 4λa
n

: ð44Þ

Then the functions K, L are given by

KðhÞ ¼ ð1þ chnÞ−1; LðhÞ ¼ að1þ chnÞ−1; ð45Þ

while the potential Veff receives the form

VeffðhÞ ¼
1

4a
chn

1þ chn
: ð46Þ

For large values of h this is≃1=4a, and therefore 1=a, which
is proportional to M2, actually sets the inflation scale.
In order to find the region of the parameters a, λ, or

equivalently a, c, which are consistent with cosmological
data, we will first consider the amplitude of the power
spectrum As. It suffices, for this purpose, to consider the
simplified form given by (36), take c�s ≃ 1 and replace ϵ�1 by
ϵV as given by (21). Then from the analytic form of the
potential, given before, and from (21) the amplitude As of
Eq. (36) takes the form, putting mP ¼ 1,

As ≃
1

24π2
1

2n2

�
c
a

�
hnþ2� ¼ 1

12π2
λ

n3
hnþ2� ; ð47Þ

5When the Planck mass is reinstated in the action this
corresponds to g ¼ m2

P.
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where h� is the value of the field at t�. One sees
immediately that it is the ratio c=a, or equivalently the
parameter λ, that controls the magnitude of the amplitude
As. For the central value of As, which is As ≃ 2.1 × 10−9, on
account of (47), we have

λhnþ2� ≃ ð2.49×10−7Þn3 or

�
c
a

�
hnþ2� ≃ ð9.95×10−7Þn2:

ð48Þ

To further quantify the allowed range of the parameters we
also need to have an estimate for h�. To this goal we use
(22) from which it follows that

N� ¼
1

2n
ðh2� − h2endÞ; ð49Þ

which yields

h2� ¼ 2nN� þ h2end: ð50Þ

hend is defined as the value for which ϵV ¼ 1. For the
specific models

ϵV ¼ n2

2

1

h2ð1þ chnÞ ; ð51Þ

therefore h2end is the solution of the equation

chnþ2
end þ h2end −

n2

2
¼ 0: ð52Þ

For c ¼ 0 the solution is exactly h2end ¼ n2=2 while for any
c > 0 the only real and positive solution for h2end is easily
found to be bounded by n2=2. From this bound on h2end and
using the fact that N� is ∼50, or so, it follows from (50) that
h� is well approximated by

h� ¼
ffiffiffiffiffiffiffiffiffiffiffi
2nN�

p
; ð53Þ

provided that n ≪ 4N�. This covers a large class of models
ranging from n ¼ 2 up to n ¼ 10 or even larger. Using h�,
given above, As of Eq. (47) is written, in terms of N�, as

As ≃
1

12π2
λ

n3
ð2nN�Þðn=2þ1Þ: ð54Þ

For As ≃ 2.1 × 10−9 we have that the coupling λ is con-
strained to be

λ ≃ ð4.97 × 10−7Þ k2

ð4kÞk
1

Nkþ1�
where n ¼ 2k: ð55Þ

Note that this is inverse proportional to Nkþ1� . For N� ¼ 55

and for n ¼ 2, that is V ∼ h2, this yields λ ≃ 4.11 × 10−11

while for k ¼ 2, that is V ∼ h4 we get λ ≃ 1.87 × 10−13.
Note that for the n ¼ 4 case Eq. (54) coincides with that
given in [38]. In that work a small value of the quartic
coupling, λ ≃ 2.0 × 10−13, is also quoted, quite close to
ours given before.
As for the parameter a a lower bound can be established

from the bound (41), that is, from the observational bound
on the tensor to scalar ratio r. Using the analytic form of the
potential one finds

1

4a
chn�

1þ chn�
< 2.0 × 10−9: ð56Þ

Replacing c in terms of a from (44), and using the value of
h� given before in (53), we have from (56), after some
trivial manipulations,

a≳ 108
�
1.25 −

N�
50n

�
: ð57Þ

For instance, for the quartic potential V ∼ h4 and for N� ¼
55 this yields a ≥ 0.97 × 108, resulting to an inflationary
scale, lower than ∼10−5 or so. Note that (57) is the lowest
allowed value of a consistent with the power spectrum and
the bound on the potential imposed by the tensor to scalar
ratio r < 0.063.
The constraints on the parameters given before arise

from the amplitude of the power spectrum, in combination
with the bound on r, and set the range where acceptable
values for As can be obtained. However, the primordial tilt
ns puts additional constraints and in order to have an
estimate of it we use the approximate formula given by

ns ≃ 1 − 6ϵV þ 2ηV: ð58Þ

The parameter ϵV is given by (51) and for ηV we employ
(21) from which it follows that

ηV ¼ nðn − 1 − ðn=2þ 1ÞchnÞ
h2ð1þ chnÞ : ð59Þ

From this, and ϵV of Eq. (51), we get, on account of (58),

ns ¼ 1 −
n2 þ 2n

h2
: ð60Þ

Replacing h by h� ¼
ffiffiffiffiffiffiffiffiffiffiffi
2nN�

p
a rather simple expression for

ns is obtained given by

ns ¼ 1 −
nþ 2

2N�
: ð61Þ

Note that for n ¼ 2 and N� ¼ 55 the above formula yields
ns ¼ 0.9636 which is well within observational limits but
for n ¼ 4 a rather large value of N� is needed to have an
acceptable value for ns. In fact N� > 76 is required to have
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ns ¼ 0.9607, the lowest allowed if the data ns ¼ 0.9649�
0.0042 are used. This is a rather large value for the number
of e-folds N�. The situation becomes even worse for
models with n > 4.
It is important, in the framework of this qualitative

discussion, to have estimates of the variations of the
quantities of interest with varying the parameters of the
models at hand. Starting from the power spectrum ampli-
tude, given by (54), it is a trivial task to see that such a
variation yields

δAs ¼
�
δλ

λ
þ nþ 2

2

δN�
N�

�
As: ð62Þ

The first term stems from the explicit dependence of As on
λ. For fixed λ, and varying only a, it is only the second term
that contributes. In this case it can be seen that, if the
variation of e-folds is of order unity or so, it may produce a
substantial change in As, of the same order of the errors
accompanying the measurements of As. Because of the
prefactor ðnþ 2Þ=2, on the right-hand side of (62), this is
larger for models with larger n.
On the other hand, the corresponding variation of the

spectral index ns is found, from (61),

δns ¼
nþ 2

2N2�
δN�: ð63Þ

This is proportional to the relative change δN�=N� but is
accompanied by an extra N� in the denominator. Because
of that one expects that ns little varies with changing the
number of e-folds.
In order to estimate the variations δN�, and hence δAs,

δns, with varying the couplings involved, namely, a and λ
for the models under investigation, one should start from
Eq. (32), and for a fixed value of the reheating temperature,
vary N� with respect to a, λ. The only dependence on these
is through the logarithm of 3H2�, which in the slow-roll
regime equals to Veffðh�Þ, and the logarithm involving ρend.
We skip the details of such an analysis. We merely state that
the final result is of the form

δN� ¼
δa
a
fa þ

δλ

λ
fλ; ð64Þ

where the factors fa;λ depend on the model under
consideration.
The last comment is regarding the instantaneous reheat-

ing temperature T ins. This is determined once we know
ρend; see Eq. (31) and the discussion following it. With

g�ðrehÞs ¼ 106.75, which we have been using, we have

T ins ¼ 0.411ρ1=4end ; ð65Þ

which holds in general. However, ρend depends on the
details of the model under consideration.
The end of inflation is determined by ϵ1 ¼ 1, equivalent

to ρþ 3p ¼ 0. When L terms are absent this leads to
ρend ¼ σVeff , where σ ¼ 1.5. However, in their presence a
more refined analysis is required. Still in this case, the
equation ϵ1 ¼ 1 can be trivially solved, using (15), to give
L _h2=K in terms of the potential Veff , both evaluated at the
end of inflation. That done, it is a fairly easy task to
calculate ρend,

ρend ¼ σfðcsÞVeffðh̄endÞ: ð66Þ

In this equation, and in order to avoid confusion, we have
denoted by h̄end the value of the field at the end of inflation.
This depends implicitly on L and can be extracted only
numerically. The function fðcsÞ depends on the speed of
sound squared, c2s , evaluated at the end of inflation, and is
given by fðcsÞ ¼ 8c2s=ð9c2s − 1Þ. Because of the fact that
1=3 ≤ c2s ≤ 1, as one can see from (34), it is bounded by
1 ≤ fðcsÞ ≤ 4=3. Had we used the value hend, as this is
calculated from ϵV ¼ 1, Eq. (66) would have been
expressed as

