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Considering corrections produced by modified dispersion relations on the equation of state parameter of
radiation, we study the induced black hole metric inspired by Kiselev’s ansatz, thus defining a deformed
Reissner-Nordström metric. In particular, we consider thermodynamic properties of such a black hole from
the combined viewpoints of the modified equation of state parameter and the phenomenological approach
to the quantum gravity problem called rainbow gravity.
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I. INTRODUCTION

General relativity is one of the most successful theories
in physical sciences, that describes with great precision
systems from the scale of the solar system up to the
Universe in a large scale by the ΛCDM paradigm, in
particular the remarkable detection of gravitational waves
by the merging of black holes and neutron stars are some of
the most recent achievements of this theory.
However, in certain regimes, like in the vicinity of the big

bang singularity or in the deep interior of a black hole,
where quantum effects becomes relevant, it is expected that
general relativity or even alternative theories of classical
gravity must be replaced by a quantum theory of gravity.
There are several theoretical approaches to the problem of
quantization of the gravitational field, for instance loop
quantum gravity [1], causal dynamical triangulation [2],
causal sets approach [3], string theory [4], etc. Despite
these theoretical efforts, nowadays one of the main focuses
on this problem has been the search for observational traces
of a quantum spacetime [5].
As described in the review [5], one of the most fruitful of

these approaches has been the search for Lorentz invariance
violation or deformation. In particular, a deformation of
this symmetry means that, like Galilean transformations
can be found from a “low-velocity” limit of the Lorentz
symmetry that presents an invariant velocity scale given by

the speed of light in vacuum, the Lorentz symmetry could
correspond to a “low-energy” limit of a deeper symmetry
principle that involves an invariant energy scale, i.e. the
scale of quantum gravity (which is expected to be of the
order of the Planck energy) [6,7]. In this case, a question
emerges naturally: is there an effective spacetime that can
manifest these deformed symmetries? There are indeed
some candidates that are able to absorb this property, for
instance κ-Minkowski noncommutative spacetime [8,9],
Finsler geometry [10–12], and the spacetime generated
by the relative locality and curved momentum space
approach [13]. These proposals describe deformations of
a flat spacetime, where the a deformed Lorentz symmetry
plays a fundamental role.
An appealing way to connect this approach to actual

astrophysical observations consists in promoting such
deformed flat metrics to deformed curved ones, in order
to manifest the gravitational field degrees of freedom.
There exist some proposals that promote the κ-Poincaré
algebra to a curved setup (see [14] and references therein),
some that explore curved Finsler and Hamilton geometries
[15–17], disformal transformations on a metric [18], among
others. In this paper we shall focus on the simplest and most
fruitful of these proposals, called rainbow gravity (RG)
[19], which is defined from an energy-dependent trans-
formation done on the tetrad fields such that one can
describe a modified dispersion relation by a norm calcu-
lated from an energy-dependent metric, which we shall
detail in the next section.
Within this framework, the issue of black holes and

their thermodynamics has been explored by many authors
in several different contexts and background theories of
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gravity, see for instance [20–28]. Inspired by the Kiselev
solution [29], the case of a quantum corrected black hole
surrounded by a fluid with negative equation of state
parameter was analyzed in [30], where this parameter
assumed constant values for different kinds of fluids.
However, as raised in [31], the fact that we are dealing
with modified dispersion relations (MDR) must imply that
we need to consider their effects on thermodynamic
quantities (leading to temperature-dependent state param-
eters), leading to a more subtle approach to the initial
singularity issue. So, it would be interesting to consider
this setup in an astrophysical scenario, like black hole
physics. In this paper, we investigate the effect that MDR-
compatible thermodynamics has on the thermodynamics of
black holes surrounded by radiation in rainbow gravity.
Such analysis will lead us to a proposal for the quantum-
corrected charged black hole.
The paper is organized as follows. In Sec. II, we review

the definition of rainbow metrics and derive the corrected
form of Kiselev’s metric from the field equations. In
Sec. III, we perturbatively and numerically analyze the
effects that MDRs leave on the equation of state parameter
and depict its behavior as a function of the temperature for
some specific examples. In Sec. IV, we construct the
explicit correction of the Reissner-Nordström metric from
combining rainbow gravity, Kiselev’s approach, and
MDRs, besides that we perturbatively and numerically
study the corrected temperature and entropy for each
dispersion relation previously considered. In Sec. V, we
use an alternative method to study the thermodynamics for
a suitable dispersion relation that mimics dust fluid for high
energies, and explicitly illustrate this behavior at a trans-
Planckian regime. Finally, we conclude in Sec. VI.

II. RAINBOW GRAVITY AND
BLAK HOLE SOLUTIONS

The possibility of having a deformed Lorentz symmetry
driven by a transformation in momentum space was
initially raised in the seminal papers [32,33]. In this case,
the associated modification of the dispersion relation could
be written as

m2 ¼ E2f2ðE=EPÞ − p2g2ðE=EPÞ; ð1Þ

where E and p are the energy and norm of the spatial
momentum of a fundamental particle and fðE=EPÞ and
gðE=EPÞ are functions of the ratio between E and the
invariant Planck energy1 EP ¼ 1=

ffiffiffiffi
G

p
, which we shall

assume to be of the order of the quantum gravity energy
scale. And they obey the limit ðf; gÞ → 1, when E=EP → 0.

This expression can be equivalently achieved thanks to a
map, U, that acts on the momentum space as

U⊳ðE; piÞ ≐ U½E; p� ¼ ðEfðE=EPÞ; pigðE=EPÞÞ; ð2Þ

where the dispersion relation now reads

m2 ¼ ημνUμ½E; p�Uν½E; p�; ð3Þ

where ημν are the components of the Minkowski metric in
Cartesian coordinates. In order to absorb this feature into an
effective norm using a spacetime metric, we rely on the
vielbein of the flat metric. We then transform the ortho-
normal frame as

ẽ μ
A ¼ ðfðE=EPÞe μ

0 ; gðE=EPÞe μ
I Þ; ð4Þ

which implies that we can rewrite the expression (3) as

m2 ¼ ηABẽ μ
A ẽ

ν
BPμPν; ð5Þ

where Pμ ≐ ðE; piÞ. Until this point, this approach is being
applied to the flat spacetime, but its real power relies on
applying this transformation on curved vielbeins. This way,
it becomes possible to construct an effective curved inverse
metric given by g̃μν ¼ ηABẽ μ

A ẽ
ν
B , where now we are trans-

forming general curved tetrads according to the prescrip-
tion (4). Inverting ẽ μ

A , we find an energy-dependent metric

gμνðE=EPÞ ¼ ηABẽAμẽBν; ð6Þ

where ẽAμ ¼ ðf−1ðE=EPÞe0μ; g−1ðE=EPÞeIνÞ. This is the
metric that would be probed by a particle in the inter-
mediate regime in which it is possible to just deform the
classical Riemannian geometry by functions that depend on
the quantum gravity energy scale, such that when the
energy scale of the particles that we are analyzing or the
length scale of a given phenomena cannot furnish cumu-
lative effects that might amplify these departures from
Riemannian geometry, we recover the usual results from
general relativity. The scenario with an emergent metric
that depends on the energy (momentum) of the particle
itself that travels in such background, originated from
quantum corrections, has appeared in different approaches,
for instance in the context of analog gravity [34] and
quantization of gravitational degrees of freedom in the
Born-Oppenheimer approximation [35].
In order to find the explicit form of the metric probed by

these particles for a given spacetime symmetry and matter
configuration, we follow the standard approach of finding
solutions of the Einstein field equations, where the metric is
given by Eq. (6). In spherical coordinates, the static
spherically symmetric rainbow metric reads

