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We suggest that quintessential vacuum energy could be the source of right-handed neutrino masses that
feed the seesawmechanism, which may provide the observed small masses of light standard neutrinos. This
idea is naturally implemented in the cosmological unificationmodel based on the global SOð1; 1Þ symmetry,
where the early inflation and late-time accelerated expansion of the Universe are driven by the degrees of
freedom of a doublet scalar field. In this model, the SOð1; 1Þ custodial symmetry naturally provides the
coupling between the StandardModel singlet fermion and quintessence, which sources neutrino masses.We
also show that themodel predicts a highly suppressed contribution to the relativistic degrees of freedom from
quintessential quanta during any late Universe epoch, ensuring the consistency of the model.
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I. INTRODUCTION

Contemporary cosmological surveys [1–6] have shown
that the energy density of our Universe, in the framework of
general relativity, consists mainly of an unknown substance
having the exotic property of overcoming the pull of
gravity, compelling our Universe to a stage of accelerated
expansion. Whatever this component is made of, it is
known as dark energy (DE). The simplest candidate for DE
is the cosmological constant (Λ) [7,8]; other more elaborate
proposals invoke the existence of scalar fields [9–11] which
near their vacuum state behave like Λ and additionally have
the advantage of allowing a dynamics that could alleviate
the problems of smallness and fine-tuning thatΛ has to deal
with [12–15].
Since it was proposed, the feasibility of dynamic DE has

been studied extensively (see, for instance, Ref. [16] or the
more recent Ref. [17]). It is also expected to be analyzed in
the near future through scheduled high-precision probes
like DESI [18].
Several scalar fields have been proposed as DE—such

as k-essence [19,20], Chaplygin gas [21,22], phantom
dark energy [23,24], and h-essence [25,26]—but among
them the most well known and studied is quintessence (Q)
[27–29], which is thought of as a canonical scalar field
minimally coupled to gravity with a potential that is flat

enough to guarantee the slow-rolling evolution of the field,
which in turn is necessary to violate the strong energy
condition and realize the accelerated cosmic expansion.
The cosmological evolution of Q has been widely

studied regardless of its origin or the phenomenology of
the high-energy theory it may come from [30–33]. It is
possible to do this because identifying Q as DE only
requires the existence of a vacuum state that can be used as
a classical source in Einstein’s equations.
On the other hand, an underlying theory has to be

considered when interactions between DE and other fields
are taken into account; see, for instance, Refs. [34,35] for
DE and dark matter (DM) interactions (for a review about
DE and DM, see Ref. [36]). Another example is the effect
of coupling Q with ordinary matter, which was studied in
Ref. [37]. The first mention of and a posterior study on the
possible connection between active neutrinos and Q,
grounding the mass-varying neutrinos models, can be
found in Refs. [38,39]. A series of related studies can be
found, for instance, in Ref. [40] and Refs. [41,42]. A study
of Yukawa couplings between DE and fermionic DM and
the effects of radiative corrections on the mass of Q, as well
as the proposal of multiaxion DE=DM models and their
cosmological evolution, were addressed in Ref. [43]. Early
ideas regarding a possible connection between sterile
Majorana neutrino masses and ultralight bosons that could
be Q were presented in Ref. [44], although no reference to
any governing principle was given there. Studies of Q as an
axionic particle and its connection with higher-energy
theories like string, superstring, or M-theory can be found,
for instance, in Refs. [45–47].
The dynamics of Q resembles that of the inflaton, which

is the scalar field hypothesized in order to solve (among
other things) the horizon and flatness problems that affect
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noninflationary (Friedmann) cosmologies [48–52].
Inflation assumes that the early Universe underwent an
exponential expansion phase driven by a state of almost
pure vacuum energy—which behaves like a cosmological
constant—generated through the slow-rolling evolution of
the inflaton, which (unlike Q) occurred at a higher energy
scale and totally dominated the content of the Universe.
Despite these facts, both dynamics are evidently similar,
and it seems reasonable to assume that Q and the inflaton
may be deeply interrelated.
Such is the line of thought of the cosmological uni-

fication idea presented in Ref. [53]. According to this idea,
by using symmetries one can unify (in the field theory
sense) both stages of accelerated expansion by relating
inflation and quintessence fields with the degrees of free-
dom of a unique scalar field representation. In such an
approach, DE would be just the remnant of the very early
stages of cosmological evolution (see also Ref. [54]).
Although the original model based on the SOð1; 1Þ global
symmetry (as discussed in Ref. [53]) was intended for
phantom energy instead of Q as DE, on the basis of the
same symmetry the unification of inflation and Q is very
well possible (as we will show below) by describing both
fields as associated with the components of a doublet scalar
representation.
The interesting aftermath of this symmetry-guided cos-

mological unification model is that, solely due to the
symmetry, all possible interactions become very well
defined at the Lagrangian level when written in terms of
a few field-invariant couplings. This is the case for both
scalar self-interactions and scalar-to-fermionic matter cou-
plings. Hence, all possible physics derived from the model
can mostly be determined with just a few fundamental
parameters. Exploring these parameters and determining to
what extent the SOð1; 1Þ cosmological unification model
can provide acceptable physical consequences is the main
goal of the present paper.
Interestingly enough, as we will discuss later on,

SOð1; 1Þ symmetry does provide a set of bilinear field
invariants that accommodate inflation and quintessence
dynamics from the most generic quadratic scalar potential.
As we will explain below, more general potentials can be
built by choosing higher-order invariants; nonetheless, we
study the simplest one as a first approximation to the
phenomenology of our model, despite the fact that the
quadratic potential in the inflation sector is disfavored by
Planck data [55].
To allow for a fermion-to-scalar coupling the symmetry

enforces the introduction of a fermion doublet and a singlet.
We assume that these fermions are right-handed and
singlets under the Standard Model (SM) symmetries, and
we naturally identify them as neutrinos. As expected, such
Yukawa couplings would provide an inflaton decay channel
for reheating after inflation. However, as we shall discuss,
due to the symmetry the same set of couplings would keep

right-handed neutrinos coupled to the quintessence field.
The latter would remain trapped in a false vacuum
configuration throughout the evolution of the observable
Universe. According to the quintessence model, such a
false vacuum is the actual source of the observed DE;
however, even more interesting is the observation that in the
context of our model this explanation of DE would also
introduce a natural way to generate large masses for right-
handed neutrinos, which would become connected to the
cosmological accelerated expansion.
Right-handed neutrino masses are the main known

ingredient of the seesaw mechanism [56–62], which
provides a natural explanation of the tiny standard neutrino
masses observed in neutrino oscillation experiments (for a
detailed discussion, see Ref. [63]), which are so far
bounded to be on the sub-eV scale. (See also
Refs. [64,65] for very strong constraints on the sum of
neutrino masses from cosmological data in the context of
both constant and dynamical DE.)
In its simplest one-family formulation, a right-handed

singlet neutrino N is added to the SM particle content, and
the most general Lagrangian terms that contribute to
neutrino masses are then written as yνL̄αH̃N þ ðH:c:Þ þ
MRNCN, where L is the SM lepton doublet, H is the Higgs
boson, and yν are the Yukawa couplings. By introducing
the Higgs vacuum hHi, the first term becomes a Dirac mass
term for the neutrino, mDν̄N, where mD ¼ yνhHi= ffiffiffi

2
p

,
which together with the Majorana mass term provides a
small effective mass for the standard neutrino,
mν ¼ ðmDÞ2=MR. Assuming an order-one Yukawa, the
only way to understand a sub-eV mν is to have MR as
large as 1013 GeV or so. Smaller values are possible if
smaller Yukawa couplings are considered. Nevertheless,
notice that a Majorana mass enters as a free parameter in the
theory, with no connection to the Higgs mechanism what-
soever. Therefore, understanding neutrino masses with the
seesaw mechanism becomes equivalent to searching for the
origin of MR. This is where the outcome of the SOð1; 1Þ
model becomes relevant, as it suggests that such a mass
could actually have a cosmological origin associated with
the source of DE. This is a striking observation that
deserves to be closely analyzed in order to establish its
consistency in the cosmological setup, and that is the main
goal of this paper.
This paper is organized as follows. In the next section we

introduce the cosmological unification model based on the
SOð1; 1Þ symmetry. There we present the Lagrangian of the
model, which is based on the most general bilinear
invariants built upon a dimension-two fundamental repre-
sentation to which cosmological scalar fields are assigned.
We then discuss how inflation and quintessence emerge in
the model. Right-handed neutrinos are introduced into the
model in Sec. III. Yukawa couplings to the cosmological
scalars are explored and the conditions under which these
get masses from the cosmic vacuum energy is discussed. As
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this mechanism also implies that quintessence quanta X
can be excited in the primordial plasma from out-of-
equilibrium right-handed neutrino interactions due to the
same couplings that provide neutrino masses, in Sec. IV we
explore the consequences of this by studying the produc-
tion of relativistic X fields through Boltzmann equations,
which shows the consistency of the scenario with big bang
nucleosynthesis requirements. Furthermore, since the see-
saw mechanism also implies small X to active neutrino
couplings due to heavy-to-light neutrino mixing, in Sec. V
we quantify the thermal corrections to the quintessence
mass due to the cosmological neutrino background, and
check that, despite this, the slow-roll condition for X is
always fulfilled, and hence the field keeps its DE behavior.
Section VI contains a short discussion and some final
remarks about our proposal. Finally, the two appendices
contain some technical details and relevant calculations.