ρend ¼ σfρVeffðhendÞ; fρ ≡ fðcsÞ
Veffðh̄endÞ
VeffðhendÞ

: ð67Þ

This states that the approximate result for ρend, as given by
σVeffðhendÞ, is actually dressed by the factor fρ. In this
factor the function fðcsÞ plays no important role, due to the
bounds quoted before, but the ratio Veffðh̄endÞ=VeffðhendÞ
may deviate substantially from unity. This ratio can be
calculated only numerically. However, in all models con-
sidered, and in a wide range of the parameters, we have
found that it lies between ≃0.5 and 0.65. Taking also into
account the bounds on fðcsÞ, the factor fρ lies in the range
0.5–0.85. Because of that the result for ρend derived
numerically is reduced from the approximate result,
ρend ¼ σVeffðhendÞ, by the factor fρ. For the instantaneous
temperature, things are much better since this depends on
the quartic root of ρend. Therefore, the numerically derived
T ins is smaller by a factor in the range 0.84–0.95. Thus, the
approximate result ρend ¼ σVeffðhendÞ, which we can derive
analytically, yields T ins that are not far from the actual
values.
For the models studied in this work, named models I and

II as well as the Higgs model, using the equation that relates
L _h2=K to Veff at the end of inflation, Eq. (66) can be further
simplified given by

ρend ¼
σ

2a
ð1 − c2sÞ; ð68Þ

where the speed of sound is meant at the end of inflation.
Simple as it might be, the value of c2s implicitly depends on
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the parameters of the model under investigation and it can
be calculated only numerically. This is a rather elegant
relation, which shows that only cs at the end of inflation is
needed in order to derive ρend. It also shows the prominent
role of the L _h2=K, at the end of inflation, through which c2s
is determined; see Eq (34). Using (68), the instantaneous
reheating temperature can be cast in the form

T ins ¼ 0.382a−1=4ð1 − c2sÞ1=4: ð69Þ
From this, using the fact that c2s ≥ 1=3, an absolute upper
bound can be derived, T ins ≤ 0.345a−1=4, valid for any
model considered in this work. From (68), one may be
misled to the conclusion that for large a the instantaneous
temperature drops as a−1=4. In fact it may drop much faster,
due to the implicit dependence of c2s on the parameters
involved.
Following the previous discussion, we may derive

analytic expressions for the instantaneous temperature,
which are good estimates, using the approximate expres-
sion ρend ¼ σVeffðhendÞ. For the class of models studied in
this section, the latter follows from the solution of (52)
which depends only on the combination c. Using the
analytic form of the potential it is found, in a straightfor-
ward manner, that

ρend ¼
σ

4a

�
1 −

2

n2
h2end

�
: ð70Þ

ρend, and hence T ins, cannot be quantified further, at this
stage, since for this purpose the value of hend is needed. In
the following we will analyze in detail the predictions for
this class of models. As already mentioned at the beginning
of this section, when presenting our final results, for each
model considered, we will solve the pertinent equations
numerically using accurate formulas, without approxima-
tions, and take into account the temperature dependence of
the number of e-folds.

1. Model I:

We first consider the model (model I) in which the
functions g,M2, and V are as given by (43) with n ¼ 2, that
is the potential V is quadratic in the field h,

VðhÞ ¼ m2

2
h2: ð71Þ

For this case we prefer to use m2, instead of λ, since it
carries a dimension of mass2 when mP is reinstated. This
models has been discussed in [32] and belongs to the class
of the cosmological attractors [95], which is clearly seen if
one uses the canonically normalized field ϕ; see Eq. (19).
However, no need to do that as we prefer to work directly
with the noncanonical field h instead. Following the
previous findings we define, see Eq. (44), the constant c
as the combination

c ¼ 2m2a: ð72Þ

The value of h� in this case is given by, using (50),

h� ≃ 2
ffiffiffiffiffiffi
N�

p
: ð73Þ

Then from (55), which arose from the power spectrum
amplitude, we get, for values N� ¼ 50–60,

m ≃ ð6.5� 0.5Þ × 10−6 or
c
a
≃ ð8.5� 1.5Þ × 10−11:

ð74Þ

The lowest (largest) limits correspond toN� ¼ 60ðN� ¼ 50Þ.
Therefore, by using reasonable approximations we derived
rather tight limits for the parameterm. Recall thatm2 ≡ λ and
therefore λ is of the order of 10−11. From the bound (57),
which actually arises from the tensor to scalar ratio bound
r < 0.063, we get for N� ¼ 50–60 a lower bound which is
estimated to be in the range,

a ≥ ð0.65 − 0.75Þ × 108: ð75Þ

In this the lowest value corresponds to N� ¼ 60 and the
largest to N� ¼ 50. Therefore, the parameter a cannot be
chosen at will. It should be ∼108 or larger. In the following,
due to (75), wewill take the largest value as the bound set on
a, i.e., a ≳ 0.75 × 108, which is valid for anyN� in the range
of interest.
Concerning the instantaneous reheating temperature, in

this case, by solving analytically (52), and replacing hend
into (70), we get

ρend ¼
σ

4a

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8c

p
− 1

4c

�
: ð76Þ

We can consider two separate regimes, the small c and the
large c, for which ρend, and consequently T ins, have
different dependencies on the parameters involved, as we
shall see. Since from (74) the ratio c=a should be of the order
of ∼10−10, small c values are obtained when a < 1010. On
the other hand, large c values are obtained when a > 1010.
For small c values one can expand (76), and using the

fact that σ ¼ 1.5, the instantaneous temperature, as given
by (65), receives the form,

ρend ≃ σ
c
2a

¼ σm2 → T ins ¼ 0.455 ×
ffiffiffiffi
m

p
: ð77Þ

This, on account of (74), results in a temperature which is
T ins ≃ 2.82 × 1015 GeV, for m ¼ 6.5 × 10−6. As we will
see this estimate is not far from the one we get in our
numerical treatment. What is more important, perhaps,
is the fact that in the regime of small c the power
spectrum amplitude, which forces m to be within the limits
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suggested by (74), also determines the maximum reheating
temperature.
In the case of large c, ρend, and hence T ins, have a

completely different behavior. In fact in this case, from (76)
and (65), we get

ρend ≃
σ

4a
→ T ins ¼ 0.321 × a−1=4; ð78Þ

that is, T ins is controlled by the value of a, being propor-
tional to a−1=4, and therefore it decreases with increasing a.
Because of the fact that a > 1010, for being within the large
c regime, T ins turns out to have values lower than in the
small c case. For instance for a ¼ 1012 we get from (78) a
temperature T ins ≃ 0.783 × 1015 GeV and certainly even
lower temperatures for larger values of a. Therefore, for
having the largest possible value for the instantaneous
temperature, of the order of ≃1015 GeV, we had better used
values a < 1010 so that we are within the small c regime.
As already mentioned, the cosmological predictions of

all models considered are based on a numerical analysis in
which no approximation is made. For the model at hand,

predictions for three different inputs are presented, named
A, B, and C, in the following. These correspond to values of
the parameters a and c given by ða; cÞ ¼ ð0.75 × 108;
0.006Þ; ð2 × 108; 0.016Þ, and ð2 × 109; 0.16Þ. These have
not been randomly chosen. In fact, for case A the parameter
a touches its lower bound, previously discussed, and c has
been taken so that m falls well within the range suggested
by (74). In fact we choose m ≃ 6.32 × 10−6. The reasoning
behind this particular choice for m will be discussed later.
For the other cases larger values of a’s were chosen but

the values of c are tuned so that in all cases we have the
same value of m, i.e., m ≃ 6.32 × 10−6. In this way we can
check how predictions vary with changing the parameter a
since we have kept a fixed m. Note that from all cases
presented, the case A has the lowest allowed value of a and
therefore the Planck upper bound on the tensor-to-scalar
ratio parameter r is almost saturated. The other cases B, C
are expected to yield smaller values for r.
In Fig. 2, at the top, we display, for cases A (left panels)

and C (right panels), the spectral index ns versus the
reheating temperature Treh, for various values of the
equation of state parameter ranging from w ¼ −1=3 to

