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We perform the canonical analysis of the Holst action for general relativity with a cosmological constant
without introducing second-class constraints. Our approach consists in identifying the dynamical and
nondynamical parts of the involved variables from the very outset. After integrating out the nondynamical
variables associated with the connection, we obtain the description of phase space in terms of manifestly
SOð3; 1Þ [or SOð4Þ, depending on the signature] covariant canonical variables and first-class constraints
only. We impose the time gauge on them and show that the Ashtekar-Barbero formulation of general
relativity emerges. Later, we discuss a family of canonical transformations that allows us to construct new
SOð3; 1Þ [or SOð4Þ] covariant canonical variables for the phase space of the theory and compare them with
the ones already reported in the literature, pointing out the presence of a set of canonical variables not
considered before. Finally, we resort to the time gauge again and find that the theory, when written in terms
of the new canonical variables, either collapses to the SOð3Þ ADM formalism or to the Ashtekar-Barbero
formalism with a rescaled Immirzi parameter.

DOI: 10.1103/PhysRevD.101.084003

I. INTRODUCTION

In the first-order formalism, (real) general relativity is
described by the Holst action [1], which is made of the
Palatini action coupled to the Holst term via the Immirzi
parameter [2]. In vacuum (with or without a cosmological
constant), this action reproduces exactly the same dyna-
mics contained in the metric formulation of Einstein’s
theory obtained from the Einstein-Hilbert action as long as
the orthonormal frame be nondegenerate. Outstandingly,
the Holst action establishes the Lagrangian setting of the
Ashtekar-Barbero variables [3], which constitute the build-
ing blocks of loop quantum gravity [4–8]. Nevertheless, the
derivation of these variables makes use of the so-called time
gauge, which breaks the Lorentz group SOð3; 1Þ down to
the SOð3Þ subgroup. This gauge fixing avoids the intro-
duction of second-class constraints, simplifying the result-
ing canonical theory at the expense of local Lorentz
invariance.
Because Lorentz invariance plays a fundamental role in

modern physics, there have been different approaches

tackling the Lorentz-covariant canonical analysis of the
Holst action. Nonetheless, those perspectives introduce
second-class constraints, which are dealt with at the end
either by using the Dirac bracket [9] or by solving them
explicitly [10–13]. Remarkably, in Refs. [11,12] the sec-
ond-class constraints were solved while preserving the
manifest Lorentz invariance of the theory, obtaining dif-
ferent sets of canonical variables for the phase space of
general relativity that is now described by first-class
constraints only.
In the standard approach, the second-class constraints

are introduced due to a mismatch between the number of
independent components of the Lorentz connection and
those of the orthonormal field. It turns out that the spatial
part of the connection corresponds to the configuration
variables, and their canonically conjugate momenta are
related to the spatial part of the orthonormal frame. Because
the number of independent variables in the canonical
momenta surpasses the number of components in the
spatial part of the frame, one must add a quadratic con-
straint on the momenta in order to even things out. The
Hamiltonian evolution of this constraint then generates a
secondary constraint which, together with the former,
makes up the set of second-class constraints of general
relativity. Solving these constraints is what Refs. [10–13]
are devoted to.
Alternatively, instead of real general relativity, one can

move to the self-dual Palatini action [14–16] (obtained
from the Holst action by taking the Immirzi parameter
equal to the imaginary unit), which involves the self-dual
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part of the Lorentz connection. This action allows us to
derive a Hamiltonian formulation of the theory (the
Ashtekar formalism [17,18]) resorting neither to the intro-
duction of second-class constraints nor to the time gauge
[19] (see also [20]), thus preserving Lorentz invariance;
however, as implied by the use of self-dual variables, the
formulation is complex and needs to be supplemented
with reality conditions [the variables take advantage of
the isomorphism between the Lie algebras of SOð3; 1Þ
and SOð3;CÞ].
So, in order to avoid complex variables and work with

real ones, the introduction of second-class constraints to
preserve Lorentz invariance seems inexorable. Is that so? In
this paper we show that it is possible to perform the
canonical analysis of the Holst action without introducing
neither second-class constraints nor gauge fixings spoiling
Lorentz invariance. This is accomplished by providing a
parametrization of the spatial part of the connection that
separates its dynamical components from its nondynamical
ones. The former equal in quantity to the number of
components of the spatial part of the frame (which in turn
are related to the canonical momenta), whereas the latter
appear quadratically in the action and then can be inte-
grated out via their own equation of motion. The resulting
canonical theory, being manifestly Lorentz covariant,
agrees with the one reported in Ref. [11]; outstandingly,
the derivation is much simpler than the original one and the
geometrical meaning of the variables is clearer.
The outline of the paper is as follows. After establishing

our conventions, we perform the 3þ 1 decomposition of
the action in Sec. II, identifying the dynamical variables
that make up the presymplectic structure. We then repar-
ametrize the spatial part of the connection in terms of these
variables and some additional fields that turn out to be
auxiliary fields. We get rid of the latter and arrive at the
canonical formulation of general relativity with manifest
Lorentz invariance and first-class constraints only. Later,
we discuss the time gauge in Sec. III and the implementa-
tion of canonical transformations in Sec. IV. To close the
paper, we give some conclusions.
Conventions. Spacetime indices are denoted by greek

letters (μ; ν;…) so that points on the spacetime manifoldM
are labeled by coordinates fxμg ¼ ft; xag, where t is the
time coordinate (we use the “dot” notation for time
derivatives when possible) and latin letters at the beginning
of the alphabet ða; b;… ¼ 1; 2; 3Þ denote spatial indices.
We assume that M has a topology R × Σ and foliate it by
constant time hypersurfaces Σt, each of which is diffeo-
morphic to some given orientable 3-manifold Σ without
boundary. The coordinates fxag label points on Σt and from
now on we just write Σ for any of these constant time
hypersurfaces. Frame indices are associated with capital
letters I; J;… ¼ f0; ig, for i ¼ 1, 2, 3. These indices are
raised and lowered with the metric ðηIJÞ ¼ diagðσ; 1; 1; 1Þ,
where σ ¼ −1ðσ ¼ þ1Þ in the Lorentzian (Euclidean) case.

