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This paper introduces an analytical treatment of accelerated and geodesic motion within the framework
of the Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime. By employing conformal time trans-
formations we manage to convert second order differential equations of motion in FLRW spacetime to first
order equations in the conformally transformed spacetime. This allows us to derive a general analytical
solution in closed-form for accelerated motion in spatially curved FLRW spacetime. We provide few
examples of this general solution. The last part of our work focuses on the return journey for a traveler
exploring a FLRWuniverse. We derive certain conditions for a de Sitter universe that have to be satisfied in
order to achieve a return journey.
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I. INTRODUCTION

The paradigm of a homogeneous expanding isotropic
universe in the framework of general relativity is realized
via the Friedmann-Lemaître-Robertson-Walker (FLRW)
model [1–4]. In this work we are going to investigate
the accelerated motion of a test particle in FLRW. Such a
test particle corresponds to a rocketeer traveling in an
FRLW universe. The derivation and the interpretation of
accelerated motion have suffered from ambiguous treat-
ments which will be discussed later on.1

The motion of a uniformly accelerated traveler in an
expanding universe is described by a set of differential
equations which are in general nontrivial coupled. This set
of equations does not become less complicated even if a
specific cosmological model is applied. Thus, an analytical
derivation of the path of a rocketeer is highly challenging.
Actually a goal of this work is to present a general
formulation which allows an analytical treatment. In parti-
cular, this work has been inspired by [10] in which
W. Rindler proposed a generalization of the hyperbolic
motion in Minkowski spacetime to solve the corresponding
set of equations. However, Rindler solved it only for the
de Sitter spacetime [10].
Studying the accelerated motion of a rocketeer is useful

for the future accelerated space probe. For our universe
(with Ωm ≈ 0.27, ΩΛ ≈ 0.73 and nearly spatially flat) a

space traveler could visit a galaxy which is observed today
at a redshift of 1.7 on a one-way journey with proper
acceleration equal to the terrestrial gravitational acceler-
ation, in almost 100 years [11]. However, for galaxies at
redshift less than 1.7, e.g., 0.65, it is not clear whether the
traveler would succeed to return back home. Therefore, it
might be appropriate to consider a traveler of intermittent
accelerations to explore the universe [9]. In this study, we
are going to address this issue from a different point of
view, i.e., our rocketeer travels with uniform deceleration in
order to achieve a return trip.
The formalism presented in this work reduces to the

geodesic motion in a spatially curved FLRW spacetime in
the limit of zero proper acceleration. Since geodesic in an
expanding universe has vast applications in cosmology,
astrophysics, and quantum gravity, many attempts have
been undertaken to solve the geodesic equations of motion
(for more details see Refs. [12–39] of [12]). The first
attempt to tackle this issue was initiated by Whiting [13].
Whiting derived the equations of motion for a free particle
with Newtonian background and its relativistic generali-
zation. In [14] geodesic in low-velocity regime has been
studied. These efforts by [13,14] for solving geodesic
motion was not sufficient due to the number of short-
comings in calculation and interpretation. Latter on, Grøn
and Elgarøy [15] derived a general solution for geodesics in
the full general relativity framework. Moreover, Ref. [13]
claimed that particle moving uniformly in an expanding
universe will join the Hubble flow. This claim has been
refuted in [16], in which it has been formally proven that
particles following the geodesic motion in an eternally
expanding universe do not asymptotically rejoin the
Hubble flow. Recently, a method for deriving both timelike
and spacelike geodesic distances in spatially flat FLRW
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1For example, it has been debated whether analysing uni-

formly accelerated motion in an expanding universe could clarify
the physics behind the expansion. Namely, the debate has been
about if the expansion is a trick of coordinates or a physical
phenomenon [5–9].
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spacetime with given initial-value or boundary-value con-
straints was presented in [12].
In this work, we use conformal time transformations in

order to get a general analytical formulation. Thus, it is
useful to provide a brief overview of what has been
already done in FLRW with conformal transformations.
Conformal transformation and its symmetries help us to
grasp the notion of the causal structure of spacetime [17].
FLRW metric has vanishing Weyl tensor, therefore, all
Friedmann cosmological models are conformally flat and
their systematic description has been studied in detail in
Ref. [18–20]. The nature of FLRW models in conformal
coordinates has been studied in [21]. It has been demon-
strated in [22] that transformation into conformal coordinates
do not eliminate superluminal recession velocities for open
or flat matter dominated FLRW cosmologies, and all of them
possess superluminal expansion. Reference [23] derived the
scalar field and the electromagnetic field of a moving
charged particle in de Sitter spacetime, when the particle
is following geodesic trajectories or it is uniformly accel-
erated. In order to achieve this, conformal transformation
between de Sitter and Minkowski spacetime was applied.
The layout of this work is as follows; Sec. II provides the