FIG. 2. (Top panels) The spectral index ns and (bottom panels) the number of e-folds N�, versus the reheating temperature Treh, in
GeV, for a scale k� ¼ 0.05 Mpc−1, and for different values of the equation of state parameter, for the cases A (left panels) and C (right
panels) of model I, discussed in the text. The shaded regions mark the allowed values for the spectral index ns ¼ 0.9649� 0.0042 while
the vertical dotted lines represent the instantaneous reheating temperature.
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w ¼ 1.0. The shaded region marks the range ns ¼
0.9649� 0.0042 allowed by observations.
All lines intersect at a common temperature, the instanta-

neous reheating temperature T ins, marked by thin vertical
dashed lines, which for case A equals to T ins ¼ 2.337×
1015 GeV, and for case C to T ins ¼ 2.099 × 1015 GeV.
Values of reheating temperatures beyond that point,
although displayed, are not allowed. The data shown
correspond to a pivot scale k� ¼ 0.05 Mpc−1. Note that
ns data by themselves do not impose any restriction on the
reheating temperature as long as the equation of state
parameter is in the range from 0.25 to values slightly lower
than ≃1.0. For these values of w any temperature is
allowed. For w < 0.25 a lower reheating temperature is
imposed which is larger for smaller values of w. For
instance for the canonical reheating scenario, w ¼ 0, this
is ≃107–109 GeV while for w ¼ −1=3 this is ≈1013 GeV.
At the bottom of the same figure, and for the same set of
inputs, the corresponding numbers of e-folds, N�, are
shown, for the A (left panels) and the C (right panels)
cases, respectively.
Note that both ns and N�, shown in the figures, are very

similar for the two cases, A and C. In particular, both
observables move slightly downward in going from A (left
panels) to C (right panels), that is by increasing the value of
a from 0.75 × 108 to 2.0 × 109, keeping the other param-
eter fixed. In fact, varying only the parameter a, keeping
λ ¼ m2 fixed, which is the case for the inputs we are using,
we get from (64),

δN� ¼
δa
a
fa: ð79Þ

For our input values, we find that the factor fa is of order
unity and negative. The result is that by increasing the value
of the parameter a, the relative change δN�=N�, is negative
and therefore, due to (63), ns decreases. This decrease is

small, as we have already discussed, as imprinted on this
figure.
The power spectrum amplitude imposes more stringent

bounds on Treh than ns, as shown in Fig. 3. In this figure we
plot the amplitude 109 × As versus the reheating temper-
ature Treh, in GeV, for k� ¼ 0.05 Mpc−1, and for different
values of the equation of the state parameter, as in the
previous figure. The shaded region marks the allowed range
109 × As ¼ 2.10� 0.03. Figure 3, left panel, shows case A
and Fig. 3, right panel, shows case C. The lines are as in
Fig. 2. One should note that for case A values w≳ 1=3 are
totally excluded by As data while for w≲ 0.25 limits on the
minimum and maximum allowed temperature are imposed.
In this case the maximum temperature, for any allowed
value of w, can never reach the instantaneous temperature.
For case C, right panel, one sees, by comparing this figure
with the ns plot, top and right panels of Fig. 2, that the
bounds set on the reheating temperature are more con-
strained. In particular, for values of w, which deviate from
w ≃ 1=3, a lower reheating temperature is established,
which is much higher than this imposed by ns data.
Comparing the two cases, A and C, we observe that As

also decreases in accord with (62), and the fact that λ, or
equivalently m, is fixed and δN�=N� is negative. However,
the change in As is relatively large, unlike ns, in the sense
that its variation reaches the order of magnitude of the
observational error of As, as has been previously discussed.
It is worth mentioning that given a fixed value for the

parameter a there is a fine-tuned value of m, in the range
suggested by (74), for which the case w ¼ 1=3 falls within
the allowed region by As observations.6 In this case the
instantaneous reheating temperature is attained for any
value of w in the range −1=3 ≤ w ≤ 1. However, in this

FIG. 3. The amplitude 109As versus the reheating temperature Treh, in GeV, for k� ¼ 0.05 Mpc−1, for different values of the equation
of state parameter. The shaded regions mark the allowed values 109As ¼ 2.10� 0.03. (Left panel) Case A and (right panel) case C of
model I. The instantaneous temperatures, in each case, are marked by thin dotted vertical lines.

6This requires that the case w ¼ 1=3 is compatible with N� in
the range ≈50–60, which is always the case provided the
parameter a does not take extremely high values.
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case the lowest temperature is determined, which is close to
the instantaneous temperature, for any w that deviates from
the value 1=3. This includes the values 0.0≲ w≲ 0.25
which are favored in some reheating scenarios. This can be
clearly seen, for instance, in case C where for a ¼ 2.0 ×
109 the value m ¼ 6.32 × 10−6 forces the line w ¼ 1=3 to
be within As limits, as shown on the right panel of Fig. 3.
Keeping a fixed, any slight change in the value of the
parameter m, which essentially controls As, will move,
downward or upward, the line w ¼ 1=3, off the allowed
range, and in this case the instantaneous reheating scenario
is no longer supported. At the same time, depending on the
value of m, lower and higher limits of reheating temper-
atures are imposed, different for each w. However, some
values of w are totally excluded. For instance, by increasing
m, the line w ¼ 1=3 will be uplifted and move above the
upper observational limit set on As. In this case all values in
the range 1=3 ≤ w ≤ 1 are excluded. If, on the other hand,
m is decreased, the line w ¼ 1=3will move below the lower
limit of As and values −1=3 ≤ w ≤ 1=3 are excluded.
Increasing, or decreasing, further the value of m will
exclude all possible cases −1=3 ≤ w ≤ 1. Therefore, there
is a range of m outside of which agreement with As data
cannot be obtained, for any value of the equation of state
parameter in the interval −1=3 ≤ w ≤ 1. This range is
actually very tight and falls within the suggested range
given by Eq. (74). Within this range there are fine-tuned
values for which reheating can be instantaneous. Note that
the sensitivity of the spectral index ns on the value of m is
not that dramatic and ns data leave more ample space for
the observational requirements to be satisfied. Therefore,
the conclusion is that given a, the value ofm should lie in a
very narrow range in order to comply with power spectrum
data. Moreover if reheating is instantaneous it should be

fine-tuned accordingly. This, as we shall see, holds for
other popular models as well, notably the Higgs model that
will be discussed later.
Following the already outlined numerical procedure, in

Table I we display sample outputs of the model under
consideration for the choice of the parameters corresponding
to the inputs A andC for a pivot scale k� ¼ 0.05 Mpc−1. The
predicted cosmological observables ns, r, As are displayed,
for various values of the equation of state parameter w,
corresponding to the minimum (upper rows) and maximum
(lower rows) allowed reheating temperatures Treh, when the
limits As ≃ ð2.10� 0.03Þ × 10−9, and ns ¼ 0.9649�
0.0042 are observed. The corresponding predictions for
the number of e-folds N� are also shown. Blank entries
indicate that there are no values compatible with observa-
tional bounds put on ns, As for the specific value of w. Note
that for case C, the maximum reheating temperature reaches
the instantaneous reheating temperature, T ins ¼ 2.099×
1015 GeV. At this temperature predictions are independent
of w, due to the fact that T ins marks the intersection of all w
lines. For the same case, the lower limits on Treh are also
shown. For the cases w ¼ 0.0, 0.25, and w ¼ 1.0, these
are not very far from the T ins, as already discussed, in
agreement with Fig. 3, right panel. For case A, on the
other hand, the minimum and maximum reheating temper-
atures are both smaller than the corresponding ones of
case C. Note, in particular, the prediction for w ¼ 0.25 for
which the range of temperatures, allowed by all observations,
is Treh ≃ ð1.5 × 103 − 1.9 × 108Þ GeV.
In Fig. 4 the tensor-to-scalar ratio r0.002 versus the

spectral index ns is plotted for model I for the dataset A
(red lines), B (green lines), and C (blue lines). In drawing
this figure a pivot scale k� ¼ 0.002 Mpc−1 was used so that
it can be directly compared to the corresponding Planck

TABLE I. Sample outputs for model I for inputs corresponding to cases A and C (see the main text), for the
cosmological observables ns, r, As, and N�, for various values of the equation of state parameter w. The values
shown for the reheating temperature Treh, in GeV, correspond to the minimum (upper rows) and maximum (lower
rows) allowed, when the observational limits for As ≃ ð2.10� 0.03Þ × 10−9 and ns ¼ 0.9649� 0.0042 are
imposed. Blank entries indicate that there are no values compatible with the observational bounds put on ns
and As for the specific value of w.

