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Canonical analysis of Holst action without second-class constraints
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We perform the canonical analysis of the Holst action for general relativity with a cosmological constant
without introducing second-class constraints. Our approach consists in identifying the dynamical and
nondynamical parts of the involved variables from the very outset. After integrating out the nondynamical
variables associated with the connection, we obtain the description of phase space in terms of manifestly
SO(3,1) [or SO(4), depending on the signature] covariant canonical variables and first-class constraints
only. We impose the time gauge on them and show that the Ashtekar-Barbero formulation of general
relativity emerges. Later, we discuss a family of canonical transformations that allows us to construct new
SO(3, 1) [or SO(4)] covariant canonical variables for the phase space of the theory and compare them with
the ones already reported in the literature, pointing out the presence of a set of canonical variables not
considered before. Finally, we resort to the time gauge again and find that the theory, when written in terms
of the new canonical variables, either collapses to the SO(3) ADM formalism or to the Ashtekar-Barbero

formalism with a rescaled Immirzi parameter.

DOI: 10.1103/PhysRevD.101.084003

I. INTRODUCTION

In the first-order formalism, (real) general relativity is
described by the Holst action [1], which is made of the
Palatini action coupled to the Holst term via the Immirzi
parameter [2]. In vacuum (with or without a cosmological
constant), this action reproduces exactly the same dyna-
mics contained in the metric formulation of Einstein’s
theory obtained from the Einstein-Hilbert action as long as
the orthonormal frame be nondegenerate. Outstandingly,
the Holst action establishes the Lagrangian setting of the
Ashtekar-Barbero variables [3], which constitute the build-
ing blocks of loop quantum gravity [4-8]. Nevertheless, the
derivation of these variables makes use of the so-called time
gauge, which breaks the Lorentz group SO(3, 1) down to
the SO(3) subgroup. This gauge fixing avoids the intro-
duction of second-class constraints, simplifying the result-
ing canonical theory at the expense of local Lorentz
invariance.

Because Lorentz invariance plays a fundamental role in
modern physics, there have been different approaches
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tackling the Lorentz-covariant canonical analysis of the
Holst action. Nonetheless, those perspectives introduce
second-class constraints, which are dealt with at the end
either by using the Dirac bracket [9] or by solving them
explicitly [10-13]. Remarkably, in Refs. [11,12] the sec-
ond-class constraints were solved while preserving the
manifest Lorentz invariance of the theory, obtaining dif-
ferent sets of canonical variables for the phase space of
general relativity that is now described by first-class
constraints only.

In the standard approach, the second-class constraints
are introduced due to a mismatch between the number of
independent components of the Lorentz connection and
those of the orthonormal field. It turns out that the spatial
part of the connection corresponds to the configuration
variables, and their canonically conjugate momenta are
related to the spatial part of the orthonormal frame. Because
the number of independent variables in the canonical
momenta surpasses the number of components in the
spatial part of the frame, one must add a quadratic con-
straint on the momenta in order to even things out. The
Hamiltonian evolution of this constraint then generates a
secondary constraint which, together with the former,
makes up the set of second-class constraints of general
relativity. Solving these constraints is what Refs. [10-13]
are devoted to.

Alternatively, instead of real general relativity, one can
move to the self-dual Palatini action [14-16] (obtained
from the Holst action by taking the Immirzi parameter
equal to the imaginary unit), which involves the self-dual
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part of the Lorentz connection. This action allows us to
derive a Hamiltonian formulation of the theory (the
Ashtekar formalism [17,18]) resorting neither to the intro-
duction of second-class constraints nor to the time gauge
[19] (see also [20]), thus preserving Lorentz invariance;
however, as implied by the use of self-dual variables, the
formulation is complex and needs to be supplemented
with reality conditions [the variables take advantage of
the isomorphism between the Lie algebras of SO(3,1)
and SO(3,C)].

So, in order to avoid complex variables and work with
real ones, the introduction of second-class constraints to
preserve Lorentz invariance seems inexorable. Is that so? In
this paper we show that it is possible to perform the
canonical analysis of the Holst action without introducing
neither second-class constraints nor gauge fixings spoiling
Lorentz invariance. This is accomplished by providing a
parametrization of the spatial part of the connection that
separates its dynamical components from its nondynamical
ones. The former equal in quantity to the number of
components of the spatial part of the frame (which in turn
are related to the canonical momenta), whereas the latter
appear quadratically in the action and then can be inte-
grated out via their own equation of motion. The resulting
canonical theory, being manifestly Lorentz covariant,
agrees with the one reported in Ref. [11]; outstandingly,
the derivation is much simpler than the original one and the
geometrical meaning of the variables is clearer.

The outline of the paper is as follows. After establishing
our conventions, we perform the 3 + 1 decomposition of
the action in Sec. II, identifying the dynamical variables
that make up the presymplectic structure. We then repar-
ametrize the spatial part of the connection in terms of these
variables and some additional fields that turn out to be
auxiliary fields. We get rid of the latter and arrive at the
canonical formulation of general relativity with manifest
Lorentz invariance and first-class constraints only. Later,
we discuss the time gauge in Sec. III and the implementa-
tion of canonical transformations in Sec. IV. To close the
paper, we give some conclusions.