1We use a system of units in which the speed of light,
Planck’s constant, and Boltzmann’s constant are equal to unity,
c ¼ ℏ ¼ kB ¼ 1.
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ds2 ¼ −
AðrÞ
f2ðϵÞ dt

2 þ dr2

g2ðϵÞAðrÞ þ
r2

g2ðϵÞ dΩ
2; ð7Þ

where we defined the dimensionless variable ϵ ≐ E=EP,
dΩ2 ¼ dθ2 þ sin2ðθÞdϕ2 is the line element of the sphere
S2 and the energy is independent of the radial coordinate.
Following Kiselev’s approach [29], after a macroscopic

isotropic average, a fluid with energy density ρðrÞ,
pressure PðrÞ and equation of state P ¼ ωρ has an energy-
momentum tensor of the form

Tt
t ¼ Tr

r ¼ −ρðrÞ; ð8Þ

Tθ
θ ¼ Tϕ

ϕ ¼ 1

2
ð3ωþ 1ÞρðrÞ: ð9Þ

Assuming Einstein’s field equationsGμν¼κTμν (κ¼8πG
is the coupling constant) for the rainbow metric (7), a
straightforward manipulation implies in the solutions

AðrÞ ¼ 1 −
2GM
r

þ c
r3ωþ1

; ð10Þ

ρðrÞ ¼ g2ðϵÞ c
κ

3ω

r3ðωþ1Þ : ð11Þ

From the expression of the energy density, to preserve its
positivity one must have cω ≥ 0. Besides that there is a
factor of gðϵÞ that corrects the expression found in [29].
Originally, this metric was derived for the analysis of a
black hole solution surrounded by exotic fluids, which is
described by a negative ω, for instance a quintessence field
with ω ¼ −2=3, a cosmological constant ω ¼ −1 (which
gives the Schwarzschild-de Sitter solution), or a phantom
field with ω ¼ −4=3 [36,37]. But this metric can also
describe more general kinds of fluids, for instance, if we
assume that this spacetime presents an electromagnetic
field as matter content, i.e., if ω ¼ 1=3, we recover the
usual Reisser-Nordström solution, where c ¼ Q2 is the
square of the black hole’s electric charge.

III. DEFORMED EQUATION
OF STATE PARAMETER

Modified dispersion relations induce modified equations
of state. This issue has been explored in different contexts,
for instance in [31,38–40], where the simple nontrivial rule
for counting states with given energy leads to unexpected
effects, like dimensional reduction or a description of
inflation due to modification of the equation of state
parameter of radiation, without the need of an inflaton field.
In fact, the number of states with momentum values

between p and pþ dp in a volume V is given by [41]

NðpÞdp ¼ V
ð2πÞ3 4πp

2dp; ð12Þ

and the relation between the momentum and the energy is
given now by the deformed expression (3). In this paper we
are going to consider the effect of these quantum correc-
tions on the Reisser-Nordström solution, i.e., we shall
assume the massless case m ¼ 0. We basically treat this
issue as the classic problem of the photon gas, but with a
modified dispersion relation.
Assuming the degeneracy due to the two polarizations of

the photons, from Eq. (3) a straightforward calculation
implies that

2NðpÞdp ≐ ÑðEÞdE

¼ V
π2

�
f
g

�
3
�
1þ E

f0

f
− E

g0

g

�
E2; ð13Þ

where prime ( 0) denotes differentiation with respect to the
energy.
As usual, the equation of state parameter can be found

from the average of the energy density and the pressure2

as [31]

ωðTÞ ¼ P
ρ
¼ −T

R
ln½1 − e−E=T �ÑðEÞdER

E
exp½E=T�−1 ÑðEÞdE : ð14Þ

In this paper, we shall also consider the case of
deformation functions depending on the momentum.
In these cases, the equation of state parameter reads

ωðTÞ ¼ P
ρ
¼ −T

R
ln½1 − e−EðpÞ=T �p2dpR EðpÞ

exp½EðpÞ=T�−1p
2dp

; ð15Þ

where EðpÞ shall be determined by the modified dispersion
relation under analysis.
For an undeformed dispersion relation, each of these

integrals converge to a function given by a power of the
temperature, for instance the energy density is proportional
to a fourth power of the temperature. In this case, the
equation of state parameter is given exactly by the constant
value of 1=3, which corresponds to the usual value
associated to a radiation fluid. As stated above, from
Kiselev’s solution, by assuming this value in Eq. (10),
we derive the metric of a charged black hole.
We then wonder how these quantum corrections affect

the Reissner-Nordström metric in a way that complements
the usual rainbow gravity proposal and which imprints they
have on the black hole thermodynamics.

A. Some examples of modified dispersion relations

In this section we are going to describe three particular
cases of MDRs that will guide our investigations and the

2Since we are dealing with bosons, the Bose-Einstein statistical
distribution is not modified (see Ref. [40], for instance).
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exact behavior of the equation of state parameter as a
function of the temperature.

1. First case

As a first example, we consider a case that was first
explored in the literature in the context of black hole
thermodynamics [20] and has been a case study for the
community of quantum gravity phenomenology ever since:

fðϵÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
; gðϵÞ ¼ 1: ð16Þ

In Fig. 1(a) we depict the behavior of the this MDR for
the massless case from Eq. (3) represented by the orange
(dashed) curve, and we can see the presence of an upper
bound on the energy and momentum. Its correction is given
by the inverse of the square of the quantum gravity energy
scale:

E2 ¼ p2 þ E4

E2
P
: ð17Þ

Besides that, we can define the functional form of the
equation of state parameter as a function of the temperature,
given implicitly by integrals given by (14) by the use of
(16). Its behavior is depicted in Fig. 1(b) by the orange
(dashed) line. Although we cannot find an analytic form of
ω, we can use (17) to derive an approximate expression,
given by

ωðTÞ ≈ 1

3
þ 40

63
π2

T2

T2
P
; ð18Þ

where TP is the Planck temperature, defined as TP ¼
1=

ffiffiffiffi
G

p ¼ EP in the system of units that we are using. For
higher temperatures we can also find an analytic expression
of ω in the trans-Planckian regime (T=TP ≫ 1) as
ωðTÞ ≈ 35

32
π T

TP
.

2. Second case

Now, we explore a dispersion relation that has been
recently found in the context of the deformed Lorentz
symmetry given by the linear limit of a deformation of the
Poisson brackets of general relativity inspired by loop
quantum gravity [42]. In one specific case contemplated in
[42] the functions that produce the MDR are

fðϵÞ ¼ 1;

gðϵðpÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

λ2p2
½λp sinhðλpÞ − coshðλpÞ þ 1�

s
: ð19Þ

This MDR is depicted in Fig. 1(a) by the black (dotted)
line. In this case, there is no energy-momentum upper
bound, and its first order approximation is given by

E2 ≈ p2 þ λ2

4
p4: ð20Þ

As before, the behavior of ω as a function of the
temperature can be found from (14) and (19) and is
depicted in Fig. 1(b) as the black (dotted) line. In this
case, the approximate expression of the equation of state
parameter takes the form

ωðTÞ ≈ 1

3
þ 10

63
π2

T2

T2
P
: ð21Þ

This second example consists in an unbounded ω, which
surpasses theþ1 value at a finite temperature around 11TP.