Model I (pivot scale k� ¼ 0.05 Mpc−1)
A case C case

w value w ¼ 0.0 w ¼ 0.25 w ¼ 1.0 w ¼ 0.0 w ¼ 0.25 w ¼ 1.0
109As 2.07 2.07 2.07 2.07 2.13
ns 0.9637 0.9637 0.9637 0.9637 0.9642
r 0.0616 0.0616 0.0040 0.0040 0.0038
N� 55.25 55.25 55.65 55.65 56.43
Treh 8.542 × 1012 1.547 × 103 1.138 × 1015 9.741 × 1013 3.667 × 1014

109As 2.13 2.13 2.08 2.08 2.08
ns 0.9642 0.9642 0.9638 0.9638 0.9638
r 0.0602 0.0602 0.0039 0.0039 0.0039
N� 56.03 56.03 55.85 55.85 55.85
Treh 8.861 × 1013 1.855 × 108 2.099 × 1015 2.099 × 1015 2.099 × 1015
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2018 bounds [50,51], which are also drawn. The tiny
magenta, small orange, and large green circles correspond
to reheating temperatures close to BBN, electroweak,
and leptogenesis scenarios given by Tb ¼ 1MeV, Tew¼
102GeV, and T lep ¼ 109 GeV, respectively. The largest
circles (yellow) mark the instantaneous reheating temper-
ature, seeEq. (31), for each case displayed. The number close
to each circle indicates the corresponding number of e-folds
left, at the pivot scale k� ¼ 0.002 Mpc−1. The value of the
equation of state parameter for the figure on top is w ¼ 0.0,
while for the one at the bottom the value is w ¼ 0.25. In the
latter only the e-folds corresponding to Tb and the instanta-
neous reheating are shown to be clearly visible. In both cases
shown, w ¼ 0 and w ¼ 0.25, the smallest values for the
tensor-to-scalar ratio r are obtained in case C, that is, for the

largest values of the parameters a, c. Recall that the ratio c=a
has been kept fixed. For smaller values of the parameters, r
gets larger and saturates the Planck upper bound in case A,
corresponding to the lowest allowed values of a, c, as we
have already mentioned.
We point out that in Fig. 4 the As constraints have not

been taken into account. Including these will considerably
shrink the allowed line segments, displayed in the figure,
since Treh is further constrained by As data. For instance, for
case C, which is well within the region allowed by all
observations, yielding also the smallest value for r, a large
portion of the segment with ends corresponding to temper-
atures Tb and the minimum allowed temperature as read
from Table I for each case w will be excised. Only a tiny
part of it, close to the maximum reheating temperature T ins,
will be left.

2. Model II:

A second model (model II) worth studying is the one in
which the functions g, M2 are as in (43), as in model I, but
the potential is quartic in the scalar field involved, i.e.,

VðhÞ ¼ λ

4
h4; ð80Þ

that is, n ¼ 4. We have already mentioned, based on the
qualitative arguments presented earlier, that this model as
well as all with n > 4 fails to satisfy the observations on the
spectral index unless one has a large number of e-folds,
probably larger than N� > 76 or so. However, a more
detailed study is required to get a firm conclusion which
also takes into account the reheating temperature.
Using the general results, given at the beginning of this

section, when applied to this model, we get

h� ≃
ffiffiffiffiffiffiffiffi
8N�

p
: ð81Þ

Also on account of (55) the coupling λ is

λ ≃ 10−8
3.11
N3�

; ð82Þ

which for e-folds in the range N� ¼ 50–60 yields

λ ≃ ð1.45 − 2.50Þ × 10−13; ð83Þ

the lowest value corresponding to N� ¼ 60. Therefore, the
coupling λ must be quite small in order to satisfy the
observational constraints. As for the parameter a, which
sets the inflation scale, employing (57), we have a lower
bound given by

a≳ ð0.95 − 1.00Þ × 108; ð84Þ

not much different from the bounds given in (75).

FIG. 4. The tensor-to-scalar ratio r0.002 versus the spectral index
ns for model I, for the dataset A (red line), B (green line) and C
(blue line) corresponding to different inputs of the parameters
(see the main text). A pivot scale k� ¼ 0.002 Mpc−1 is used so
that a direct comparison with the corresponding Planck 2018 data
is possible. The value of the equation of state parameter for the
figure on top is w ¼ 0.0, while for the figure at the bottom is
w ¼ 0.25. The tiny magenta, the small orange, and the large green
circles correspond to reheating temperatures close to BBN,
electroweak and leptogenesis scenarios, while the largest yellow
circles mark the instantaneous reheating temperature (see the
main text). The numbers indicate the e-folds, in each case, when
k� ¼ 0.002 Mpc−1.
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For T ins we have to calculate hend, as in the n ¼ 2 case,
and use (70) adapted to the case n ¼ 4. Although an
analytic solution for hend is feasible, through Eq. (52), we
will not present it. Instead we will discuss its behavior for
small and large c values. For small c, omittingOðc2Þ terms,
we find h2end ≃ 8ð1 − 64cÞ. Then from (70) the leading
contribution is

ρend ≃ σ
16c
a

¼ 16σλ → T ins ¼ 0.909 × λ1=4: ð85Þ

With λ ¼ 2 × 10−13, the central value in the range (83),
this yields an instantaneous reheating temperature around
T ins ≃ 1.48 × 1015 GeV. As in the previously studied
model, n ¼ 2, the power spectrum determines the maxi-
mum reheating temperature, in the regime of small c. In the
case of large c, h2end behaves as c−1=3, and hence little
contributes to Eq. (70). Then keeping only the leading term
in ρend, we get the same result (78), as in the previous
model, and T ins is again proportional to a−1=4.
For this model we will also present sample outputs

of our numerical treatment, considering a fixed value
λ ¼ 2.0 × 10−13, in the middle of the range suggested by
(83), and values of a in the range a ¼ 108–1010, respecting
therefore the bound (84). The value a ¼ 108 corresponds to
the lowest allowed value, and for future reference we name
it case A, while 1010 is arbitrarily taken to be 2 orders of
magnitude larger, which we name case B. Although, in
principle, one can consider larger a values there is no need
to do so for reasons that will be explained shortly.
In Fig. 5 the predictions for the spectral index ns, for

cases (left panel) A and (right panel) B, are shown versus
the reheating temperature for various values of the equation
of state parameter w. Note that there is not much difference
between the two cases, although the parameter a differs by
2 orders of magnitude. The explanation is the same as that

discussed for model I. Note that on the right the lines have
been moved imperceptibly lower. That is, the tendency is to
get lower ns values as the parameter a increases. Concerning
the instantaneous reheating temperature, for the values taken
for a, λ, for case A it is T ins ¼ 1.223 × 1015 GeV, while for
case B this is T ins ¼ 1.129 × 1015 GeV. These are marked
by vertical thin dotted lines as in previous figures. As already
mentioned for this model agreement with ns observational
data are hard to achieve. In both cases it is clearly seen from
this figure that only for very small reheating temperatures,
and only for w ¼ 1, values of ns that are marginally
acceptable can be obtained. In this case the number of e-
folds is largeN� > 70 as shown inFig. 6where thenumber of
e-folds is displayed. This agrees with the general arguments
given previously; see the discussion following Eq. (61). We
have not considered larger values of a, since as explained,
they would predict lower ns, resulting in larger deviations
from the data.
Although agreement with ns data cannot be obtained, in

this model, for reasons of completeness we will give a brief
account for the predictions for the power spectrum ampli-
tude. Agreement with As data requires values of w that are
smaller than 0.25, for case A, while for case B the value
w ¼ 0.25 is marginally accepted. Values lower than w ≃
0.25 are allowed. Whatever the case, such values for the
equation of state parameter lead, according to Fig. 5, to
even smaller values of ns, less than ≃0.945 or so, and hence
unacceptable.
These results are in agreement with [38] where small ns

are also obtained and indicate that the quartic potential
(n ¼ 4) is in conflict with cosmological data. Models with
n > 4 yield predictions that according to our general
arguments are also hard to reconcile with the data.
Therefore, the conclusion is that, from the class of the

models whose initial potential is of the monomial form
V ∼ hn, and with constant values for the coefficients of R

FIG. 5. The spectral index ns versus the reheating temperature Treh in GeV, for a scale k� ¼ 0.05 Mpc−1, and for various values of the
equation of state parameter, for cases (left panel) A and (right panel) B of model II discussed in the text. The shaded regions mark the
allowed values for the spectral index ns ¼ 0.9649� 0.0042 and the vertical dotted lines represent the instantaneous reheating
temperatures.
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and R2 terms in the Palatini gravity, only the case n ¼ 2,
which belongs to the class of the cosmological attractors
[95], can lead to successful inflation, if all observational
constraints are taken into account.