Conventions. Spacetime indices are denoted by greek
letters (i, v, ...) so that points on the spacetime manifold M
are labeled by coordinates {x*} = {r,x%}, where ¢ is the
time coordinate (we use the “dot” notation for time
derivatives when possible) and latin letters at the beginning
of the alphabet (a,b,... =1,2,3) denote spatial indices.
We assume that M has a topology R x X and foliate it by
constant time hypersurfaces %;, each of which is diffeo-
morphic to some given orientable 3-manifold X without
boundary. The coordinates {x“} label points on X, and from
now on we just write ¥ for any of these constant time
hypersurfaces. Frame indices are associated with capital

letters 1,J,... = {0, i}, for i =1, 2, 3. These indices are
raised and lowered with the metric (;;) = diag(s, 1,1, 1),
where 6 = —1(o = +1) in the Lorentzian (Euclidean) case.

The frame rotation group corresponds to the Lorentz group
SO(3,1) for 6 = —1 or to the rotation group SO(4) for
o = +1. The weight of a tensor is either indicated with
the presence of a tilde over or below it, or mentioned
somewhere else in the paper. The internal tensor e;;xr
and the spacetime tensor density 77 ,,,, (i**) are totally

antisymmetric and such that ¢y03 = +1 and 5,3 = +1
(7% = +1). In addition, we define the three-dimensional
Levi-Civita symbols as 7 g = 1 jape (¢ = 7""°) and
€jjk *= €oijx- The symmetrizer and antisymmetrizer
are defined by Vi = (Vo +Vp,)/2 and Vi :=
(Vap = Vo) /2, respectively. Furthermore, for an antisym-
metric quantity V;; we define its internal dual as *V; :=

KL 0 KL
(1/2)e1 7 VA" and also the object V ;= Pyyx; VAE for

1
Pryke =g + 2—7/5111@’ (1)
where y #0 is the Immirzi parameter.' Its inverse is
given by
v 1
(P~1)KL — y Kyl 1Ll — — lIKL (2)
r-o 2y

and satisfies (P~")VKLP g, iy = 5fM51Jv]- “A” and “d” stand
for the wedge product of differential forms and the exterior

derivative, correspondingly.

II. CANONICAL ANALYSIS

In the first-order formalism, the orthonormal frame e’

(assumed to be nondegenerate) and the SO(3, 1) [or SO(4)]
connection @’; are independent degrees of freedom that
encode the gravitational field. In terms of them, the Holst
action [1] for general relativity is given by

Sle, ] :K/{[*(el/\ej)—&—gel/\ej] A Fpy
M 4

—AGUKLe’/\eJ/\eK/\eL}, (3)
12
where F!; := do'; + o' A @X; is the curvature of '},
which is compatible with the metric 1;,, di;; — ©% g, —
@f ;n;x = 0 (and thus w;; = —wy;); k is a constant related
to Newton’s constant and A is the cosmological constant.
Adapted to the spacetime foliation, the frame and the
connection can be written as e/ = e,/dt + e, dx* and
o'y = o/ ,dt + o, ;dx°, respectively.

Let us introduce a vector n/ with the following two
properties at fixed t: e,/n; = 0 and n;n’ = 6. Explicitly,
this vector takes the form,

'We assume y # £+/0, which means that the self-dual and
anti-self-dual sectors are excluded in our approach.
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_ ~abc , J, K, L
ny=——¢€ e e, e, 4
=% NG 1KLY a €p €c (4)
where g > 0 (of weight +2) is the determinant of the
spatial metric ¢, = e,’e,;, whose inverse metric is
denoted by ¢“*. The projector on the orthogonal plane to
n! is given by

q'y=q"%, ey = 55 —on'n,. (5)

Geometrically speaking, since at each point of M the
orthonormal frame e’ can be thought of as an isomorphism
between the coordinate basis and the orthonormal basis of
tangent space, the vector n/ corresponds to the normal
vector to the hypersurface X with respect to the latter basis;
likewise, tangent vectors to X are translated into orthogonal
vectors to n!. Thus, the splitting of the tangent space
into the orthogonal and parallel parts to n/ encodes the
spacetime foliation.

The 3 4+ 1 decomposition of the action (3) yields (we
recall that all spatial boundary terms will be neglected
because X has no boundary)

S = K/ dtdSX{—2ﬁaanat(ya))u[J + C()HJG[J
RxX

1 L (r) - (1)
=+ ﬁ e/ 211 I K F oy yic + np(TTYIIPKF

-2n)} (6)

I I I I K I K
where F,,' =0, ;= 0,0, + o, ko," j—wp' g "
is the curvature of w,!;, dtd®x is a shorthand for
dt A dx' A dx? A dx3, and we have defined

ﬁal = \/Zl’qabehl (7)
and
G = =2PY g [0,(1°Knt) + 2,5 [1MnH]. - (8)

Notice that in (6), both w,;, and e,/ appear linearly in the
action and thus play the role of Lagrange multipliers. It is
customary to split the latter into the components parallel
and orthogonal to n’. Thus, we can express it as

el = Nn! + Née,!, 9)

where N is the lapse function and N is the shift vector [21].
The term of the action (6) involving e,’ then becomes the

combination —N“V, — N Z for

()

f)a = —ZI:IbInJFabU, (103)