essential mathematical background in which the conformal
time transformation is applied. In Sec. III a novel general
formalism is presented. Namely, using the transformed
FLRW spacetime enables us to solve the equations of
motion of accelerated particle. In this way, second order
differential equations reduce to first order differential equa-
tions which allow us to solve the trajectories for accelerated
particle and free motion. In addition, this formalism specifies
the four-velocities of particles. This extends previous results
[12,15] covering only geodesic motion. We prove that
accelerated and geodesic motions in FLRWuniverse depend
on the expansion factor and its integral for any specific
FLRWmodel. In Sec. IV we give some examples for known
FLRWmodels that have an analytic solution. In cases where
there is no analytical solutions, we use numerical integration
to solve them. Furthermore, in Sec. IVD we provide
solutions for both the uniformly accelerated and the geodesic
motion in the global anti–de Sitter spacetime by implement-
ing similar prescription as we did in Sec. III. This accelerated
trajectory is indeed the generalized form of the known
uniformly accelerated observer in the anti–de Sitter space-
time [24–26]. In Sec. V we discuss the return journey. We
show that, in order to achieve a return journey having
uniformly deceleration is not sufficient condition for every
spacetime. For a de Sitter spacetime we derive the boundary
condition that must be satisfied to be able to fulfill the return
journey. Concluding remarks are given in Sec. VI.

II. MATHEMATICAL BACKGROUND

We begin by introducing the line element of the FLRW
spacetime, which describes the metric of an expanding,
homogeneous and isotropic universe

ds2¼−c2dt2þR2ðtÞ½dχ2þS2kðχÞðdθ2þsin2θdϕ2Þ�; ð1Þ

where c is light speed (hereafter c ¼ 1),

SkðχÞ ¼
8<
:

sin χ; k ¼ þ1; closed;

χ; k ¼ 0; flat;

sinh χ; k ¼ −1; open;

expresses the space curvature and RðtÞ is the scale factor
which describes the expansion of the universe. t is the
coordinate time t ∈ ½0;∞Þ; χ lies in the range χ ∈ ½0;∞Þ
for k ¼ 0;−1 and χ ∈ ½0; π� for k ¼ 1; while the angles
θ ∈ ½0; π� and ϕ ∈ ½0; 2πÞ independently of the curvature.
Let us assume a cosmological model with a cosmologi-

cal constant Λ and a fluid with equation of state given by

P ¼ PðρÞ ¼ ðγ − 1Þρ ð2Þ

where P is the pressure, ρ is the energy density and we
assume that constant γ can take any values. Then, the
Friedmann equation reads

_R2ðtÞ
R2ðtÞ ¼

Λ
3
−

k
R2ðtÞ þ

C
R3γðtÞ ; ð3Þ

where dot means derivation with respect to t and C is a
constant proportional to the matter density (see, e.g., [24]).
The four-acceleration of a particle is given by

aμ ¼ uμ;νuν ¼ duμ

dλ
þ Γμ

νσ
dxν

dλ
dxσ

dλ
; ð4Þ

where uμ is the four-velocity and λ is the proper time. aμ

and uμ satisfy the following constraints

uμuμ ¼ −1; ð5Þ

aμaμ ¼ A2; ð6Þ

aμuμ ¼ 0; ð7Þ

where A is the norm of the acceleration. Having uniform
acceleration means that A ¼ const.
Solving Eq. (4) for a given acceleration (say for

A ¼ const) is almost analytically intractable (see, e.g.,
[10]). Here we introduce the conformal time transformation
in order to tackle this problem. In particular, the conformal
time η is such that

η ¼
Z

dt
RðtÞ : ð8Þ

Additionally, by putting χ̃ ¼ χ, the FLRW metric reads
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ds2 ¼ R̃2ðηÞ½−dη2 þ dχ̃2 þ S2kðχ̃Þðdθ2 þ sin2θdϕ2Þ�; ð9Þ

Notice that, R̃ðηÞ ¼ RðtÞ.
When we have cosmological models with Λ ¼ 0 or

Λ ≠ 0 but without matter, it holds that (see, e.g., [24])

R̃ðηÞ ¼

8>><
>>:

R̃csinbðηbÞ; k ¼ þ1;

R̃cη
b; k ¼ 0;

R̃csinhbðηbÞ; k ¼ −1;

where R̃c is a constant length which determines the scale of
the universe. The power coefficient b for Λ ¼ 0 is b ¼ 2

3γ−2.
The value of b distinguishes between different cosmologi-
cal models. For example, if b ¼ 2 then the universe is filled
with dust;for stiff matter b ¼ 1

2
; while b ¼ 1 describes the

radiation case. Moreover, for non-negative curvature when
Λ ≠ 0 and without matter, which is actually a de-Sitter
cosmological model, then b ¼ −1.