II. THE SOð1;1Þ COSMOLOGICAL MODEL

Following the motivations of the SOð1; 1Þ model as
presented in Ref. [53], we consider the scalar doublet

Φ ¼
�
ϕ

φ

�
; ð1Þ

where ϕ and φ are complex scalar fields, which for
convenience can be written in terms of four real fields as

ϕ ¼ 1ffiffiffi
2

p ðϕ1 þ iϕ2Þ; φ ¼ 1ffiffiffi
2

p ðφ1 þ iφ2Þ:

This representation transforms under the global SOð1; 1Þ
group as Φ → gαΦ, where gα stands for an arbitrary
element in the corresponding SOð1; 1Þ matrix representa-
tion, whose exponential mapping is in general given by

gα ¼ eiασ1 ; α ∈ R; ð2Þ

where σ1 is the first Pauli matrix.
There are four bilinear invariants formed with this

doublet [53]:

Φ†Φ ¼ jϕj2 þ jφj2; Φ†σ1Φ ¼ ϕ�φþ φ�ϕ;

ΦTiσ2Φ ¼ ϕφ − φϕ; ΦTσ3Φ ¼ ϕ2 − φ2; ð3Þ

where σ2 and σ3 are the other two Pauli matrices. Clearly,
the kinetic term ∂μΦ†∂μΦ belongs to the first class of
invariants in the above equation. The potential of the
model, on the other hand, is restricted to be built out of
these invariants in order to keep the symmetry.
It is worth noticing that these terms still allow for some

diversity in the possible cosmological potentials one may
consider. In the case of real field representations, for
instance, first and third invariants can be added together

to provide a whole class of systems where the fields have an
independent evolution, simply because one can write ϕ2 ¼
Φ†ΦþΦTσ3Φ and φ2 ¼ Φ†Φ −ΦTσ3Φ. In such a case,
the potentials Uðϕ2Þ and Vðφ2Þ written in terms of such
combinations will always have a quadratic dependence on
the fields. Of course, such a scenario implies the removal of
the Φ†σ1Φ term from the theory, but (as stated in Ref. [53])
this can be done by noticing that such a term is actually a
pseudoscalar bilinear under the parity transformation
defined as Φ → σ3Φ, which can easily be added to the
model. Such a construction, however, ignores the most
general complex nature of the cosmological field Φ and we
will avoid it.
Next, for our model we consider the most general theory

we can build with the invariant terms in Eq. (3), but
considering for simplicity only mass-like terms in the
potential. As should be clear, more general potentials based
on these same bilinears are also possible, but considering
this simplest form (although it is disfavored by Planck data)
will suffice for our propose. Therefore, the Lagrangian we
consider is

LΦ ¼ ∂μΦ†∂μΦ − VðΦÞ; ð4Þ

where the potential is formed from the most general linear
combination of the nontrivial invariants,

VðΦÞ ¼ Φ†ðα0I þ α1σ1ÞΦþ α3ΦTσ3Φþ H:c: ð5Þ

Here αi¼0;1;3 are mass-dimension-two quantities which in
general can be complex. As the model intends to incor-
porate inflation, we should assume that the involved scales
are naturally large, perhaps a few orders below the Planck
scale, mpl. Also, a contraction with the background
Friedmann-Robertson-Walker metric should be understood
in the kinetic terms. In order to identify the dynamics of the
so-constructed cosmological model, we need to explore the
potential in detail and identify the proper set of initial
conditions that give rise to inflation and DE.
As explained in detail in Appendix A, the above generic

potential can be diagonalized using an orthogonal rotation,
S0, on the four-dimensional field space of initial real field
components, such that we can use the new fields defined as
ðQ1;Q2; ξ1; ξ2ÞT ¼ S0ðϕ1;ϕ2;φ1;φ2ÞT to build the mass
eigenstate complex scalars

Q ¼ 1ffiffiffi
2

p ðQ1 þ iQ2Þ and ξ ¼ 1ffiffiffi
2

p ðξ1 þ iξ2Þ; ð6Þ

from which the Lagrangian simply becomes [see Eq. (A6)]

LΦ ¼ ∂μφ†∂μφ − φ†Mφ ð7Þ

¼ ∂μQ†∂μQþ ∂μξ†∂μξ −m2jQj2 −M2jξj2; ð8Þ
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where

φ ¼
�
Q

ξ

�
and M ¼

�
m2 0

0 M2

�
: ð9Þ

As stated in Appendix A, the above masses can be written
in terms of αi as

M2 ¼ μ20 þ μ2; whereas m2 ¼ μ20 − μ2; ð10Þ

where μ20 ¼ 2Reα0 and μ2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðReα1Þ2 þ jα3j2

p
.

Notice that even though in Eq. (4) we started with a
coupled system of complex fields, after the field rotation we
ended up with a new description where the Q and ξ degrees
of freedom are decoupled. However, we should also notice
that, even though this is a more suitable way of writing the
potential, it is at the cost of hiding the SOð1; 1Þ symmetry,
which now is not explicit in the Lagrangian.
Furthermore, the potential in Eq. (7) shows no explicit

dependence on the phase fields, which suggests that they do
not play any fundamental role in the slow-roll evolution
phase of the background cosmological system. In accor-
dance with this, for simplicity, we shall proceed with the
analysis of the cosmological model by only considering the
modular field components as a good first approximation,
fixing the phases to zero. However, as one may still wish to
know the role played by these field phases in other effects
of cosmological interest, such as in the DE sector where
this phase could play a regulatory role (as it is done, for
instance, in spintessence models [66,67]), we address the
issue in some detail in Appendix B, where it is shown that
the system dynamics of the background universe indicates
that it is indeed consistent to set the initial phase value to
zero, such that the phase does not evolve.
The supplementary condition μ20 ≈ μ2, which is consis-

tent with the assumption that all involved scales are
naturally of about the same order, allows to incorporate
a fine-tuning in the masses to have M2 ≫ m2, which
permits to identify ξ as the inflation field and Q as the
quintessence source of DE. As a matter of fact, in such a
case the cosmological system involves the independent
evolution of two fields that fall on a paraboloidal potential
from some given initial condition towards the absolute
minimum located at ξ ¼ Q ¼ 0. Clearly, for M2 ≫ m2 the
potential is steeper along the ξ direction, with Q behaving
almost like a flat direction. Assuming that the initial
condition is such that hξi ∼ hQi ∼mpl, in the slow-roll
regime the source of inflation in the model would then be
proportional to the squared modulus of the inflaton, as it is
done in chaotic inflation. Similarly, the source of DE is
proportional to the squared modulus of hQi. According to
the standard dynamics, ξ should slow roll down the
potential towards the local minimum at ξ ¼ 0 but where
Q is frozen at its initial value hQi due to its small mass since
m ≪ H ≈M, where H is the Hubble parameter, and thus

_Q=Q ≈m2=H ≈ 0, until H catches up with the scale m.
Effectively, most of the time Q behaves as a perfect fluid
with an equation of state p ¼ ωρ, withω ¼ −1. Eventually,
ξ exits inflation and suddenly evaporates and reheats the
Universe. As is usual for chaotic inflation, the observed
amount of density perturbations in the cosmic microwave
background would require M ≈ 10−5mpl. Q, on the other
hand, should stay fixed at its initial value during most eras
of evolution, until the matter density ρm catches up with the
quintessence false vacuum energy density,

ρhQi ¼
1

2
m2hQi2; ð11Þ

close the coincidence era. After that, Q is released and starts
slow rolling down towards its true minimum at zero. Most
of the Q models use this expression to rewrite the observed
DE density [63], ρDE ¼ M2

plΛ ≈ 2.53 × 10−47 GeV4, where

Mpl ¼ mpl=
ffiffiffiffiffiffi
8π

p
is the reduced Planck mass, such that

m2 ¼ 2
M2

pl

hQi2 Λ:

Therefore, with hQi ∼mpl, the mass of Q should be

m ≈ 5.8 × 10−34 eV ð12Þ

to provide a successful scenario. The smallness of this
parameter indicates the need for a fine-tuning as large as in
the cosmological constant problem.
We would like to finish this section by making some

comments about the smallness of this scale. It has been
noticed that the tiny mass of Q is unstable under radiative
corrections due to quadratic divergences, in such a way that
the required flatness of the potential—and thus the slow-
roll condition—would disappear [68]. This is a generic
illness of any interacting scalar field theory, commonly
known as the hierarchy problem. In order to keep the
physical mass around the required order, it is necessary to
introduce further large fine-tunings for all loop order
corrections.
This problem is commonly overcome in the context of

supersymmetry, where quadratic divergences are exactly
canceled by superpartner contributions, and hence the mass
is kept under control. Such is the case for, e.g., the Higgs
mass in the context of the supersymmetric Standard Model
extension. Nevertheless, in the case of Q, it has been
observed that simply adding supersymmetry might not
solve the whole problem, since remaining corrections due
to supersymmetry breaking might still be large (see
Refs. [68,69]). Additionally, the Q mass could be stabilized
by invoking Goldstone symmetries, where Q is assumed to
be a pseudo-Goldstone boson belonging to a higher-
dimensional space in which the supersymmetric breaking
scales are suppressed; thus, this boson appears as an
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effective boson that remains stable in four dimensions (see,
for instance, Refs. [29,69,70]).
Whether our model could be extended to consider

supersymmetry or be embedded in a more fundamental
theory (perhaps supergravity or even string theory)—where
the ξ and Q fields arise as effective degrees of freedom such
that the large hierarchy problem is resolved—is a question
we still have to explore, and so it remains a potentially
troublesome issue for the model, as is the case for most
quintessence models.

III. ADDING FERMIONS: REHEATING
AND NEUTRINO MASS

Reheating after inflation in the usual approach uses the
sudden decay of the inflaton into other particles in order to
inject matter into an otherwise empty universe. In accor-
dance with the global SOð1; 1Þ symmetry we adopted for
our cosmological model, the minimal fermionic matter
content is accounted for by introducing a total of three
spinorial fields N _a

i¼0;1;2, two of which are arranged into a
doublet

Ψ ¼
�
N _a

1

N _a
2

�
; ð13Þ

and the remaining one is treated as a singlet. We choose
fermions to be (two-component) right-handed Weyl fields,
such that they can be identified with those usually intro-
duced in extensions of the Standard Model of particle
physics in order to have massive neutrinos through the
seesaw mechanism. Thus, the two-component spinorial
index _a ¼ 1, 2 and Dirac matrices are written as

γμ ¼
�

0 σμa_c

σ̄μ _ac 0

�
; ð14Þ

with

σμa _a ¼ ðI; σÞ; σ̄μ _aa ¼ ðI;−σÞ; σ̄μ _aa ¼ ϵ _a _bϵabσμb _b;

and σ ¼ ðσ1; σ2; σ3Þ. In this notation, the charge-conjuga-
tion matrix and β matrix (which is numerically equal to γ0

but carries a different index structure) are, respectively,
given by

C ¼
�
ϵac 0

0 ϵ _a _c

�
; β ¼

�
0 δ _a_c
δca 0

�
: ð15Þ

From each Weyl field, a four-component (a; _a ¼ 1, 2)
sterile Majorana neutrino is built by writing

ψ i ¼
�
N†

ia

N _a
i

�
; ð16Þ

where N†
ia is the charge conjugate of the right-handed Weyl

field, given by N†
ia ¼ ðN _a

i ÞC. The previous can be seen from
Eq. (16) and ψC ¼ Cψ̄T with the application of Eq. (15).
The doublet in Eq. (13) transforms under gα ∈ SOð1; 1Þ as
�
N _a

1

N _a
2

�
⟶
gα eiασ1

�
N _a

1

N _a
2

�
¼

�
N0 _a

1

N0 _a
2

�
; ð17Þ

with the new Weyl fields arising from combinations and
global phase changes of the previous ones. It is important to
note that since the Weyl fields admit global phase trans-
formations, it will always be possible to build a new four-
component sterile Majorana neutrino

ψ 0
i ¼

�
N0†

ia

N0
i
_a

�
; such that ψ i ¼ ψC

i⟶
gα

ψ 0
i ¼ ψ 0C

i ;

and therefore the transformation of the field ψ i induced by
the SOð1; 1Þ rotation in Eq. (17) does not violate the
Majorana condition.
With these conventions, the general fermion kinetic

terms for the Majorana fields become 1
2
ψ̄ iiγμ∂μψ i ¼

N†a
i iσμa_c∂μN _c

i , where (as before) a background metric
contraction should be understood. Next, it is easy to see
that one can write the kinetic terms in a clearly SOð1; 1Þ-
and Lorentz-invariant form as

LΨ ¼ N†a
0 iσμa_c∂μN _c

0 þ Ψ†iσμ∂μΨ: ð18Þ

On the other hand, by taking the Hermitian conjugate of N _a
0

and the fermion and scalar doublets, the most general
Yukawa interaction terms from the linear combination of
the invariants one can build are

−LI ¼ N0_afa0Φ†Ψþ a1Φ†σ1Ψþ a2ΦTiσ2Ψ

þ a3ΦTσ3Ψg þ H:c:; ð19Þ

where ai¼0;…;3 are complex dimensionless couplings.
Notice that, analogous to the invariant terms which

appear in Eq. (3), there exist bilinear SOð1; 1Þ invariants
that are formed from the fermion doublet taken with itself,
Ψ†Ψ;Ψ†σ1Ψ;ΨTiσ2Ψ, and ΨTσ3Ψ, which, however, are
not Lorentz-invariant objects and therefore we remove them
from the Lagrangian.
It is also worth asking if there are allowed mass terms for

the fermions. We note that such terms can be built by
defining an additional doublet formed from the charge-
conjugate fields of N _a

i¼1;2 as

ΨC ¼
�
N†

1a

N†
2a

�
: ð20Þ

The Lorentz-invariant scalar

COSMOLOGICAL UNIFICATION, DARK ENERGY, AND THE … PHYS. REV. D 101, 083526 (2020)

083526-5



ΨC†Ψþ H:c: ¼ N1_aN _a
1 þ N2_aN _a

2 þ H:c: ð21Þ

clearly produces Majorana mass terms ðψT
i C

†ψ iÞ for the
fields ψ i¼1;2; however, in order to get a consistent trans-
formation of ΨC under the symmetry, it is necessary to
impose the condition that

N0†
ia ¼ ðN0 _a

i ÞC;

which means that the components of the charge-conjugate
rotated doubletΨ0C must to be equal to the charge-conjugate
components of the rotated doublet Ψ0. In order to achieve
this, the doublet in Eq. (20) has to transform with the
Hermitian-conjugate matrix g†α, as can be checked by means
of the two-dimensional matrix representations. Con-
sequently, the term in Eq. (21) is not invariant under
SOð1; 1Þ rotations and we must remove it from the
Lagrangian. The same occurs for all of the terms formed
from Eqs. (20) and (13). On the other hand, a mass term for
N _a

0 is allowed by the SOð1; 1Þ symmetry because it trans-
forms as a singlet; however, we note that the interaction
sector in Eq. (19) is invariant under theUð1Þ transformation

Ψ → eiqΨ; N _a
0 → eiq0N _a

0 ð22Þ

as long as q ¼ −q0. So the fields N _a
i¼1;2 transform with the

same charge and N _a
0 transforms with the opposite charge.

Therefore, by imposing invarianceunderUð1Þ in the fermion
sector, which implies lepton number conservation, we
remove the singlet’s mass term. We note that the same
argument canbe invoked in order to forbidmass terms for the
fermions ψ i¼1;2, but this only confirms what the SOð1; 1Þ
symmetry suggests.
Finally, the complete Lagrangian we are left with is

L ¼ LΦ þ LΨ þ LI; ð23Þ

where the three sectors are given by Eqs. (4), (18), and (19),
respectively. The above Lagrangian is the most general one
that can be written with SOð1; 1Þ bilinear invariant terms,
and it is Lorentz, P (as long as both scalar fields transform
with the same parity phase), and CP invariant. As men-
tioned above, the fermionic sector is Uð1Þ invariant;
similarly, there is Uð1Þ invariance in the scalar sector, as
long as both ϕ and φ transform with the same charge.

