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6Institut de Ciències de l’Espai, ICE/CSIC-IEEC, Campus UAB, Carrer de Can Magrans s/n,
08193 Bellaterra (Barcelona), Spain

7Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
8Institute of Physics, Kazan Federal University, 420008 Kazan, Russia

(Received 6 March 2020; accepted 5 April 2020; published 22 April 2020)

We perform a study both statistical and theoretical for cosmological models of matter creation and their
ability to describe effective phantom models of dark energy. Such models are beyond the ΛCDM model
since the resulting cosmic expansion is not adiabatic. In fact, we show that this approach exhibits transient
phantom/quintessence scenarios at present time and tends to the standard cosmological model at some stage
of the cosmic evolution. We discuss some generalities of the thermodynamics properties for this type of
cosmological model; we emphasize on the behavior of the temperature associated to dark matter, which
keeps positive along cosmic evolution together with the entropy. The enrichment of this type of model by
means of the incorporation of cosmological constant and dissipative effects in the fluid description to explore
their cosmological consequences in the expansion of the Universe is considered. Finally, a generalization for
the matter production rate as an inhomogeneous expression of the Hubble parameter and its derivatives is
discussed; as in all the cases examined, such election leads to an effective phantom/quintessence behavior.
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I. INTRODUCTION

Since it was discovered that supernovaewere dimmer than
expected, we have not been able to establish the reason for
this behavior rather than assume the simplest: the existenceof
a global cosmological constant. Although the discovery of
this behavior occurred more than 20 years ago, and during
this time the large scale observations have given us an
accuracy never reached before, we have not been capable to
elucidate the cause of this behavior. Assuming that obser-
vations are correct, at theoretical level we only have three
options: either to assume the existence of a new component
of the Universe, one whose pressure is negative, or also to
assume that we must modify the theory of gravitation, or the
third option, assume that our Universe at the scales of
measurements does not satisfy the Copernican principle.
Within the first category, and assuming that the extra

component—usually called dark energy (DE)—satisfies an

equation of state (EoS) p ¼ ωdeρ, with ωde constant, the
observations are used to constrain the best fit value of ω
among other cosmological parameters. However, many
recent observations [1,2] indicate that ωde < −1. If we
interpret ωde as the EoS parameter of a single component,
several physical complications appear. First, the condition
ωde < −1 cannot be achieved by Einstein gravity itself;
second, if we assume the existence of a fundamental scalar
field (sometimes called phantom matter) that satisfies the
aforementioned condition for the EoS parameter, we must
deal with a noncanonical Lagrangian, i.e., the kinetic term
carries a negative sign. This implies that the dominant
energy condition (DEC) is not satisfied, in consequence,
propagation of energy outside the light cone and vacuum
instabilities are expected to appear in this kind of model
[3,4]. In Ref. [5] can be found that it is possible to preserve
the energy conditions for an accelerating Universe with
phantom and ordinary matter, but the model requires
quantum effects contribution in the phantom sector. On
the other hand, if the phantom scalar field is coupled to a
perfect fluid, the r.h.s. of Einstein equations can be written
as the sum, Tμν ≔ Tfluid

μν þ Tph
μν. By means of the Bianchi

identity, Tμν is conserved but each term of the sum not;
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a simple interpretation of this is that matter is being created
by the phantom field in order to maintain a constant matter
density. However, another consequence from the conserva-
tion condition,∇μTμν, is that the rate of enthalpy production
acts as a source for the phantom field; this is contradictory
since in the standard scheme the entropy is a constant times
the enthalpy density and such entropy is constant [6].
As can be seen, although the phantom field approach may

be in accordance with the observations, it has several
problems at fundamental level, such as those that we have
already mentioned above and some other characteristics not
well seen as a future singularity as final fate for the Universe
[7]; a critical problem in this context is the definition of
physical quantities in the neighborhood of such singularity.
However, it can be found that again the quantum gravity
effects can help to keep some of these quantities well
defined near the singularity, see, for example, Refs. [8,9].
One way to overcome some of the aforementioned

problems of the phantom field is to imagine that maybe
ωde < −1 is an effective result. In Ref. [10], the authors
suggested a model where such result is possible if we
consider the simultaneous action coming from Λ (with
ωΛ ¼ −1) plus the negative contribution from matter
creation. We will focus on this approach but it is worthy
to mention that is not the only possibility to avoid the
phantom difficulties; in Ref. [11], it was found that a
phantom scenario was possible to obtain by generalizing
the EoS of the cosmological fluid to an inhomogeneous
expression of the Hubble parameter with no need of
introducing negative energy considerations. As we will
discuss later, an adequate description of the Universe at late
times can be obtained in the approach of matter creation
models if one considers an inhomogeneous generalization
for the matter production rate expression. Models of matter
creation can be found in the literature and have been shown
that could play a relevant role in the early Universe [12] or
on the consistency of the thermodynamics description of
some generalizations of Einstein gravity [13].
In this work, we study some models of creation of

particles and their possibilities of realizing an effective
phantom component alone, with and without adding a
cosmological constant. We also study some thermody-
namic properties of these systems, we focus on the temper-
ature of the created matter, this is definite positive and its
behavior seems to be in agreement with some recent results,
we also consider the introduction of other effects in the
cosmological fluid to explore their cosmological conse-
quences. The work is organized as follows. In Sec. II, we
briefly discuss the ideas given by the authors of Ref. [10].
In Sec. III, we explore two possibilities for the matter
creation rate and we show that in each case the phantom
(quintessence) scenario is possible to achieve at present
time but this is only transient, the models tend to evolve
to a de Sitter expansion. In Sec. IV, we consider several
possibilities for the matter creation rate in order to discern if

we could have different thermodynamics scenarios. In
Sec. V, we perform the statistical analysis of the model
discussed in Sec. III. In Sec. VII, we consider a generali-
zation of the matter production rate as a function of the
Hubble parameter and also of its derivatives. Finally, in
Sec. VIII, we give the final comments of our work.