3. Third case

Our second case of study consists in the following MDR

fðϵÞ ¼ 1; gðϵðpÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðλpÞ4

q
; ð22Þ

that can describe some properties presented in approaches
to quantum gravity such as dimensional reduction from

(a) (b)

FIG. 1. Orange (dashed) line corresponds to ðf; gÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
; 1Þ, blue (solid) line corresponds to ðf; gÞ ¼ ð1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðλpÞ4

p
Þ, and

black (dotted) line corresponds to ðf; gÞ ¼ ð1;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

λ2p2 ½λp sinhðλpÞ − coshðλpÞ þ 1�
q

Þ.
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causal dynamical triangulation, Horava-Lifshitz gravity,
among others Ref. [43–47]. Here λ is simply given by
inverse of the Planck energy λ ¼ E−1

P . The behavior of the
MDR for massless particles is depicted in Fig. 1(a) by
the blue (solid) line, where obviously there is no bound in
the energy and momentum, in opposition to the first case. It
is also given by the expression

E2 ¼ p2 þ λ4p6: ð23Þ

As before, using Eqs. (14) and (22), we depict the full
behavior of the equation of state parameter in Fig. 1(b). As
also demonstrated in [31], the fluid described by this
dispersion relation transits from radiation, for low temper-
atures, with ω ≈ 1=3 to asymptotically behave like stiff
matter for high temperatures, ω ≈ 1.
For low temperatures, the first term in the expansion of

the equation of state parameter is given by a fourth order
power of λ ¼ T−1

P :

ωðTÞ ≈ 1

3
þ 16

3
π4

T4

T4
P
: ð24Þ

IV. BLACK HOLE THERMODYNAMICS

We have just verified that the assumption of modified
dispersion relations generate a temperature-dependent
equation of state parameter for a massless fluid, which
can behave in very different ways depending on the model
under consideration. Usually, the effect of such deforma-
tions is considered on the thermodynamics of black holes in
the form of the rainbow functions that corrects the metric,
independently from the nature of the undeformed black
hole. For instance, a correction to the static charged black
hole would be manifest by the procedure that we described
in Sec. II, by Eq. (7), where AðrÞ is the usual Reissner-
Nordström solution.

On the other hand, at the level of the classical gravity, we
also demonstrated in Sec. II that it is possible to recover the
Reissner-Nordström solution from the Kiselev one, if we
assume that the Kiselev fluid has equation of state
parameter ω ¼ 1=3, which corresponds to the usual radi-
ation fluid.
In this section, we wonder what kind of spacetime we are

led to if we consider the effects that MDRs have on the
equation of state parameter into the above construction.
Specifically, we will construct a quantum-corrected
Reissner-Nordström solution, in a way that complements
the usual rainbow gravity approach, from Kiselev’s pre-
scription. From this solution, we are going to explicitly
write down corrections to the temperature and entropy of
the charged black hole, distinguishing the contributions due
to rainbow gravity from those coming from a modified
dispersion relation.
In order to do this, we shall rewrite the Kiselev solution

in a way that enables us to perform a dimensionally
coherent analysis. Bearing this in mind, we write the
quantum-corrected Kiselev metric as

AðrÞ ¼ 1 −
2GM
r

þ
�
Q
r

�
3ωðTÞþ1

; ð25Þ

where ωðTÞ is a function of the temperature, given by
Eqs. (14) or (15), depending on the kind of MDR under
consideration. This approach guarantees that the charge Q
will have a fixed dimension of length, and will not vary
with the temperature. Notice that when ω ¼ 1=3, we
recover the usual contribution Q2=r2 to the metric. We
summarize our proposal with the diagram (26), where the
map ψ∘ϕ−1 is the transformation from the Reissner-
Nordström solution to the modified solution, driven by
the use of a modified dispersion relation on Kiselev’s
metric.

ð26Þ

Assuming this approach, we expect to measure some differences regarding the usual procedure followed in rainbow
gravity. In fact, usually the Hawking temperature is corrected by a factor of gðϵÞ=fðϵÞ [20]:
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TH ¼ −
1

4π
lim
r→rþ

ffiffiffiffiffiffiffiffiffiffi
−
grr

gtt

s
1

gtt
d
dr

gtt

¼ 1

4π

gðϵÞ
fðϵÞ

�
2GM
r2þ

− ð1þ 3ωÞQ
3ωþ1

r3ωþ2
þ

�
: ð27Þ

In (25), T is the temperature of the radiation fluid that
surrounds the black hole. In an equilibrium configuration
(which is the one that we assume) it is reasonable to
identify this temperature with the one of the fluid of
photons emitted by the Hawking radiation emission proc-
ess. Thus we have, in fact that ω ¼ ωðTHÞ, therefore
implying that Eq. (27) is an expression that implicitly
defines the Hawking temperature.
As a matter of fact, this procedure presents some

similarities with some of the most appealing approaches
that demonstrated corrections on the black hole thermo-
dynamics driven by modified dispersion relations [48]
(besides generalized uncertainty principles). In that case,
a generalized Stephan-Boltzmann law is calculated con-
sidering approximated MDRs, similarly to our calculations
of the energy density in the denominator of the equation of
state parameter (14) or (15). And the temperature of this
radiation fluid is also identified with the temperature
assigned to the back hole. Based on these arguments, we
aim to investigate further corrections of the black hole
thermodynamics in our proposed modified Reissner-
Nordström context.
Following the procedure of [49], in the vicinity of the

black hole, there is an uncertainty in the position of a
particle of the order of the Schwarzschild radius
Δx ¼ 2GM, and from Heisenberg’s uncertainty principle,
this can be translated to an uncertainty in the momentum
ΔxΔp ∼ 1, [23,49]. We identify this as the momentum of
the photon emitted by the Hawking radiation:

p ¼ Δp ∼
1

2GM
: ð28Þ

If we place this value of the momentum into an MDR, it
gives us a dependence of the energy of the emitted photon
with the mass of the black hole itself. This eliminates the
energy dependence of (27), and allows us to study Planck-
scale departures induced by a rainbow metric without
introducing extra degrees of freedom.
Now, we shall quantify how the assumption of the MDRs

chosen in the last section will modify some usual thermo-
dynamic expressions.