A. Reheating

By performing the rotation in field space that diago-
nalizes the scalar sector and allows to identify the inflaton
and quintessence fields, one also has to redefine the general
Yukawa couplings introduced in Eq. (19). As explained in
detail in Appendix A, after some algebra the scalar-to-
fermion couplings [see Eq. (A16)] can be put into the
following simple form:

−LI ¼ N0_afφ†G1Fþ φTG2Fg þ H:c:; ð24Þ

where the new coupling constants, which are just simple
linear combinations of the original ai constants written in
Eq. (19), are contained in the matrices [see Eq. (A17)]

G1 ¼
�

0 g2
h1 0

�
; G2 ¼

�
g1 0

0 −h2

�
:

Here, the Weyl fields F _a
i¼1;2 are the components of the

doublet

F ¼
�
F _a
1

F _a
2

�
; ð25Þ

which arises from Eq. (13) after performing a SOð2Þ
rotation, e−iσ2π=4Ψ ¼ F, as can be seen in Eq. (A15).
Notice that this rotation also transforms the spinor kinetic
terms, which remain diagonal [see Eq. (A18)]. Clearly, as
for the scalar sector, after the transformations the SOð1; 1Þ
symmetry is no longer explicit in the Yukawa Lagrangian.
On the other hand, the assumedUð1Þ symmetry imposed in
the fermion sector remains explicit.
The former couplings can be written in a more useful

way as

−LI ¼ N0_afg1QF _a
1 þ g2Q�F _a

2 þ h1ξ�F _a
1 − h2ξF _a

2g þ H:c:

ð26Þ

The last two terms of Eq. (26) provide the inflaton decay
channels, ξ → N0Fi, which are required for reheating
after inflation. The sudden evaporation of inflaton
energy would inject entropy into the emptied universe
by inflation. Assuming that such a process is efficient
enough, the reheating temperature should be Tr ∼
6 × 10−3maxfjh1j; jh2jgMpl. Since the fermions in final
states are assumed to be right-handed neutrinos they should
provide the portal through the standard couplings L̄H̃N0

and L̄H̃Fi to produce all types of SM fields, which in turn
should thermalize, producing the primordial plasma.

B. SO(1;1) as a flavor symmetry?

Notice that the L̄H̃Fi couplings explicitly violate the
SOð1; 1Þ symmetry unless the SM matter fields have
nontrivial transformations. Of course, we can proceed with
our study by assuming this, in which case SOð1; 1Þ would
be a symmetry of the cosmological and sterile sectors only,
which is broken by the Yukawa couplings to the standard
fields. Such a scenario mimics the construction of models
used to explain supersymmetry breaking, where two sectors
exist in the theory: the visible sector (where the symmetry is
respected) and the hidden sector (where it is violated).
A messenger that couples the sectors communicates the
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breaking of the symmetry in the second sector to the first
sector, producing a rich phenomenology and possibly even
dark matter candidates [71]. Here, on the contrary, the
hidden sector (cosmological plus right-handed neutrinos)
has the symmetry, whereas the SM sector does not trans-
form under SOð1; 1Þ. Thus, the coupling among them
would be the source of the breaking and the right-handed
neutrinos themselves would be the messengers that carry
this explicit breaking to the cosmological sector. The
consequences of this mechanism would appear through
loop quantum corrections, and so we do not expect them to
be relevant enough to affect the classical configuration of
the quintessential field, nor the physics that we discuss
below. Yet, this is an issue that may deserve further
analysis.
The alternative, on the other hand, is quite interesting.

Global flavor symmetries have long been considered as a
way to understand the fermion mass spectrum as well as
flavor mixings appearing in charged weak interactions. In
the lepton sector, such mixings are responsible for neutrino
oscillation phenomena. Extending the cosmological sym-
metry to also involve SM fields falls into this class of
symmetries. Indeed, it turns out that it is possible to imagine
a simple model extension where SOð1; 1Þ is promoted to a
global flavor symmetry for the leptonic SM sector, at least.
To be specific, let us consider the following lepton matter

content assignments under SOð1; 1Þ. We assume that both
left- and right-handed μ- and τ-type flavors belong to
doublets,

2L ¼
�
Lμ

Lτ

�
and 2R ¼

�
μR

τR

�
:

Electron-type fermions Le and eR belong to singlets. Right-
handed neutrinos, of course, are given by the representa-
tions introduced in our cosmological model above.
Furthermore, we take an extended Higgs sector consisting
of the standard SOð1; 1Þ singlet Higgs H and a doublet of
Higgses, written as

2H ¼
�
H1

H2

�
:

With this matter content, we write the most general Yukawa
couplings as

2̄L · 2HeR þ 2̄L · 2RH þ L̄e2H · 2R þ L̄eHeR þ H:c: ð27Þ

and

2̄L · 2̃HN0 þ 2̄L ·ΨH̃ þ L̄e2̃H · Ψþ L̄eH̃N0 þ H:c:; ð28Þ

where, in each term, the contribution of all relevant
SOð1; 1Þ invariants should be understood. For instance,
for the two fermion doublet couplings we have

2̄L · 2R ¼ 2†Lγ
0ðf1 þ f2σ1Þ2R

¼
�
L̄μ L̄τ

�
ðf1 þ f2σ1Þ

�
μR

τR

�
;

where f1;2 are Yukawa couplings. Clearly, this invariant
contains bilinears of the first and second types shown in
Eq. (3). Similar expressions can be written for 2̄L ·Ψ,
2̄L · 2H, and 2̃H ·Ψ. For the other bilinears, like those of the
third and fourth types shown in Eq. (3), we get invariants
such as

2H · 2R ¼ 2THðik1σ2 þ k2σ3Þ2R;

¼
�
H1 H2

�
ðik1σ2 þ k2σ3Þ

�
μR

τR

�
;

where k1;2 are the Yukawa couplings. The same type of
couplings should be understood from 2̄L · 2̃H. Note that all
terms in Eq. (28) are exactly of the L̄ H̃ Fi type, as required
for a successful reheating process in our cosmological
model through the Higgs portal.
After spontaneous symmetry breaking, the above terms

provide the nine mass terms of the charged lepton mass
matrix Ml, as well as the nine Dirac neutrino mass terms
that contribute to the seesaw mechanism. Without further
assumptions, all such terms are expected to be nonzero.
Additional flavor symmetries might be introduced in order
to generate specific textures. After diagonalizing both the
sectors, flavor mixings appear in the charged weak inter-
actions given by the mixing matrix Umix ¼ V†

lUν, where
Uν (Vl) denotes the rotation matrix of the left-handed
neutrino (charged lepton) sector used in the diagonalization
process, as is well known.
As the interest in the present work is to analyze the

cosmological setup, we will not discuss further the details
and the phenomenology that should arise from this flavor
model. An extended analysis of this will be presented
elsewhere. Nevertheless, what we have discussed above
does serve to show that SOð1; 1Þ symmetry may also work
as a SM flavor symmetry, allowing enough freedom to
accommodate lepton masses and mixings, at the cost, of
course, of extending the Higgs sector. The extra Higgses
would have little impact on what follows, and thus we will
proceed with our discussion without considering them
explicitly.

C. Sourcing neutrino mass with DE

At the end of inflation the ξ field evaporates completely,
such that its energy density becomes null, leaving the
inflaton field value at zero which makes its couplings of no
further relevance for thermal history. On the other hand,
as we have already discussed in the previous section,
the Q field remains trapped in its initial homogeneous
configuration throughout the Universe’s evolution, perhaps
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changing quite slowly until recent times when it is still
slow-rolling down its almost flat potential and causing the
Universe’s accelerated expansion.
By inserting the Q false vacuum (conveniently defined as

hQi= ffiffiffi
2

p
) back into Eq. (26), one immediately realizes that

due to the couplings provided by the SOð1; 1Þ model DE
naturally generates masses for the right-handed neutrinos,
given as

Lm ¼ m1N0_aF _a
1 þm2N0_aF _a

2 þ H:c:; ð29Þ

where mi ¼ gihQi=
ffiffiffi
2

p
. As discussed in detail in

Appendix B, these mass terms give rise to two degenerate
massive Majorana neutrinos ν1;2, for which one can write

−Lm ¼ 1

2
mkðν̄1ν1 þ ν̄2ν2Þ: ð30Þ

This is a striking result that connects the seesaw mechanism
(and thus the origin of standard neutrino mass) to the origin
of DE.
Here we have implicitly written the Majorana condition,

namely, ν̄ ¼ νTC, whereC is the charge-conjugation matrix
[see Eq. (15)]. Likewise, the massmk appearing in Eq. (30)
[as defined in Eq. (B23)] is given by

mk ¼
acffiffiffi
2

p hQi; ð31Þ

where the effective coupling ac ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jg1j2 þ jg2j2

p
. We note

that by choosing ac in the interval 10−5 ≲ ac ≲ 10−3, which
seems reasonable, we can get right-handed neutrino masses
in the range of 1014 GeV≲mk ≲ 1016 GeV, which are
values around those needed to implement the standard
seesaw mechanism.
Another immediate outcome of the present model is the

alignment of couplings among quintessence quantum
excitations X and neutrinos with the mass terms. By
redefining Q ¼ ðhQi þ XÞ= ffiffiffi