II. MATTER CREATION PLUS LAMBDA
AS PHANTOM

Following the line of reasoning of Ref. [10], if matter
creation exists, i.e., gravitational particle production, then
for a Friedmann-Lemaitre-Robertson-Walker (FLRW)
spacetime Γ ≠ 0, yielding

_nþ 3Hn ¼ nΓ; _ρþ 3Hðρþ PÞ ¼ 0; ð1Þ

where Γ > 0, Γ < 0 acts like a source or sink of particles,
respectively; n is the particle number density and
P ¼ pþ Π. Here Π accounts for the pressure from matter
creation (sometimes written as pc). From the Gibbs
equation

TdS ¼ d

�
ρ

n

�
þ pd

�
1

n

�
; ð2Þ

we can write

nT _S ¼ −3HΠ − ðρþ pÞΓ: ð3Þ

If we assume _S ¼ 0, i.e., the case of adiabatic particle
creation, we have

Π ¼ −
ρþ p
3H

Γ; ð4Þ

then as the authors said, the effective EoS parameter
(assuming p ¼ 0) is the sum of the EoS of vacuum plus
the contribution due to dark matter (DM) creation,

ωeff ¼
pΛ

ρΛ
þ pc

ρdm
¼ −1 −

Γ
3H

; ð5Þ

showing that is possible to obtain a ωeff < −1. Let us revise
the arguments carefully. The cosmological model of
Ref. [10] consists in DM plus a cosmological constant, i.e.,

_ρdm þ 3Hðρdm þ ΠÞ ¼ 0; _ρΛ ¼ 0; ð6Þ

where the DM already incorporates the gravitational matter
production pressure Π, and we have assumed already that
pdm ¼ 0 and pΛ ¼ −ρΛ. We would like to stress here that
the observational result ωde < −1 for DE is obtained
together with the assumption of a nonrelativistic DM
component contribution evolving as ρ̃dm ∝ a−3, i.e., with
ω̃dm ¼ 0. In fact, we are “measuring” a model described by
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_̃ρdm þ 3Hρ̃dm ¼ 0; _ρx þ 3Hð1þ ωÞρx ¼ 0; ð7Þ

where observationally ω < −1 (where it is clear that
px ¼ ωρx). The question now is: is it possible to confuse
)6 ) with a phantom cosmology described by (7)? Because
the observables depend directly on the Hubble function
HðaÞ, in both cases this expression must be the same, so
because H2 ∝ ρtot the invariant quantity is

ρtot ¼ ρdm þ ρΛ ¼ ρ̃dm þ ρx: ð8Þ
As we will see below, our results differ from those
discussed in [10].

III. MODELS OF EFFECTIVE PHANTOM USING
ONLY MATTER CREATION: EXPLORING

SOLUTIONS CLOSE TO ΛCDM

Let us consider a couple of specific solutions of
gravitational DM production model. In this case, we refer
to DM as the nonrelativistic fluid characterized by ρdm ¼
mn where m is the mass of the particle and n is the number
density satisfying (1). By using the model nΓ ¼ 3Hα
[14,15], we get that

nðaÞ ¼ n0 − α

a3
þ α; ð9Þ

which implies a solution ρdm that resembles the combined
contribution of a dust component (∝ a−3) plus a constant
energy density, mimicking in this way the ΛCDM model.
For this particular interaction function, the model does not
permit to cross the phantom line. The important thing
obtained here is that it is possible to get an Universe which
is similar to the ΛCDM model without adding an ad hoc
negative pressure contribution (or cosmological constant),
we just need to allow gravitational production of DM. It is
also naturally resolved the coincidence problem, basically
because both contributions (dust plus cosmological con-
stant) are produced by the same source.

A. The Γ constant case

Now, let us assume an interaction model with Γ ¼
constant. In this case from (1), we get

ρdm ¼ ρdm;0

a3
eΓΔt; ð10Þ

recall that ρdm ¼ mn. From the Friedman equation, we
know that 3H2 ¼ ρ; if we also consider the continuity
equation (1) for the energy density, we can write the
following differential equation for the Hubble parameter:

_H
H2

¼ −
3

2

�
1 −

Γ
3H

�
: ð11Þ

Because Γ is constant, we find that

HðaÞ ¼ Γ
3
þ H0

a3=2

�
1 −

Γ
3H0

�
: ð12Þ

We can also solve Eq. (11) where time is explicit in the
solution. Using that H ¼ _a=a, we get

HðtÞ ¼ H0a−3=2 expðΓðt − t0Þ=2Þ: ð13Þ

Combining (12) and (13), we get

exp ðΓΔt=2Þ ¼ ðAþ 1Þa3=2 − A; ð14Þ

where we have defined A ¼ Γ=3H0 − 1. Then replacing
this in (10), we get

ρdmðaÞ ¼
ρdm;0

a3
ððAþ 1Þa3=2 − AÞ2: ð15Þ

As is evident, in this last expression we can recognize three
contributions: a dust like evolving as a−3, a component that
evolves as a fluid with EoS parameter ω ¼ −1=2, and a
component that evolves as a cosmological constant. From
(11), we can write an effective expression for the pressure,
which results in

peff ¼ −ΓH ¼ Γ2

3
− A

H0Γ
a3=2

: ð16Þ

If A > 0, then we have the possibility of getting a phantom
at effective level. According to Eq. (11), we can write the
Hubble parameter as an explicit function of time as follows:

HðtÞ ¼ Γ
3

�
1þ A exp

�
−
1

2
Γðt − t0Þ

��
−1
; ð17Þ

and from the previous expression, we get for the scale
factor

aðtÞ ¼ a0

�
1þ ð1=AÞ exp ðΓ

2
ðt − t0ÞÞ

1þ ð1=AÞ
�
2=3

: ð18Þ

For an expanding Universe, we must have H > 0; there-
fore, from expression (17) we can see straightforwardly that
the condition A > 0 must be satisfied, i.e., Γ > 3H0 and
besides Hðt ¼ t0Þ ¼ Γ=3ð1þ AÞ > 0, the initial value for
the Hubble parameter depends only on the values of Γ and
A; notice that the positivity for this initial value can be
guaranteed always that A > −1; therefore, the model
admits a region in which we could have A < 0. In
Fig. 1, we show the behavior of Eq. (17) by considering
a fixed value for Γ and varying the value of A. As observed,
the Hubble parameter starts from an initial value and tends
to a constant value as time increases, which is given by Γ=3
and according to the values used in the plots is around
0.066. This represents a similarity with the ΛCDM model
for the cosmic evolution, this can be seen from Eq. (15), as
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Universe expands the leading term in the energy density is
given by the constant term ρdm;0ð1þ AÞ2. Using the same
values for Γ and A as in the previous plot, in Fig. 2 we show
the behavior of the quotient, aðtÞ=a0, given by Eq. (18). As
can be seen in all cases, we have an initial value equal to 1
for the quotient and grows as time increases. For A < 0, we
can observe that such quotient grows faster. From Eq. (17),
after a straightforward calculation we can obtain the
following expression for the deceleration parameter:

qðtÞ ¼ −1 −
3

2
A exp

�
−
Γ
2
ðt − t0Þ

�
; ð19Þ

where we have qðt → ∞Þ → −1, which represents a
cosmological constant evolution and qðt ¼ t0Þ ¼
−1 − 3A=2 < −1 for A > 0. On the other hand, for
−1 < A < 0, we have −1 < qðt ¼ t0Þ < 1=2, i.e., at
present time this Universe could have a phantomlike
evolution or a quintessence behavior, depending on the
value of the constant A.
Alternatively, the continuity equation (1) for the energy

density can be written as

_ρþ 3Hð1þ ωeffÞρ ¼ 0; ð20Þ

where we have defined the effective parameter state

ωeff ¼ −
Γ
3H

; ð21Þ

since we have considered the pressure from matter creation
as given in Eq. (4) with p ¼ 0 and a barotropic EoS
between the energy density and the aforementioned pres-
sure. Note that the expression for the effective parameter
depends strongly on the particle production rate, Γ, once we
define it, the differential equation (11) for the Hubble
parameter becomes solvable. Therefore, we will consider as
effective parameter state the expression given in (21) for
any matter creation model.
Using the expression of the Hubble parameter given in

Eq. (12) and the conventional relation between the redshift
and the scale factor, 1þ z ¼ a−1, we have for the effective
parameter state

ωeffðzÞ ¼ −
Γ

Γ − 3H0ð1þ zÞ3=2A : ð22Þ

In Fig. 3, we illustrate the behavior of this effective
parameter state taking into account both situations, the
upper panel shows the case A > 0ðΓ > 3H0Þ and the case
A < 0ðΓ < 3H0Þ it is shown in the lower panel; for
simplicity we have considered the value of H0 equal to
one. As shown in the upper panel of the plot, the
cosmological model evolves from an over accelerated stage
(ωeff < −1) to a cosmological constant evolution
(ωeff ¼ −1) as we approach to the far future; therefore,
in order to obtain an accelerated expansion, there is no need
of introducing some extra components such as DE when
DM production is considered; this result is in agreement
with Eq. (15), where at some stage of cosmic evolution the
leading terms are given by a dustlike component and a fluid
with parameter state ω ¼ −1=2, and as time evolves the
leading term is simply given by a constant. On the other
hand, the lower panel of the plot shows that the model
evolves from quintessence to a cosmological constant
expansion. Given that no other fluid is introduced in this
picture, this kind of model is reasonable to describe only
the late times evolution.
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0.04

0.05

0.06
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0.09

0.10

H(t)

FIG. 1. Hubble parameter. The solid lines represent the case
A > 0 and the dashed lines correspond to A < 0. For all plots, we
have considered Γ ¼ 0.2 and besides A ¼ 0.2, 0.4, 0.6, 0.8, 1
(from upper to lower solid lines) and A ¼ −0.2;−0.4;−0.6;
−0.8;−1 (from lower to upper dashed lines), as observed, the
initial value for the Hubble parameter increases as A approaches
to −1.
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FIG. 2. Scale factor evolution. For all plots we have considered
Γ ¼ 0.2 and A ¼ 0.2, 0.4, 0.6, 0.8 (from upper to lower solid
lines) and A ¼ −0.2;−0.4;−0.6;−0.8 (from lower to upper
dashed lines).

CÁRDENAS, CRUZ, LEPE, NOJIRI, and ODINTSOV PHYS. REV. D 101, 083530 (2020)

083530-4



As can be seen, in both cases the phantomlike (quintes-
sence) behavior is only a transient stage of the model, being
the final fate for these universes a de Sitter expansion. This
peculiar feature was also obtained in the context of the DGP
braneworld model in Ref. [16] and also in Ref. [17] in the
general relativity framework, where it was found that the
backreaction due to the particle production is capable to
stabilize an universe dominated by a phantom component.

B. Γ ∝ Hα

In this section, we will consider the following general
expression for the particle production rate:

Γ ¼ 3βH0

�
H
H0

�
α

; ð23Þ

where α and β are dimensionless constants and H0

represents the Hubble constant. If we insert the previous
expression in Eq. (11) and consider the redshift definition
given previously, the differential equation for the Hubble
parameter becomes

ð1þ zÞ dH
dz

¼ 3

2
H0

�
H
H0

− β

�
H
H0

�
α
�
; ð24Þ

and the solution is given as follows:

EðzÞ ¼
� ½β þ ð1 − βÞð1þ zÞ3ð1−αÞ=2� 1

1−α; α ≠ 1;

ð1þ zÞ3ð1−βÞ=2; α ¼ 1;
ð25Þ

where EðzÞ ≔ HðzÞ=H0, and it is usually termed as
normalized Hubble parameter. This solution was studied
in Refs. [18,19] at background and perturbative levels.
Therefore, the deceleration parameter, 1þ q ¼ − _H=H2 ¼
ð1þ zÞd lnEðzÞ=dz, takes the form

qðzÞ¼−1þ3

2

ð1−βÞð1þzÞ3ð1−αÞ=2
βþð1−βÞð1þzÞ3ð1−αÞ=2 ; α≠1: ð26Þ

For the case α ¼ 1, the deceleration parameter becomes a
constant. From the previous expression, we can observe
that for α < 1, qðz → −1Þ → −1, i.e., as we approach the
far future we obtain a cosmological constant evolution; this
result is independent of the value of the constant β. At
present time, qðz ¼ 0Þ ¼ ð1 − 3βÞ=2; if β > 1=3, we have
qð0Þ < 0. On the other hand, the effective parameter state
(21) will be given by

ωeffðzÞ ¼ −βðEðzÞÞα−1; ð27Þ

and at present time we obtain ωeff;0 ≔ ωeffðz ¼ 0Þ ¼ −β,
which is independent of the constant α, given that the
condition β > 1=3 must be satisfied to have an accelerated
stage at present time; therefore, the model could have
transient quintessence or phantom scenarios. Additionally,
for α > 1, we have qðz → −1Þ > 0, independently of the
value of the constant β; therefore, this case is not consid-
ered for analysis.