The frame rotation group corresponds to the Lorentz group
SOð3; 1Þ for σ ¼ −1 or to the rotation group SOð4Þ for
σ ¼ þ1. The weight of a tensor is either indicated with
the presence of a tilde over or below it, or mentioned
somewhere else in the paper. The internal tensor ϵIJKL
and the spacetime tensor density η

˜
μνλσ (η̃μνλσ) are totally

antisymmetric and such that ϵ0123 ¼ þ1 and η
˜
t123 ¼ þ1

(η̃t123 ¼ þ1). In addition, we define the three-dimensional
Levi-Civita symbols as η

˜
abc ≔ η

˜
tabc (η̃abc ≔ η̃tabc) and

ϵijk ≔ ϵ0ijk. The symmetrizer and antisymmetrizer
are defined by VðαβÞ ≔ ðVαβ þ VβαÞ=2 and V ½αβ� ≔
ðVαβ − VβαÞ=2, respectively. Furthermore, for an antisym-
metric quantity VIJ we define its internal dual as �VIJ ≔

ð1=2ÞϵIJKLVKL and also the object V
ðγÞ

IJ ≔ PIJKLVKL for

PIJKL ≔ ηI½KjηJjL� þ
1

2γ
ϵIJKL; ð1Þ

where γ ≠ 0 is the Immirzi parameter.1 Its inverse is
given by

ðP−1ÞIJKL ¼ γ2

γ2 − σ

�
ηI½KjηJjL� −

1

2γ
ϵIJKL

�
ð2Þ

and satisfies ðP−1ÞIJKLPKLMN ¼ δI½Mδ
J
N�. “∧” and “d” stand

for the wedge product of differential forms and the exterior
derivative, correspondingly.

II. CANONICAL ANALYSIS

In the first-order formalism, the orthonormal frame eI

(assumed to be nondegenerate) and the SOð3; 1Þ [or SOð4Þ]
connection ωI

J are independent degrees of freedom that
encode the gravitational field. In terms of them, the Holst
action [1] for general relativity is given by

S½e;ω� ¼ κ

Z
M

��
�ðeI ∧ eJÞ þ σ

γ
eI ∧ eJ

�
∧ FIJ

−
Λ
12

ϵIJKLeI ∧ eJ ∧ eK ∧ eL
�
; ð3Þ

where FI
J ≔ dωI

J þ ωI
K ∧ ωK

J is the curvature of ωI
J,

which is compatible with the metric ηIJ, dηIJ − ωK
IηKJ −

ωK
JηIK ¼ 0 (and thus ωIJ ¼ −ωJI); κ is a constant related

to Newton’s constant and Λ is the cosmological constant.
Adapted to the spacetime foliation, the frame and the
connection can be written as eI ¼ etIdtþ eaIdxa and
ωI

J ¼ ωt
I
Jdtþ ωa

I
Jdxa, respectively.

Let us introduce a vector nI with the following two
properties at fixed t: eaInI ¼ 0 and nInI ¼ σ. Explicitly,
this vector takes the form,

1We assume γ ≠ � ffiffiffi
σ

p
, which means that the self-dual and

anti-self-dual sectors are excluded in our approach.
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nI ¼
1

6
ffiffiffi
q

p ϵIJKLη̃
abceaJebKecL; ð4Þ

where q > 0 (of weight þ2) is the determinant of the
spatial metric qab ≔ eaIebI , whose inverse metric is
denoted by qab. The projector on the orthogonal plane to
nI is given by

qIJ ≔ qabeaIebJ ¼ δIJ − σnInJ: ð5Þ

Geometrically speaking, since at each point of M the
orthonormal frame eI can be thought of as an isomorphism
between the coordinate basis and the orthonormal basis of
tangent space, the vector nI corresponds to the normal
vector to the hypersurface Σ with respect to the latter basis;
likewise, tangent vectors to Σ are translated into orthogonal
vectors to nI . Thus, the splitting of the tangent space
into the orthogonal and parallel parts to nI encodes the
spacetime foliation.
The 3þ 1 decomposition of the action (3) yields (we

recall that all spatial boundary terms will be neglected
because Σ has no boundary)

S ¼ κ

Z
R×Σ

dtd3x
�
−2Π̃aInJ∂tω

ðγÞ
aIJ þ ωtIJG̃

IJ

þ 1ffiffiffi
q

p etI½2Π̃a
IΠ̃bJnKF

ðγÞ
abJK þ nIðΠ̃aJΠ̃bKF

ðγÞ
abJK

− 2ΛqÞ�
�
; ð6Þ

where Fab
I
J¼∂aωb

I
J−∂bωa

I
Jþωa

I
Kωb

K
J−ωb

I
Kωa

K
J

is the curvature of ωa
I
J, dtd3x is a shorthand for

dt ∧ dx1 ∧ dx2 ∧ dx3, and we have defined

Π̃aI ≔
ffiffiffi
q

p
qabebI ð7Þ

and

G̃IJ ≔ −2PIJ
KL½∂aðΠ̃aKnLÞ þ 2ωa

K
MΠ̃a½MnL��: ð8Þ

Notice that in (6), both ωtIJ and etI appear linearly in the
action and thus play the role of Lagrange multipliers. It is
customary to split the latter into the components parallel
and orthogonal to nI. Thus, we can express it as

etI ¼ NnI þ NaeaI; ð9Þ

whereN is the lapse function andNa is the shift vector [21].
The term of the action (6) involving etI then becomes the

combination −NaṼa − N
˜

˜̃Z for

Ṽa ≔ −2Π̃bInJF
ðγÞ

abIJ; ð10aÞ

˜̃Z ≔ −σΠ̃aIΠ̃bJ F
ðγÞ

abIJ þ 2σΛq; ð10bÞ

and N
˜
≔ N=

ffiffiffi
q

p
.

Let us introduce, for future purposes, the densitized

metric h
˜̃
ab ≔ q−1qab, whose inverse ˜̃h

ab
is given by

˜̃h
ab ¼ Π̃aIΠ̃b

I; its determinant h ≔ detð ˜̃habÞ has weight
þ4 and is related to q by h ¼ q2. Relationship (7) can be
inverted to express eaI in terms of Π̃aI , yielding

eaI ¼ h1=4h
˜̃
abΠ̃bI; ð11Þ

which allows us to express the vector nI as

nI ¼
1

6
ffiffiffi
h

p ϵIJKLη
˜
abcΠ̃aJΠ̃bKΠ̃cL: ð12Þ

In addition, we also define the connection ∇a compatible
with eaI that satisfies

∇aebI ≔ ∂aebI − Γc
abecI þ Γa

I
JebJ ¼ 0: ð13Þ

These are 36 equations for 18 unknowns Γc
abð¼ Γc

baÞ
and 18 unknowns ΓaIJð¼ −ΓaJIÞ. Their solution is the
Christoffel symbol Γc

ab for the spatial metric qab and

ΓaIJ ¼ qbceb½Ijð∂aecjJ� − ∂ceajJ�Þ
þ σqbceb½InJ�nKð∂aecK þ ∂ceaKÞ
þ qbcqdfeaKeb½IjedjJ�∂fecK; ð14Þ

with nI given by (4). Notice that (7) and (13) imply that ∇a

annihilates Π̃aI too,

∇aΠ̃bI ¼ ∂aΠ̃bI þ Γb
acΠ̃cI − Γc

acΠ̃bI þ Γa
I
JΠ̃bJ ¼ 0:

ð15Þ

In terms of Π̃aI , the expression (14) becomes

ΓaIJ ¼ h
˜̃
abΠ̃c½Ij∂cΠ̃bjJ� þ h

˜̃
abh

˜̃
cdΠ̃c

KΠ̃b½IΠ̃f
J�∂fΠ̃dK

þ h
˜̃
bcΠ̃b½Ij∂aΠ̃cjJ� − h

˜̃
abh

˜̃
cdΠ̃b

KΠ̃c½IΠ̃f
J�∂fΠ̃dK

− σh
˜̃
abΠ̃c½InJ�nK∂cΠ̃bK þ σh

˜̃
bcΠ̃b½InJ�nK∂aΠ̃cK;

ð16Þ

with nI given by (12). The curvature of Γa
I
J is Rab

I
J ¼∂aΓb

I
J − ∂bΓa

I
J þ Γa

I
KΓb

K
J − Γb

I
KΓa

K
J.

Note that the first term on the right-hand side of the

action (6) involves the time derivative of ω
ðγÞ

aIJ and thus
contributes to the presymplectic structure of the theory.

CANONICAL ANALYSIS OF HOLST ACTION WITHOUT … PHYS. REV. D 101, 084003 (2020)

084003-3



Since there are 18 independent components in ω
ðγÞ

aIJ (the
same as in ωaIJ), the usual approach requires us to
introduce the same number of canonically conjugate
momenta. However, since these momenta are built up from
the 12 components eaI , six additional constraints on the
momenta must be added [10–13]. This is the traditional
path taken, and it leads to the emergence of second-class
constraints; one set being the aforementioned constraints
on the momenta and the other arising from the preservation
under time evolution of the former. Here, we will follow a
different path inspired by our previous work [11]; instead of
introducing constraints on the momenta, we will properly
parametrize the 18 components of ωaIJ into 12 dynamical
and six nondynamical variables. The 12 dynamical vari-
ables thus will correspond to the configuration variables,
whereas the six nondynamical ones will be later integrated
out from the action, obtaining at the end a manifestly
SOð3; 1Þ [or SOð4Þ] covariant canonical formulation of the
Holst action. To do this, note that the presymplectic
structure in (6) can be expressed as2

−2Π̃aInJ∂tω
ðγÞ

aIJ ¼ 2Π̃aI _CaI; ð17Þ
where we have introduced the 12 configuration variables
CaI defined by [see Eq. (8) of Ref. [11] ]

CaI ≔ Wa
b
IJKω

ðγÞ
b
JK; ð18Þ

with Wa
b
IJK (¼ −Wa

b
IKJ) given explicitly by

Wa
b
IJK ≔ −ðδbaηI½JnK� þ nIh

˜̃
acΠ̃c½JΠ̃b

K�Þ; ð19Þ

which can be thought of as an operator that singles out
the 12 configuration variables CaI—constructed out of the
components of the connection ωaIJ—that contribute to the
resulting canonical symplectic structure. The expression

(18) can be solved for ω
ðγÞ

aIJ to express the connection in
terms of CaI plus six additional variables λ

˜
abð¼ λ

˜
baÞ living

in the kernel of Wa
b
IJK,

ω
ðγÞ

aIJ ¼ Ma
b
IJKCb

K þ λ
˜
abÑb

IJ; ð20Þ

with Ma
b
IJKð¼ −Ma

b
JIKÞ and Ñb

IJð¼ −Ñb
JIÞ being

given by

Ma
b
IJK ≔ 2σδban½IηJ�K þ σh

˜̃
acΠ̃c½IΠ̃b

J�nK

−
σ

2γ
δbaϵIJKLnL −

σ

2γ
ϵIJMNh

˜̃
acΠ̃bMnNΠ̃c

K;

ð21aÞ

Ña
IJ ≔ ϵIJKLΠ̃aKnL: ð21bÞ

[Confront with Eqs. (6), (9), and (10) of Ref. [11] ].
In addition, we introduce the tensor density
U
˜
ab

cIJð¼ U
˜
ba

cIJ ¼ −U
˜
ab

cJIÞ defined as

U
˜
ab

cIJ ≔
�
1 −

σ

γ2

�
� ðP−1ÞIJKLδcðah

˜̃
bÞeΠ̃e

KnL; ð22Þ

where the internal dual in (22) acts on either the first pair or
the last pair of indices of P−1 (� and P−1 commute with one
another). Together, the objects (19), (21a), (21b) and (22)
satisfy the following orthogonality relations:

Wa
cIMNMc

b
MNJ ¼ δbaδ

I
J; ð23aÞ

U
˜
ab

cIJÑd
IJ ¼ δðcaδdÞb; ð23bÞ

Wa
ðb
IJKÑ

cÞJK ¼ 0; ð23cÞ

U
˜
ab

cIJMc
d
IJK ¼ 0; ð23dÞ

as well as the completeness relation,

Ma
c
IJMWc

bMKL þ Ñc
IJU

˜
ac

bKL ¼ δbaδ
K
½Iδ

L
J�: ð24Þ

Therefore, W and U
˜
are orthogonal projectors that allow

us to split the 18 components of the connection ωaIJ

[or ω
ðγÞ

aIJ] into the 12þ 6 variables ðCaI; λ
˜
abÞ. The asso-

ciated decomposition given in (20) is induced by the
canonical symplectic structure given by the right-hand side
of (17). The inverse of the map (20) is given by (18)
together with

λ
˜
ab ¼ U

˜
ab

cIJω
ðγÞ

cIJ; ð25Þ

which clearly shows that CaI and λ
˜
ab are independent

variables among themselves.
Substituting (20) into (8), (10a) and (10b), we obtain,

after some algebra,

G̃IJ ¼ 2Π̃a½ICa
J� þ 4PIJ

KLΠ̃a½KnM�Γa
L
M; ð26aÞ

Ṽa ¼ 2ð2Π̃bI∂ ½aCb�I − CaI∂bΠ̃bIÞ
þ ðP−1ÞIJKLG̃IJðMa

bKLMCbM þ λ
˜
abÑbKLÞ; ð26bÞ2From now on, eaI appears no more; it is replaced by (11), and

thus, nI is given by (12).
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˜̃Z ¼ −σΠ̃aIΠ̃bJRabIJ þ 2Π̃a½IjΠ̃bjJ�
�
CaICbJ þ 2CaI Γ