% il P +26A 10b
= ablJ q, ( )

and N :=N/,/q.
Let us introduce, for future purposes, the densitized

. _ . ab . .
metric h ;== q7'q,,, whose inverse h" is given by

~ab

h"” = N¥TIb}; its determinant & = det(l:zub) has weight
+4 and is related to ¢ by h = g* Relationship (7) can be
inverted to express e,’ in terms of 1%, yielding

ea12h1/4/;labﬁbl, (11)

which allows us to express the vector n; as

1 L
np = ﬁﬁjm’]abcl’[“HbKHCL. (12)

In addition, we also define the connection V, compatible
with e, that satisfies

Vaebl = (9“81,1 - Fcabecl + Faljebj ES 0 (13)

These are 36 equations for 18 unknowns I',,(=T1¢,,)
and 18 unknowns I'y;;(= —I,;;). Their solution is the
Christoffel symbol I'“,,;, for the spatial metric g,;, and

Loy = qbceb[ll(aaec\l] - aceam)

+ quceb[lnj]nK(aaecK + 8ceaK)

+ qbchfeaKeh[Hed\J]afecK7 (14)
with n; given by (4). Notice that (7) and (13) imply that V,
annihilates T1* too,
v 0 =90 + 10, 0 —1re, 117 -1,/ 117 = 0.

(15)

In terms of IT%, the expression (14) becomes
Lary = @abﬁcmacﬁbm + haph cdﬁckﬁb[lﬁf J] afﬁdK

+ ];lbcﬁb[llaaﬁcm - h’ab}:l CdﬁbKﬁc[Iﬁ'fj]afﬁdK

— oh 11 ynyngd 1K + oh , 1P 0 yng8,1K,
(16)

with n; given by (12). The curvature of I',/; is R,,!;, =
0 WANER?) WAV WP DA DA WSS
Note that the first term on the right-hand side of the

. . . o v
action (6) involves the time derivative of (a))a, ; and thus
contributes to the presymplectic structure of the theory.
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Since there are 18 independent components in (c}ga, ; (the
same as in @,;;), the usual approach requires us to
introduce the same number of canonically conjugate
momenta. However, since these momenta are built up from
the 12 components e,/, six additional constraints on the
momenta must be added [10-13]. This is the traditional
path taken, and it leads to the emergence of second-class
constraints; one set being the aforementioned constraints
on the momenta and the other arising from the preservation
under time evolution of the former. Here, we will follow a
different path inspired by our previous work [11]; instead of
introducing constraints on the momenta, we will properly
parametrize the 18 components of w,;; into 12 dynamical
and six nondynamical variables. The 12 dynamical vari-
ables thus will correspond to the configuration variables,
whereas the six nondynamical ones will be later integrated
out from the action, obtaining at the end a manifestly
SO(3.1) [or SO(4)] covariant canonical formulation of the
Holst action. To do this, note that the presymplectic
structure in (6) can be expressed as”

—Zﬁ”[njat((i))a” = 2ﬁalca1, (17)

where we have introduced the 12 configuration variables
C,; defined by [see Eq. (8) of Ref. [11]]

(v) 1Kk
Cu = WabIJwa ) (18)
with W2,k (= =W, k) given explicitly by
Wk = —(52771[1”1(] + nlf:l acﬁC[JﬁbK])v (19)

which can be thought of as an operator that singles out
the 12 configuration variables C,;—constructed out of the
components of the connection w,;;—that contribute to the
resulting canonical symplectic structure. The expression

(18) can be solved for (a)y)a, ; to express the connection in
terms of C,; plus six additional variables 4 ,, (= 4 ,,) living

in the kernel of Wab”K,

(r) -
Warg =ML 1k C& + 2 NPy, (20)

with M, pyx(= =M.’ k) and NP, (= —N";;) being
given by

Mg = 2052”[1’71]1( +oh acﬁc[lﬁhl]nl(

o

c . N

b L bM N
Og€rgxr” — 5= €rymnh o I n T,
2y 2y :

(21a)

*From now on, e, appears no more; it is replaced by (11), and
thus, n; is given by (12).

Nalj = €IJKL1:IaKnL. (Zlb)

[Confront with Egs. (6), (9), and (10) of Ref. [11]].

In addition, we introduce the tensor density
U (= U p = —U ,,") defined as
U M = <1 _ 7%) « (P—I)IJKLéc(a];lh)eﬁeKnL’ (22)

where the internal dual in (22) acts on either the first pair or
the last pair of indices of P~! (x and P~! commute with one
another). Together, the objects (19), (21a), (21b) and (22)
satisfy the following orthogonality relations:

WaCIMNMchNJ = 62(%’ (238.)
U™ Ny = 8,67, (23b)

W, bk NE =0, (23¢)
l_]abCHMchJK =0, (23d)

as well as the completeness relation,

MaCIJMWCbMKL + NCIJU achL = 525[155% : (24)

Therefore, W and U are orthogonal projectors that allow

us t(o) split the 18 components of the connection w,;;
[or J)a”] into the 12 + 6 variables (C,;, 4 ,,). The asso-

ciated decomposition given in (20) is induced by the
canonical symplectic structure given by the right-hand side
of (17). The inverse of the map (20) is given by (18)
together with

(r)

Aav = U @4, (25)

which clearly shows that C,; and 4,, are independent

variables among themselves.
Substituting (20) into (8), (10a) and (10b), we obtain,
after some algebra,