A. First case

As previously stated, our corrected metric has some
novelties (due to a modified equation of state parameter)
when compared to the rainbow metric just corrected by the
rainbow functions. In the latter case, one usually fixes
ω ¼ 1=3, while now we allow it to vary with the

temperature which, for instance, implies in a temperature
dependent location of the horizon, which as a second
order approximation is a solution of the transcendental
equation

rþ ¼ Q exp

�
−
ðrþ − ρþÞðrþ − ρ−Þ

αQ2T2=T2
P

�
; ð29Þ

where ρ� ≐ GM �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2M2 −Q2

p
are the locations of the

usual Reissner-Nordström horizons, and α ≐ 40
21
π2 is a

dimensionless parameter, whose numerical value will
depend on the quadratic corrections at the Planck scale
for different MDRs.
From Sec. III A 1, we can make the substitution (28) into

the dispersion relation (3) by using the rainbow functions
(16). Solving the MDR for the energy, we find

E ¼ EPffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

G2M2E2
P

svuut ; ð30Þ

such that E ≈ 1=ð2GMÞ, when EP → ∞, as expected.
Solving Eq. (25) for GM and substituting it into the
temperature, we find the implicit function

TH ¼ r−1þ − 3ωðTÞQ3ωðTÞþ1r−2−3ωðTÞþ

2
ffiffiffi
2

p
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4r6ωðTÞþ

E2
P½Q1þ3ωðTÞþr1þ3ωðTÞ

þ �2

rs ; ð31Þ

where ωðTÞ is given by the ratio of integrals (14), and the
integration is done for E ∈ ½0; EPÞ, since EP plays the role
of an upper bound for the energy for this specific MDR, as
can be seen in (16).
In general, this implicit function cannot be solved

analytically; however, it is possible to depict its behavior
for some limited range of the horizon radius, as pictured in
Fig. 2(a). The blue (dashed) line corresponds to the case of
general relativity, i.e., when ω ¼ 1=3 and fðϵÞ ¼ 1 ¼ gðϵÞ
(or E → ∞), and Q equals 1. The completely undeformed
case presents a lower bound on the radius given by
rlower ¼ Q.
For the usual case in rainbow gravity, one has ω ¼ 1=3,

but the denominator of Eq. (31) is still present. Therefore,
there are some extra constraints that must be satisfied by the
horizon radius and by the electric charge. In fact, in order
for the denominator to be real, we must require that

r2þ ≥ 2E−2
p −Q2 � 2E−1

P ðE−2
P −Q2Þ1=2; ð32Þ

which corresponds to an extra condition, which is an upper
bound on the black hole’s charge Q ≤ E−1

P . This is a
condition inherited from the MDR. In Eq. (31), we
considered the extremal case Q ¼ EP, implying that
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rþ ≥ Q, which is the usual relativistic result. In our
deformed case, we have a complementary condition from
the numerator of (31) that must remain positive and varies
with the temperature.
Although we cannot find an analytic expression for the

function ωðTÞ from our cases that we are scrutinizing, we
can still use first order perturbations in order to quantify
departures from general relativity and from the usual
rainbow gravity approach.
In fact, using Eq. (18) (in which the first correction

appears quadratic in the inverse of Planck’s temperature TP

(energy) and substituting it on our expression for the
temperature (31), we find the approximate expression

TRGþMDR ≈ TRG þ 5

168π

Q2

T2
P

ðr2þ −Q2Þ2
r9þ

�
ln

�
rþ
Q

�
− 1

�
:

ð33Þ

Here, we define TRGþMDR as the Hawking temperature
considering the factor gðϵÞ=fðϵÞ due to rainbow gravity
(RG) plus the correction from ωðTÞ exclusively due to the

(a) (b)

(c)

FIG. 2. Implicit plot of the temperature as a function of the horizon radius for Q ¼ 1 ¼ EP. Blue (dashed) line represents the usual
result of general relativity (i.e., when ω ¼ 1=3 and EP → ∞), the red (dotted) line represents the usual modification of rainbow gravity
(ω ¼ 1=3), while the black (solid) line describes our novel result.
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MDR. And TRG corresponds just to the correction due to
rainbow gravity, for ω≡ 1=3:

TRG ≈
1

4π

�
1

rþ
−
Q2

r3þ

�
þ 1

8πT2
P

r2þ −Q2

rþðr2þ þQ2Þ2 : ð34Þ

As we can see, for this example of MDR, TRG presents
the ratio of polynomial corrections depending on the
horizon radius and the charge. As expected, if Q ¼ 0,
Planck-scale corrections still affect the Schwarzschild black
hole, and are of the order r−3þ .
Now, analyzing the full contribution TRGþMDR, we verify

the presence of a logarithmic correction of the kind
Q2½lnðrþ=QÞ − 1�, which obviously gets null in the limit
Q → 0. Besides that, the dominant contribution of this
correction is of the order O ∼ r−5þ lnðrþ=QÞ, which is
highly suppressed when compared to the isolated correc-
tion due to the rainbow functions (r−3þ ). This explains the
behavior showed in Fig. 2(a).
As for the case of the Hawking temperature, our

approach manifests new entropy corrections, which can
be calculated in a usual way:

S ¼
Z

1

T
dM
drþ

drþ: ð35Þ

Solving the equation AðrþÞ ¼ 0 for the mass, we find
M ¼ Mðrþ; Q;ωðTÞÞ. Using the approximate form of the
temperature given by (33) in this expression, we can
integrate Eq. (35) to find

SRGþMDR

¼ SRG−
10π2

21GE2
P

Q2

A2

�
A−3πQ2þðA−6πQ2Þ ln

�
A

4πQ2

��
ð36Þ

where

SRG ¼ A
4G

−
π

2GE2
p
ln

�
Q2

G
þ A
4πG

�
−

πQ2

2GE2
PðA=4π þQ2Þ ;

ð37Þ

for A ¼ 4πr2þ is the area of the event horizon. As before,
the subscript (RG) means usual rainbow gravity correction
[calculated using (34)], while (RGþMDR) means this
correction added to those of considering ω ¼ ωðTÞ [calcu-
lated from (33)].
As it is usually the case in the rainbow gravity literature

(for instance [20]), the function fðϵÞ and gðϵÞ allows one to
derive logarithmic corrections to the entropy from (37),
which reproduces the kind of behavior found in other
approaches to quantum gravity phenomenology, like the
use of MDRs and a generalized uncertainty principle that
effectively describe results from loop quantum gravity and
string theory [48]. Now, we have extra independent
corrections that are only possible from the approach that
we propose here for this kind of MDR. As before, in the
limiting case of Q → 0, we recover the results found
in [20].

B. Second case

Since the leading order of the dispersion relation defined
in Sec. III A 2 is also quadratic (in fact it is smaller by a
factor of 4), its behavior will be similar to the previous
example when we consider just approximate expressions.
For instance, the perturbative location of the horizon will be
the same as Eq. (29), where now α ¼ 10π2=21.
We follow a procedure similar to the one of the last

subsection; however, since our rainbow functions are a
function directly of the momentum, we do not need to solve
an equation for the energy in order to make use of the
uncertainty principle. This way, we simply substitute (28)
into the dispersion relation (3) defined from the set of
functions (22).
Solving Eq. (10) for GM and substituting into the

temperature (27), we find the implicit function

TH ¼ EPr−2−6ωþ
2

ffiffiffi
2

p
π

"
ðQ1þ3ω þ r1þ3ω

þ Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cosh

�
E−1
P

rþ þQ1þ3ωr−3ωþ

�
þ

r3ωþ
EP

sinh
h

E−1
P

rþþQ1þ3ωr−3ωþ

i
Q1þ3ω þ r1þ3ω

þ

vuut ðr1þ3ω
þ − 3ωQ1þ3ωÞ

#
: ð38Þ

In this case, the relation between the horizon radius and
the charge is modified in our approach because the factor
r1þ3ω
þ − 3ωQ1þ3ωmust be positive in order to avoid negative
temperatures. A first order approximation for the temper-
ature reads the same expression (33) and (34) of the previous
subsection if we map T2

P ↦ 4T2
P. This suppression can be

seen in Fig. 2(b) in comparison to Fig. 2(a), since the values

chosen for these plots of the full modified Hawking temper-
ature are such that in the interval r ∈ ð1; 1.5Þ, it is com-
pletely dominated by this first order term, and in the first case
the maximum separation between the result from general
relativity and the quantum corrections is numerically of the
order ∼4 × 10−3, while for the second case it is of the order
∼10−3 i.e., it is four times smaller.
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The entropy corrections obey the same rule as the
temperature, i.e., it can be found from Eqs. (36) and
(37), by the map T2

P ↦ 4T2
P.