ðγÞ
bJKnK þ

�
ΓaIL þ 2

γ
� ΓaIL

�
ΓbJKnKnL

þ 1

γ2
qKLΓaIKΓbJL

�
þ 2σΛ

ffiffiffi
h

p
þ 2Π̃aInJ∇aG̃IJ −

1

4
½G̃IJ − ðP−1ÞIJKLG̃KL þ 2σnIG̃J

KnK�G̃IJ

þ σγ2

γ2 − σ
Gabcdðλ

˜
ab −U

˜
ab

eIJ Γ
ðγÞ

eIJÞðλ
˜
cd −U

˜
cd

fKL Γ
ðγÞ

fKLÞ; ð26cÞ

where the coefficients Gabcd ≔ ˜̃h
ab ˜̃h

cd − ˜̃h
ðajc ˜̃hjbÞd have

weight þ4. Notice that there are no terms involving λ
˜
ab

in (26a), and that (26b) and (26c) depend on λ
˜
ab but not on

their derivatives. This is staggering, since the original
expressions (10a) and (10b) involve derivatives of the
connection. The action (6) now takes the suggestive form,

S ¼ κ

Z
R×Σ

dtd3xð2Π̃aI _CaI þ ωtIJG̃
IJ − NaṼa − N

˜

˜̃ZÞ;

ð27Þ

which really resembles what is expected when casting an
action in Hamiltonian form. Nevertheless, we have not
finished yet because the action (27) still depends on the
variables λ

˜
ab as indicated above. Notice that the map from

ωa
I
J to CaI and λ

˜
ab through (18) and (25), with an inverse

map given by (20), can be seen as a change of variables.
Nevertheless, as is clear from (17) and (18), the presym-
plectic structure present in (6) becomes the canonical
symplectic structure present in (27) when such a map is
used. Therefore, we reach a smaller phase-space and
simultaneously parametrize it with manifestly Lorentz-
covariant canonical variables (CaI , Π̃aI). The reduction
map is given by ðωa

I
J; Π̃aIÞ ⟼ ðCaI; Π̃aIÞ using (18).

This reduction process leaves the null directions of the
presymplectic structure (6) out of the canonical symplectic
structure present in (27). The null directions are clearly
along λ

˜
ab, which turn out to be auxiliary fields [22] that can

be integrated out from the action by using their own
equation of motion. In fact, instead of considering λ

˜
ab

as configuration variables, which would lead us to define
their canonically conjugate momenta ˜̃pab and also to
introduce second-class constraints in an enlarged phase
space, we will take advantage of the fact that the variables
λ
˜
ab are auxiliary fields that can be integrated out by setting

the variational derivative of the action (27) with respect to
λ
˜
ab equal to zero (this amounts to explicitly solving the

second-class constraints that otherwise would appear),
namely,

2σγ2

γ2 − σ
N
˜
Gabcdðλ

˜
cd −U

˜
cd

fIJ Γ
ðγÞ

fIJÞ

þ ðP−1ÞIJKLNðaÑbÞIJG̃KL ¼ 0: ð28Þ

This equation is linear in λ
˜
ab and can be solved for them as

long as N
˜
≠ 0, which is always fulfilled since the ortho-

normal frame was assumed to be nondegenerate. Hence, the
solution for λ

˜
ab is

λ
˜
ab ¼ U

˜
ab

cIJ Γ
ðγÞ

cIJ

−
σðγ2 − σÞ
2γ2N

˜

ðG−1ÞabcdNcðP−1ÞIJKLÑdIJG̃KL; ð29Þ

with ðG−1Þabcd¼ð1=2Þðh
˜̃
abh

˜̃
cd−2h

˜̃
ðajch

˜̃
jbÞdÞ of weight -4

[and thus GabefðG−1Þcdef ¼ δaðcδbdÞ]. Substituting (29)
back into the action (27), integrating by parts the term
involving the covariant derivative in (26c), and collecting
all the terms proportional to G̃IJ, the action acquires the
final form,

S ¼ κ

Z
R×Σ

dtd3xð2Π̃aI _CaI − λIJG̃
IJ − 2NaD̃a − N

˜

˜̃HÞ;

ð30Þ

where G̃IJ is the same as in (26a), whereas

D̃a ≔ 2Π̃bI∂ ½aCb�I − CaI∂bΠ̃bI; ð31aÞ

˜̃H ≔ −σΠ̃aIΠ̃bJRabIJ þ 2Π̃a½IjΠ̃bjJ�
�
CaICbJ

þ 2CaI Γ
ðγÞ

bJKnK þ
�
ΓaIK þ 2

γ
� ΓaIK

�
ΓbJLnKnL

þ 1

γ2
qKLΓaIKΓbJL

�
þ 2σΛ

ffiffiffi
h

p
; ð31bÞ

and
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λIJ ≔ −ωtIJ − 2Π̃a½InJ�∇aN
˜
þ Na

�
ΓaIJ − 2σCa½InJ�

− 2σ Γ
ðγÞ

a½IjKnjJ�nK þ σh
≈ab

Π̃b½IG̃J�KnK

þ 1

4N
˜

h
≈ab

Nb½σðP−1ÞIJKLG̃KL þ 2n½IG̃J�KnK�
�

−
1

4
N
˜
½G̃IJ − ðP−1ÞIJKLG̃KL þ 2σn½IG̃J�KnK�: ð32Þ

Since λIJ (or ωtIJ), Na and N
˜
appear linearly in the action

(30), they play the role of Lagrange multipliers and impose

G̃IJ, D̃a and ˜̃H as constraints, respectively. These con-
straints, known correspondingly as the Gauss, diffeomor-
phism and scalar constraints, are the same as the ones found
in Ref. [11] by solving the second-class constraints of
general relativity in a manifestly SOð3; 1Þ [or SOð4Þ]
covariant fashion. Therefore, by following a different path
along which the introduction of second-class constraints in
the theory is utterly avoided, we have arrived at the same
Hamiltonian formulation of general relativity. It is worth
mentioning that in Ref. [11] there is a sign ambiguity ϵ in
the solution of the second-class constraints (since they are
quadratic in the canonical momenta) that later propagates
along the canonical analysis; such an ambiguity was
completely avoided in the present work because no
second-class constraints were introduced here. In particu-

lar, the projector Wa
b
IJK acting on ω

ðγÞ
b
JK in Eq. (8) of

Ref. [11] carries and ϵ, while in (18) and (19) of the current
paper there is no such an ϵ.
To sum it up, from the initial 16 free variables contained

in the orthonormal frame eμI , four of them, associated
to the time component etI, play the role of Lagrange
multipliers that impose the diffeomorphism and scalar

constraints, D̃a ≈ 0 and ˜̃H ≈ 0 respectively, whereas the
remaining 12 components eaI of the frame are absorbed
into the canonical variable Π̃aI , which is related to them by
(7) or (11). On the other hand, from the initial 24 variables
in the connection ωμIJ, the six components ωtIJ are
involved in the Lagrange multipliers λIJ that impose the
Gauss constraint G̃IJ ≈ 0, the six variables λ