2
p

we set the X excitations
around the quintessence false vacuum, so it is clear that
after diagonalization fermion masses, one gets

−LIX ¼ ac
2

ffiffiffi
2

p Xðν̄1ν1 þ ν̄2ν2Þ: ð32Þ

This coupling has relevance for thermal history.
Equations (30) and (32) show that only two neutrinos
are massive and interact with the DE field. The third
neutrino remains massless and decoupled. Heavy neutrinos
will eventually become nonrelativistic in the very early
stages of the Universe and decay. The main decay process
is into SM particles, νi → LH, injecting entropy into the
primordial plasma. However, there could be an increase in
the relativistic energy density due to out-of-equilibrium
processes allowed by Eq. (32), since quintessence is a

rather ultralight field, and the coannihilation process νν →
XX will populate this degree of freedom, as we will
examine in the next section.
Notice that, after SM symmetry breaking, the seesaw

mechanism will produce a mixing among the heavy and
standard neutrino states of order mD=mk. Such a mixing
would in turn introduce an effective coupling among X and
the light active neutrinos, which, together with the photons
of the CMB, permeate the Universe in the form of radiation.
As a consequence, a thermal mass correction to the X
potential due to the cosmological neutrino background has
to be taken into account since it could eventually overcome
the Hubble parameter, breaking the slow-roll condition. We
will also address this issue later on (see Sec. V).
It is worth mentioning that, although the above analysis

neglected phases for the fields, their inclusion has little
impact on our main conclusions. To state our point, in
Appendix B we include a detailed discussion of the
changes and effects that are involved when the phases of
the scalar fields are considered. In particular, we notice that
the phase of the scalar DE field does not take part in the
interaction sector beyond the term that involves the inflaton
[see Eq. (B31)], where the value of the phase ϑ can change
the rate of decay of the complex inflaton into neutrinos.
Both mass and X interaction terms [as expressed by
Eqs. (30) and (32)] remain unchanged [see Eqs. (B29)
and (B30)]. On the other hand, this phase could impact the
evolution of the homogeneous background universe, since
it appears as part of the total DE density, as shown in
Eq. (B38). However, as can be seen from the first slow-roll
condition, which in the polar base, where we define

Q ¼ ðhQi þ XÞffiffiffi
2

p eiϑ=hQi; ð33Þ

takes the form [see Eq. (B42)],

1

2
_X2 þ 1

2

�
1þ X

hQi
�

2
_ϑ2 ≪

1

2
m2ðhQi þ XÞ2; ð34Þ

the phase does not directly contribute to the DE density but
rather controls it indirectly, because the fulfillment of the
condition depends on the initial values of the phase and its
velocity. The condition (34) is fulfilled during the DE-
dominated age for most of the initial values of the phase
and its velocity, as can be checked by the evolution of the
dynamic system (B43).
In particular, for the simplest ϑini ¼ _ϑini ¼ 0, the phase ϑ

remains null throughout the history of the Universe;
therefore, for these values, the condition (B42) is simplified
to the expected one for the usual case of a real scalar field.
Since in the rest of the present work we will only focus

on Eq. (32), the value of the phase will not play a crucial
role, and thus we can choose the simplest initial condition
without losing generality. Nonetheless, our model is
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completely compatible with different values (as shown in
Appendices A and B), and although it is not developed here
we believe that a deeper analysis of the initial conditions
could be related to studies of the problem of coincidence, as
well as effects beyond the homogeneous limit.

IV. QUINTESSENCE QUANTA
AND SM PARTICLE PRODUCTION

Because X particles have the same mass associated with
Q they are ultrarelativistic, and thus right-handed pair
annihilation constitutes a source that can inject an extra
degree of freedom during the radiation-dominated age.
Hence, it is necessary to check whether the presence of
such radiation is compatible with the predictions of big
bang nucleosynthesis (BBN).
In order to do that, we consider standard BBN (SBBN)

[72–74] (for a recent review, see Ref. [75]), in which all of
the input parameters—namely, the number of relativistic
degrees of freedom at equilibrium (g�), the neutron lifetime,
the cross sections of the involved nuclear processes, the
mass difference between neutrons and protons, and the
strength of both the weak force and gravity—are in
accordance with the Standard Model of particle physics
and Einstein gravity. In SBBN all of these parameters are
well determined. The unique input free parameter is the
baryon-to-photon ratio, which determines the primordial
abundances of the four light nuclei, namely, 4He, 3He, H or
D, and 7Li. None of these are modified directly in our
model, apart from, perhaps, g�.
Since SBBN assumes a Friedmann-Lemaître-Robertson-

Walker (FLRW) universe and it occurs during the radiation-
dominated age, any increment of g� increases the value of
the Hubble parameter H; consequently, the value of the
freeze-out temperature of the neutron-to-proton ratio also
increases, which in turn implies an increment of the final
primordial helium abundance. The same is accomplished if
there is some net increase in the total radiation energy
density due to any process beyond thermal equilibrium,
e.g., neutrino pair annihilation.
Once the system formed by the neutrinos and X particles

goes out of equilibrium, the energy density of the latter
becomes relevant; otherwise, the pair annihilation can be
reversed, yielding a net increment of zero for the total
radiation energy density. Therefore, to evaluate the total
impact on the Hubble parameter, it is necessary to deter-
mine the out-of-equilibrium radiation production along
with that in equilibrium by evolving the Boltzmann
equation for the radiation number density nX as a function
of the temperature in an FLRW universe. As the whole
process is controlled solely by the coupling ac, and thus by
the scale of right-handed neutrino masses, the analysis of
such a process should constrain this parameter in order to
avoid perturbing the predictions of SBBN through an
excess of injected X . Nevertheless, as we show below,
the process is already so inefficient that no additional

constraints on ac are needed, such that our model appears to
be consistent with SBBN. Now we proceed with the
detailed analysis.
In order to write the Boltzmann equation, we have to

explicitly calculate the collision term, which in turn
involves the thermally averaged cross section for the pair
annihilation. (For the last calculation we follow
Refs. [76,77]). We start by calculating the total cross
section for the part of the Lagrangian (32) that corresponds
to only one of the neutrinos, namely,

−LIX i
¼ ac

2
ffiffiffi
2

p X ν̄iνi:

For this Lagrangian, the total cross section of neutrino pairs
annihilating into a pair of X particles, calculated in the
center-of-mass (CM) frame, is

σX ≡ σν̄iνi→XX ¼ 1

2048πs
a4c

vrðsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

kÞ
q FðsÞ; ð35Þ

where vrðsÞ is the relative velocity between the neutrinos
and

FðsÞ ¼
�
sþ 16m2

k

�
1 −

2m2
k

s

��
log

2
64sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

kÞ
q

s −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

kÞ
q

3
75

− 2

�
1þ 8m2

k

s

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

kÞ
q

; ð36Þ

where the ultrarelativistic mass of X ,m, has been neglected
with respect to the nonrelativistic neutrino mass mk. In the
previous equations s was a Mandelstam variable, which in
the CM frame corresponds to s ¼ 4E2, where E is the
energy of each incoming neutrino and λðs;m2

kÞ is the
Mandelstam triangular function, which is given by

λðs;m2
kÞ ¼ sðs − 4m2

kÞ:

Next, the thermally averaged cross section becomes

hσXvri ¼
a4c

4096πmkTK2
2ðmk=TÞ

IX ðmk;TÞ; ð37Þ

where K2 is the modified Bessel function of the second
kind of order 2, and where we have defined the integral

IX ðmk;TÞ≡
Z

1

0

dx
gX ðxÞ
x

ffiffiffi
x

p K1

�
2mk

T
ffiffiffi
x

p
�
; ð38Þ

where K1 is the modified Bessel function of the second
kind of order 1, and gX ðxÞ is a function coming from
Eq. (36) after the change of integration variable
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s → 4m2
k=x; FðsÞ → 4m2

kgX ðxÞ: ð39Þ

On the other hand, the out-of-equilibrium number
density for the X particles nX , by means of the
Boltzmann equation in an FLRW universe, is given as