IV. DARK MATTER TEMPERATURE

Since we are considering the particle number density, n,
we must modify the first law as follows [14]:

dðpVÞ þ pdV −
ρþ p
n

dðnVÞ ¼ 0; ð28Þ

therefore by taking its time derivative, we can write for the
energy density

_ρ ¼ _n
n
ðρþ pÞ: ð29Þ

Note that previous equation takes its standard form when
Γ ¼ 0; from Eq. (1) for the density number, we can see that,
_n=n ¼ −3H, for Γ ¼ 0. On the other hand, since the
temperature is defined by the Gibbs equation given in
(2) we have T ¼ Tðn; ρÞ [20], and then

–1.0 –0.8 –0.6 –0.4 –0.2 0.2
z

–3.0

–2.5

–2.0

–1.5

–1.0

eff (z)

–1.0 –0.8 –0.6 –0.4 –0.2 0.2
z

–0.9

–0.8

–0.7

–0.6

–0.5

–0.4

–0.3
eff (z)

FIG. 3. Effective parameter state as a function of the redshift. In
the upper panel, we have considered A ¼ 0.2, 0.4, 0.6, 0.8, 1
(from upper to lower solid line) and A ¼ −0.2;−0.4;−0.6;
−0.8;−1 (from lower to upper dashed line).
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_T ¼ ∂T
∂n _nþ ∂T

∂ρ _ρ ¼ _n
n

�∂T
∂n nþ ∂T

∂ρ ðρþ pÞ
�
; ð30Þ

where we have considered Eq. (29). Using the integrability
condition, ∂2S=∂T∂n ¼ ∂2S=∂n∂T, one gets

∂T
∂n nþ ∂T

∂ρ ðρþ pÞ ¼ T
∂p
∂ρ ; ð31Þ

and using the previous result in Eq. (30), we obtain the
evolution equation for the temperature given as follows:

_T
T
¼ _n

n
∂p
∂ρ : ð32Þ

In the following, we will discuss several cases for the matter
production rate Γ.

(i) Γ ¼ constant
For a barotropic EoS given in terms of the

effective parameter state defined in Eq. (20), we
obtain in the last expression

_T
T
¼ ωeff

_n
n
¼ −3Hωeff

�
1 −

Γ
3H

�
; ð33Þ

where Eq. (1) was considered. In this case, an
explicit function of time for the Hubble parameter
was given in Eq. (17), and then by direct integration
we can write for the temperature,

TðtÞ ¼ Tðt0Þ exp
�
−2A

�
1 − exp

�
−
Γ
2
ðt − t0Þ

���
:

ð34Þ
It is worthy to mention that depending on the values
of the constant A, A > 0 (A < 0), the temperature
will have a decreasing (increasing) behavior. In the
limit case, t → ∞, we have TðtÞ → Tðt0Þ expð−2AÞ;
therefore, Tðt → ∞Þ < Tðt0Þ for A > 0 and
Tðt → ∞Þ > Tðt0Þ for A < 0.

(ii) Γ ¼ 3βH0ðHH0
Þα

For this model, we will consider first the case
α ¼ 1, then using the expressions (25), (27) and
(32), we obtain

TðzÞ ¼ T0ð1þ zÞ−3βð1−βÞ; ð35Þ
for β > 1 (phantom regime) we have decreasing
behavior for the temperature as the Universe ex-
pands. On the other hand, for 1=3 < β < 1 (quintes-
sence), the temperature increases and becomes
singular at the far future, z ¼ −1. For α ≠ 1, one gets

TðzÞ¼T0exp

�
2β

1−α
fβþð1−βÞð1þzÞ3ð1−αÞ=2g−1

�
:

ð36Þ

This temperature has a bounded value at the far
future given by Tðz ¼ −1Þ ¼ T0 exp½2=ð1 − αÞ�,
which is independent of the constant β. Recalling
that the interesting case for this model is given by
α < 1 and β > 1=3, we have that the temperature
given in the previous expression tends to increase as
Universe evolves.

(iii) Γ ¼ 3Hγ
This model was discussed in Refs. [10,14,15], being

γ a positive constant. By means of Eqs. (1) and (11),
we can write

nðtÞ ¼ nðt0Þ
�
aðtÞ
aðt0Þ

�
−3ð1−γÞ

ð37Þ

and the following Hubble parameter:

HðtÞ ¼ H0

�
1þ 3

2
H0ð1 − γÞðt − t0Þ

�
−1
: ð38Þ

For γ > 1, the previous expression can be written as

HðtÞ ¼ 2

3j1 − γj ðts − tÞ−1; ð39Þ

where ts ≔ t0 þ 2=ð3H0j1 − γjÞ, i.e., ts denotes a
time in the future at which the Hubble parameter
becomes singular; this is characteristic of a phan-
tom scenario, always that the condition γ > 0 is
satisfied, we will have an expanding Universe. In
this case, the effective parameter state (21) can be
written as ωeff ¼ −γ. Therefore, depending on the
value of the constant γ, the model admits a
quintessence, cosmological constant, or phantom
scenarios. The expression (32) for the evolution of
temperature reads

_T
T
¼ 3γð1 − γÞHðtÞ; ð40Þ

which results after a straightforward integration as

TðtÞ ¼ Tðt0Þ
�
1þ 3

2
H0ð1 − γÞðt − t0Þ

�
2γ

: ð41Þ

As the Universe expands, the dark matter con-
tent warms.