B. Nonminimally coupled models

A nonminimal coupling arises if in the previously
studied models the constants g and/or M2 are promoted
to be field dependent. A particularly interesting case is the
model in which

gðhÞ¼ 1þξh2; M2ðhÞ¼ 1

3a
; VðhÞ¼ λ

4
h4: ð86Þ

This belongs to the class of models (43) with quartic
potential; however, the scalar h is nonminimally coupled to
the scalar curvature R in the Palatini framework, since g is
field dependent, in the particular way shown above. This
model actually arises from the Higgs coupling to Palatini
gravity

m2
Pþ2ξH†H

2
Rþa

4
R2þjDHj2−λ

�
jHj2−u2

2

�
2

; ð87Þ

where u ≃ 246 GeV is the electroweak scale. In Planck
units, mP ¼ 1, this is very small u ∼ 10−16 and plays no
significant role in inflation. Setting therefore u ¼ 0 and
working in the unitary gauge, H† ¼ ð0; h= ffiffiffi

2
p Þ, Eq. (87) is

actually the model described by g, M2 and the quartic
potential as given in Eq. (86).
The Higgs coupling to gravity and its role as the inflaton,

in the metric formulation, has been proposed in [96,97] and
it has been widely studied since then [29,32,33,36,38,
44,98–119] both in the context of the metric formulation
and in Palatini formulation. The importance of theR2 term
in (87) has been discussed in [32,33,36,38]. In this work we
will show that the quartic coupling λ, as in the minimally
coupled quartic model studied previously, corresponding to

ξ ¼ 0, is constrained considerably by cosmological data,
especially the power spectrum amplitude As. This limits the
available options especially when the reheating of the
Universe after inflation is taken into account.
The functions K, L, and Veff in this model are given

below, in the limit u ¼ 0,

KðhÞ ¼ 1þ ξh2

ð1þ ξh2Þ2 þ ch4
; LðhÞ ¼ a

ð1þ ξh2Þ2 þ ch4
;

ð88Þ

while the potential Veff receives the form

VeffðhÞ ¼
1

4a
ch4

ð1þ ξh2Þ2 þ ch4
: ð89Þ

As in the simple quartic potential the parameter c is
the combination c ¼ aλ. Note, however, that a nontrivial
ξ dependence exists and therefore the Higgs model
differs from the simple quartic model studied previously.
Evidently when ξ ¼ 0 the functions (88) and (89) smoothly
go into (45) and (46).
For large values of h the potential (89) approaches a

plateau ≃1=4ðaþ ξ2=λÞ, and therefore an inflation scale μ
can be set. In particular, reinstating units, this is defined by
μ≡mP=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðξ2=λþ aÞ

p
. Then for large field values the

potential approaches Veff ≃ 3μ2m2
P=4. For comparison, in

the Starobinsky model the inflaton potential reaches the
value 3μ2Sm

2
P=4, where μS is the scalaron mass, and in that

case cosmological data determine its magnitude given by
μS ≃ 10−5mP. In the model under consideration, the mag-
nitude of μ will be discussed later, when imposing limits on
the parameters ξ, λ, and a.
Proceeding in the same manner, as in the previously

studied models, the slow-roll parameters ϵV , ηV are given
by, as functions of h,

FIG. 6. As in Fig. 5 for the number of e-folds N�.
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ϵV ¼ 8ð1þ ξh2Þ
h2ð1þ 2ξh2 þ ðξ2 þ cÞh4Þ ;

ηV ¼ 4

h2

�
−
3þ 2ξh2

1þ ξh2
þ 6ð1þ ξh2Þ
ð1þ ξh2Þ2 þ ch4

�
: ð90Þ

Although the parameter ηV has a rather complicated form
both the spectral index and the power spectrum amplitude
have rather simple expressions. In fact, they are given by

ns ¼ 1 −
16

h2�
−

8

h2�ð1þ ξh2�Þ
; ð91Þ

and

As ¼
λ

24π2
h6�

32ð1þ ξh2�Þ
; ð92Þ

where we have replaced the field h by its pivot value h�.
These coincide with (60) and (47), respectively, for n ¼ 4,
when ξ ¼ 0, as they should. However, the presence of ξ
alters the predictions for the cosmological observables as
we shall see.
In order to proceed further we need the pivot value h�. In

this case the number of e-folds N� is given by

N� ¼
1

8
ðh2� − h2endÞ: ð93Þ

This does not depend explicitly on the parameter ξ and is
identical with (49) when n ¼ 4. Therefore,

h2� ¼ 8N� þ h2end; ð94Þ

which is functionally the same as (50) but the value of hend
differs. The latter depends on both ξ and the combination
c ¼ aλ, being determined as a solution of the equation

ch6end þ ð1þ ξh2endÞðh2endð1þ ξh2endÞ − 8Þ ¼ 0: ð95Þ

This is a cubic equation in h2end, which we prefer to cast in
the form (95) for reasons that will become clear in the
following. Note that in the limit ξ ¼ 0 this equation
becomes (52), when in the latter we put n ¼ 4. In the
form presented by (95) we see that when c ¼ 0 the solution
for h2end is easily obtained since it becomes a quadratic
equation for h2end. This observation is useful if we want to
study the predictions of the model for small c and in doing
that we expand in powers of c about the zeroth order
solution.
Being a cubic equation for h2end, an analytic solution can

be obtained, and in our case there is only one real and
positive solution. The value of this solution, for h2end, can
never exceed 8. In fact this value is reached when ξ, c are
smaller than ∼10−3 or so. For larger values the root of this

equation is smaller. The conclusion is that h2end can be
neglected in (94) and h� can be approximated by

h� ≃
ffiffiffiffiffiffiffiffi
8N�

p
; ð96Þ

as in the simple quartic model. Replacing this value in (91)
and (92) we get

ns ¼ 1 −
2

N�
−

1

N�ð1þ 8ξN�Þ
; ð97Þ

and

As ¼
2λ

3π2
N3�

ð1þ 8ξN�Þ
: ð98Þ

As expected in the limit ξ ¼ 0 these smoothly go to (61)
and (54) when in the latter we put n ¼ 4.
However, the role of the parameter ξ is very important

and can improve the case as far as the spectral index ns is
concerned. In the simple quartic model the predictions for
ns are hard to comply with the cosmological observations
unless large values of the e-folds are considered, N� > 70
or so, as already discussed. This has been pointed out in
[32,33]. Such large values of e-folds may not be acceptable,
since they demand very low values for the reheating
temperature at least in the standard reheating scenarios.
Accepting a large number of e-folds, N� > 70, it may be
consistent with alternative reheating scenarios, which may
be interesting per se; however, in this work we prefer to
keep a more conservative attitude.
Concerning ξ, we will assume that it is positive. Then

one sees from (97) that ns is larger than the one obtained in
the quartic potential studied before, which corresponds to
ξ ¼ 0. Moreover, for any N� the observable ns increases as
ξ grows and therefore the values within the limits may be
obtained for sufficiently large values of ξ. From (97) it can
be seen that for values ξ ≃ 0.06 the spectral index can be
within observational limits for e-folds in the range
N� ≃ 52–60. That is for this value of ξ a large portion
of e-folds, in the range 50–60, is covered, which is
broadened for larger ξ allowing also for values of N�
lower than 52. Values of ξ < 0.06 are also acceptable at the
cost of considerably shrinking the range of the allowed
e-folds that are compatible with the observational limits
imposed by ns. For instance for ξ ≃ 0.004 one obtains ns ¼
0.9607 at the edge of the lower observational limit pushing
N� to N� ≃ 60. From these arguments it is obvious that a
reasonable range to deal with in our numerical procedure is
to focus on values of ξ of the order of Oð10−2Þ or larger. In
the following we will take ξ≳ 0.06 on the grounds that it is
likely to cover a wider range of e-folds as we previously
explained.
From (98), and accepting that As ≃ 2.1 × 10−9, the

quartic coupling is found to be constrained by
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λ ≃ 3.11 × 10−8
1þ 8ξN�

N3�
: ð99Þ

In the limit ξ ¼ 0 this coincides with (82) as it should. From
this it is seen that the allowed values for λ depend on the
parameter ξ, and also that larger values of the coupling λ, as
compared to the simple quartic model, are available in this
case. However, even in this case the quartic coupling is
small. For ξ ¼ 0.06 it is of the order of ∼10−12. In order for
λ to reach values of the order of ≳10−6 one needs large
values ξ≳ 104 when N� ≃ 50–60.
Concerning the parameter a, by the same token, as

discussed in previous models, a lower limit on it can be
established by (41), given by

a ≳ 108
�
1.25 −

N�ð1þ 8ξN�Þ
200

�
: ð100Þ

This bound on a depends on ξ, it is quadratic in N�, and
there is a critical value of ξ beyond which it becomes
negative, signaling that in this case any positive value of a
is actually allowed. As we prefer to work with values ξ >
0.06 the rhs of (100) is negative for N� ≃ 50–60, and
practically for our purposes there is no lower limit imposed
on the parameter a. The absence of a lower bound may be
important since in this case a can be chosen either larger, or
smaller, than the ratio ξ2=λ. In the regime

ξ2 > aλ; ð101Þ

an upper bound on a is imposed for given ξ, λ. Of particular
interest, within this regime, is the case where ξ2 ≫ aλ. In
this limit, it seen from (88) and (89) that the functions KðhÞ
and the potential VeffðhÞ do not depend on the parameter a.
In fact KðhÞ depends only on ξ and VeffðhÞ on ξ, λ. The
function LðhÞ depends on a; however, its effect on the
equations of motion is small, for the cases of interest, as we
have alreadymentioned in Sec. III. Therefore, in this case the
results are independent of the parameter a as long as ξ2 ≫ aλ
holds. We have verified this in our numerical procedure. In
this case the inflation scale μ, as defined before [see the
discussion followingEq. (89)], becomesμ ≃

ffiffiffiffiffiffiffiffiffiffiffiffi
λ=3ξ2

p
mP and

lies in the range ∼ð2 × 10−5 − 5 × 10−7ÞmP, for values of ξ
in the range 0.06–100.0 and for N� between 50–60, the
smaller (larger) scales being attained for higher (lower) ξ and
N� values.
Evidently the arguments given before are no longer valid

if the parameters are chosen in the regime

ξ2 < aλ: ð102Þ

Then we have a lower bound on a for given ξ, λ. In this case
the predictions depend on a and ξ, λ as well. In particular,

when ξ2 ≪ aλ the inflation scale is μ ≃mP=
ffiffiffiffiffiffi
3a

p
, that is, it

is determined solely by a.
For facilitating the discussion, in Table II we present

order of magnitude estimates of the quartic coupling λ, as
these arise from (99), and the corresponding ξ2=λ for a
given value of ξ ¼ 10ν, where ν < 0 or ν > 0, correspond-
ing to ξ < 1 or ξ > 1, respectively. We see that the coupling
λ increases with increasing ξ, or the same, increasing ν.
Although not displayed in the table, we remark that for
ν ≥ 0 the coupling λ lies within ð0.7 − 1.0Þ × 10−10þν. The
lower and upper bounds on the parameter a, for having
a > ξ2=λ and a < ξ2=λ, are shown in the fourth and fifth
columns, respectively. In creating this table the values ofN�
were taken as usual in the range N� ≃ 50–60.
In order to have an estimate of the instantaneous

reheating temperature, T ins, which is given by (65), we
need to know the energy density at the end of inflation.
Following similar arguments, as for the models studied
previously, we find that in this case it is given by

ρend ¼
σ

4a

�
1 −

h2endð1þ ξh2endÞ
8

�
≡ σ

4a
Fðξ; cÞ: ð103Þ

Recall that σ ¼ 1.5. The function Fðξ; cÞ is too compli-
cated to be presented, although the analytic expression for
the unique positive solution h2end of Eq. (95) does exist. This
we shall actually use for the calculation of ρend through
(103). Replacing a by c=λ, with λ as given by (99), we get
from (65),

T ins ¼ ð0.968 × 10−3Þ
�
55

N�

�
1=2

×

�
ξþ 2.27 × 10−3

55

N�

�
1=4

R1=4ðξ; cÞ; ð104Þ

where Rðξ; cÞ ¼ Fðξ; cÞ=c. This gets a very simple form in
particular regions, and interestingly enough this includes
the region where T ins gets its largest value.
The first region of interest is when c=ξ2 < 1. As we have

already mentioned, Eq. (95) is easily solved when c
vanishes, since in that case it is reduced to a quadratic
equation for h2end. For nonvanishing c, within the regime
c=ξ2 < 1, we can treat this ratio as a small parameter in

TABLE II. Order of magnitude estimates for λ and ξ2=λ as
derived from Eq. (99) for given value of ξ (first row) and the value
of e-folds N� ¼ 50–60. In the fourth (fifth) column the lower
(upper) bound, set on the parameter a, is displayed for having
a > ξ2=λða < ξ2=λÞ. The power ν is positive for ξ > 1 and
negative for ξ < 1.

ξ λ ξ2=λ a > ξ2=λ a < ξ2=λ

10ν 10−10þν 1010þν > 1010þν < 1010þν
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order to find the desired solution as a deviation from the
zeroth-order solution, corresponding to c ¼ 0. This is
easily implemented, resulting in a function Rðξ; cÞ, which
to the lowest order in c=ξ2 is independent of c. In particular,
it was found that

Rðξ; cÞ ¼
�
1þ 16ξ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32ξ

p
16ξ2

�
2

≡ PðξÞ: ð105Þ

The function PðξÞ is regular at ξ ¼ 0 with the limit
Pð0Þ ¼ 64. Using this, we found from (104)

T ins ¼ ð0.968 × 10−3ÞðξPðξÞÞ1=4: ð106Þ

In this we have set 55=N� ≃ 1, and we assume that
ξ > 0.01, which is actually the region we are interested
in. Note that (106) is valid in the regime c=ξ2 < 1 and it is a
very handy relation. Within the c < ξ2 regime the maxi-
mum temperature is attained when ξPðξÞ reaches its
maximum. This occurs at ξ ¼ 3=32, that is very close to
≃0.094, and for this value T ins ≃ 2.47 × 1015 GeV in
natural units. This is independent of c as long as c is
much smaller than ξ2. Away from this maximum T ins drops
as ξ increases, behaving as T ins ≃ ð0.968 × 10−3Þξ−1=4.
Another region of interest is when c is large and c ≫ ξ2.