1

a3
d
dt

ða3nX Þ ¼ hσXvri
�
n2ν − ðnνÞ2eq

n2X
ðnX Þ2eq

�
; ð40Þ

where a ¼ aðtÞ is the universal scale factor and the source
nν is the neutrino number density, which in turn must be
calculated through its own Boltzmann equation.
In order to write this last equation we have to calculate

the corresponding collision term by considering all of the
involved processes, namely, annihilation and decay of
neutrinos into SM particles, together with those of the X
channel. For this we consider the most general Yukawa
couplings of our heavy neutrinos, ðyνÞniL̄nH̃νiR þ H:c:, for
i ¼ 1, 2 where Ln stands for the three standard left-handed
lepton doublets, with n ¼ 1, 2, 3, and H stands for the
Higgs doublet, whose components are denoted as

H ¼
�
hþ

h0

�
; with H̃ ¼ iσ2H†; and Ln ¼

�
νnL

lnL

�
:

Thus, there are actually two channels for the decay of heavy
neutrinos into SM particles,

νiR → νnLh0 and νiR → lnLhþ:

On the other hand, the annihilation processes can be written
as

νiνj → h0†h0 and νiνj → hþh−:

By assuming that all of the Yukawa couplings are about
the same order, namely, ðyνÞni ∼ yν, and because there are
six similar processes of disintegration of a heavy neutrino,
the total decay width is

Γd ¼
3

32π
ðyνÞ2mk: ð41Þ

Next, for the annihilation process ν̄iνj → h0†h0 the total
cross section in the CM frame is given as

σH ≡ σνiνj→h0†h0 ¼
3

32π

1

svrðsÞ
ðyνÞ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

kÞ
q TðsÞ;

where

TðsÞ ¼ m2
k − 2s
m2

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

kÞ
q

þ 3m2
k log

t−
tþ

;

with

t−
tþ

¼
ðs − 2m2

kÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

kÞ
q

ðs − 2m2
kÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

kÞ
q :

The thermally averaged cross section involving the three
contributions to the same channel is then given by

hσHvri ¼
9

4π

ðyνÞ4
mkTK2

2ðmk=TÞ
IHðmk;TÞ; ð42Þ

where, as previously, we have defined the integral

IHðmk;TÞ ¼
Z

1

0

dx
gHðxÞ
x

ffiffiffi
x

p K1

�
2mk

T
ffiffiffi
x

p
�
;

where

gHðxÞ ¼
2 − x
x

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
þ 3

4
log

1 − x
2
þ ffiffiffiffiffiffiffiffiffiffiffi

1 − x
p

1 − x
2
−

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p

is the function coming from TðsÞ after changing the
variable as it was defined in Eq. (39).
It turns out that for the other coannihilation process

νiνj → hþh−, we have

σνiνj→hþh− ¼ σνiνj→h0h0† ¼ σH ð43Þ

due to the SUð2Þ standard symmetry. With these, the
Boltzmann equation involving both the quintessence and
Higgs channel becomes

1

a3
d
dt

ða3nνÞ ¼ C½T�; ð44Þ

where the collision term is given by

C½T� ¼ 1

4
½hσTOTvriððnνÞ2eq − n2νÞ − Γdnν�;

with the total thermally averaged cross section given in
terms of Eqs. (37) and (42) as

hσTOTvri ¼ 2hσXvri þ 2hσHvri;

wherein the factor of 2 in the X term accounts for the two
involved Majorana neutrinos [see Eq. (32)], and the second
factor of 2 is there because of Eq. (43). The last term to be
defined in the collision term is the neutrino number density
at equilibrium, which is given by

ðnνÞeq ¼ 4πm2
kTK2ðmk=TÞ: ð45Þ
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After changing the time evolution in favor of the
temperature in Eq. (44), which is possible to do during
the radiation-dominated age, one gets

d
dT

ða3nνÞ ¼ −
Mpl

π

�
90

g�ðTÞ
�

1=2 a3

T
C½T�; ð46Þ

where g�ðTÞ is the number of relativistic degrees of
freedom of the energy density at equilibrium.
It turns out that yν is always greater than the coupling ac,

as can be checked by considering that hQi ∼mpl and the
Higgs vacuum expectation value hHi ¼ 246 GeV in the
seesaw formula, according to which the light neutrino mass
is given asmν ∼m2

D=mk. For amν well within the observed
bounds [63], which for the heaviest of the light states is
given as 5 × 10−2 eV≲mν ≲ 10−1 eV, we arrive at

ðyνÞ2
ac

∼ ð1.4 − 2.8Þ × 104; ð47Þ

with the largest value corresponding to the cosmological
neutrino mass bound, and the lowest to the atmospheric
neutrino oscillation scale. This means that both the decom-
position and coannihilation channels dominate over that of
X -quanta production. By taking, for instance, yν ∼ 1, we
get ac ∼ 10−4 in accordance with our assumptions.
Next, in order to calculate the evolution of the number

density nν, we shall set yν ¼ 1 from now on. Thus, by
numerically evolving Eq. (46) we find that the number
density nν never overrides that at equilibrium ðnνÞeq, as is
shown in Fig. 1, and thus the system evolves in thermal
equilibrium at early times and then leaves equilibrium to
get highly suppressed due to the decay channel charac-
terized by Eq. (41).

In Fig. 2 we plot, for a few values of the coupling ac, the
out-of-equilibrium condition

ΓH ≡ 2 × hσHvri × nν ≲ H; ð48Þ

where ΓH is the neutrino interaction rate for the Higgs
channel and H is the Hubble parameter. As is shown there,
because of the decay of neutrinos into Higgs bosons and
leptons, the greater the coupling ac (and so the mass mk),
the earlier the out-of-equilibrium epoch. This also shows
that, as expected, coannihilation of neutrinos into SM fields
is efficient enough at higher temperatures to thermalize the
heavy neutrinos.
In Fig. 3 we illustrate the behavior of the system by

plotting the behavior of the parameter ac vs temperature.
As said before, the inflaton decays into neutrinos ν and
reheats the Universe at temperature Tr ∼ 1015 GeV; below
this temperature and above the upper line that stands for the
value of the mass mk, the population of neutrinos behaves
like pure radiation in thermal equilibrium and stays that
way until the temperature drops into the region below the
line mk and above the line ΓH ≈ H, where the system
becomes nonrelativistic but still stays in thermal equilib-
rium. Below the bottom line the system goes out of
equilibrium, and the population of neutrinos decreases
due to the coannihilation into quintessence and Higgs
pairs, as well as the decay into Higgs bosons and leptons.
As a final note, we mention that adding extra Higgses to the
model will add to the number of coannihilation channels,
introducing an overall factor to the corresponding rates
which will not affect our conclusions above.
Turning back to the Boltzmann equation (40), we notice

that, because we are interested in maximizing the produc-
tion of X quanta, which, if increases dangerously would
state the worst possible scenario for the model, and because
ðnνÞeq ≳ nν [see Fig. 1], we can choose ðnνÞeq instead of nν

FIG. 1. The neutrino number density nν vs temperature driven
by Eq. (46) and the equilibrium number density given in Eq. (45).
Notice that the system goes out of equilibrium at early times but
the number density gets strongly suppressed due to the decay
term proportional to Eq. (41).

FIG. 2. The out-of-equilibrium condition given in Eq. (48) for
some values of the parameter ac. As stated in the text, the greater
the mass mk, the earlier the beginning of the out-of-equilibrium
epoch, due to the decay processes into SM particles.
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in the collision term, and we can neglect the ratio
n2X=ðnXÞ2eq which accounts for a tiny fraction of nX
produced due to the inverse process XX → ν̄ν. In this
way we overestimate the production of X quanta. As we
will show next, this approximation will be enough to
establish the cosmological consistency of the model,
because the result does not conflict with the requirements
of big bang nucleosynthesis. Then Eq. (40) becomes

1

a3
d
dt

ða3nX Þ ¼ hσXvriðnνÞ2eq: ð49Þ

By using Eqs. (37) and (45), the Boltzmann equation (49)
becomes

1

a3
d
dt

ða3nX Þ ¼
π

256
m3

ka
4
cTIX ðmk;TÞ: ð50Þ

As before, after changing the time evolution in favor of the
temperature, the Boltzmann equation (50) becomes

d
dT

ða3nX Þ ¼ −
Mpl

256

�
90

g�ðTÞ
�

1=2
m3

ka
4
c
a3

T2
IX ðmk;TÞ: ð51Þ

Since the Universe is cooling, we perform the integration
on both sides backward in T, from Tout to a certain
temperature T 0 < Tout, so we have