(iv) Γ ¼ δ=n
For this case we will consider, δ ¼ constant. From

Eq. (1), we can obtain the following expression for
the particle number density:

nðtÞ ¼ nðt0Þ
�
1þ δ

nðt0Þ
Z

t

t0

�
aðtÞ
aðt0Þ

�
3

dt

��
aðt0Þ
aðtÞ

�
3

;

ð42Þ
if we assume that ρ ¼ mn, (nonrelativistic matter)
being m the rest mass for the dark matter particle;
then from the last equation, we can write
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ρðtÞ ¼ ρðt0Þ
�
1þ δ

nðt0Þ
Z

t

t0

�
aðtÞ
aðt0Þ

�
3

dt

��
aðt0Þ
aðtÞ

�
3

;

ð43Þ

where ρ0 ¼ mnðt0Þ. From the use of the Friedmann
constraint, 3H2 ¼ ρ, it is possible to establish an
expression for the Hubble parameter. For this case,
the effective parameter state takes the form

ωeffðtÞ ¼ −
δ

3nH
; ð44Þ

where we have considered the continuity equation
for the energy density as in the previous models. In
order to have a phantom scenario at present time the
condition, δ > 3n0H0, must be satisfied. Therefore,
by means of Eqs. (1), (32) and the effective
parameter (44), we can write

_T
T
¼ δ

n
ð1þ ωeffÞ; ð45Þ

which leads to

TðtÞ ¼ Tðt0Þ exp
�
δ

Z
t

t0

�
1þ ωeffðtÞ

nðtÞ
�
dt

�
: ð46Þ

For a phantom scenario, the temperature will have a
decreasing behavior since, 1þ ωeff < 0. On the
other hand, for quintessence, the temperature will
increase as Universe expands.

(v) Γ ¼ ð3αHÞ=n
Let us assume α ¼ constant. From the continuity

equation for the energy density (1), we have

ωeffðaÞ ¼ −
α

nðaÞ ; ð47Þ

in order to have phantom expansion at present time,
the condition α > n0 must be fulfilled. By integrat-
ing the density number equation (1), one gets

n ¼
�
a0
a

�
3
�
n0 − αþ α

�
a
a0

�
3
�
;

¼ αþ n0ð1þ ωeff;0Þð1þ zÞ3; ð48Þ
where ωeff;0 represents the value of the effective
parameter at present time and Eq. (47) was used
together with the definition of the redshift given
before. Therefore, we can observe that for this
model, ωeffðz ¼ −1Þ ¼ −1. If we integrate the con-
tinuity equation for the energy density, we can
obtain

ρðzÞ ¼ ρ0
n0

fαþ n0ð1þ ωeff;0Þð1þ zÞ3g: ð49Þ

Using the Friedmann constraint, we can establish the
form of the Hubble parameter as a function of the
redshift, HðzÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρðzÞ=3p
. In this case, we have

Hðz → −1Þ → ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðρ0ωeff;0Þ=3

p
, resulting that Hub-

ble parameter in this model is similar to the ΛCDM
Hubble parameter, i.e., as we approach to the far
future the Hubble parameter tends to a bounded
value. In this case, from Eq. (32), we can obtain for
the temperature,

TðzÞ¼T0exp

�
ωeff;0

ð1þωeff;0Þð1−ð1þzÞ3Þ
ð1þωeff;0Þð1þzÞ3−ωeff;0

�
;

ð50Þ

where the integration was carried out from 0 to z.
Note that for a phantom scenario the value of the
temperature will increase as the Universe expands
and for quintessence the Universe is cooling down.

It is worthy to mention that all the models we have
studied in this section can be expressed through the formula

Γ ¼ 3βH0

�
H
H0

�
α

: ð51Þ

For Γ ¼ constant, we can simply set α ¼ 0; for the model
Γ ¼ 3Hγ, we set α ¼ 1 and recognize β ¼ γ. The model
Γ ¼ 3Hα=n is equivalent to the case where α ¼ −1,
because from Friedman equation n ∝ H2. Finally, for the
same reason, our model Γ ¼ δ=n is equivalent to the case
where α ¼ −2. However, in order to distinguish the
thermodynamics characteristics of each model, we have
studied each case separately.
In general grounds, the constitution of DM is still an

unsolved problem in cosmology and particle physics.
However, nowadays several well-motivated DM candidates
are under scrutiny. The abundance of DM in our observable
Universe must have its origin in the early Universe and in at
least two different forms: thermal and nonthermal produc-
tion, with this we will refer to processes in equilibrium and
outside thermodynamic equilibrium, respectively. One of
the possibilities for DM are the so-called WIMPs (weakly
interactive massive particles), which are considered as
thermal relics. In the early Universe, the WIMPs density
number, nW , is governed by the Boltzmann equation _nW ¼
−3HnW − hσviðn2W − n2eqÞ, where hσvi is the thermally
averaged WIMPs annihilation cross section times WIMPs
relative velocity and neq is the equilibrium density, we must
note the similarity of the aforementioned equation with
Eq. (1). Therefore, the WIMPs density at present time is
characterized by ΩW ∝ 1=hσvi, which gives the correct
present day density of DM and a solution for the (ther-
malized) density number is of the form nW ∝ exp½−ðmW−
μÞ=T�, μ being the chemical potential and T a constant
temperature. Thus, the annihilation cross section together
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with the temperature are important quantities for the
description of WIMPs; a complete and interesting review
on this topic can be found in Ref. [21]. On the other hand,
as discussed in this section, depending on the specific form
of the matter production rate, Γ, the DM temperature
remains positive but can have an increasing (decreasing)
behavior; such conduct seems to be in contradiction with
the description of particle physics given above. However,
recent results show that DM can be heated up and displaced
from the center of certain galaxies as a result of stars
formation [22].

V. OBSERVATIONAL CONSTRAINTS

In this section, we test the statistical performance of the
models we have presented in Sec. III against recent low
redshift data both from type Ia supernova and HðzÞ
measurements.
For type Ia supernova, we make use of the full Pantheon

sample [23] incorporating the heliocentric redshift, cor-
recting in this way the issue previously mentioned about
peculiar velocities at high redshift [24]. The Hubble
parameter as a function of redshift HðzÞ data is obtained
by cosmic chronometers and taken from the compilation
made in [25]. The statistical analysis was made using the
code EMCEE [26], a PYTHON code of the affine-invariant
ensemble sampler for Markov chain Monte Carlo (MCMC)
proposed by Goodman and Weare [27].