˜
ab are auxiliary

fields fixed by their own equation of motion and given by
(29), and the remaining 12 variables CaI constitute the
configuration variables that, together with Π̃aI , make up the
canonical variables of the theory; according to (30), they
are normalized such that the fundamental Poisson bracket
reads fCaIðt; xÞ; Π̃bJðt; yÞg ¼ ð1=2κÞδbaδJI δ3ðx; yÞ, where
δ3ðx; yÞ is the three-dimensional Dirac delta.
Also, notice that in the case of a vanishing cosmological

constant (Λ ¼ 0), the formulation described by the action
(30) is invariant, up to a global factor, under a constant
rescaling of the momenta variables Π̃aI → ΩΠ̃aI , with

Ω being a nonvanishing real number, since both the
internal vector nI and the connection ΓaIJ are left invariant
by this change [see (12) and (16), respectively]. Thus,
rescaling Π̃aI together with a redefinition of the Lagrange
multipliers λIJ → Ω−1λIJ, Na → Ω−1Na, and N

˜
→ Ω−2N

˜
,

leaves the action (30) almost unaltered, because the
constraints (26a), (31a), and (31b) remain the same;
however, the theory now obeys the fundamental Poisson
bracket fCaIðt; xÞ; Π̃bJðt; yÞg ¼ ð1=2κΩÞδbaδJI δ3ðx; yÞ. This
property has already been exploited within the time gauge
framework [7]. Here, we just showed that it is a distinctive
feature of the Hamiltonian formulation of general relativity
without a cosmological constant, regardless of any gauge
fixation.
Furthermore, we also point out that it is not necessary to

split etI into lapse and shift components, which provides a
way of unifying the vector and scalar constraints into one
SOð3; 1Þ [or SOð4Þ] covariant constraint that, up to terms
proportional to the Gauss constraint, takes the form,

H̃I ≔ h−1=4ð2Π̃a
ID̃a þ σnI

˜̃HÞ: ð33Þ

Hence, H̃I and G̃IJ constitute the only constraints of the
theory, and whereas the latter generates local SOð3; 1Þ [or
SOð4Þ] transformations, the former is related to spacetime
diffeomorphisms.

III. TIME GAUGE

The time gauge fixes the freedom to perform boost
transformations and leaves a remnant SOð3Þ gauge sym-
metry. The time gauge is imposed by hand through the
constraint Π̃a0 ≈ 0, which weakly commutes—in Dirac’s
sense [23]—with all the constraints except with G̃i0 ≈ 0
(boost generator), for which the Poisson bracket gives

fΠ̃a0ðt; xÞ; G̃i0ðt; yÞg ¼ −
σ

2κ
Π̃aiδ3ðx; yÞ: ð34Þ

This renders the pair ðΠ̃a0; G̃i0Þ second class because Π̃ai is
an invertible 3 × 3 matrix that is associated with the
densitized triad through (7). We make the second-class
constraints strongly equal to zero. From (26a), the solution
of G̃i0 ¼ 0 is

Ca0 ¼ −σn0Π̃ aiΓb
i
jΠ̃bj; ð35Þ

where Π̃ ai is the inverse of Π̃ai. Likewise, the time gauge
implies n0 ¼ sgnðdetðΠ̃aiÞÞ and ni ¼ 0 from (12), and
Γa0i ¼ 0 from (16). Moreover, the SOð3Þ indices are raised
and lowered with the Euclidean metric δij.
Let us define the SOð3Þ connection Γai ≔

−ð1=2ÞϵijkΓa
jk; Eq. (15) then implies that Γai is the

connection compatible with Π̃ai: ∇aΠ̃bi ¼ ∂aΠ̃bi þ
Γb

acΠ̃ci − Γc
acΠ̃bi þ ϵijkΓajΠ̃b

k ¼ 0. Its curvature is given
by Rabi ≔ −ð1=2ÞϵijkRab

jk ¼ ∂aΓbi − ∂bΓai þ ϵijkΓa
jΓb

k,
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and it describes the intrinsic geometry of Σ. According to
(16), Γai is given explicitly by

Γai ¼ −ϵijkð∂ ½bΠ̃ a�j þ Π̃ a
½ljΠ̃cjj�∂bΠ̃ clÞΠ̃ bk: ð36Þ

Therefore, in the time gauge, the action (30) reduces to

S ¼ κ

Z
R×Σ

dtd3xð2Π̃ai _Cai − 2λiG̃
i − 2NaD̃a − N

˜

˜̃HÞ;

ð37Þ

where λi ≔ −ð1=2Þϵijkλjk. The SOð3Þ Gauss constraint
G̃i ≔ −ð1=2ÞϵijkG̃jk and the diffeomorphism and scalar
constraints take the form,

G̃i ¼ −
n0

γ
½∂aΠ̃a

i þ ϵijkð−n0γCa
jÞΠ̃ak�; ð38aÞ

D̃a ¼ 2Π̃bi∂ ½aCb�i − Cai∂bΠ̃bi; ð38bÞ

˜̃H ¼ σϵijkΠ̃aiΠ̃bjRab
k þ 2σn0Λ detðΠ̃aiÞ

þ 2Π̃a½ijΠ̃bjj�
�
Cai þ

n0

γ
Γai

��
Cbj þ

n0

γ
Γbj

�
: ð38cÞ

From (38a) we infer that the object Aai ≔ −n0γCai is an
SOð3Þ connection, and we can define its field strength by
Fabi ≔ ∂aAbi − ∂bAai þ ϵijkAa

jAb
k. In terms of the con-

nection Aai, the action (37) reads

S¼ κ

Z
R×Σ

dtd3x

�
−
2

γ
n0Π̃ai _Aai − 2λiG̃

i − 2NaD̃a −N
˜

˜̃H
�
;