Z ða3nX ÞðT 0Þ

ða3nX ÞðToutÞ
dða3nX Þ

¼ −
Mpl

256

ffiffiffiffiffi
90

p
m3

ka
4
c

Z
T 0

Tout

dT
a3ðTÞffiffiffiffiffiffiffiffiffiffiffi
g�ðTÞ

p
T2

IX ðmk;TÞ; ð52Þ

where on the rhs we have explicitly written the universal
scale factor’s dependence on T. Such a dependence, during
the radiation-dominated age, is given by

aðTÞ ¼ b0
g1=3�s ðTÞT

; ð53Þ

where b0 is a constant and g�sðTÞ is the number of
relativistic degrees of freedom of the entropy density at
equilibrium.
When the cooling Universe reaches the temperature Tout

the density nX starts to increase, i.e., the system ν̄ν ↔ XX
goes out of equilibrium, which is true whenever

ΓX ≡ 2 × hσXvri × nν ≲ H; ð54Þ

where ΓX is the neutrino interaction rate of the channel,
which can be calculated using Eq. (37) and the numerical
output of Eq. (46). It turns out that for any value of T ≲ Tr,
both the integral (38) and the rate ΓX are very suppressed,
as is shown in the Fig. 4. Then the inequality (54) is always
fulfilled and we can use the temperature Tout ∼ Tr as the
lower limit to obtain a good estimate of the integral that
appears on the rhs of Eq. (52).
Furthermore, as the initial state of the X field is pure

vacuum and it is not coupled to the inflaton, there are no
initial quanta; consequently, we can impose the condition

ða3nX ÞðToutÞ ¼ 0;

which together with Eq. (53) allows us to express the
integral in Eq. (52) as

nX ðT 0Þ ¼ Na7cg�sðT 0ÞT 03
Z

Tr

T 0

dT
T5

IX ðmk;TÞ
g�sðTÞ

ffiffiffiffiffiffiffiffiffiffiffi
g�ðTÞ

p ; ð55Þ

where N is a constant factor given by

N ¼ 2 ×
Mpl

512

ffiffiffiffiffi
45

p
hQi3; ð56Þ

and where we have multiplied it by 2 because there are two
Majorana neutrinos involved [see Eq. (32)].
By considering g�s ∼ g�n, where g�n is the relativistic

degrees of freedom of the number density at equilibrium,
the integral (55) can be written as

nX ðT 0Þ ¼ nrðT 0Þ × fðT 0Þ; ð57Þ

FIG. 3. The behavior of the population of Majorana sterile
neutrinos as a function of the parameter ac vs temperature. As
stated in the text, between Tr ∼ 1015 GeV and T ≈mk the
number density of neutrinos corresponds to that of radiation in
thermal equilibrium; between T ≈mk and the temperature of
equality ΓH ≈ H the system becomes nonrelativistic but still stays
in thermal equilibrium. Below this line the system goes out of
equilibrium and the population of neutrinos gets suppressed due
to the processes of annihilation and decay populating the universe
with SM particles.
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where nrðT 0Þ is the relativistic number density at equilib-
rium, given by

nrðT 0Þ ¼ ζð3Þ
π2

g�nðT 0ÞT 03; ð58Þ

where ζð3Þ is Apéry’s constant, and

fðT 0Þ ¼ Na7c
π2

ζð3Þ
Z

Tr

T 0

dT
T5

IX ðmk;TÞ
g�sðTÞ

ffiffiffiffiffiffiffiffiffiffiffi
g�ðTÞ

p : ð59Þ

By means of Eq. (57) we write the total relativistic
number density of our model nTOT in terms of Eq. (59) as

nTOTðT 0Þ ¼ nrðT 0Þð1þ fðT 0ÞÞ: ð60Þ

The integral (59) can be calculated numerically for different
values of the ac parameter, with the result that for each
value of the latter the integral depends smoothly on the
temperature and it is easy to maximize.
Since nrðTÞ is a growing monotonic function, it is

enough to know whether, for a certain ac, the value of
fðTmxÞ exceeds that of nrðTmxÞ, where Tmx is the temper-
ature that maximizes the integral (59). What we find is that
fðTmxÞ is always several orders of magnitude below one for
any value of ac within the range we are interested in, as
shown in Fig. 5. Thus, the increase in the total relativistic
number density of X particles due to the coannihilation of
right-handed neutrinos is of no cosmological consequence.
Clearly, once neutrino decay into SM fields is switched on,
the actual X would be much smaller than the value we have
just calculated. To this extent, the model appears to be
consistent with the cosmological constraints.

V. THERMAL CORRECTIONS TO
QUINTESSENCE MASS

As stated earlier, the Q field actually couples to light
active Majorana neutrinos νl that emerge from the seesaw
mechanism. By setting the corresponding seesaw mixing as
in Eq. (32), we get the effective coupling −LIX ¼
λX ν̄lνl þ � � �, where

λ ¼ ac
2

ffiffiffi
2

p
�
mD

mk

�
2

:

Then, the thermal contribution to the quintessence potential
due to the cosmological neutrino background (see, for
instance, Refs. [78,79]) is given by

VTðQ; TÞ ¼ g
48

λ2T2hQi2;

where g are the degrees of freedom of the Majorana
neutrinos coupled to the scalar field and T corresponds
to the neutrino bath temperature Tν, which scales as

Tν ¼ Tν;0

�
a0
a

�
¼ ð1þ zÞTν;0;

where a0 is the current value of the scale factor a, z is the
cosmological redshift, and Tν;0 is the current neutrino
temperature, which is related to the current CMB temper-
ature as Tν;0 ¼ ð4=11Þ1=3Tγ;0, and so (see Ref. [63])

Tν;0 ¼ 1.676 × 10−4 eV:

Thus, the effective potential, defined with the addition of
the above thermal correction, becomes

FIG. 4. The out-of-equilibrium condition given in Eq. (54) for
some values of the parameter ac. As stated in the text, the integral
(38) is very suppressed, and hence the system ν̄ν ↔ χχ is always
out of equilibrium, even for temperatures as high as the reheating
temperature.

FIG. 5. The maxima of the function fðTÞ given in Eq. (59) for
different values of the parameter ac. Notice that the integral is
always less than 1 and so the increase in nTOT given in Eq. (60) is
negligible.
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VeffðQ; TÞ ¼ 1

2
M2

effhQi2;

where the effective mass is defined as

M2
eff ¼ m2 þm2

Th;

with the thermal mass given by

mThðTνÞ ¼
ffiffiffiffiffi
g
24

r
λTν:

Clearly, mTh should scale down as mTh ¼ ð1þ zÞmTh;0
where, obviously, its current value mTh;0 ¼ mThðTν;0Þ.
By using the corresponding mass expressions, it is

straightforward to write the effective coupling in terms
of Yukawa couplings and vacuum scalar values as

λ ¼ 1

2
ffiffiffi
2

p ðyνÞ2
ac

�hHi
hQi

�
2

:

Then, by using that hHi=hQi ≈ 2.05 × 10−17 and the range
limits imposed from neutrino masses given in Eq. (47), we
obtain that the effective coupling should be in the narrow
range

λ ≈ ð2.05–4.1Þ × 10−30:

Considering the contribution of the three active neutrinos to
the internal degrees of freedom, we get g ¼ 6, and thus the
current thermal mass is

mTh;0 ≈ ð1.7–3.4Þ × 10−34; ð61Þ

which is the same range needed to source the current
cosmological constant [see Eq. (12)] by ρDE ¼ 1

2
M2

eff;0hQi2.
As a further note, since λ depends linearly on the light
neutrino mass mTh;0 gets closer to the required Meff;0 for
larger masses. In particular, for mν ∼ 0.17 eV one already
getsmTh;0 ∼ 5.8 × 10−34 eV. This would then be the largest
allowed value for the neutrino mass in our model.