G =omelc,”l + 4PV g 1K pMIT L) (26a)
V, = 2(20179,Cpyy — Cy0,117)
+ (P G (MK Cpp + 4, NPKE), (26D)
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~ ~ ~ ~ ~ (7) 2
Z = —ol1“TIY R, + 2011V {Calcw +2C, Ty + (Fm + FaIL)rb,KnKnL
14

1 - ~ 1 - ~ - ~
+FqKLFa1KFbJL:| +20AVh + 2010’V G, — 2 [GY — (PYVELGy, + 20n'G k]G,

lok 2 (r)
+ 2 ! Gabm,(% ab —
Yy —o

where the coefficients G*“¢ == K"’ i — BB have
weight 4-4. Notice that there are no terms involving 4,

in (26a), and that (26b) and (26¢) depend on 4 ,;, but not on

their derivatives. This is staggering, since the original
expressions (10a) and (10b) involve derivatives of the
connection. The action (6) now takes the suggestive form,

S =x / dtd3x(2019 €, + w,, G — NV, = NZ),
RxZ

(27)

which really resembles what is expected when casting an
action in Hamiltonian form. Nevertheless, we have not
finished yet because the action (27) still depends on the
variables 4, as indicated above. Notice that the map from

w,'; to C,; and 1 4, through (18) and (25), with an inverse

map given by (20), can be seen as a change of variables.
Nevertheless, as is clear from (17) and (18), the presym-
plectic structure present in (6) becomes the canonical
symplectic structure present in (27) when such a map is
used. Therefore, we reach a smaller phase-space and
simultaneously parametrize it with manifestly Lorentz-
covariant canonical variables (C,;, I1%). The reduction
map is given by (w,’;, 1) — (C,;.TI1¥) using (18).
This reduction process leaves the null directions of the
presymplectic structure (6) out of the canonical symplectic
structure present in (27). The null directions are clearly
along 1 ,;,, which turn out to be auxiliary fields [22] that can

be integrated out from the action by using their own
equation of motion. In fact, instead of considering 4,

as configuration variables, which would lead us to define
their canonically conjugate momenta p?* and also to
introduce second-class constraints in an enlarged phase
space, we will take advantage of the fact that the variables
A 4p are auxiliary fields that can be integrated out by setting

the variational derivative of the action (27) with respect to
A, €qual to zero (this amounts to explicitly solving the

second-class constraints that otherwise would appear),
namely,

U™ T o) dea=Ucd™ T pgr),

()
(26¢)

20 ()

2
4 ¢
7 GNGab WAea— Ucdfljrflf)

+ (P71 g NONPH GEE = 0. (28)

This equation is linear in 4 ,;, and can be solved for them as
long as N # 0, which is always fulfilled since the ortho-

normal frame was assumed to be nondegenerate. Hence, the
solution for 4, is

)
7 ab = (:] abCU FC’J

o(y>*-o) o L
- 2}/2N~_(G DapeaN (P, N GEE(29)

with (G_1>ahcd = (1/2) (];labl;ZCd_z}:l(a\cl;”b)d) of Weight -4

land thus G**/(G™") 4; = 86" 4)]. Substituting (29)
back into the action (27), integrating by parts the term
involving the covariant derivative in (26c), and collecting

all the terms proportional to G, the action acquires the
final form,

S=x / dtd3x(2019 ¢, — 4,,GY — 2N9D, — NTH),
RxZ

(30)
where G" is the same as in (26a), whereas
D, = 211" 9,,Cyy; — C 0,17, (31a)
T = —ofIITIIR, ) + 201UV [ca,cb,
) K 2 K, L
+2C Upgn™ + ( Tux + ; * Ui | Tpn™n
1
=+ FqKLFaIKFbJL:| + ZGA\/E, (31]3)

and
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l[] = —(Dt[] - Zﬁa[[}’l_]]valy + Na{ralj - 26Ca[]n]]

) -
= 20T g pn® + GQabe[ng]K”K

1 ~ -
+ N QabNb [6(P™") yx GFF + zn[ng]K”K]}

1. - - -
- ZN[QIJ — (P ")k G + 2f”’l[ng]K”K]- (32)

Since A;; (or w,;;), N“ and N appear linearly in the action
(30), they play the role of Lagrange multipliers and impose

GY, D, and H as constraints, respectively. These con-
straints, known correspondingly as the Gauss, diffeomor-
phism and scalar constraints, are the same as the ones found
in Ref. [11] by solving the second-class constraints of
general relativity in a manifestly SO(3,1) [or SO(4)]
covariant fashion. Therefore, by following a different path
along which the introduction of second-class constraints in
the theory is utterly avoided, we have arrived at the same
Hamiltonian formulation of general relativity. It is worth
mentioning that in Ref. [11] there is a sign ambiguity € in
the solution of the second-class constraints (since they are
quadratic in the canonical momenta) that later propagates
along the canonical analysis; such an ambiguity was
completely avoided in the present work because no
second-class constraints were introduced here. In particu-

lar, the projector W,”,,x acting on (Ya)),, ’K in Eq. (8) of
Ref. [11] carries and e, while in (18) and (19) of the current
paper there is no such an e.