ð39Þ

with

G̃i ¼ −
n0

γ
½∂aΠ̃a

i þ ϵijkAa
jΠ̃ak�; ð40aÞ

D̃a ¼ −
n0

γ
ð2Π̃bi∂ ½aAb�i − Aai∂bΠ̃biÞ; ð40bÞ

˜̃H ¼ 1

γ2
ϵijkΠ̃aiΠ̃bj½Fab

k þ ðσγ2 − 1ÞRab
k�

þ 2σn0Λ detðΠ̃aiÞ − 2
n0

γ
Π̃a

i∇aG̃
i; ð40cÞ

where we have used the identity,

ϵijkðAa
j − Γa

jÞðAb
k − Γb

kÞ
¼ Fabi − Rabi − 2∇½aðAb�i − Γb�iÞ ð41Þ

to rewrite the last term of (38c). Integrating by parts the last

term in ˜̃H and redefining the Lagrange multiplier in front of
the Gauss constraint as μi ≔ λi þ ðn0=γÞΠ̃a

i∇aN
˜
, we get

S ¼ κ

Z
R×Σ

dtd3x

�
−
2

γ
n0Π̃ai _Aai − 2μiG̃

i − 2NaD̃a − N
˜

˜̃C
�
;

ð42Þ
with

˜̃C ≔
1

γ2
ϵijkΠ̃aiΠ̃bj½Fab

k þ ðσγ2 − 1ÞRab
k�

þ 2σn0Λ detðΠ̃aiÞ: ð43Þ
Thereby, we have straightforwardly arrived at the Ashtekar-
Barbero formulation for general relativity with cos-
mological constant [1,3] (see also Ref. [7]). From (42),
we can read off the Poisson bracket fAaiðt; xÞ; Π̃bjðt; yÞg ¼
ð−n0γ=2κÞδbaδjiδ3ðx; yÞ. Notice that, in order to coincide
with the results of Ref. [1], we must take n0 ¼ −1 in the
Lorentzian case; this amounts to taking detðΠaiÞ > 0, as in
the analysis carried out by Holst.
Alternatively, by using again (41) we can get rid of the

term involving Rab
i in the scalar constraint (43), to get

˜̃C ¼ ˜̃S − 2n0
�
σγ −

1

γ

�
Π̃a

i∇aG̃
i; ð44Þ

with

˜̃S ≔ σϵijkΠ̃aiΠ̃bj

�
Fab

k −
�
1 −

σ

γ2

�
ϵklmðAal − ΓalÞ

× ðAbm − ΓbmÞ
�
þ 2σn0Λ detðΠ̃aiÞ: ð45Þ

Substituting (44) into the action (42) and integrating by
parts the last term in (44), we get

S¼ κ

Z
R×Σ

dtd3x

�
−
2

γ
n0Π̃ai _Aai − 2ρiG̃

i − 2NaD̃a −N
˜

˜̃S
�
;

ð46Þ
where ρi ≔ μi þ n0ðσγ − γ−1ÞΠ̃a

i∇aN
˜
. This alternative

form of the scalar constraint agrees with the one reported
in Ref. [7].
As usual, instead of the diffeomorphism constraint D̃a,

we can use the vector constraint,

C̃a ≔ D̃a þ AaiG̃
i ¼ −

n0

γ
Π̃biFabi; ð47Þ

in the previous actions (39), (42), and (46) by redefining the
corresponding Lagrange multiplier enforcing the Gauss
constraint.
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IV. OTHER MANIFESTLY SOð3;1Þ [OR SOð4Þ]
COVARIANT CANONICAL VARIABLES

As shown in our previous work [11], the manifestly
SOð3; 1Þ [or SOð4Þ] covariant formulation of the Holst
action contained in (30) of this paper can, alternatively, be
expressed in terms of other manifestly SOð3; 1Þ [or SOð4Þ]
covariant canonical variables. The underlying canonical
transformations are such that they leave the canonical
momenta Π̃aI unchanged, whereas the configuration var-
iables are promoted to new ones. They can be encompassed
by the map ðCaI; Π̃aIÞ ↦ ðXaI; Π̃aIÞ, where XaI is given by

XaI ¼ CaI −Wa
b
IJK

�
αΓb

JK þ β

γ
� Γb

JK

�
; ð48Þ

where α and β are continuous real parameters. The
transformation is indeed canonical, since the canonical

symplectic structure in (30) changes by a boundary
term,

2Π̃aI _CaI ¼ 2Π̃aI _XaI

þ ∂a

�
−2αnI _̃Π

aI þ σβ

γ

ffiffiffi
h

p
η̃abch

˜̃
bdh

˜̃
cf
_̃ΠdIΠ̃f

I

�
:

ð49Þ

In the new variables, the action (30) acquires the form,

S ¼ κ

Z
R×Σ

dtd3xð2Π̃aI _XaI − λIJG̃
IJ − 2NaD̃a − N

˜

˜̃HÞ;

ð50Þ

where the Gauss, diffeomorphism and scalar constraints are
given by

G̃IJ ¼ 2Π̃a½IXa
J� þ 4

�
ð1 − αÞδI½KδJL� þ

ð1 − βÞ
2γ

ϵIJKL

�
Π̃a½KnM�Γa

L
M; ð51aÞ

D̃a ¼ 2Π̃bI∂ ½aXb�I − XaI∂bΠ̃bI; ð51bÞ

˜̃H ¼ −σΠ̃aIΠ̃bJRabIJ þ 2Π̃a½IjΠ̃bjJ�
�
XaIXbJ þ

�
1 − β

γ

�
2

qKLΓaIKΓbJL þ 2XaI

�
ð1 − αÞΓbJK þ ð1 − βÞ

γ
� ΓbJK

�
nK

þ ð1 − αÞ
�
ð1 − αÞΓaIK þ 2

γ
ð1 − βÞ � ΓaIK

�
ΓbJLnKnL

�
þ 2σΛ

ffiffiffi
h

p
; ð51cÞ

respectively. Notice that the diffeomorphism constraint
takes exactly the same form as the original one and that
it is independent of both α and β; this means that XaI
transforms as a 1-form under spatial diffeomorphisms for
any choice of α and β. On the other hand, the Gauss and
scalar constraints strongly depend on the values of these
parameters. However, if β ¼ 1 the Immirzi parameter γ
drops out from (51a) and (51c) regardless of the value of α.
We conclude by analyzing some particular nontrivial cases
of the canonical transformation (48) (α ¼ 0 ¼ β is the
identity transformation),

(i) For α ¼ 1 ¼ β the configuration variable XaI be-
comes the configuration variable QaI introduced in
Ref. [11]. The Gauss and scalar constraints simplify
considerably in terms of the phase-space variables
ðQaI; Π̃aIÞ. Notice that the Immirzi parameter does
not appear in the constraints, which take exactly the
same form as those arising in the manifestly
SOð3; 1Þ [or SOð4Þ] covariant canonical analysis
of the Palatini action [24].

(ii) For α ¼ 1 and β ¼ 0 the configuration variable XaI
becomes the configuration variable KaI introduced
in Ref. [11]. The Gauss and scalar constraints
simplify a bit in terms of the phase-space variables
ðKaI; Π̃aIÞ, but the Immirzi parameter is still present.