C. Third case

This third case is similar to the previous subsection in the
sense of being unnecessary to solve the MDR for the
energy. However, it presents some differences regarding
the perturbative expressions of the horizon radius (in this
case, not so expressive), the temperature, and the entropy
since its leading order comes in a fourth power of the
Planck temperature (energy).
As a matter of fact, the definition of the temperature-

dependent horizon radius keeps some similarities with the
previous case

rþ ¼ Q exp

�
−
ðrþ − ρþÞðrþ − ρ−Þ

αQ2T4=T4
P

�
; ð39Þ

where α ¼ 16π4. However, the dependence of the temper-
ature comes in a fourth power.
The main departures appear in the temperature and the

entropy. In fact, by substituting (28) into the dispersion
relation (3), using (19), solving Eq. (10) for GM and
substituting it into the temperature (27), we find the implicit
function

TH ¼ 1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r12ωðTÞþ

E4
PðQ1þ3ωðTÞ þ r1þ3ωðTÞ

þ Þ

vuut
× ðr−1þ − 3ωðTÞQ3ωðTÞþ1r−2−3ωðTÞþ Þ: ð40Þ

Also in this case, the positiveness of the temperature
imposes a complementary relation between the horizon
radius and the charge. Besides that, the ratio of polynomials
that correct the temperature in rainbow gravity is different
from the previous case, as expected:

TRG ≈
1

4π

�
1

rþ
−
Q2

r3þ

�
þ rþ
8πT4

P

r2þ −Q2

ðr2þ þQ2Þ4 ; ð41Þ

and the full correction due to considering the MDR also
presents important differences in comparison to the pre-
vious cases of second order perturbations:

TRGþMDR≈TRGþ
1

64π

Q2

T4
P

ðr2þ−Q2Þ4
r15þ

�
ln

�
rþ
Q

�
−1

�
: ð42Þ

In fact, this new contribution is highly suppressed for
higher values of the horizon, since its dominant terms are of
the formQ2r−7, while those from rainbow gravity are of the
kind r−5. This behavior is explicit in Fig. 2(c), where there
is practically no difference between the usual rainbow
gravity correction and our new contribution for the values

considered in our plot. Besides that, the global nature of the
Hawking temperature of the undeformed black hole sur-
rounded by radiation and stiff matter are similar (a property
that is preserved when considering rainbow corrections),
which is an extra explanation for the similarities presented
in our graphs.
Also the entropy presents significant differences in

comparison to the previous case, in particular the absence
of the logarithmic corrections for the pure rainbow gravity
case (which is a feature of MDRs that are quadratic on
Planck energy). But, we now have a novel result due to the
recovery of the logarithmic corrections due to the consid-
eration of a temperature-dependent ω,

SRGþMDR ¼ SRG þ π

GE4
P

Q2

r10þ

�
3

200
Q6

�
1þ 10 ln

�
rþ
Q

��

−
7

128
Q4r2þ

�
1þ 8 ln

�
rþ
Q

��

þ 5

72
Q2r4þ

�
1þ 6 ln

�
rþ
Q

��

−
1

32
r6þ

�
1þ 4 ln

�
rþ
Q

���
ð43Þ

where

SRG ¼ A
4G

þ π

6GE4
P

3r4þ þ 3Q2r2þ þQ4

ðQ2 þ r2þÞ3
: ð44Þ

This new contribution presents striking differences in
comparison to the quadratic corrections and presents all
possible combinations of products of powers of Q and rþ
with dimensions length to the sixth. However, as before this
new correction is highly suppressed by a factor of r−10þ , as
can be seen in (43).
In the next section, we shall explore an alternative

formulation for dealing with the energy dependence of
the metric, that will allow us to analyze a case in which the
temperature presents a globally different behavior in
comparison to the charged cases of general relativity and
rainbow gravity.

V. ALTERNATIVE APPROACH

In this section we shall follow a different approach to this
issue that is suitable to situations in which it is not possible
to solve the modified dispersion relation for the energy and
requires an alternative relation between quantities related to
the black hole itself and the energy presented in the rainbow
functions. To illustrate this approach, let us work with the
following functions:

fðϵÞ ¼ eE=EP − 1

E=EP
; gðϵÞ ¼ 1; ð45Þ
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which in a first order approximation implies the following
MDR that presents a linear deformation:

E2 ≈ p2 −
E3

EP
: ð46Þ

This has been the case of study of some of the first
investigations in quantum gravity phenomenology [6,50],
and is depicted in Fig. 3(a). From Eq. (14), we can define
the temperature-dependent equation of state parameter
ωðTÞ, whose behavior is depicted in Fig. 3(b). As can
be seen, for low temperatures, the radiation fluid behaves
like the usual case, i.e., with ω ≈ 1=3, as a matter of fact, its
first order functional dependence is the following:

ωðTÞ ≈ 1

3
−
60

π4
ζð5Þ T

TP
; ð47Þ

where we have the presence of the Riemann zeta function
ζðsÞ ¼ P∞

n¼1
1
ns, where ζð5Þ ≈ 1.03. While for Planckian

temperatures, this fluid behaves like dust, i.e., with ω ¼ 0.
This fact had already been noticed in Ref. [31], where the
authors were concerned with the effect of modified
dispersion relations on the equation of state parameter in
a cosmological background.
The temperature-dependent horizon can than be straight-

forwardly read from Eq. (25) as

rþ ¼ Q exp

�ðrþ − ρþÞðrþ − ρ−Þ
180
π4

ζð5ÞQ2T=TP

�
: ð48Þ

The Hawking temperature is defined in the usual way, by
Eq. (27). However, we now follow an approach different
from the last section and let us suppose that we define the
rainbow metric from measurements of photons with an
average energy E ¼ hEi such that we can identify the
energy of the photons emitted from Hawking radiation with
the black hole temperature, i.e., T ¼ E [20].