To sum it up, from the initial 16 free variables contained
in the orthonormal frame eﬂl , four of them, associated
to the time component e,/, play the role of Lagrange
multipliers that impose the diffeomorphism and scalar

constraints, D, ~0 and H ~ 0 respectively, whereas the
remaining 12 components e,’ of the frame are absorbed
into the canonical variable I1¢/, which is related to them by
(7) or (11). On the other hand, from the initial 24 variables
in the connection w,;;, the six components w,; are
involved in the Lagrange multipliers A;; that impose the
Gauss constraint G/’ ~ 0, the six variables A 4 are auxiliary

fields fixed by their own equation of motion and given by
(29), and the remaining 12 variables C,; constitute the
configuration variables that, together with I1/, make up the
canonical variables of the theory; according to (30), they
are normalized such that the fundamental Poisson bracket
reads {C,/(t,x), 1% (1,y)} = (1/2x)855]5%(x,y), where
5(x,y) is the three-dimensional Dirac delta.

Also, notice that in the case of a vanishing cosmological
constant (A = 0), the formulation described by the action
(30) is invariant, up to a global factor, under a constant
rescaling of the momenta variables I1¢ — QIT%/, with

Q being a nonvanishing real number, since both the
internal vector n; and the connection I',,;; are left invariant
by this change [see (12) and (16), respectively]. Thus,
rescaling IT% together with a redefinition of the Lagrange
multipliers 1,; — Q7'1;;,, N* - Q7'N¢ and N — Q2N,
leaves the action (30) almost unaltered, because the
constraints (26a), (31a), and (31b) remain the same;
however, the theory now obeys the fundamental Poisson
bracket {C,;(¢,x), 11 (1,y)} = (1/2xQ)555]5 (x, y). This
property has already been exploited within the time gauge
framework [7]. Here, we just showed that it is a distinctive
feature of the Hamiltonian formulation of general relativity
without a cosmological constant, regardless of any gauge
fixation.

Furthermore, we also point out that it is not necessary to
split e,’ into lapse and shift components, which provides a
way of unifying the vector and scalar constraints into one
SO(3,1) [or SO(4)] covariant constraint that, up to terms
proportional to the Gauss constraint, takes the form,

H, = h~V/4 2009, D, + on/H). (33)

Hence, , and G constitute the only constraints of the
theory, and whereas the latter generates local SO(3, 1) [or
SO(4)] transformations, the former is related to spacetime
diffeomorphisms.

III. TIME GAUGE

The time gauge fixes the freedom to perform boost
transformations and leaves a remnant SO(3) gauge sym-
metry. The time gauge is imposed by hand through the
constraint T’ ~ 0, which weakly commutes—in Dirac’s
sense [23]—with all the constraints except with Go~0
(boost generator), for which the Poisson bracket gives

{10(1.x). G°(1.y)} = =7 8% (xy). (34)

This renders the pair (1%, G) second class because I is
an invertible 3 x 3 matrix that is associated with the
densitized triad through (7). We make the second-class
constraints strongly equal to zero. From (26a), the solution
of G0 =0is

CaO = _GnOH airbijﬁbj’ (35)

where II ; is the inverse of [1%. Likewise, the time gauge
implies 7n, = sgn(det(I1*)) and n; =0 from (12), and
[,0; = 0 from (16). Moreover, the SO(3) indices are raised
and lowered with the Euclidean metric §;;.

Let wus define the SO(3) connection T, :=
—(1/2)e;uT,/*; Eq. (15) then implies that T, is the
connection compatible with 1% V I1% = 9,11" +
e, Q¢ —re, J% + ¢ T 11°, = 0. Its curvature is given
by Rapi = —(1/2)€;3Rap™ = 0T pi = OpTui + €0/ Tk,
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and it describes the intrinsic geometry of X. According to
(16), I',; is given explicitly by

T = =€ (011 + T 0, IT )T 2% (36)
Therefore, in the time gauge, the action (30) reduces to
S =« / dtd3x(2019C,,; — 20,G' — 2N“D, — NH),
RxZ
(37)
where A; := —(1/2)e;3A%. The SO(3) Gauss constraint

Qi = —(1/2)6,».,»,(@'" and the diffeomorphism and scalar
constraints take the form,

0
g = _”7 [0,01%; + €ijk(_”07’caj)ﬁak]’ (38a)
D - zﬁhia[acb]i —C,.0,1", (38b)
FH = o€ JIUTIP R,k + 20n° A det(TT%)
g n° n°
T Lo e | A
4 4
From (38a) we infer that the object A,; = —nOJ/C,u- is an

SO(3) connection, and we can define its field strength by
Fapi = 0,Ap — OpAy + €,3A, A%, In terms of the con-
nection A,;, the action (37) reads

2 . .. - - x
S = K/ dtd®x (——nOH’”Am —24,G" —=2ND, — NH) ,
RxZ 4

(39)
with
~ nO ~ ~
G = ——[0,1"; + €ijkAa]Hak]a (40a)
4
~ n0 ~ . ~ .
Da = T (znbla[aAb]i - Aaiabnhl)v (4Ob)
14
=z 1 L
H = = e 1T [F f + (07> = 1)R ]
Al
~ . I’lO ~ ~.
+ 20n°A det(I1%) — 2 —114,V &', (40c¢)
/4
where we have used the identity,
€ijk<Aaj - Faj)(Ahk - Fhk)
= Fapi = Rapi = 2V (o (Ay)i = Ty);) (41)

to rewrite the last term of (38c¢). Integrating by parts the last

term in  and redefining the Lagrange multiplier in front of
the Gauss constraint as y; = A; + (n°/y)1¢;V,N, we get