III. PATH OF PARTICLES
IN FLRW SPACETIME

We would like first to present the general formulation
for the motion of particles in the transformed FLRW
spacetime (9) by considering only the radial motion. To
do that, we shall define the four-velocity as follows [11]

uη ¼ dη
dλ

¼ cosh ζðλÞ
R̃ðηÞ ; uχ̃ ¼ dχ̃

dλ
¼ sinh ζðλÞ

R̃ðηÞ ; ð10Þ

where ζðλÞ is the rapidity, which will be determined later.
Note that Eqs. (10) automatically satisfy constraint (5).
The only needed nonvanishing Christoffel symbols for

this case are

Γη
ηη ¼ Γη

χ̃ χ̃ ¼ Γχ̃
ηχ̃ ¼

1

R̃ðηÞ
dR̃ðηÞ
dη

: ð11Þ

The four-acceleration in the set of coordinates (9) can be
written in the following way

aη ¼ duη

dλ
þ Γη

ηηðuηÞ2 þ Γη
χ̃ χ̃ðuχ̃Þ2; ð12Þ

aχ̃ ¼ duχ̃

dλ
þ 2Γχ̃

ηχ̃u
ηuχ̃ : ð13Þ

From now on, since all used Christoffel symbols have
equal value, we shall denote them by Γ.
By differentiating the first term in the right-hand side of

Eq. (12) and by using Eq. (10) we obtain

duη

dλ
¼ sinh ζðλÞ

R̃ðηÞ
dζðλÞ
dλ

−
cosh ζðλÞ
R̃ðηÞ2

dR̃ðηÞ
dλ

: ð14Þ

Since the dR̃ðηÞ
dλ can be written in terms of η

dR̃ðηÞ
dλ

¼ dη
dλ

dR̃ðηÞ
dη

¼ uη
dR̃ðηÞ
dη

; ð15Þ

by substituting it into Eq. (14) together with Eqs. (10)
and (11) we arrive to

duη

dλ
¼ uχ̃

dζðλÞ
dλ

− ðuηÞ2Γ: ð16Þ

Thus

aη ¼ uχ̃
dζðλÞ
dλ

þ ðuχ̃Þ2Γ ¼ uχ̃
�
dζðλÞ
dλ

þ Γuχ̃
�
: ð17Þ

Similar calculation can be undertaken for aχ̃ where

duχ̃

dλ
¼ uη

dζðλÞ
dλ

− uηuχ̃Γ; ð18Þ

which finally gives

aχ̃ ¼ uη
dζðλÞ
dλ

þ uηuχ̃Γ ¼ uη
�
dζðλÞ
dλ

þ Γuχ̃
�
: ð19Þ

We denote

A ¼ dζðλÞ
dλ

þ Γuχ̃ ; ð20Þ

where A, is the norm of acceleration as mentioned earlier in
Eq. (6). As a result, the four-acceleration becomes

aη ¼ Auχ̃ ; aχ̃ ¼ Auη: ð21Þ

Note that Eq. (21) satisfies also the constraints (6) and (7).
In the transformed FLRW metric (9) the coordinates η

and χ̃ share a common coefficient, i.e., the R̃ðηÞ. If we
constraint the motion only on the radial direction through
this transformation we get a solvable set of equations from
Eq. (4). This allows us to analyze the radial motion of the
rocketeer in the FLRW spacetime.

A. Accelerated radial motion

It is convenient to express the equation of motion of
the rocketeer in terms of η. Therefore, from the four-
velocity (10), we get

dχ̃
dη

¼ dχ̃=dλ
dη=dλ

¼ tanh ζðλÞ: ð22Þ

To find the unknown rapidity ζðλÞ we need to use Eq. (20)
and reparametrize it in terms of η
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A − uη
dζ̃ðηÞ
dη

− Γuχ̃ ¼ 0; ð23Þ

where ζ̃ðηÞ ¼ ζ̃ðηðλÞÞ ¼ ζðλÞ and A ¼ const.
Integrating Eq. (23) with respect to η, we obtain

ζ̃ðηÞ ¼ arcsinh

�
AR̃ðηÞ þ υ

R̃ðηÞ
�
; ð24Þ

where

R̃ðηÞ ¼
R
η R̃ðη̃Þ2dη̃
R̃ðηÞ ; ð25Þ

and υ is an integration constant which is related to the initial
velocity of particle. Consequently,

χ̃ ¼ A
Z

R̃ðηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
AR̃ðηÞ þ υ

R̃ðηÞ
�
2 þ 1

r dη

þ υ

Z
1=R̃ðηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

AR̃ðηÞ þ υ
R̃ðηÞ

�
2 þ 1

r dη: ð26Þ

Now, we go back to the coordinates of the original
FLRW metric (1). This is achieved by using the inverse
transformation of Eq. (8), i.e., R̃ðηÞdη ¼ dt, and by recall-
ing that RðtÞ ¼ R̃ðηÞ. Thus, we obtain for Eq. (24)

ζ̂ðtÞ ¼ arcsinh

�
ARðtÞ þ υ

RðtÞ
�
; ð27Þ

where

RðtÞ ¼
R
t Rðt0Þdt0
RðtÞ : ð28Þ

Using Eq. (27) enables us to derive the four-velocity in
standard FLRW spacetime as follows

ut ¼ dt
dλ

¼ cosh ζ̂ðtÞ; uχ ¼ dχ
dλ

¼ sinh ζ̂ðtÞ
RðtÞ : ð29Þ

Finally, the trajectory of uniform acceleration motion is
given by

χ ¼ A
Z

1

RðtÞ
RðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

ARðtÞ þ υ
RðtÞ

�
2 þ 1

r dt

þ υ

Z
1

RðtÞ2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

ARðtÞ þ υ
RðtÞ

�
2 þ 1

r dt: ð30Þ

By specifying the evolution of the scale factor RðtÞ
Eq. (30) provides the accelerated radial path of the
rocketeer in the standard FLRW coordinate.