A. Γ = constant model

Let us start with the model Γ ¼ constant discussed in
Sec. III. From Eq. (12), the Hubble parameter can be
penned as

HðzÞ ¼ H0

�
Γ

3H0

þ ð1þ zÞ3=2
�
1 −

Γ
3H0

��
: ð52Þ

Written in this way we have two free parameters: H0 and
the combination Γ=3H0. As starting point of our study, we
use only type Ia supernova data from the Pantheon sample
[23]. In this case, the observable is the distance modulus,

μðzÞ ¼ 25þ 5 log

�
c
H0

ð1þ zÞ
Z

dx
EðxÞ

�
; ð53Þ

where EðxÞ ≔ HðxÞ=H0 is the normalized Hubble param-
eter. Although in principle the Hubble function has two free
parameters to fit, H0 and Γ, due to the degeneracy of the
Hubble constant H0 and the absolute magnitude of the
supernovae M, H0 is not fixed by the data, and is usually
marginalized. After doing that, the only free parameter is
the combination Γ=3H0.
The result of the statistical analysis is Γ=3H0 ¼ 0.182�

0.035. This means the supernova data alone suggest that
Γ > 0, in agreement with our theoretical consideration of

Sec. III. Also, we get that Γ < 3H0, that means our time
scale of particle creation is larger than the time scale of
expansion. We can write then

Γ ¼ ð0.182� 0.035Þ3H0: ð54Þ

We also use data fromHðzÞmeasurements. This implies the
use of Eq. (52) directly, in this way we are left only with the
parameters H0 and Γ, free to be constrained. We also add
the prior information for the Hubble constant H0. Because
there is a well-known tension in the value of H0 using
different methods, we perform our study using both values
informed in [28] h ¼ 0.678� 0.009 (Planck) and
h ¼ 0.732� 0.017. Let us consider in this subsection
the constraint using only HðzÞ measurements and the
Gaussian prior on H0. Using first the Planck value for
the Hubble constant, we get h ¼ 0.674� 0.013 and
Γ=3H0 ¼ −0.20� 0.2, implying that Γ < 0 at 1σ, some-
thing at odds with our previous considerations. On the other
hand, using the other prior, we get h ¼ 0.71� 0.02 and
Γ=3H0 ¼ 0.0� 0.2. In this case, we do not have a
conclusive results for the sign of Γ at 1σ.
Let us study the results using both observational probes

together. Using the Gaussian prior from Planck, the best fit
values are h ¼ 0.685� 0.010 and Γ=3H0 ¼ 0.15� 0.05.
The confidence contours are displayed in Fig. 4. From this
analysis, the best value is Γ ¼ 30� 9, which is similar to
the previous estimation (54), that gives the value
Γ ¼ 36� 6. By repeating the analysis but now using the
second prior for the Hubble constant, we get h ¼ 0.72�
0.02 and Γ=3H0 ¼ 0.168� 0.045. The confidence con-
tours are displayed in Fig. 5.

FIG. 4. We display the results for 1σ and 2σ for our model in the
parameter space ðh;Γ=3H0Þ using both data and the Planck prior.
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B. Testing the best matter creation model

In what follows, we perform a statistical test using the
model [18,19] described by the particle creation rate

Γ ¼ 3βH0

�
H
H0

�
α

: ð55Þ

As we described in Sec. III, by inserting the previous
expression in the conservation equation and then
solving for the Friedmann equation, we get a differential
equation for the Hubble function HðzÞ, whose solution
for α ≠ 1 is

HðzÞ ¼ H0½β þ ð1 − βÞð1þ zÞ3ð1−αÞ=2�1=ð1−αÞ: ð56Þ

Although in doing this, we cannot assess the qualities of
each model discussed in Sec. IV, we can use the test to find
the best fit values for α and β, and after that we can discover
which model is certainly closer to the best one suggested by
observations. The statistical analysis using only the type Ia
supernova data gives the following best fit values, α ¼
−1.3� 0.8 and β ¼ 0.72� 0.06. In Fig. 6, we show the
triangle plot showing the posterior probability for each
parameter and the contour plot.
These results are not surprising, because at 1σ confi-

dence level the Creation of Cold Dark Matter (CCDM)
solution is contained. This solution corresponds to a matter
creation model completely analogous to the ΛCDM sol-
ution for which α ¼ −1 and β ¼ ΩΛ ≃ 0.7 [18,19]. Recall
that h has been marginalized together with the maximum
absolute magnitude for the supernovas. Once we add the
HðzÞ data, we have all three parameters free to constraint,

α, β, and h. The result of our MCMC analysis is displayed
in Fig. 7.
The best fit values of the parameters are β ¼

0.72� 0.05, α ¼ −1.3� 0.5, and h ¼ 0.69� 0.018.
Again, the CCDM model seems to be preferred in contrast
to the other models.

0.69 0.70 0.71 0.72 0.73 0.74 0.75

0.05

0.10

0.15

0.20

0.25

0.30

h

FIG. 5. We display the results for 1σ and 2σ for our model in the
parameter space ðh;Γ=3H0Þ using both data and the second prior
for H0.

FIG. 6. We display the results for 1σ, 2σ, and 3σ for our model
in the parameter space ðα; βÞ using only data from type Ia
supernova.