2 - . . - z
S—x / dtdx <— ZnOf9A,; — 2u,G' — 2N“D,, — 1yc>,
RxZ

4
(42)
with
= 1 .
C:= Fe,-jkl_[“’l_[bf [Fabk + (572 - l)Rabk]
+ 261 A det(149). (43)

Thereby, we have straightforwardly arrived at the Ashtekar-
Barbero formulation for general relativity with cos-
mological constant [1,3] (see also Ref. [7]). From (42),
we can read off the Poisson bracket {A;(z, x), TT?(z,y)} =
(—n®y/2k)85618 (x. y). Notice that, in order to coincide
with the results of Ref. [1], we must take n° = —1 in the
Lorentzian case; this amounts to taking det(IT*") > 0, as in
the analysis carried out by Holst.

Alternatively, by using again (41) we can get rid of the

term involving R,,' in the scalar constraint (43), to get
z z 1\ ~ .
C=8-2n (07/ - —) n*v,g', (44)
14

with

8 = Geijkﬁaiflbj |:Fabk - <1 — %) €k[m(Aal - Fal)
X (Apm — Fbm)} + 20n°A det(T14). (45)

Substituting (44) into the action (42) and integrating by
parts the last term in (44), we get

2 . . - z
S = K/ dtd’x <——n0H‘”Am- -2p,G' =2ND, — ]yS),
RxZ 14
(46)

where p; == u; + n°(oy —y~")[1%,V,N. This alternative
form of the scalar constraint agrees with the one reported
in Ref. [7].

As usual, instead of the diffeomorphism constraint f)a,
we can use the vector constraint,

0
- - ~. n’ - .
Ca = Da +Aaigl = _7thFabi7 (47)

in the previous actions (39), (42), and (46) by redefining the
corresponding Lagrange multiplier enforcing the Gauss
constraint.
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IV. OTHER MANIFESTLY SO(3.1) [OR SO(4)]
COVARIANT CANONICAL VARIABLES

As shown in our previous work [11], the manifestly
SO(3,1) [or SO(4)] covariant formulation of the Holst
action contained in (30) of this paper can, alternatively, be
expressed in terms of other manifestly SO(3, 1) [or SO(4)]
covariant canonical variables. The underlying canonical
transformations are such that they leave the canonical
momenta I1¢ unchanged, whereas the configuration var-
iables are promoted to new ones. They can be encompassed
by the map (C,;, T1) > (X, T1%7), where X, is given by

Xar = Cu =W, 11k (anJK +§ * FbJK>, (48)

where @ and B are continuous real parameters. The
transformation is indeed canonical, since the canonical
|

~ - 1-— -
G — ofelix, /) 4 4 [(] ~ )3l +M€um] ek M L,

LS 2y
T)a = 21:[b18[axb]1 - Xalabﬁblﬁ

s

symplectic structure in (30) changes by a boundary
term,

2ﬁalca1 — 2ﬁa1Xa1
+ 0, <_2“”1ﬁal + i Vi h yh cfﬁdlﬁfl ) '
v 2bd% ¢,

(49)
In the new variables, the action (30) acquires the form,
S = K'/ dtdSX(Zﬁalj(al —/?.]JGIJ —2Na,ba —]y,ﬁ(),

RxXZ

(50)
where the Gauss, diffeomorphism and scalar constraints are
given by
(51a)

(51b)

= ~ o~ - - 1 - 2 1 -
H = —oT1TIP Ry + 201 1V {XaIXhJ + (T) G TarkTosr +2Xor |[(1 = )Ty + ( p P * Tpyi | ¥

+(1-a) [(1 — )Ty + ; (1=p) = lﬂa11<] 1ﬂle_”K”L} +20AV,

respectively. Notice that the diffeomorphism constraint
takes exactly the same form as the original one and that
it is independent of both a and f; this means that X,;
transforms as a 1-form under spatial diffeomorphisms for
any choice of @ and f. On the other hand, the Gauss and
scalar constraints strongly depend on the values of these
parameters. However, if f =1 the Immirzi parameter y
drops out from (51a) and (51c) regardless of the value of a.
We conclude by analyzing some particular nontrivial cases
of the canonical transformation (48) (¢ =0 =/ is the
identity transformation),

(i) For a =1 = f the configuration variable X,; be-
comes the configuration variable Q,; introduced in
Ref. [11]. The Gauss and scalar constraints simplify
considerably in terms of the phase-space variables
(Q.;.T1%7). Notice that the Immirzi parameter does
not appear in the constraints, which take exactly the
same form as those arising in the manifestly
SO(3,1) [or SO(4)] covariant canonical analysis
of the Palatini action [24].

(i) For ¢ =1 and = 0 the configuration variable X ,;
becomes the configuration variable K ,; introduced
in Ref. [11]. The Gauss and scalar constraints
simplify a bit in terms of the phase-space variables
(K 47, T1%7), but the Immirzi parameter is still present.