From this identification, and the definition (27), the
Hawking temperature T is implicitly defined by the
equation

T ¼ T
TP

2GMr−2 − 3ωðTÞQ1þ3ωðTÞr−2−3ωðTÞ

4πðeT=TP − 1Þ : ð49Þ

The behavior of this temperatureversus the horizon radius
is depicted in Fig. 4,wherewe chose thevaluesM ¼ 1 ¼ EP
andQ ¼ 0.25. This way we can see this numerical analysis
confirms exactly what we expected from the analysis of the
equation of state parameter ω. Since for low temperatures,
the black hole behaves like the usual Reissner-Nordström
solution, while in a Planckian regime the black hole temper-
ature starts to simulate Kiselev’s solutionwithω ¼ 0, which
corresponds to the Schwarzschild black hole with a rede-
fined mass M̃ ¼ M −Q=2G corrected just by the rainbow
gravity factors.
In that figure, the blue (dashed) line represents the

Hawking temperature of the Reissner-Nordström metric,
while the red (dotted) one presents correction just due to
rainbow gravity (and our ansatz that relates the temperature
and the energy). Now, the black (solid) line is the implicit
plot of the temperature (49), where ωðTÞ is given by the
ratio of integrals given by Eq. (14) using the functions (45).
In this case, we verify a departure of the Reissner-
Nordström behavior for higher temperatures and a gradual
approximation of the Schwarzschild-like case corrected by
the rainbow factor. For illustrative reasons, we added an
extra curve, the orange (dotted-dashed) one that corre-
sponds this aforementioned rainbow-Schwarzschild case
for this choice of parameters.
The corrective factor given by the rainbow functions

gðϵÞ=fðϵÞ shift the maximum value attained by the temper-
ature without modifying its overall form. This example

(a) (b) r

FIG. 3. ðeE=EP−1E=EP
Þ2E2 ¼ p2.
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demonstrates that our corrections have deeper consequences
on metrics corrected by modified dispersion relations.
Besides what we already discussed, the presence of

corrections linear on the Planck scale leads to first order
equations that differ from the previous approaches. In fact,
by using expression (47) in the implicit Eq. (49) and
solving it for T, we find a full expression TRGþMDR that, as
before, can be decomposed into a rainbow gravity term
TRG, plus our novel contribution:

TRGþMDR ≈ TRG −
45

4π6TP
ζð5ÞQ2

ðr2þ −Q2Þ
r6þ

�
ln

�
rþ
Q

�
− 1

�
;

ð50Þ

where

TRG ≈
1

4π

�
1

rþ
−
Q2

r3þ

�
−

1

32πEP

ðr2þ −Q2Þ2
r6þ

: ð51Þ

The entropy corrections are consistently different than
the previous cases, for instance the usual rainbow gravity
contribution reads

SRG ≈ π
r2þ
G

þ 1

4GTP

�
rþ þQ2

rþ

�
; ð52Þ

while our full expression is

SRGþMDR ≈ SRG þ ζð5Þ 90

π4GEP

Q
rþ

�
3Q

�
1þ ln

�
rþ
Q

��

þ r ln

�
rþ
Q

�
ln

�
Q − rþ
Qþ rþ

�

þ rþ

�
Li2

�
rþ
Q

�
− Li2

�
−
rþ
Q

���
; ð53Þ

where we verify the nontrivial presence of the polylogar-
ithm function LisðzÞ ¼

P∞
k¼1

zk
ks.

VI. FINAL REMARKS

We proposed a phenomenological application of
Kiselev’s solution of a black hole surrounded by a fluid
in the scenario of modified dispersion relations. These
solutions basically differ by the equation of state parameters
used to model the fluids [29]. As a particular case of study,
we considered the radiation case, which is described by the
usual ω ¼ 1=3 parameter when the massless dispersion
relation reads E2 ¼ p2 and furnishes the metric of a static
charged black hole (Reissner-Nordström solution). In a
phenomenological scenario that takes into account modified
dispersion relations (as typically expected from low energy
models of quantum gravity), corrections on ω must take
place. In this case, we are mapped onto a modified Reissner-
Nordstroöm metric that, in principle, could give us infor-
mation about a quantum regime in a bottom-up approach to
quantum gravity.
Complementarily, we also absorb information about a

quantum property of spacetime by exploring the, so-called,
rainbow metric defined in the seminal paper [19]. This way,
we aim to furnish a coherent correction of the quantum
corrected charged black hole. In this case, the equation of
state parameter depends on the ratio between the temper-
ature of the fluid and the temperature (energy) scale of the
modified dispersion relation (which for simplicity we treat
as the Planck temperature); therefore, it turns out that the
analysis of the corresponding black hole thermodynamics
was a natural path to follow.
We then considered four modified dispersion relations (a

first analysis with three examples, and a fourth one used for
illustrating an alternative formulation), where each of them
either comes from a particular theoretical approach to
quantum gravity or from particular phenomenological
motivations. We were then able to calculate approximative
corrections on thermodynamic quantities, such as the
Hawking temperature and the black hole entropy, where
we isolated those contributions coming exclusively from
the rainbow gravity approach from ours. Analytical expres-
sions could not be found for the case of these MDRs,
but we depicted the behavior of the equation of state
parameter and the Hawking temperature by assuming their
implicit definitions given in terms of undefined integrals.

FIG. 4. Temperature versus horizon radius forM ¼ 1 ¼ EP and
Q ¼ 0.5 and MDR ðeE=EP−1E=EP

Þ2E2 ¼ p2. For high temperatures, the
modifiedReissner-Nordströmblack holemimics the Schwarzschild
one. Blue (dashed) line represents GR, the red (dotted) line
represents RG, the black (solid) line describes RGþMDR, and
the orange (dotted-dashed) line describes a RG Schwarzschild
black hole.
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In particular, the temperature obeyed the qualitative behav-
ior expected from the asymptotic behavior of the equation
of state parameter.
The main results of our analysis are the presence of an

uncertainty in the geometrical location of the horizon,
depending on the temperature of the fluid of photons used
to probe this spacetime. Besides that, we found corrections
on expressions for minimal black hole radii (when this is the
case), which must have imprints in the calculation of
remnants of black hole evaporation, which shall be analyzed
in future investigations. We also found logarithmic correc-
tions of the temperature, which were transmitted to the
entropy, demonstrating that it is still possible to have this
kind of correction (which are common in other approaches
to quantum gravity) even when the usual rainbow gravity
approach does not furnish them. And the analysis of the
temperature indeed demonstrated that for smaller radii (and
higher temperatures) a particular black hole canmimic other
cases, which could have important consequences, like
modifications of the causal structure of these spacetimes,

which could be read, for instance, from temperature-
dependent Penrose-Carter diagrams.
This approach allows one to investigate quantum cor-

rections for fluids with different equations of state param-
eters, being necessary just to find where the modified
dispersion relation can be important for counting of states
in a given momenta interval, which might have imprints on
other astrophysical objects studied in quantum gravity
phenomenology.
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q-deformation of Poincaré algebra, Phys. Lett. B 264, 331
(1991); J. Lukierski, A. Nowicki, and H. Ruegg, New
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dimension, Phys. Lett. B 329, 189 (1994); J. Lukierski, H.
Ruegg, and W. J. Zakrzewski, Classical quantum mechanics
of free κ-relativistic systems, Ann. Phys. (N.Y.) 243, 90
(1995).

[10] F. Girelli, S. Liberati, and L. Sindoni, Planck-scale modified
dispersion relations and Finsler geometry, Phys. Rev. D 75,
064015 (2007).

[11] G. Amelino-Camelia, L. Barcaroli, G. Gubitosi, S. Liberati,
and N. Loret, Realization of doubly special relativistic

symmetries in Finsler geometries, Phys. Rev. D 90, 125030
(2014).