B. Some characteristic types of motion

1. Purely accelerated motion

When one ignores the integration constant υ (i.e., υ ¼ 0)
in trajectories (26) and (30) the motion is called purely
accelerated. In the conformally transformed coordinates
the trajectory is given by

χ̃a ¼ A
Z

R̃ðηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2R̃ðηÞ2 þ 1

q dη; ð31Þ

and in the original FLRW coordinates we get

χa ¼ A
Z

1

RðtÞ
RðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2RðtÞ2 þ 1
p dt; ð32Þ

where index a in both Eqs. (31) and (32) refers to the purely
accelerated motion.

2. Geodesic motion

To get the trajectory for the geodesic motion one has
to substitute A ¼ 0 into the Eqs. (24), (26) and (30). Thus,
the rapidity function ζ̃ðηÞ becomes

ζ̃ðηÞ ¼ arcsinh

�
υ

R̃ðηÞ
�
: ð33Þ

Consequently, Eq. (26) will be

χ̃v ¼
Z

υffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R̃ðηÞ2 þ υ2

p dη; ð34Þ

and for Eq. (30) we obtain

χv ¼
Z

υ

RðtÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RðtÞ2 þ υ2
p dt: ð35Þ

Here index v in Eqs. (34) and (35) denotes geodesic
motion. For all υ values, υ2 > 0, which guarantees that
Eq. (35) is a timelike geodesic [12].
Eqs. (34) and (35) are geodesics in any conformal time

FLRW spacetime and FLRW spacetime respectively.
Eq. (35) is the same as equation derived in [15] and
recently in [12].

3. Null geodesics

We can see from Eq. (30) that for large acceleration A
the particle’s trajectory asymptotically reaches the null
geodesic, that means
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lim
A≫

χa ¼ �
Z

1

RðtÞ dt: ð36Þ

Moreover, this statement holds for large υ value, i.e.,

lim
υ≫

χa ¼ �
Z

1

RðtÞ dt: ð37Þ

4. Transformation conditions

For the flat spatial curvature FLRW spacetime the
accelerated motion (31) can be transformed into geodesic
motion (34) under certain conditions. In order to investigate
this statement, we consider two different spacetimes having
scale factors R̃mðηÞ ¼ μηm and R̃kðηÞ ¼ κηk. By substitut-
ing R̃mðηÞ and R̃kðηÞ into the Eqs. (34) and (31) respec-
tively we get

χ̃v ¼
υη1−m

μðm − 1Þ 2F1
�
1

2
;
m − 1

2m
;
3m − 1

2m
;−

υ2η−2m

μ2

�
; ð38Þ

and

χ̃a¼
Aκη2þk

ð2þkÞð1þ2kÞ2F1
�
1

2
;
2þk
2þ2k

;
4þ3k
2þ2k

;−
A2κ2η2þ2k

ð1þ2kÞ2
�
;

ð39Þ

where 2F1ða; b; c; zÞ is the Gauss hypergeometric function.
These two trajectories become equivalent if

8>><
>>:

1þ k ¼ −m;
Aκ

1þ2k ¼ υ
μ ;

1þ 2k ≠ 0.

ð40Þ

For instance, the uniformly accelerated trajectories in the de
Sitter spacetime get transformed to the geodesic motion in
the Minkowski spacetime and vice versa (See Sec. IV C for
more details). Moreover, one can show that an observer
with a suitable acceleration moving in a decelerating
Friedmann universe, i.e., a dust field universe, has the
same cosmological redshift as the observer in the ΛCDM
model [27].

IV. SOME EXAMPLES

In this section of Sec. III’s formalism is applied to
specific FLRW universe models. The motion of a particle
both in the original and in the transformed coordinates
depends only on the scale factor and its integral (Eq. (28)
and Eq. (25) respectively). Thus, specifying the expansion
factor for each cosmological model enables us to determine
the particles worldlines. In this section the behavior of the
trajectories presented in paragraphs a and b of Sec. III B is
studied.

Recently, the solution of Friedmann Eq. (3) was pre-
sented for various FLRW models with k ¼ 0 [28]. Namely,
Chavanis has derived an analytical solution for RðtÞ in a
universe undergoing a various combination of eras, e.g.,
stiff matter era, dark matter era, and dark energy era due
to the cosmological constant. From this study we use the
form of the scale factor in the cosmological examples of
Sec. IV and Sec. V.
Note that, although the transformation (8) is not, in

general, conformally flat transformation (CFT) for spatially
curved FLRW models, it is CFT for all the flat FLRW
models. Thus, since the cosmological models appearing
in Secs. IVA and IV C have zero spatial curvature, the
transformation (8) is a CFT, i.e., it holds that

ds2k¼0 ¼ Ω2ds2flat; ð41Þ

where Ω ¼ R̃ðηÞ.
It is clear that this formalism is able to reproduce the

known hyperbolic motion in the Minkowski spacetime [29].
In a similar manner as in the Minkowski spacetime, the
uniformly accelerated motion can be derived in the Einstein
static universe, since for both spacetimes the scale factor
RðtÞ ¼ 1.
To provide visualization for our examples we are going

to plot some trajectories in Penrose diagrams with coor-
dinates η and χ given by the metric (9).