FIG. 7. We display the results for 1σ, 2σ, and 3σ for our model
in the parameter space ðα; β; hÞ using both data from type Ia
supernova and HðzÞ.
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VI. INCORPORATING OTHER EFFECTS

We now consider the introduction of cosmological
constant, Λ, in the framework of matter creation models.
This consideration only modifies the Friedmann constraint
as 3H2 ¼ ρþ Λ; therefore, Eq. (11) can be reexpressed in
the following form:

_H
H2

¼ −
3

2

�
1 −

Λ
3H2

��
1 −

Γ
3H

�
; ð57Þ

which can be written in terms of the deceleration parameter
straightforwardly. If we consider the case Γ ¼ constant and
evaluate at present time the previous equation, one gets

q0 ¼ −1þ 3

2
ð1 −ΩΛ;0Þ

�
1 −

Γ
3H0

�
: ð58Þ

In theΛCDMmodel, the deceleration parameter is given by
the expression qðzÞ ¼ −1þ 3=ð2½1þ ΩΛ;0

Ωm;0
ð1þ zÞ−3�Þ and

the normalization condition ΩΛ;0 þ Ωm;0 ¼ 1 must be
satisfied. According to the last Planck Collaboration
results, Ωm;0 ¼ 0.315� 0.007 [2]; therefore, the deceler-
ation parameter lies in the interval −0.538 ≤ q0 ≤ −0.517,
using these results we are left with the condition

0.043 ≤
Γ

3H0

≤ 0.045; ð59Þ

then by means of Eq. (21) we cannot have a transient
phantom behavior at present time. We obtain the same
interval for the constant β if we consider the model
Γ ¼ 3βH0ðH=H0Þα.
As mentioned before, if we set α ¼ 1 we can recognize

γ ¼ β, being γ ¼ constant in the model Γ ¼ 3Hγ, which
provides ωeff ¼ −γ. Therefore, the inclusion of cosmologi-
cal constant does not provide the possibility of crossing the
phantom divide in this model. We do not share the idea of
authors of Ref. [10], where it was claimed that a matter
production rate given as Γ ¼ 3Hγ plus a cosmological
constant can give a phantom scenario. On the other hand, if
we neglect the cosmological constant contribution in the
aforementioned model, the crossing to the phantom divide
is possible only if γ > 1, but the statistical analysis revealed
that γ < 1.
A second possibility to consider is given by the inclusion

of bulk viscous effects, for such models have been shown
that at effective level can have a phantom (quintessence)
behavior with no need of extra ingredients; see, for
instance, Refs. [29–32]; in this case, the Friedmann con-
straint and acceleration equation are given by

3H2 ¼ ρ; _H þH2 ¼ −
1

6
½ρþ 3ðpþ ΠÞ�; ð60Þ

p being the local equilibrium pressure, Π < 0 is the bulk
viscous pressure, and the continuity equation for energy
density reads _ρþ 3Hðρþ pþ ΠÞ ¼ 0, which provides the
following effective parameter of state:

ωeffðtÞ ¼
pðtÞ þ ΠðtÞ

ρðtÞ : ð61Þ

The most simple definition for the viscous pressure is given
by Π ¼ −3ξðρÞH, where ξ is the bulk viscous coefficient.
However, this election for Π leads to noncausality and it is
well known as Eckart model. On the other hand, in the
Israel-Stewart model, the viscous pressure must obey a
transport differential equation and in such case the theory
respects causality. Using the continuity equation given
above and the expression given in (29), one gets

−
Γ
3H

¼ Π
pþ ρ

; ð62Þ

and for a pressureless fluid, we can write

−
Γ
3H

¼ Π
ρ
¼ ωeff : ð63Þ

Note that despite the inclusion of dissipative effects, the
effective parameter state has the same form of Eq. (21). In
addition, regardless of the choice we make for Π, i.e., the
one given by the Eckart model or the solution arising in the
transport equation within the description of Israel-Stewart,
both theories describe dissipative processes near equilib-
rium; this condition is given by

				Πρ
				 ≪ 1; ð64Þ

therefore the effective parameter state will not cross the
phantom divide.

VII. INHOMOGENEOUS MATTER
PRODUCTION RATE

In this section, we explore other possibility for the matter
production rate, Γ. In general, matter can couple with the
curvatures, which include _H in addition toH. Then it might
be more natural to assume Γ could also depend on _H,

Γ ¼ ΓðH; _HÞ; ð65Þ

or in more general,

Γ ¼ Γðρ; p;H; _H; Ḧ;H
:::
;…Þ: ð66Þ

For usual perfect fluid, p is given by an equation of state,
pðρÞ. Thus, we obtain from the continuity equation (1),
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_ρþ 3Hðρþ pðρÞÞ
− ðρþ pÞΓðρ; pðρÞ; H; _H; Ḧ;H

:::
;…Þ ¼ 0; ð67Þ

from which we can write

Π ¼ Πðρ; pðρÞ; H; _H; Ḧ;H
:::
;…Þ

¼ −
ρþ p
3H

Γðρ; pðρÞ; H; _H; Ḧ;H
:::
;…Þ; ð68Þ

which may be regarded as a kind of the generalized
equation of state proposed in [11] because Π is an effective
pressure. Instead of the standard equation of state
p ¼ pðρÞ, we may also consider the general equation of
state in [11] as follows:

p ¼ pðρ; H; _H; Ḧ;H
:::
;…Þ: ð69Þ

In (67), ρ and p include both of the contributions from the
matter and the cosmological constant. Just for the illus-
trative reasons, we only consider the contribution from
matter, that is, we assume p ¼ 0. Then, for a simple model,

Γ ¼ γ0ðHÞ _H; ð70Þ
with a function γðHÞ. Then Eq. (67) can be solved as

ρ ¼ ρ0a−3eγðHÞ; ð71Þ
with a constant of the integration ρ0. Then the first FLRW
equation has the following form:

3H2 ¼ ρ0a−3eγðHÞ: ð72Þ
In case

γðHÞ ¼
�
1 −

1

β

�
ln ð3H2Þ; ð73Þ

with a constant β, the first FLRW equation (72) can be
rewritten as

3H2 ¼ ρeff ; ρeff ≡ ρβ0a
−3β: ð74Þ

Because the energy density of the perfect fluid with the
constant equation of the state parameter behaves as
a−3ð1þωÞ, Eq. (74) tells that the effective equation of state
parameter ωeff is given by

ωeff ¼ −1þ β: ð75Þ
Therefore, if β is negative, there appears the effective
phantom where ωeff < −1 and if 0 < β < 2

3
, there appears

the effective quintessence, − 1
3
> ωeff > −1. General devel-

opment of the expansion in the universe might be realized
by using more complex function γðHÞ. As another exam-
ple, we may consider