[12] S. I. Vacaru, Finsler branes and quantum gravity phenom-
enology with lorentz symmetry violations, Classical Quan-
tum Gravity 28, 215001 (2011).

[13] G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, and
L. Smolin, The principle of relative locality, Phys. Rev. D
84, 084010 (2011); G. Amelino-Camelia, M. Arzano, J.
Kowalski-Glikman, G. Rosati, and G. Trevisan, Relative-
locality distant observers and the phenomenology of
momentum-space geometry, Classical Quantum Gravity
29, 075007 (2012); G. Amelino-Camelia, N. Loret, and
G. Rosati, Speed of particles and a relativity of locality in
κ-Minkowski quantum spacetime, Phys. Lett. B 700, 150
(2011).

[14] A. Ballesteros, I. Gutierrez-Sagredo, and F. J. Herranz, The
κ-(A)dS noncommutative spacetime, Phys. Lett. B 796, 93
(2019); A. Ballesteros, G. Gubitosi, I. Gutiérrez-Sagredo,
and F. J. Herranz, Curved momentum spaces from quantum
(anti-)de Sitter groups in (3þ 1) dimensions, Phys. Rev. D
97, 106024 (2018).

[15] I. P. Lobo, N. Loret, and F. Nettel, Investigation of Finsler
geometry as a generalization to curved spacetime of Planck-
scale-deformed relativity in the deSitter case, Phys.Rev.D95,
046015 (2017); I. P. Lobo, N. Loret, and F. Nettel, Rainbows
without unicorns: Metric structures in theories with modified
dispersion relations, Eur. Phys. J. C 77, 451 (2017).

[16] M. Letizia and S. Liberati, Deformed relativity symmetries
and the local structure of spacetime, Phys. Rev. D 95,
046007 (2017).

[17] L. Barcaroli, L. K. Brunkhorst, G. Gubitosi, N. Loret, and
C. Pfeifer, Hamilton geometry: Phase space geometry from

I. P. LOBO et al. PHYS. REV. D 101, 084004 (2020)

084004-12

https://doi.org/10.12942/lrr-1998-1
https://doi.org/10.12942/lrr-1998-1
https://arXiv.org/abs/1004.0352
https://arXiv.org/abs/1004.0352
https://arXiv.org/abs/gr-qc/0601121
https://doi.org/10.1088/0264-9381/28/15/153001
https://doi.org/10.12942/lrr-2013-5
https://doi.org/10.1142/S0218271802001330
https://doi.org/10.1142/S0218271802001330
https://doi.org/10.1016/S0370-2693(01)00506-8
https://doi.org/10.1016/0370-2693(91)90358-W
https://doi.org/10.1016/0370-2693(91)90358-W
https://doi.org/10.1016/0370-2693(92)90894-A
https://doi.org/10.1016/0370-2693(94)90759-5
https://doi.org/10.1006/aphy.1995.1092
https://doi.org/10.1006/aphy.1995.1092
https://doi.org/10.1103/PhysRevD.75.064015
https://doi.org/10.1103/PhysRevD.75.064015
https://doi.org/10.1103/PhysRevD.90.125030
https://doi.org/10.1103/PhysRevD.90.125030
https://doi.org/10.1088/0264-9381/28/21/215001
https://doi.org/10.1088/0264-9381/28/21/215001
https://doi.org/10.1103/PhysRevD.84.084010
https://doi.org/10.1103/PhysRevD.84.084010
https://doi.org/10.1088/0264-9381/29/7/075007
https://doi.org/10.1088/0264-9381/29/7/075007
https://doi.org/10.1016/j.physletb.2011.04.054
https://doi.org/10.1016/j.physletb.2011.04.054
https://doi.org/10.1016/j.physletb.2019.07.038
https://doi.org/10.1016/j.physletb.2019.07.038
https://doi.org/10.1103/PhysRevD.97.106024
https://doi.org/10.1103/PhysRevD.97.106024
https://doi.org/10.1103/PhysRevD.95.046015
https://doi.org/10.1103/PhysRevD.95.046015
https://doi.org/10.1140/epjc/s10052-017-5017-0
https://doi.org/10.1103/PhysRevD.95.046007
https://doi.org/10.1103/PhysRevD.95.046007


modified dispersion relations, Phys. Rev. D 92, 084053
(2015); L. Barcaroli, L. K. Brunkhorst, G. Gubitosi, N.
Loret, and C. Pfeifer, Curved spacetimes with local
κ-Poincaré dispersion relation, Phys. Rev. D 96, 084010
(2017); C. Pfeifer, Redshift and lateshift from homogeneous
and isotropic modified dispersion relations, Phys. Lett. B
780, 246 (2018).

[18] G. G. Carvalho, I. P. Lobo, and E. Bittencourt, Extended
disformal approach in the scenario of rainbow gravity, Phys.
Rev. D 93, 044005 (2016).

[19] J. Magueijo and L. Smolin, Gravity’s rainbow, Classical
Quantum Gravity 21, 1725 (2004).

[20] Y. Ling, X. Li, and H. B. Zhang, Thermodynamics of
modified black holes from gravity’s rainbow, Mod. Phys.
Lett. A 22, 2749 (2007).

[21] Y. Ling, B. Hu, and X. Li, Modified dispersion relations and
black hole physics, Phys. Rev. D 73, 087702 (2006).

[22] H. Li, Y. Ling, and X. Han, Modified (A)dS Schwarzschild
black holes in rainbow spacetime, Classical Quantum
Gravity 26, 065004 (2009).

[23] Y. Gim and W. Kim, Thermodynamic phase transition in the
rainbow Schwarzschild black hole, J. Cosmol. Astropart.
Phys. 10 (2014) 003.

[24] S. H. Hendi, B. Eslam Panah, S. Panahiyan, and M.
Momennia, F(R) gravity’s rainbow and its Einstein counter-
part, Adv. High Energy Phys. 2016, 9813582 (2016).

[25] S. H. Hendi, B. E. Panah, and S. Panahiyan, Topological
charged black holes in massive gravity’s rainbow and their
thermodynamical analysis through various approaches,
Phys. Lett. B 769, 191 (2017).

[26] S. H. Hendi, M. Faizal, B. E. Panah, and S. Panahiyan,
Charged dilatonic black holes in gravity’s rainbow, Eur.
Phys. J. C 76, 296 (2016).

[27] S. H. Hendi, S. Panahiyan, B. E. Panah, M. Faizal, and M.
Momennia, Critical behavior of charged black holes in
Gauss-Bonnet gravity’s rainbow, Phys. Rev. D 94, 024028
(2016).

[28] I. P. Lobo and M. Ronco, Rainbow-like black hole metric
from loop quantum gravity, Universe 4, 139 (2018).

[29] V. V. Kiselev, Quintessence and black holes, Classical
Quantum Gravity 20, 1187 (2003).

[30] R. Banerjee and R. Biswas, Thermodynamics of black holes
in rainbow gravity, arXiv:1610.08090.

[31] G. Santos, G. Gubitosi, and G. Amelino-Camelia, On
the initial singularity problem in rainbow cosmology,
J. Cosmol. Astropart. Phys. 08 (2015) 005.