(iii) For α ¼ 0 and β ¼ 1 the configuration variable XaI
will be denoted as QaI. This case had not been
previously reported in literature and leads to new
phase-space variables ðQaI; Π̃aIÞ. In terms of them,
the constraints (51a)–(51c) take the form,

G̃IJ ¼ 2Π̃a½IQa
J� þ 2Π̃a½IΓa

J�
MnM − 2Π̃aMn½IΓa

J�
M;

ð52aÞ
D̃a ¼ 2Π̃bI∂ ½aQb�I −QaI∂bΠ̃bI; ð52bÞ
˜̃H ¼ −σΠ̃aIΠ̃bJRabIJ þ 2Π̃a½IjΠ̃bjJ�ðQaIQbJ

þ 2QaIΓbJKnK þ ΓaIKΓbJLnKnLÞ þ 2σΛ
ffiffiffi
h

p
:

ð52cÞ
Notice that these constraints are independent of the

Immirzi parameter too. Hence, the configuration variables
QaI—together with the configuration variables QaI—are
naturally associated with the Palatini action [25]. The
canonical transformations (i) and (iii) can be regarded as
SO ð3; 1Þ ½ or SO ð4Þ� versions of the inverse of Barbero’s
canonical transformation.
Time gauge. In the time gauge, the canonical trans-

formation (48) becomes, after using (35),
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Xa0 ¼ σn0ðα − 1ÞΠ̃bi∂bΠ̃ai; ð53aÞ

Xai ¼ Cai þ
n0β
γ

Γai ¼ −
n0

γ
ðAai − βΓaiÞ; ð53bÞ

the latter being independent of α (this parameter only
appears in the expression found for Xa0, whose value is not
relevant in the time gauge). Moreover, from (51a) the
SOð3Þ Gauss constraint, G̃i ¼ −ð1=2ÞϵijkG̃jk, becomes

G̃i ¼ ϵijkXa
jΠ̃ak −

n0

γ
ð1 − βÞ∂aΠ̃a

i; ð54Þ

whereas the constraints (51b) and (51c) read

D̃a ¼ 2Π̃bi∂ ½aXb�i − Xai∂bΠ̃bi; ð55aÞ

˜̃H ¼ σϵijkΠ̃aiΠ̃bjRab
k þ 2σn0Λ detðΠ̃aiÞ þ 2Π̃a½ijΠ̃bjj�

×

�
Xai þ

n0

γ
ð1 − βÞΓai

��
Xbj þ

n0

γ
ð1 − βÞΓbj

�
;

ð55bÞ

respectively. Therefore, the action (50) takes the form,

S ¼ κ

Z
R×Σ

dtd3xð2Π̃ai _Xai − 2λiG̃
i − 2NaD̃a − N

˜

˜̃HÞ: ð56Þ

Notice that the action is independent of α, whereas the
value of β determines the canonical theory under consid-
eration, according to whether β ¼ 1 or β ≠ 1. Let us
analyze this in detail,
(a) For β ¼ 1, the constraints (54), (55a) and (55b)

become

G̃i ¼ ϵijkXa
jΠ̃ak; ð57aÞ

D̃a ¼ 2Π̃bi∇½aXb�i − ΓaiG̃
i ≈ 2Π̃bi∇½aXb�i; ð57bÞ

˜̃H ¼ σϵijkΠ̃aiΠ̃bjRab
k þ 2Π̃a½ijΠ̃bjj�XaiXbj

þ 2σn0Λ detðΠ̃aiÞ; ð57cÞ

which can be recognized as the constraints of the
SOð3Þ ADM formalism [19]. Note also that (53b) is
the converse of Barbero’s transformation since we go
from the connection Aai to the vector Xai. This means
that, for β ¼ 1 and regardless of the value of α, we
obtain the SOð3Þ ADM formulation of general rela-
tivity, where −n0Xai is an object closely related to the
extrinsic curvature. As already mentioned, the con-
figuration variables QaI (α ¼ 0) and QaI (α ¼ 1)
belong to the case β ¼ 1. Therefore, from (53a)
and (53b), they are set to Qa0 ¼ −σn0Π̃bi∂bΠ̃ ai,

Qa0 ¼ 0 and Qai ¼ −ðn0=γÞðAai − ΓaiÞ ¼ Qai in
the time gauge.

(b) For β ≠ 1, note that (54), (55a) and (55b) resemble
(38a)–(38c) with γ=ð1 − βÞ taking the place of γ. In
fact, we can express the Gauss constraint (54) as

G̃i ¼ −
n0

γ
ð1 − βÞð∂aΠ̃a

i þ ϵijkAa
jΠ̃akÞ; ð58Þ

where we have identified the SOð3Þ connection
Aai ≔ −n0γXai=ð1 − βÞ. Let us denote its field
strength by F abi ≔ ∂aAbi − ∂bAai þ ϵijkAa

jAb
k.

Then, using the identity,

ϵijkðAa
j − Γa

jÞðAb
k − Γb

kÞ
¼ F abi − Rabi − 2∇½aðAb�i − Γb�iÞ; ð59Þ

we rewrite the last term of (55b), so the action (56)
becomes

S ¼ κ

Z
R×Σ

dtd3x

�
−
2

γ
n0ð1 − βÞΠ̃ai _Aai − 2λiG̃

i

− 2NaD̃a − N
˜

˜̃H
�
; ð60Þ

with

D̃a ¼ −
n0

γ
ð1 − βÞð2Π̃bi∂ ½aAb�i −Aai∂bΠ̃biÞ; ð61aÞ

˜̃H ¼ ð1 − βÞ2
γ2

ϵijkΠ̃aiΠ̃bj

×

�
F ab

k þ
�

σγ2

ð1 − βÞ2 − 1

�
Rab

k

�

þ 2σn0Λ detðΠ̃aiÞ − 2
n0

γ
ð1 − βÞΠ̃a

i∇aG̃
i:

ð61bÞ

Integrating by parts the last term of (61b), the action
(60) finally acquires the form,

S ¼ κ

Z
R×Σ

dtd3x

�
−
2

γ
n0ð1 − βÞΠ̃ai _Aai

− 2νiG̃
i − 2NaD̃a − N

˜

˜̃C
�
; ð62Þ

where νi ≔ λi þ ½n0ð1 − βÞ=γ�Π̃a
i∇aN

˜
and

˜̃C ¼ ð1− βÞ2
γ2

ϵijkΠ̃aiΠ̃bj

�
F ab

k þ
�

σγ2

ð1− βÞ2 − 1

�
Rab

k

�

þ 2σn0ΛdetðΠ̃aiÞ: ð63Þ
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Notice that the constraints (58), (61a) and (63) take
exactly the same form as (40a), (40b) and (43),
respectively, with Aai and γ replaced correspondingly
with Aai and γ=ð1 − βÞ. Therefore, for β ≠ 1 we
obtain the Ashtekar-Barbero formulation with a re-
scaled Immirzi parameter γ=ð1 − βÞ. It is worth real-
izing that the connections Aai and Aai are related to
each other by Aai ¼ ð1 − βÞ−1ðAai − ΓaiÞ þ Γai. Note
that they are the same for β ¼ 0, as expected. As
already mentioned, the configuration variable KaI
(α ¼ 1 and β ¼ 0) belongs to the case β ≠ 1. There-
fore, from (53a) and (53b), it is set to Ka0 ¼ 0 and
Kai ¼ −n0γ−1Aai in the time gauge.