(51c)

|
(iii) For ¢ = 0 and # = 1 the configuration variable X ,;
will be denoted as Q,;. This case had not been
previously reported in literature and leads to new
phase-space variables (Q,;, ! ). In terms of them,

the constraints (51a)—(51c) take the form,

QIJ _ zﬁa[IQaJ] + Zﬁa[lraj]MnM _ 2f[aMn[11—*aJ]M’
(52a)

D, = 211”01, Qp — Qur 0,117, (52b)

H = —ol1?! /R,y + 210190T°V1(Q,, Q)
+ ZQQIFijnK + FaIKFbJLnKnL) + ZUA\/Z
(52¢)

Notice that these constraints are independent of the
Immirzi parameter too. Hence, the configuration variables
Q,—together with the configuration variables Q,—are
naturally associated with the Palatini action [25]. The
canonical transformations (i) and (iii) can be regarded as
SO (3,1) [or SO (4)] versions of the inverse of Barbero’s
canonical transformation.

Time gauge. In the time gauge, the canonical trans-
formation (48) becomes, after using (35),
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X0 =on’(a— DP9, (53a)
0 0

Xai = Cai + ﬂrai = _n_(Aai _ﬁrai)’ (53b)
4 4

the latter being independent of a (this parameter only
appears in the expression found for Xy, whose value is not
relevant in the time gauge). Moreover, from (51a) the
SO(3) Gauss constraint, G; = —(1/2)€,~jk§jk, becomes

0

G = €1 XTI — n*(l - B0, 114, (54)
/4
whereas the constraints (51b) and (51c¢) read

D, = 21170, X, — X ;0,11 (55a)

H = oy TR,k + 2600 A det(f197) 4 2014l bl

n® n°

X |:Xui +7(1 —ﬂ)rm] [th +7(1 =Bl

(55b)

respectively. Therefore, the action (50) takes the form,
S=x / dtd3x(2019X ,; — 20,1 — 2N“D, — NH). (56)
RxX

Notice that the action is independent of a, whereas the
value of f determines the canonical theory under consid-
eration, according to whether f =1 or f# 1. Let us
analyze this in detail,

(a) For =1, the constraints (54), (55a) and (55b)

become
G = €3 X/, (57a)
D, = 211"V, X}, — TG ~ 217V, X, (57b)
/ﬁ{ = UeijkﬁaiﬁbjRahk + 2ﬁ”["‘l:[b|j]xm-xbj

+ 20n°A det(114), (57¢)

which can be recognized as the constraints of the
SO(3) ADM formalism [19]. Note also that (53b) is
the converse of Barbero’s transformation since we go
from the connection A, to the vector X ;. This means
that, for f = 1 and regardless of the value of a, we
obtain the SO(3) ADM formulation of general rela-
tivity, where —n°X,,; is an object closely related to the
extrinsic curvature. As already mentioned, the con-
figuration variables Q,; (@ =0) and Q, (a=1)
belong to the case f = 1. Therefore, from (53a)
and (53b), they are set to Q. = —on’T1”0,I1 ,;,

(b)
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Q=0 and Q= —(I’lo/}/)(Am-
the time gauge.

For f # 1, note that (54), (55a) and (55b) resemble
(382)—(38c) with y/(1 — p) taking the place of y. In
fact, we can express the Gauss constraint (54) as

- Fai) = Qai in

y 0 5 .
gi= ‘n7 (1= A0, + € ATI). (58)

where we have identified the SO(3) connection
Ay =-n"7X,;/(1 =p). Let us denote its field
strength by  F i = 0,45 — 0p Ay + eijkAajAbk.
Then, using the identity,

€zjk(¢4uj - Fuj)(Ahk - Fbk)

= Fapi = Rapi = 2V o (Api = Tpyi),  (59)

we rewrite the last term of (55b), so the action (56)
becomes

2 Lo o
S=k / dtd3x [——n0<1 — P A, — 22,5
RxZ

4
—ON“D, — NH} : (60)
with
. n® ~ b Fbi
D, = - (1= B2 Ay — A0 11", (61a)
= (1=p2
H = %%knmnb]
14
X {F k [Gﬁ_l]R k}
ab (1 _ﬂ)2 ab
0 -
+26n°A det(f[“i) _ 2n7 (1 — ﬂ)ﬁ”ivagl‘
(61b)

Integrating by parts the last term of (61b), the action
(60) finally acquires the form,

2 L.
S = K'/ dtd?x {——no(l -/ A,
RxZ 4

—20,G - 2ND, — zyé} , (62)
where v; := A; + [n°(1 — B)/y]11%,V,N and
:_(l_ﬂ)z SaifThj k oy’ k
C= 7/2 €iij IT fab + (1 —ﬂ)2 1 Rab

+ 20n°A det(T1%7). (63)
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Notice that the constraints (58), (61a) and (63) take
exactly the same form as (40a), (40b) and (43),
respectively, with A,; and y replaced correspondingly
with A,; and y/(1 — ). Therefore, for f#1 we
obtain the Ashtekar-Barbero formulation with a re-
scaled Immirzi parameter y/(1 — ). It is worth real-
izing that the connections A,; and A,; are related to
each other by A,; = (1 — )~ (A, = T,;) + I, Note
that they are the same for f =0, as expected. As
already mentioned, the configuration variable K,
(e =1 and p = 0) belongs to the case f# # 1. There-
fore, from (53a) and (53b), it is set to K,y = 0 and
K, = —-n""A, in the time gauge.