In this region the function Fðξ; cÞ, that controls ρend in
(103), is very close to unity. Note that the largeness of c by
itself is not adequate to have Fðξ; cÞ ≃ 1, despite the fact
that h2end is small. We must require, in addition, that c ≫ ξ2.
Then ρend turns out to be inverse proportional to a, and
hence the instantaneous reheating temperature is propor-
tional to a−1=4 or the same proportional to ðλ=cÞ1=4. The
latter is proportional to ðξ=cÞ1=4, when (99) is used. Then
the analytic result for T ins in this case is trivially found
from (104),

T ins ≃ ð0.968 × 10−3Þ
�
ξ

c

�
1=4

: ð107Þ

This holds for large c values, satisfying c ≫ ξ2, and
therefore it cannot be arbitrarily large. The largest value
within this regime is about ≃1015 GeV, which is slightly
smaller than the corresponding temperature of the c ≪ ξ2

region. This is obtained for c ≃ 102, which is relatively
large, and values of ξ2 about an order of magnitude smaller
than c. Any other pair of values for these parameters within
this particular regime results in lower values of T ins.
Unfortunately, outside the aforementioned regions there

are not simple mathematical expressions to deal with, and
we shall rely on a numerical treatment of (104). In fact
scanning the two-dimensional parameter space c, ξ2 we
found that the approximate formulas given before in the
appropriate regions agree to a very good accuracy with
the values obtained from (104). In Fig. 7 we display the

instantaneous reheating temperature as given by Eq. (104)
for N� ¼ 55. The light colors correspond to higher temper-
atures. From this figure it is clearly seen that the larger
temperatures are obtained for values of the parameters
within the small yellow region, located at the bottom
and left. The region with the largest temperature T ins is
centered about ξ ≃ 0.1, and values c≲ 10−4, having as a
boundary the dashed blue line corresponding to T ins ¼
2.47 × 1015 GeV. The maximum temperature attained is
very close to it, confirming, therefore, our previous argu-
ments. Within this region ξ ≃ 0.1, and since Eq. (99) is
used, λ ≃ 10−12. Therefore, a ¼ c=λ≲ 108 is needed for
having the largest possible T ins. This is also seen by
drawing the locus of points for which the parameter a
has a constant value, a ¼ 108. This lies just above the
aforementioned region. Lower values, a < 108, will move
this line downward, crossing the largest T ins region, and
thus the maximum T ins is obtainable.
Note that the analytic expressions for T ins, given so far,

serve as an estimate of the magnitude of the instantaneous
temperature. As we have already pointed out, the actual
values are extracted by numerically solving the pertinent
equations of motion. However, the numerical analysis
reveals that these estimates are accurate enough. In fact,
the results derived are lower by less than about 10%. Only
in a small region, for c ≤ 10−8 and for ξ values in the
vicinity ξ ≃ 0.1, does this difference augment to about 15%
or so. This is in accord with the discussion following
Eq. (67). As a result the maximum instantaneous reheating
temperature mentioned before, T ins ¼ 2.47 × 1015 GeV,
drops to T ins ¼ 2.07 × 1015 GeV.

FIG. 7. In the c, ξ plane we display the instantaneous reheating
temperature, as given by Eq. (104), for N� ¼ 55. Light colors
correspond to larger temperatures. The largest temperature,
T ≃ 2.47 × 1015 GeV, is within the yellow region near ξ ≃ 0.1,
with the boundary represented by the dashed blue line. The red
line is the locus of points with a ¼ 108.
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Our numerical study can be summarized by selecting the
following representative inputs.
For the value ξ ¼ 0.06, which according to the preceding

discussion sets the threshold for having a sufficient
number of e-folds, we choose the quartic coupling λ ¼
4.875 × 10−12. From (99) one can see that for N� ¼ 50–60
the quartic coupling is between 4.29 × 10−12 (for N� ¼ 60)
and 6.22 × 10−12 (for N� ¼ 50), so that the value chosen is
indeed within the appropriate range. However, this fine-
tuned value has been chosen so that the predicted amplitude
As is within observational limits in such a way that
instantaneous reheating is feasible. It should be remarked
that the approximate formula used for As may differ from
the one that the numerical procedure returns. The latter
yields more accurate results, since the exact numerical
solution for the field h is used, and also because it
incorporates corrections, see Eq. (25), that although small
in some cases are of the same order of magnitude with the
observational errors. It is for this reason that fine-tuned
adjustments are necessary to make the instantaneous
reheating mechanism a viable possibility.

For these inputs ξ2=λ ≃ 7.38 × 108, and therefore for
values a ≪ 108 we are in the regime a ≪ ξ2=λ and, as we
have discussed, predictions are insensitive to the choice of
a. Therefore, any value of a yields the same results,
provided a ≪ 108. This we have verified by our numerical
code. For definiteness we take a ¼ 106 which is 3 orders of
magnitude smaller than ξ2=λ given above.
In Fig. 8, top panels, we display the spectral index and

the power spectrum amplitude. We see that agreement with
ns data is obtained for any temperature when the parameter
w is ≃0.25 or larger, but smaller than 1.0. For canonical
reheating, w ¼ 0.0, however, a lower bound is imposed
Treh ≳ 1010 GeV, while for w ¼ 1.0 the lower bound is
about Treh ≳ 100 GeV. Looking at the As plot we observe,
as mentioned, that instantaneous reheating can occur for the
given ξ, λ inputs. We also observe that the constraints are
more stringent than those imposed by ns. In fact values of
w > 1=3 allow for temperatures which are very close to
T ins. At the same time a lower reheating temperature is
imposed for the w ¼ 0.25 case, Treh ≳ 1011 GeV, while for
the canonical scenario the lower limit imposed by As is

FIG. 8. (Top left panel) The spectral index ns and the (top right panel) power spectrum amplitude As versus the reheating temperature
Treh, for the Higgs model, for inputs ξ ¼ 0.06, λ ¼ 4.875 × 10−12, and a ¼ 106. (Bottom panel) For the Higgs models and the same
inputs, the number of e-folds versus the reheating temperature Treh is displayed.
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pushed to a much higher value close to T ins. At the bottom
of the same figure the number of e-folds is shown.
Although values of e-folds N� as large as ≃70 for low
Treh are allowed by ns data, when 1 > w ≥ 0.25, the As
measurements restrict the allowed temperature range in such
a way that N� is forced to be in the range ≃55.70–56.30, as
shown in Table III. In this table the predictions for As, ns, r,
N�, corresponding to the minimum (upper rows) and
maximum (bottom rows) reheating temperatures, are also
shown. The maximum reheating temperature is the instanta-
neous temperature, T ins ¼ 2.027 × 1015 GeV, and for this
reason the predictions for the variousw in that case coincide.
As a second sample we consider values of ξ in the range

ξ ¼ 0.06–10.0 when the parameter a is increased to
a ¼ 1012. These cases fall in the regime a > ξ2=λ when

λ is within the range suggested by (99). Following the same
reasoning, we may consider values for the quartic coupling
so that agreement with As data is obtained requiring at the
same time that the maximum reheating temperature can
reach the instantaneous temperature T ins. For the lowest
value of ξ in this range, ξ ¼ 0.06, the quartic coupling can
be taken as λ ¼ 5.60 × 10−12 while for the largest, ξ ¼ 10,
the value λ ¼ 8.85 × 10−10 suits our needs. For reference,
these cases we name A and B, respectively.
Note that by changing a from a ¼ 106 to a ¼ 1012, the

predicted values for the cosmological parameters change as
well, and thus readjustments of λ are necessary in order to
obtain agreement with As data, and have, at the same time,
T ins as the maximum temperature. This is the reason the
values of λ, for the case ξ ¼ 0.06, are slightly different for
a ¼ 106 and a ¼ 1012.
In Figs. 9 and 10 we display the predictions for the

spectral index and the power spectrum amplitude for cases
A and B, respectively, previously discussed. Comparing
Fig. 9 with Fig. 8 (top panels) we first observe that T ins is
lowered in comparison to case A. In fact, from T ins ¼
2.027 × 1015 GeV it slides down to 6.522 × 1014 GeV.
Also the lowest reheating temperatures change a little. For
instance for w ¼ 0.25 this is 1.065 × 1011, i.e., it has been
slightly increased from the corresponding a ¼ 106 case,
which was 6.695 × 1010 (see Table III). In Fig. 10 the
corresponding predictions for case B are shown. In this case
T ins ¼ 6.647 × 1014 GeV. That is, it is slightly larger than
case A. Keeping a fixed the tendency for T ins is to decrease,
with increasing the parameter ξ, as long as a > ξ2=λ, while
tuning the quartic coupling to have agreement with As data.
In Fig. 11, we show the tensor-to-scalar ratio r0.002

versus the spectral index ns for the Higgs model. The
numbers of the e-folds are shown, and the circles designate
different reheating temperatures exactly as in Fig. 4.
The upper red line corresponds to parameters a ¼ 106,
ξ ¼ 0.06, and λ ¼ 4.875 × 10−12 while for the blue line at

FIG. 9. (Left panel) The spectral index ns and (right panel) the power spectrum amplitude As versus the reheating temperature Treh for
the Higgs model for inputs ξ ¼ 0.06, λ ¼ 5.6 × 10−12, and a ¼ 1012 (case A).