A. Flat FLRW spacetime without Λ
In this section we consider spatially flat FLRW space-

time with vanishing cosmological constant, i.e., Λ ¼ 0,
and a single fluid content provided by the EoS (2).
From the Friedmann equation (3) one can obtain the
scale factor

RðtÞ ¼ Rct
2
3γ; ð42Þ

where Rc ¼ ð3
2
γ

ffiffiffiffi
C

p Þ 2
3γ. Substituting this scale factor into

the equations Eqs. (32) and (35) we obtain

χa ¼
9At2−2=3γγ2

Rcð3γ þ 2Þð6γ − 2Þ

× 2F1

�
1

2
; 1 −

1

3γ
; 2 −

1

3γ
;−

�
3Aγt
2þ 3γ

�
2
�
; ð43Þ

and

χv ¼
3t1−2=3γ

Rcð3 − 2γÞ

× 2F1

�
1

2
;
3γ

4
−
1

2
;
3γ

4
þ 1

2
;−

�
Rct2=3γ

υ

�
2
�
; ð44Þ
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where a and v denote uniform acceleration and geodesic
motion respectively. In conformal representation, where
R̃ðηÞ ¼ R̃cη

b where b ¼ 2
3γ−2, we have

χ̃a ¼
AR̃cη

2þb

ð2þ bÞð1þ 2bÞ

× 2F1

�
1

2
;
2þ b
2þ 2b

;
4þ 3b
2þ 2b

;−
A2R̃2

cη
2þ2b

ð1þ 2bÞ2
�

ð45Þ

and

χ̃v ¼
υη1−b

R̃cðb − 1Þ 2F1
�
1

2
;
b − 1

2b
;
3b − 1

2b
;−

υ2η−2b

R̃2
c

�
: ð46Þ

The dynamical features of the above trajectories on a
Penrose diagram are very similar for all the usual barotropic
fluids, i.e., for fluids with 1 ≤ γ ≤ 2. Thus, in Fig. 1 we plot
just the case γ ¼ 1, which shows different trajectories in a
spatially flat FLRW universe with dust. Namely, Fig. 1
shows accelerated trajectories with zero υ and nonzero υ
(solid blue and dotted dashed red lines respectively), the
geodesic trajectories (orange dashed lines) together with
the null geodesic (black thick solid line). In the case of
constant acceleration, the greater the acceleration the faster
the rocketeer approaches the null geodesic behavior. We
plot also one decelerating trajectory with nonzero υ, which
exhibits a return journey: such trajectories will be discussed
in Sec. V. Regarding the geodesic motion the greater the
initial velocity, the further the traveler can reach. Note that
even if initially geodesic travelers overtake accelerated
ones, eventually as expected the accelerated ones prevail.
Additionally, this figure provides the asymptotic behavior
of the trajectories as t → ∞. One can see that, accelerated

trajectories reach the future null infinity, i.e., Iþ, whereas
the geodesics motion ends up to timelike infinity, i.e., iþ.

B. Milne universe

Vacuum FLRWmodel with Λ ¼ 0 and k ¼ −1 is known
as Milne universe [30], where RðtÞ ¼ t. For this spacetime
particle’s paths are

χa ¼ ln
�
Atþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2t2 þ 4

p �
þ lnðC5Þ; ð47Þ

where C5 is an integration constant. For a particle starting
from χa ¼ t ¼ 0 ðC5 ¼ 1

2
Þ, χa reduces to

χa ¼ arcsinh

�
A
2
t

�
; ð48Þ

and χv becomes

χv ¼ −arcsinh
�

υffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ υ2

p
�
þ arcsinh

�
−

υffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ υ2

p
�
: ð49Þ

For Milne universe we cannot use Eqs. (26) and (34)
since transformation (8) is not CFT. In order to plot the
above case in a Penrose diagram we have to use the
transformation

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 − R2

p
; χ ¼ arcsinh

�
R
T

�
; ð50Þ

between a Milne universe and the Minkowski spacetime
[29]. Using this transformation we get

�
Ra þ

1

A

�
2

− T2 ¼ 1

A2
; ð51Þ

and

Rv ¼
υTffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ υ2

p ; ð52Þ

for the trajectories (48) and (49) respectively in the
Minkowski spacetime.
It is known that Eqs. (51) and (52) describe hyperbolic

and geodesic motion respectively in Minkowski spacetime.
In Fig. 2 examples of these types of motion are depicted in
the same manner as Fig. 1. The shaded region in this figure
indicates the part of the Penrose diagram that does not
belong to the Milne universe.