V. CONCLUSIONS

In this paper, we have carried out from scratch the
canonical analysis of the Holst action without introducing
second-class constraints. Our strategy consisted in splitting
the 18 degrees of freedom contained in the spatial con-
nection @,;;, by means of the orthogonal projectors (19)
and (22), into 12 dynamical SO(3, 1) [or SO(4)] covariant
variables C,; plus six additional fields 4,,, something
explicitly exhibited in (20). The substitution of this
expression into the action then implies a reduction of the
presymplectic structure of the theory to a symplectic one,
a process in which we realize that the fields 4, define the
null directions of the former and also play the role of
auxiliary fields that can be easily integrated out using their
own equation of motion. Doing so, the action becomes
(30), in which the canonical pair (C,;, ! ) is subject to the
first-class constraints (26a), (31a) and (31b), namely the
Gauss, diffeomorphism and scalar constraints, respectively.
It is really remarkable how our approach simplifies the
canonical analysis of general relativity, not only leading to
a manifestly SO(3, 1) [or SO(4)] covariant parametrization
of the phase space of the theory (which agrees with the one
found by solving second-class constraints [11]), but also
allowing us to keep track of the role played by each one
of the original variables involved in the Holst action.
Afterwards, we imposed the time gauge and showed that
it immediately leads to the Ashtekar-Barbero variables. In
that process, the spatial components —n’yC,,; get identified
with the Ashtekar-Barbero connection.

In addition, we discussed the set of canonical trans-
formations given by (48) which depends on two para-
meters « and f, and relates different SO(3, 1) [or SO(4)]
covariant parametrizations of the phase space of general
relativity; some particular cases of them—(Q,;, G ) and
(K. T1¥")—have already been reported in the literature
[11]. We also reported the new canonical phase-space
variables (Qa,,l:[“’ ), for which the constraints are given
by (52a)—(52c) and turn out to be independent of the
Immirzi parameter. In the time gauge, the canonical
theories associated to these variables bifurcate into two
kinds depending on the value of # ( is not important in the

time gauge): for =1 we obtain the SO(3) ADM
formulation of general relativity, whereas for f # 1 we
arrive at the Ashtekar-Barbero formulation with a rescaled
Immirzi parameter y/(1 — f3).

Although in this paper we have discussed the canonical
analysis of the Holst action with respect to a foliation by
spacelike hypersurfaces, our strategy can also be adapted
to deal with the case of a timelike foliation as well for
Lorentzian signature. In that case, the vector nl s
normalized such that n;n/ =1, and we can follow a
procedure very similar to that described in Sec. II. After
integrating out the auxiliary fields, we get the same
Lorentz-covariant variables and first-class constraints than
those obtained in Ref. [12] after solving the second-class
constraints. Then, by imposing the space gauge there, the
Ashtekar-Barbero formulation with gauge group SU(1, 1)
as well as the SO(2,1) ADM formulation arise. The
detailed analysis of all of this will be reported in another
paper. In addition, it would be very interesting to further
extend our approach to deal with null foliations and
compare the resulting canonical theory with that of
Ref. [26] for the Palatini action, where tertiary constraints
arise.

Our procedure stands out for its simplicity, methodology,
and economy. Whereas in Dirac’s approach the canonical
analysis can be cumbersome due to the amount of variables
and constraints involved in the formalism, here we have
identified from the very beginning the fundamental vari-
ables and gotten rid of the superfluous ones in the process.
This indeed simplifies the analysis, since we arrive directly
ata manifestly SO(3, 1) [or SO(4)] covariant description of
the phase space of general relativity where the only
constraints present in the theory are those associated with
the two gauge symmetries underlying general relativity. In
addition, the constraints take a simpler form than those
obtained in nonmanifestly Lorentz-covariant approaches
(compare for instance with Refs. [10,13]), and the geo-
metrical meaning of the involved canonical variables is
clearly established.

We point out that the current theoretical framework
applies to the four-dimensional Palatini action as well, as
can be seen in Ref. [25] or by taking the limit y — oo in
the analysis presented in Sec. II; actually, the resulting
canonical theory coincides with the one emerging from
the Holst action after implementing the canonical trans-
formation discussed in Sec. IV for the values of the
parameters specified there (see also Ref. [11]). Moreover,
our approach can also be used to perform from scratch
the canonical analysis of the n-dimensional Palatini
action with a cosmological constant [25] and to study
the coupling of matter fields to the Holst (or Palatini)
action in the canonical framework (these results will be
reported elsewhere t0o).

Regarding the unified constraint (33) at the end of
Sec. II, it would be really interesting to compute the
gauge algebra satisfied by this constraint together with
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the Gauss constraint GU and also to establish the relation
between the gauge transformations generated by 7, and the
alternative gauge transformations for the Holst action
reported in Ref. [27].

We think our results can also be useful for investigating
the asymptotic behavior of the gravitational field where
Lorentz invariance is relevant as well as for the study of
gravitational field configurations using numerical methods,
where our approach could provide new insights for positing
initial value problems in gravity because it preserves
Lorentz invariance.

The technique of our manuscript was also used to do the
Hamiltonian analysis of general relativity with Immirzi
parameter, expressed as a BF theory supplemented with
constraints on the B field, without introducing second-class

constraints in the canonical analysis, which was reported
in Ref. [28].

Finally, although the canonical variables contained in this
paper are no longer connection variables—but they give rise
to connection variables in the time gauge, as pointed out
above—and thus their implementation in the quantum theory
is quite nontrivial, our results should motivate the develop-
ment of new mathematical techniques to potentially use
these variables in applications to quantum gravity.
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