TABLE III. Predictions of the Higgs model for the input values
shown on the top, for the cosmological observables ns, r, As, N�
and for various values of the equation of state parameter w. The
values shown for the reheating temperature Treh, in GeV,
correspond to the minimum (upper rows) and maximum (lower
rows) allowed when the observational limits for As and ns are
imposed.

Higgs model (pivot scale k� ¼ 0.05 Mpc−1)
Input values ξ ¼ 0.06 λ ¼ 4.875 × 10−12 a ¼ 106

w value w ¼ 0.0 w ¼ 0.25 w ¼ 1.0

109As 2.07 2.07 2.13
ns 0.9634 0.9633 0.9639
r 0.0102 0.0102 0.0100
N� 55.67 55.67 56.45
Treh 2.562 × 1014 6.695 × 1010 1.569 × 1015

109As 2.12 2.12 2.12
ns 0.9638 0.9638 0.9638
r 0.0100 0.0100 0.0100
N� 56.36 56.36 56.36
Treh 2.027 × 1015 2.027 × 1015 2.027 × 1015
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the bottom the parameters are a ¼ 1012, ξ ¼ 0.06, and
λ ¼ 5.60 × 10−12. Only the cases for the canonical reheat-
ing are shown, i.e., w ¼ 0. Note that in drawing this figure
the constraints arising from As have not been taken into
account. When they are a small segment including the T ins
temperature is left. In any case, we observe from these
figures that by increasing the parameter a the tensor-to-
scalar ratio gets smaller and the predictions move lower and
the instantaneous reheating temperature mechanism is in
full agreement with Planck 2018 cosmological constraints.

VI. CONCLUSIONS

In this work we have considered R2 theories in the
framework of the Palatini formulation. Although this is not
new, we have presented a general setup within which
inflation models can be studied. The actions, in the Einstein

frame, resemble K-inflation models; however, additional
terms that are quartic in the derivatives of the fields
involved emerge. For the models studied in this work,
these are small during inflation in accord with the findings
of other authors as we have verified by our numerical
approach, which duly takes into account these terms.
However, their role toward the end of inflation is essential
for the determination of the instantaneous reheating
temperature.
This formulation is model independent and can be

applied to any inflationary model. These theories are
described by three arbitrary functions. Two of them are
associated with the coupling of the scalars to the linear and
the quadratic terms with respect the Palatini curvature R,
and the third is a scalar potential. Inflation can be studied in
this framework without the need of using canonically
normalized fields.
We have applied this to the study of popular inflationary

models that are minimally coupled to gravity with mono-
mial potentials of the form V ∼ hn, with the power n a
positive and even integer. We also considered the Higgs
potential nonminimally coupled to gravity. These models
have been put under scrutiny over the years, in the metric
formalism, and recently have been extensively studied in
the nonmetric, or Palatini, formalism. However, the strin-
gent constraints arising from the scalar power spectrum
measurements have not been duly taken into account, in
most of the studies, in conjunction with the reheating
temperature of the Universe. In [38] such a study has been
undertaken in the context of the quartic Higgs model that is
minimally coupled to gravity.
In this work, without invoking any particular reheating

temperature mechanism, we have undertaken this study and
show that the measurements of the primordial power
spectrum amplitude imposes very stringent constraints.
These in combination with the restrictions arising from
the measurements of other cosmological observables, in
particular, the primordial tilt ns and the tensor-to-scalar
ratio r, considerably restrict these models.

FIG. 11. The tensor-to-scalar ratio r0.002 versus the spectral
index ns for the Higgs. As in Fig. 4 the numbers shown
correspond to the e-folds and the circles designate different
reheating temperatures. For the top red line the parameters are
a ¼ 106, ξ ¼ 0.06, and λ ¼ 4.875 × 10−12 while for the blue line
at the bottom a ¼ 1012, ξ ¼ 0.06, and λ ¼ 5.60 × 10−12. Only the
cases for the canonical scenario are shown, w ¼ 0.

FIG. 10. The same as in Fig. 9 for inputs ξ ¼ 10.0, λ ¼ 8.85 × 10−10, and a ¼ 1012 (case B).
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For the quadratic model V ¼ m2

2
h2 we have seen that the

scalar power spectrum amplitude As puts constraints on the
parameter m, and agreement with data is obtained for
values of it that lie in a tight range. The maximum reheating
or instantaneous temperature T ins is of the order of
∼1015 GeV, and this is attained for fine-tuned values of
m within this range. For these fine-tuned values, the range
of the allowed temperatures is rather narrow and depends
on the effective equation of state parameter w with the
lowest temperature not far from the instantaneous temper-
ature. For the canonical scenario, although smaller, this is
of the same order of magnitude with T ins. If we allow for
small deviations from these fine-tuned values agreement
with data is still feasible. However, these deviations,
although they do not substantially disturb the observable
ns, should lie in a narrow range, outside which agreement
with As data is hard to achieve. In these cases the allowed
temperatures are well below T ins and rapid thermalization is
not possible. Besides depending on the value of m, not any
value of w in the range −1=3 < w < 1 is allowed. The
conclusion concerning this model is that agreement with all
cosmological data is possible for values of the potential
coupling m that lie in a narrow range. Instantaneous
reheating is possible at the cost of a very fine-tuned value
of m.
The model with the quartic potential V ∼ h4 is in conflict

with the spectral index ns data. Only marginal agreement
with the primordial tilt can be obtained with ns ≃ 0.960, but
this occurs for very low reheating temperatures close to
nucleosynthesis Treh ∼MeV, and for values w close to
w ¼ 1.0. On the other hand, the amplitude As prefers
smaller values of the equation of state parameter w≲ 0.25.
The conclusion is that this model is hard to reconcile with
ns, the scalar power spectrum measurements, and reheating
temperatures that are reasonably larger than Treh ∼MeV so
that we do not run into problems with big bang nucleo-
synthesis. As our qualitative arguments have shown for the
descendant models, V ∼ hn with n > 4, the situation is
even worse.
The situation with the quartic potential is rescued in the

Higgs model when the scalar field couples in a nonminimal
manner to gravity specified by parameter ξ. This helps in
that as we have explicitly shown the value of ns depends on
ξ allowing for larger values of ns. Agreement with ns
observations demands that ξ is not smaller than about
∼0.06. Given ξ, the primordial spectrum measurements in
the Higgs model severely restrict the quartic coupling λ.
The larger the value of ξ is the largest the values of the

allowed λ are. The quartic coupling is small, smaller than
∼10−6, for values ξ that do not exceed ∼104. Higher λ
values are in principle allowed but these require very large
values of ξ leading to instantaneous reheating temperatures,
lower than ∼1015 GeV. Note that in the Higgs case there is
no bound on the parameter a specifying the coupling of the
scalar field to the gravity term R2, which unlike the
previous models is unrestricted. Thus both large and low
values of a are allowed. Because of that, and for given ξ and
λ in the appropriate range, two regimes can be distin-
guished. The small a, when a < ξ2=λ, and the large a >
ξ2=λ regimes. In the small a regime, and particularly when
a ≪ ξ2=λ, the predictions are independent of the parameter
a, provided that a stays much smaller than ξ2=λ. The
inflationary scale in this case is μ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ=ξ2Þ

p
and lies in the

range 10−5 − 10−7 Planck masses, for ξ between 0.06 and
102. The instantaneous reheating temperature T ins, in this
case, is larger for smaller values of the parameter ξ and
receives its largest possible value ≃2.1 × 1015 GeV when ξ
is in the vicinity of ξ ≃ 0.1.
In the large a regime, on the other hand, the inflationary

scale is μ ∼ a−1=2. At the same time T ins behaves as ∼a−1=4.
Unless a is not exceedingly large, T ins can be as large as
≃1015 GeV, and this requires values of ξ of the order of
unity or so. In both regimes there are values of the
parameters for which all cosmological data can be satisfied.
However, for given ξ, as in the models discussed previ-
ously, the quartic coupling λ should lie in a tight range as
the power spectrum observations dictate. Moreover for
instantaneous reheating λ should be fine-tuned. In that case
the allowed temperatures are close to T ins for the canonical
scenario, w ¼ 0.0, while a broader range of Treh is allowed,
bracketing values Treh ∼ 109 GeV or so, for values of the
equation of state parameter w in the vicinity of ≃0.25.
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