V. CONCLUSIONS

In this paper, we have carried out from scratch the
canonical analysis of the Holst action without introducing
second-class constraints. Our strategy consisted in splitting
the 18 degrees of freedom contained in the spatial con-
nection ωaIJ, by means of the orthogonal projectors (19)
and (22), into 12 dynamical SOð3; 1Þ [or SOð4Þ] covariant
variables CaI plus six additional fields λ

˜
ab, something

explicitly exhibited in (20). The substitution of this
expression into the action then implies a reduction of the
presymplectic structure of the theory to a symplectic one,
a process in which we realize that the fields λ

˜
ab define the

null directions of the former and also play the role of
auxiliary fields that can be easily integrated out using their
own equation of motion. Doing so, the action becomes
(30), in which the canonical pair ðCaI; Π̃aIÞ is subject to the
first-class constraints (26a), (31a) and (31b), namely the
Gauss, diffeomorphism and scalar constraints, respectively.
It is really remarkable how our approach simplifies the
canonical analysis of general relativity, not only leading to
a manifestly SOð3; 1Þ [or SOð4Þ] covariant parametrization
of the phase space of the theory (which agrees with the one
found by solving second-class constraints [11]), but also
allowing us to keep track of the role played by each one
of the original variables involved in the Holst action.
Afterwards, we imposed the time gauge and showed that
it immediately leads to the Ashtekar-Barbero variables. In
that process, the spatial components −n0γCai get identified
with the Ashtekar-Barbero connection.
In addition, we discussed the set of canonical trans-

formations given by (48) which depends on two para-
meters α and β, and relates different SOð3; 1Þ [or SOð4Þ]
covariant parametrizations of the phase space of general
relativity; some particular cases of them—ðQaI; Π̃aIÞ and
ðKaI; Π̃aIÞ—have already been reported in the literature
[11]. We also reported the new canonical phase-space
variables ðQaI; Π̃aIÞ, for which the constraints are given
by (52a)–(52c) and turn out to be independent of the
Immirzi parameter. In the time gauge, the canonical
theories associated to these variables bifurcate into two
kinds depending on the value of β (α is not important in the

time gauge): for β ¼ 1 we obtain the SOð3Þ ADM
formulation of general relativity, whereas for β ≠ 1 we
arrive at the Ashtekar-Barbero formulation with a rescaled
Immirzi parameter γ=ð1 − βÞ.
Although in this paper we have discussed the canonical

analysis of the Holst action with respect to a foliation by
spacelike hypersurfaces, our strategy can also be adapted
to deal with the case of a timelike foliation as well for
Lorentzian signature. In that case, the vector nI is
normalized such that nInI ¼ 1, and we can follow a
procedure very similar to that described in Sec. II. After
integrating out the auxiliary fields, we get the same
Lorentz-covariant variables and first-class constraints than
those obtained in Ref. [12] after solving the second-class
constraints. Then, by imposing the space gauge there, the
Ashtekar-Barbero formulation with gauge group SUð1; 1Þ
as well as the SOð2; 1Þ ADM formulation arise. The
detailed analysis of all of this will be reported in another
paper. In addition, it would be very interesting to further
extend our approach to deal with null foliations and
compare the resulting canonical theory with that of
Ref. [26] for the Palatini action, where tertiary constraints
arise.
Our procedure stands out for its simplicity, methodology,

and economy. Whereas in Dirac’s approach the canonical
analysis can be cumbersome due to the amount of variables
and constraints involved in the formalism, here we have
identified from the very beginning the fundamental vari-
ables and gotten rid of the superfluous ones in the process.
This indeed simplifies the analysis, since we arrive directly
at a manifestly SOð3; 1Þ [or SOð4Þ] covariant description of
the phase space of general relativity where the only
constraints present in the theory are those associated with
the two gauge symmetries underlying general relativity. In
addition, the constraints take a simpler form than those
obtained in nonmanifestly Lorentz-covariant approaches
(compare for instance with Refs. [10,13]), and the geo-
metrical meaning of the involved canonical variables is
clearly established.
We point out that the current theoretical framework

applies to the four-dimensional Palatini action as well, as
can be seen in Ref. [25] or by taking the limit γ → ∞ in
the analysis presented in Sec. II; actually, the resulting
canonical theory coincides with the one emerging from
the Holst action after implementing the canonical trans-
formation discussed in Sec. IV for the values of the
parameters specified there (see also Ref. [11]). Moreover,
our approach can also be used to perform from scratch
the canonical analysis of the n-dimensional Palatini
action with a cosmological constant [25] and to study
the coupling of matter fields to the Holst (or Palatini)
action in the canonical framework (these results will be
reported elsewhere too).
Regarding the unified constraint (33) at the end of

Sec. II, it would be really interesting to compute the
gauge algebra satisfied by this constraint together with
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the Gauss constraint G̃IJ and also to establish the relation
between the gauge transformations generated by H̃I and the
alternative gauge transformations for the Holst action
reported in Ref. [27].
We think our results can also be useful for investigating

the asymptotic behavior of the gravitational field where
Lorentz invariance is relevant as well as for the study of
gravitational field configurations using numerical methods,
where our approach could provide new insights for positing
initial value problems in gravity because it preserves
Lorentz invariance.
The technique of our manuscript was also used to do the

Hamiltonian analysis of general relativity with Immirzi
parameter, expressed as a BF theory supplemented with
constraints on the B field, without introducing second-class

constraints in the canonical analysis, which was reported
in Ref. [28].
Finally, although the canonical variables contained in this

paper are no longer connection variables—but they give rise
to connection variables in the time gauge, as pointed out
above—and thus their implementation in the quantum theory
is quite nontrivial, our results should motivate the develop-
ment of new mathematical techniques to potentially use
these variables in applications to quantum gravity.
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