C. de Sitter Universe, γ = 0

Considering the dark energy dominated universe in the
absence of any matter the scale factor is

RðtÞ ¼ R0e
ffiffi
Λ
3

p
t; ð53Þ

FIG. 1. Penrose diagram for the dust-filled universe. The thick
black solid line denotes the photon trajectory. Solid lines have
constant acceleration A and υ ¼ 0, while the dotted dashed lines
have constant acceleration A and υ ≠ 0. Dashed curves are
geodesics, i.e., A ¼ 0.
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where Λ is a cosmological constant [28]. This solution is
known as the de Sitter solution.
Accelerated and geodesic motion in this particular

spacetime are described by

χa ¼ −
Affiffiffi

Λ
3

q
R0e

ffiffi
Λ
3

p
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ Λ

3

q þ C1; ð54Þ

χv ¼ −
ffiffiffiffi
3

Λ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR0e

ffiffi
Λ
3

p
tÞ2 þ υ2

q

υR0e
ffiffi
Λ
3

p
t

: ð55Þ

In conformal coordinates, where scale factor is R̃ðηÞ ¼
−

ffiffiffi
3
Λ

q
1
η, we get

χ̃a ¼
Affiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ Λ
3

q η; ð56Þ

χ̃v ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

Λυ2
þ η2

r
þ C3: ð57Þ

It is clear from Eqs. (56) and (57) that the geodesic
equation in conformally flat coordinates (Minkowski
spacetime) get transformed to uniformly accelerated world-
line in de Sitter spacetime, whereas the trajectory of a
uniformly accelerated particle in Minkowski spacetime get
transformed to geodesic in de Sitter spacetime (see Fig. 3).
This result confirms previous works of Rindler2 [10] and
Bičák and Krtouš [23].

Figure 3 shows the trajectories in the de Sitter spacetime.
In this spacetime, all trajectories have the same description as
in Fig. 1, but some of them have different initial conditions.
Namely, some of them do not pass through the origin t ¼ 0.
Another difference is that the de Sitter spacetime covers only
the lower part of the Penrose diagram, since all trajectories
end up at the Iþ. We continue plotting the trajectories even
to the upper shaded region in order to provide a global view
of the behavior of these trajectories.

D. Anti–de Sitter spacetime

In this section we consider a vacuum FLRW universe
with a negative cosmological constant Λ and negative
spatial curvature k ¼ −1 namely anti–de Sitter universe.
This particular case of anti–de Sitter universe has the
scale factor

RðtÞ ¼ α cos

�
t
α

�
ð58Þ

where α ¼ ffiffiffiffiffiffiffiffiffiffiffi
3=jΛjp

. Thus, the accelerated and geodesic
trajectories become

χa ¼ ln

�
2
A2α2 þ Aα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2α2sin2ðt=αÞ þ cos2ðt=αÞ

p
cosðt=αÞ

�
;

ð59Þ

and

χv ¼ arctanh

�
υ sinðt=αÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2cos2ðt=αÞ þ υ2
p

�
: ð60Þ

In Fig. 4 we illustrate these trajectories and we denote the
different types of trajectories as we did in Fig. 1.
Note that this coordinate system does not cover the

whole anti–de Sitter spacetime. In order to study the
accelerated motion in the whole anti–de Sitter spacetime
we use the following line element

ds2¼−cosh2ðrÞdt2þα2ðdr2þsinh2ðrÞðdθ2þsin2θdϕ2ÞÞ;
ð61Þ

where r is dimensionless. The accelerated and geodesic
motions of this metric cannot be studied from the formu-
lation presented in Sec. III. However, we can introduce a
similar prescription to obtain those trajectories. Namely, we
introduce the conformal coordinate χ by setting sinhðrÞ ¼
tanðχÞ together with t ¼ αη. Then, the metric (61) takes
the form

ds2 ¼ α2

cos2ðχÞ ½−dη
2 þ dχ2 þ sin2ðχÞðdθ2 þ sin2θdϕ2Þ�:

ð62Þ

FIG. 2. Penrose diagram for the Milne universe. Curves have
the same coloring as described in Fig. 1. Note that, the shaded
part of the plot does not belong to the Milne universe.

2Note that, W. Rindler obtained only one special case of
accelerated motion in de Sitter spacetime. Namely, he studied the
case when a particle leaves the origin (t ¼ χ ¼ 0) from rest, i.e.,
ut ¼ 1 and uχ ¼ 0. One can rederive Rindler’s trajectory by

putting υ ¼ −
ffiffiffi
3
Λ

q
A into the Eq. (30) together with χðt¼0Þ ¼ 0.
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It is clear that the anti–de Sitter spacetime time covers
only half of the Einstein static universe, namely in the
range χ ∈ ½0; π=2Þ.
Now, similarly to the formulation presented in Sec. III,