γðHÞ ¼ ln

�
H2

H2
0

�
−
9

4
ln

�
H2

H2
0

− 1

�
; ð76Þ

with a constant H0. Then the solution of (72) is given by

aðtÞ ¼ Asinh
3
2

�
2H0

3
t

�
; HðtÞ ¼ H0 coth

�
2H0

3
t

�
;

A≡
�

ρ0
3H2

0

�1
3

: ð77Þ

The solution in (77) is identical with that of the ΛCDM
model. In our model, originally there is only matter, which
may be identified with the cold DM, but by the effect of the
particle creation, there appears the effective cosmological
constant. We should note that the de Sitter space-time, that
is, H ¼ H0 ðH0∶constantÞ, aðtÞ ∝ eH0t is not a solution of
(72) for any choice of γðHÞ because the l.h.s. of (72) is
constant but the r.h.s. changes in time as ∝ e−3H0t for
arbitrary γðHÞ. We now consider general case, except the
pure de Sitter space-time, that H depends on time t,
H ¼ HðtÞ, which can be assumed to be solved with respect
to H as t ¼ tðHÞ. Then, (72) tells that the function γðHÞ is
explicitly given by a function of H as follows:

γðHÞ ¼ ln

�
3H2

ρ0
aðtðHÞÞ3

�
: ð78Þ

Then for the arbitrary evolution of the scale factor a ¼ aðtÞ,
except the pure de Sitter space-time, because HðtÞ ¼ _aðtÞ

aðtÞ,
the evolution can be realized by choosing γðHÞ by (78).
Therefore, for example, we can construct models which
unifies the inflation in the early Universe and the late-time
accelerating expansion in the dark energy era.

VIII. FINAL REMARKS

In this work, we have studied some cosmological aspects
of matter creation models and their ability to represent a
phantom regime at effective level. We considered two cases
for the matter production rate, Γ; the simplest election is
given by a constant production rate and as second choice
for this term we took into account a Γ term given as a power
law of the Hubble parameter [18,19]. However, we pro-
vided some other examples for Γ in order to discern if some
differences can be found in the thermodynamics description
of each model. Since no other contribution was considered
on the cosmic fluid, we have this type of model which is
able to describe the Universe at late times. Additionally, the
matter created characterizes DM since we settled its
pressure equal to zero.
By considering the case in which the Γ term is given by a

constant it was possible to identify that the energy density
of the fluid is composed by three terms: dark matter,
cosmological constant, and a third term that could char-
acterize a fluid with parameter state, ω < 0. Specifically,
this election leads to a transient phantom or quintessence
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evolution depending on the values of the parameters
involved. On the other hand, this transient behavior for
the phantom or quintessence scenarios was also obtained
for the general Γ term considered in this work. It is worthy
to mention that this transitory scheme can be found in some
other cosmological models where the main interest was to
devise an Universe free of future singularities. Besides, a
main characteristic found in all the models discussed in this
work is that they contain a de Sitter expansion, i.e.,
depending on the Γ term, the model can evolve from
quintessence or phantom regimes at present time to a
cosmological constantlike expansion as we approach the
far future or can imitate a cosmological constant throughout
cosmic evolution; this last characteristic is obtained only in
one of the examples provided for the matter production rate
term, where the effective parameter state is given by a
constant.
The matter production models are beyond the standard

cosmological model since the cosmic expansion is not
adiabatic, i.e., the matter creation effects contribute to the
generation of entropy [20], which is a more consistent
description. Therefore, from the thermodynamics point of
view, the temperature associated to the created matter will
evolve as the Universe expands. As we found in this work,
according to the election of the matter production rate, the
temperature will have a decreasing or increasing role as
Universe unfolds but keeps positive. This last conduct
seems to be in agreement with some recent observations
[22], where DM can be heated up due to the formation of
stars in some galaxies. The temperature could also become
singular in the far future; of course this depends on the
elected Γ term.
However, despite all the interesting features that may be

associated with cosmological matter creation models, these
are not favored by observations if the intention is to
describe an effective phantom regime at present time. In
general, for these models, the effective parameter state is
given by the expression

ωeff ¼ −
Γ
3H

:

Notice that depending on the election of the Γ term, the
effective parameter state can vary. This expression holds
under the incorporation of other effects in the cosmological
fluid, cosmological constant, for example. For the case
Γ ¼ constant, the model is allowed to cross the phantom
divide always that the condition, Γ > 3H0, is fulfilled.
However, according to the observational analysis, the
quotient Γ=3H0 is always less than 1. This result implies

that if the DM sector is supported by a particle description
(WIMPs, for instance), then such particles never reach the
thermal equilibrium [21]. On the other hand, if we focus on
the general case for the Γ term, we can see that ωeff;0 ¼ −β;
therefore, from the results obtained in the observational
analysis, the value constrained for the constant β is
compatible only with a quintessence scenario. It is worthy
to mention that the lower bounds obtained for the value
constrained for the constant β with the use of observational
data are in good agreement with the upper bound obtained
for the parameter state of dynamical DE models in
Ref. [33], where ωde;0 ¼ −0.95þ0.33

−0.39 .
On the other hand, given the positivity of the temper-

ature, the resulting quintessence DE scenarios in this
approach will also have positive entropy given that the
Euler relation establishes that the product of both quantities
is proportional to (1þ ω), i.e., the accelerating Universe in
this description will not have the negative entropy or
negative temperature problem [31].
In conclusion, this class of models cannot cross the

phantom divide even if we include a cosmological constant
or some other effects in the cosmological fluid such as bulk
viscosity. However, if we consider an inhomogeneous
expression for the Γ term as discussed in Sec. VII, we
can observe that such election leads to an effective
phantom/quintessence behavior; notice that this consider-
ation is in fact a generalization for the models considered in
this work since also derivatives of the Hubble parameter are
allowed. We will discuss in detail this kind of model of
matter creation elsewhere.
Our results differ from those obtained in Ref. [10], where

was stated that creation models plus a cosmological
constant can describe a phantom scenario at effective level.
Finally, as commented previously, the constant β can be
related directly with the parameters involved in each case
discussed for the Γ-term in Sec. IVof this work; therefore,
the exclusion from the phantom regime applies for all the
cases considered here.
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