[32] J. Magueijo and L. Smolin, Lorentz invariance with an
invariant energy scale, Phys. Rev. Lett. 88, 190403
(2002).

[33] J. Magueijo and L. Smolin, Generalized Lorentz invariance
with an invariant energy scale, Phys. Rev. D 67, 044017
(2003).

[34] S. Weinfurtner, P. Jain, M. Visser, and C.W. Gardiner,
Cosmological particle production in emergent rainbow
spacetimes, Classical Quantum Gravity 26, 065012 (2009).

[35] M. Assanioussi, A. Dapor, and J. Lewandowski, Rainbow
metric from quantum gravity, Phys. Lett. B 751, 302 (2015).

[36] A. Vikman, Can dark energy evolve to the phantom?, Phys.
Rev. D 71, 023515 (2005).

[37] R. R. Caldwell, A phantom menace?, Phys. Lett. B 545, 23
(2002).

[38] K. Nozari and A. S. Sefidgar, The effect of modified
dispersion relations on the thermodynamics of black-body
radiation, Chaos, Solitons Fractals 38, 339 (2008).

[39] V. Husain, S. S. Seahra, and E. J. Webster, High energy
modifications of blackbody radiation and dimensional
reduction, Phys. Rev. D 88, 024014 (2013).

[40] S. Alexander and J. Magueijo, Noncommutative geometry
as a realization of varying speed of light cosmology,
arXiv:hep-th/0104093; S. Alexander, R. Brandenberger,
and J. Magueijo, Noncommutative inflation, Phys. Rev. D
67, 081301 (2003).

[41] K. Huang, Statistical Mechanics, 2nd ed. (John Wiley &
Sons, New York, 1987), Section 12.1.

[42] S. Brahma, M. Ronco, G. Amelino-Camelia, and A.
Marciano, Linking loop quantum gravity quantization ambi-
guities with phenomenology, Phys. Rev. D 95, 044005
(2017).

[43] J. Ambjorn, J. Jurkiewicz, and R. Loll, Spectral Dimension
of the Universe, Phys. Rev. Lett. 95, 171301 (2005).

[44] P. Horava, Spectral Dimension of the Universe in Quantum
Gravity at a Lifshitz Point, Phys. Rev. Lett. 102, 161301
(2009).

[45] D. F. Litim, Fixed Points of Quantum Gravity, Phys. Rev.
Lett. 92, 201301 (2004).

[46] L. Modesto, Fractal structure of loop quantum gravity,
Classical Quantum Gravity 26, 242002 (2009).

[47] G. Amelino-Camelia, M. Arzano, G. Gubitosi, and J.
Magueijo, Dimensional reduction in the sky, Phys. Rev. D
87, 123532 (2013).

[48] G. Amelino-Camelia, M. Arzano, and A. Procaccini, Severe
constraints on loop-quantum-gravity energy-momentum
dispersion relation from black-hole area-entropy law,
Phys. Rev. D 70, 107501 (2004); G. Amelino-Camelia,
M. Arzano, Y. Ling, and G. Mandanici, Black-hole thermo-
dynamics with modified dispersion relations and general-
ized uncertainty principles, Classical Quantum Gravity 23,
2585 (2006).

[49] R. J. Adler, P. Chen, and D. I. Santiago, The generalized
uncertainty principle and black hole remnants, Gen. Relativ.
Gravit. 33, 2101 (2001).

[50] G. Amelino-Camelia, J. R. Ellis, N. E. Mavromatos, D. V.
Nanopoulos, and S. Sarkar, Tests of quantum gravity from
observations of gamma-ray bursts, Nature (London) 393,
763 (1998).

EFFECTS OF PLANCK-SCALE-MODIFIED DISPERSION … PHYS. REV. D 101, 084004 (2020)

084004-13

https://doi.org/10.1103/PhysRevD.92.084053
https://doi.org/10.1103/PhysRevD.92.084053
https://doi.org/10.1103/PhysRevD.96.084010
https://doi.org/10.1103/PhysRevD.96.084010
https://doi.org/10.1016/j.physletb.2018.03.017
https://doi.org/10.1016/j.physletb.2018.03.017
https://doi.org/10.1103/PhysRevD.93.044005
https://doi.org/10.1103/PhysRevD.93.044005
https://doi.org/10.1088/0264-9381/21/7/001
https://doi.org/10.1088/0264-9381/21/7/001
https://doi.org/10.1142/S0217732307022931
https://doi.org/10.1142/S0217732307022931
https://doi.org/10.1103/PhysRevD.73.087702
https://doi.org/10.1088/0264-9381/26/6/065004
https://doi.org/10.1088/0264-9381/26/6/065004
https://doi.org/10.1088/1475-7516/2014/10/003
https://doi.org/10.1088/1475-7516/2014/10/003
https://doi.org/10.1155/2016/9813582
https://doi.org/10.1016/j.physletb.2017.03.051
https://doi.org/10.1140/epjc/s10052-016-4119-4
https://doi.org/10.1140/epjc/s10052-016-4119-4
https://doi.org/10.1103/PhysRevD.94.024028
https://doi.org/10.1103/PhysRevD.94.024028
https://doi.org/10.3390/universe4120139
https://doi.org/10.1088/0264-9381/20/6/310
https://doi.org/10.1088/0264-9381/20/6/310
https://arXiv.org/abs/1610.08090
https://doi.org/10.1088/1475-7516/2015/08/005
https://doi.org/10.1103/PhysRevLett.88.190403
https://doi.org/10.1103/PhysRevLett.88.190403
https://doi.org/10.1103/PhysRevD.67.044017
https://doi.org/10.1103/PhysRevD.67.044017
https://doi.org/10.1088/0264-9381/26/6/065012
https://doi.org/10.1016/j.physletb.2015.10.043
https://doi.org/10.1103/PhysRevD.71.023515
https://doi.org/10.1103/PhysRevD.71.023515
https://doi.org/10.1016/S0370-2693(02)02589-3
https://doi.org/10.1016/S0370-2693(02)02589-3
https://doi.org/10.1016/j.chaos.2006.11.035
https://doi.org/10.1103/PhysRevD.88.024014
https://arXiv.org/abs/hep-th/0104093
https://doi.org/10.1103/PhysRevD.67.081301
https://doi.org/10.1103/PhysRevD.67.081301
https://doi.org/10.1103/PhysRevD.95.044005
https://doi.org/10.1103/PhysRevD.95.044005
https://doi.org/10.1103/PhysRevLett.95.171301
https://doi.org/10.1103/PhysRevLett.102.161301
https://doi.org/10.1103/PhysRevLett.102.161301
https://doi.org/10.1103/PhysRevLett.92.201301
https://doi.org/10.1103/PhysRevLett.92.201301
https://doi.org/10.1088/0264-9381/26/24/242002
https://doi.org/10.1103/PhysRevD.87.123532
https://doi.org/10.1103/PhysRevD.87.123532
https://doi.org/10.1103/PhysRevD.70.107501
https://doi.org/10.1088/0264-9381/23/7/022
https://doi.org/10.1088/0264-9381/23/7/022
https://doi.org/10.1023/A:1015281430411
https://doi.org/10.1023/A:1015281430411
https://doi.org/10.1038/31647
https://doi.org/10.1038/31647