we introduce the radial four-velocity

uη ¼ dη
dλ

¼ coshðξðλÞÞ
FðχÞ ; uχ ¼ dχ

dλ
¼ sinhðξðλÞÞ

FðχÞ ; ð63Þ

where FðχÞ ¼ α
cosðχÞ. This radial motion has the four-

acceleration given by

aη ¼ Auχ ; aχ ¼ Auη; ð64Þ

where

A ¼ dξðλÞ
dλ

þ Γuη ð65Þ

and Γ ¼ 1
FðχÞ

dFðχÞ
dχ . Therefore, for the rapidity function

ξðχÞ ¼ ξðχðλÞÞ ¼ ξðλÞ, which can be determined from
Eq. (65), we get

ξðχÞ ¼ arcCosh

�
AF ðχÞ þ υ

FðχÞ
�
; ð66Þ

where

F ðχÞ ¼
R
Fðχ̂Þ2dχ̂
FðχÞ ; ð67Þ

and υ is an initial velocity of the accelerated particle. Thus,
from the four-velocity (63) and Eq. (66) we get

η ¼
Z

coth ðξðχÞÞdχ: ð68Þ

By substituting υ ¼ 0 into the Eq. (68), namely for the
purely accelerated motion, after some manipulation we get
the following trajectory

χa ¼ π − arccos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2α2 − 1

p

Aα
tanðΔηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tan2ðΔηÞ
p

�
; ð69Þ

FIG. 3. Penrose diagram for de Sitter universe. The shaded part is not covered by the flat de Sitter universe.
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where A2α2 > 1 has to be satisfied, Δη ¼ η − η0 and the
constant η0 is an integration constant from integral appears
in Eq. (68). Observers with an acceleration A travel radially
in the range

arcsin

�
1

Aα

�
< χa <

π

2
:

At χa ¼ arcsin ð1=ðAαÞÞ the χ component of the four-
velocity vanishes and the radial moving observer turns to
the stationary observer. Furthermore, Eq. (69) show that the
maximum duration of the radial accelerated traveler in the
anti–de Sitter spacetime is Δη ¼ π=2, since the trajectories
reach the I .
Moreover, by putting A ¼ 0 into the Eq. (68) we derive

the trajectories for geodesic motion

χv ¼ arcsin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2 − α2

p

υ

tanðΔηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2ðΔηÞ

p
�
; ð70Þ

which holds under the condition that υ2 > α2 (for υ ¼ α the
geodesic trajectory vanishes). Equation (70) shows that, the
observer moving with the constant υ moves in the range

0 < χv < arccos

�
α

υ

�
:

When the observer reaches at χv ¼ arccos ðα=υÞ the uχ

becomes zero and therefore the radial moving observer
becomes stationary. Similar to the accelerated motion,
maximum duration of this motion is π=2.
Setting ξðχ0Þ ¼ 0 for any fixed χ ¼ χ0 reduces the

accelerated radial motion to the family of the timelike
worldlines representing uniformly accelerated observers
studied in previous works [24–26]. Thus, the newly found
radially moving accelerated observers have as a limiting
case the already known stationary ones.
Fig. 5 shows these trajectories denoted in the same

manner as in Fig. 1. As we discussed previously,
worldlines of fixed χ represent uniformly accelerated
observers. In this figure, trajectory number (1) shows
that the stationary observer from η ∈ ð−∞; 0�. Then, at
η ¼ 0 it starts to accelerated radially with an acceler-
ation A ¼ 3 and goes toward I (trajectory (4) has the
similar behavior). Observer number (6) has a deceler-
ation A ¼ −1.8 from η ∈ ð−π=2; 0Þ. Then, at η ¼ 0 its
uχ vanishes and becomes stable. On the other hand,
trajectories (5) and (7) which have the υ > 0 start from
η ¼ χ ¼ 0 traveling with for Δη ¼ π=2 with constant υ.
Its radial component of four-velocity, i.e., uχ is decreas-
ing until at η ¼ 0 it become zero. After this point, the
observer becomes stationary. Observers (2) and (3) are
at rest from η ∈ ð−∞;−π=2� and then they move with
negative υ toward O.

FIG. 4. Penrose diagram of the part of the anti–de Sitter
spacetime as a particular case of the FLRW universe. Trajectories
are colored in the same manner as Fig. 1.

FIG. 5. The Penrose diagram for the global anti-de Sitter
spacetime. See the text for more details.
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V. RETURN JOURNEY

In this section we are going to focus our study on
analyzing the return journey of the rocketeer in spatially flat
FLRW universe. In particular, we are going to study the
behavior of the Eq. (30) or Eq. (26) in the spacetimes
studied in the previous section. Actually, in order to fulfill
the return journey, our rocketeer must begin to decelerate,
i.e., Ad < 0, long enough time before it reaches the
designated proper distance.
Assuming that, the spaceship is traveling with nonzero

positive value υ, at t ¼ λ ¼ χ ¼ 0 the rocketeer applies a
deceleration Ad. Thus, the rocketeer reaches the maximum
comoving distance from the origin at the return point with
coordinates ft1; x1g > 0 when ζ̂ðt1Þ ¼ 0 or equivalently
uχðt1Þ ¼ 0.
Therefore, depending on the form of scale factor, one can

analyze the return journey of the rocketeer.

A. RðtÞ= tn spacetimes

In this section we analyze the return journey in the
spacetime studied in Secs. IVA and IV B, namely space-
times having the scale factor like RðtÞ ¼ tn. In these
particular spacetimes the rockeeter reaches the maximum
comoving distance from the origin at

t1 ¼
�
−
υðnþ 1Þ

Ad

� 1
nþ1

: ð71Þ

Afterwards, the rocketeer returns toward the origin. As
t → ∞ the trajectory of the rocketeer asymptotically
becomes

lim
t→∞

χ ¼ −
Z

1

tn
dt; ð72Þ

which means that there is a finite t2 > t1, when the
rocketeer arrives back to the origin, χ ¼ 0. In Figs. 1
and 2, the dotted dash trajectories represent the return
journeys in each spacetimes.

B. de Sitter case

The return journey in the de Sitter spacetime has a
different behavior with respect to the previous examples,
since the scale factor (53) is given by a different function of
time. In this specific spacetime, the rocketeer reaches the
maximum comoving distance from the origin at

t1 ¼
ffiffiffiffi
3

Λ

r
ln

�
−

ffiffiffiffi
Λ
3

r
υ

Ad

�
: ð73Þ

Moreover, the total cosmic time t2 needed to cover the
return journey for a rocketeer that leaves the origin at
t ¼ λ ¼ 0, is derived from Eq. (30) and it is given by

t2 ¼
ffiffiffiffi
3

Λ

r
ln

�
−

ffiffiffiffiffiffi
3Λ

p
υffiffiffiffiffiffi

3Λ
p

υþ 6Ad

�
: ð74Þ

Thus, from Eqs. (73) and (74) one can see that the return
journey does not happen for all values of Ad and υ (see
Fig. 6). Actually, to attain an actual return journey, the
following relation

2Ad < −
ffiffiffiffi
Λ
3

r
υ < Ad; ð75Þ

has to be satisfied. In Fig. 6 we show several cases of return
journeys in de Sitter spacetime for Λ ¼ 3 and A ¼ −2. The
negative values of χ represents the opposite direction from
the one that the rocketeer is supposed to explore.

Line 1. For −
ffiffiffi
Λ
3

q
υ ≥ Ad, there isn’t any return point for

the particle and rocketeer will move toward the −χ
direction.

Line 2. For 2Ad < −
ffiffiffi
Λ
3

q
υ < Ad, there is a return point

and the rocketeer is able to come back to the origin.

Line 3. For −
ffiffiffi
Λ
3

q
υ ¼ 2Ad, there is a return point but the

rocketeer will return back to origin in a infinite
cosmic time.

Line 4. For −
ffiffiffi
Λ
3

q
υ > 2Ad, there is a return point but the

rocketeer will never go back to the origin.
Thus, we have seen that in de Sitter spacetime, having

the uniform deceleration motion is not sufficient for the
rocketeer to come back to the origin. One has to apply the
deceleration which satisfies Eq. (75).

VI. CONCLUSIONS

In 1960, W. Rindler [10] proposed the problem of a
“hyperbolic motion in curved spacetime” to study the
accelerated motion in curved spacetime.

FIG. 6. Penrose diagram for the worldlines of return journeys in
de Sitter spacetime. Here Λ ¼ 3 and A ¼ −2 and the spacetime is
depicted only for t ≥ 0.
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In particular, it was suggested that the accelerated motion
is the best way of exploring our universe in a reasonably
short time [9]. Taking the above suggestion into account,
the motion of an accelerated traveler in an expanding
universe has been studied in this work. This involves
solving the nontrivial Eq. (4) for a given acceleration.
To achieve this, we applied a conformal time transforma-
tion (8) to the generic FLRW universe. Using the method
introduced in Sec. III has helped us to determine a
generalized form of rapidity function (27), which leads
us to derive the trajectory (30) of an accelerated traveler.
We have shown that the accelerated and the geodesic

motion in an expanding universe are solely determined by
the expansion factor and its integral (28). The scale factor is
the solution of the Friedmann equation (3), which depends
on the spatial curvature k, the cosmological constant Λ, and
the equation of state P ¼ PðρÞ. Although, we have chosen
a specific form of the equation of state in Sec. II, this
formulation is independent of the choice of an equation of
state. It depends only on whether the scale factor can be
expressed analytically as a function of time or not.

Additionally, we have provided a similar formulation in
the case of the anti–de Sitter spacetime for the uniformly
accelerated and geodesic radial motion. The newly found
radially accelerated trajectories are generalizations of the
known uniformly accelerated stationary observers in the
anti-de Sitter universe.
In the last part of our work we have focused on the return

journey of the rocketeer. It had been suggested that having
uniform deceleration would be enough in order to have an
actual return journey [10]. Here we have proved that even if
this condition is necessary, it is not sufficient for all
spacetimes. In particular, among the cosmological models
analyzed here, in the de Sitter case Eq. (75) must be
satisfied for a return journey to be possible.
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