A. Slow-roll condition

Next, we consider the redshift of the thermal mass to
explore the evolution of the slow-roll condition to ensure
that the effective mass remains smaller than the Hubble
parameter throughout the Universe’s history, which in turn
ensures that the Q field behaves as a true DE. As it should
be clear, the main concern is just the a−1 scaling of the
thermal mass value throughout the age of the Universe.
First, during the radiation-dominated age the Hubble

parameter evolves as

H2 ¼ H2
0ΩR;0

�
a
a0

�
−4
:

Then, during that age, the quotient between the thermal
mass and the Hubble parameter becomes

mTh

H
¼ mTh;0

H0

ffiffiffiffiffiffiffiffiffi
ΩR;0

p
�
a
a0

�
:

By using H0 ¼ 1.44 × 10−33 eV and ΩR;0 ¼ 1.4 × 10−3

together with Eq. (61), we arrive at

mTh

H

����
RAD

≈ ð3.2–6.4Þ
�
a
a0

�
; a ≤ aeq;

where aeq is the scale factor at radiation-matter equality.
When a ¼ aeq, we have that ðaeq=a0Þ ¼ 4.45 × 10−3. With
this value, at the end of the radiation-dominated age

mTh

H

����
a¼aeq

≈ ð1.42–2.84Þ × 10−2;

and thus we see that the slow-roll condition is fulfilled
during throughout the radiation-dominated age.
During the matter-dominated era, the Hubble parameter

evolves as

H2 ¼ H2
0ΩM;0

�
a
a0

�
−3
:

Then, the ratio of interest scales as

mTh

H
¼ mTh;0

H0

ffiffiffiffiffiffiffiffiffiffi
ΩM;0

p
�
a
a0

�
1=2

:

By taking ΩM;0 ¼ 0.3142, one gets

mTh

H

����
MAT

≈ ð0.21–0.43Þ
�
a
a0

�
1=2

:

Considering that in our model [see Eq. (63)] at the epoch of
the transition to DE domination ðaDE=a0Þ ∼ 0.45, we
roughly estimate that

mTh

H

����
a¼aDE

∼ ð0.14–0.28Þ:

This means that even during the era of the matter domi-
nation, the condition of slow-roll is still fulfilled, and this
would remain so until today since thermal mass keeps
scaling down as the Universe expands. As a matter of fact,
Eq. (61) implies that nowadays

mTh;0

H0

¼ ð0.12–0.24Þ:

Last but not least, by considering our above-mentioned
upper bound on the neutrino mass (mν ¼ 1.7 × 10−1 eV),

J. G. SALAZAR-ARIAS and A. PÉREZ-LORENZANA PHYS. REV. D 101, 083526 (2020)

083526-14



which saturates the DE density such that Meff;1.7 ≈mTh;0,
we note that such a case provides a natural upper bound on
the slow-roll condition. For this given value, we can make a
more careful estimate of the evolution of the mass-to-
Hubble-constant ratio

R ¼ Meff;1.7

Heff
ð62Þ

by observing that the DE density then scales as

ρDE;1.7 ¼
1

2
M2

eff;0

�
a0
a

�
2

hQi2;

corresponding to a DE relative density parameter

ΩDE;1.7 ¼
ρDE;1.7
ρcrit

¼ ΩDE;0

�
a0
a

�
2

;

where, by using that ρcrit ¼ 3.69 × 10−47 GeV4, it is
obtained that Ωeff

DE;0 ≈ 0.685, as expected in our model.
On the other hand, using the actual observed values of

ΩR;0 and ΩM;0 mentioned above, the effective Hubble
parameter to calculate R at any given a can be written as

H2
eff ¼H2

0

�
1.4×10−3

�
a0
a

�
4

þ0.314

�
a0
a

�
3

þ0.685

�
a0
a

�
2
�
:

ð63Þ

The numerical evolution of the ratio is plotted in Fig. 6,
from which we can see that the slow-roll condition is
satisfied throughout the evolution of the Universe.

VI. SUMMARY AND CONCLUDING REMARKS

We have presented a cosmological model that unifies
early inflation and late accelerated expansion, driven by a
quintessence field, where both cosmological scalar fields
belong to the degrees of freedom of the same fundamental
field representation Φ of the SOð1; 1Þ symmetry. This
symmetry, as is usual in particle physics model building
and in particular in the construction of the Standard Model,
is the guiding principle that dictates and governs the
dynamics of the system. It is really interesting that such
a simple principle allows one to reproduce chaotic-type
potentials for both inflation and DE, which are derived
from considering all possible bilinear field operators based
on Φ that are invariant under the symmetry. As a matter of
fact, the field system of the model can be rewritten in terms
of two scalar fields with independent evolutions, which in
the cosmological setup will fall down a simple mass-type
potential. Upon fine-tuning, one can easily understand the
reason why one of these fields breaks the slow-roll
condition at large scales and thus ends inflation, whereas
the other stays trapped in a false vacuum configuration that
we see as a cosmological constant nowadays.
The need for reheating after inflation, which requires the

coupling of the inflaton to matter fields, is fulfilled by
introducing a set of fermions which, in order to be
consistent with the symmetry, belong to a doublet and
singlet of SOð1; 1Þ. Enforcing the symmetry to build the
Yukawa couplings as invariant terms has two outstanding
implications. First, since the cosmological field does not
belong to the Standard Model particle sector, neither will
the new fermions, and thus they are naturally identified as
right-handed neutrinos. Second, the invariant couplings
among Φ and the fermions do provide the appropriate
inflaton couplings to allow inflaton decay and reheating,
but they also mean that right-handed neutrinos couple to the
cosmological DE field. Without any further assumptions,
beyond the use of symmetries, our model introduces
a way to naturally understand the existence of large
sterile Majorana neutrino masses as sourced by DE
which, on the other hand, is needed for the standard
seesaw mechanism to work. This is the simplest known
mechanism that provides very small masses to the standard
neutrinos, which are required to explain neutrino oscillation
phenomena.
Here we have studied in some detail the mechanism

contained in the SOð1; 1Þ cosmological unification model
that underlies the generation of neutrino masses. Our
analysis shows that the origin of the mass is independent
of the field phases and their dynamics. However, it may not
be the only possible mechanism in nature, as the SOð1; 1Þ
symmetry does not prohibit writing an independent mass
associated with any singlet fermion. Such a mass seems
unnatural since there is no a priori mass scale associated
with it, an issue already present in the seesaw mechanism.
Nevertheless, as we have argued, such a mass can easily be

FIG. 6. The ratio R as defined in Eq. (62). The slow-roll
condition is satisfied throughout the evolution of the Universe.
Lower values are expected when mν → 0.5 × 10−2.
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removed if additional global symmetries are involved in the
fermion sector. In such a scenario, DE arises as the natural
source of such a neutrino mass, through its false vacuum
energy that supports the current accelerated expansion of
the Universe. As the scale of this expansion is quite large,
the right-handed neutrinos would have masses of
order ∼1014 GeV.
Our study has also looked at the possible impact that the

model—and in particular quintessence quanta X—may
have on the thermal history of the Universe. The inflaton in
the model does not couple to the quintessence field, and
thus it does not inject entropy through that channel upon
decay. As a matter of fact, the only allowed decay channel
for the inflaton is into heavy right-handed neutrinos, which
would eventually create the primordial plasma through
Higgs and Standard Model lepton couplings of the form
L̄ H̃ N. After this, we expect the standard thermal history to
proceed as usual, except for the possible entropy contri-
butions from the right-handed neutrinos in the form of
quintessence quanta through out-of-equilibrium coannihi-
lation processes (ν̄ν → XX ). To further estimate this effect,
we have calculated the thermally averaged cross section for
the process, which depends on the same Yukawa coupling
that provides neutrino masses, ac. As discussed in this
paper, the numerical integration of the Boltzmann equa-
tions with ac varying over a wide range of values shows
that the process is so suppressed that, the total contribution
to the total primordial plasma number density (due to
injection of quintessence quanta) is negligible. This clearly
indicates that the model, without any further constraints or
assumptions, remains consistent with the conditions
required for successful big bang nucleosynthesis.
The present model uses complex scalars to realize the

symmetry and thus it involves dynamical phases, but we
have not explored their possible role in the Universe’s
evolution. Our analysis does show that they are not
potentially relevant for the after-inflation evolution, pro-
vided the initial conditions fix them to zero, at least for the
mechanism that generates neutrino masses and the pro-
duction of quintessence quanta. However, other roles may
be possible that would be interesting to look at.
Our analysis also explored the thermal corrections of the

mass of Q coming from interactions with the thermal bath
of neutrinos permeating the Universe. By calculating the
slow-roll condition with these corrections, we found that
the Q field preserves its DE behavior. At the present epoch,
the thermal mass coincides with that commonly required in
Q models.
As a final comment, we note that one of the issues that

remains to be explored in detail to make the model more
realistic is the phenomenology concerning the SOð1; 1Þ
flavor sector, introduced above as the connection of our
heavy neutrinos with the Standard Model particles. We
have shown that heavy neutrinos and Standard Model
particles should be assigned into a set of doublets and

singlets under SOð1; 1Þ; thus, it would be interesting to
explore if such symmetry may account for the masses and
mixings of the light neutrinos as well.
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APPENDIX A: DIAGONALIZATION OF THE
LAGRANGIAN

In this Appendix, we present in detail the diagonalization
analysis of our model Lagrangian, whose results are used in
the main text. First, we consider the scalar sector, whose
Lagrangian (4) in terms of the doublet complex field
components becomes

LΦ ¼ ∂μϕ�∂μϕþ ∂μφ�∂μφ − Vðϕ;φÞ;

with the potential

Vðϕ;φÞ ¼ α0ðjϕj2 þ jφj2Þ þ α1ðϕ�φþ φ�ϕÞ
þ α3ðϕ2 − φ2Þ þ c:c: ðA1Þ

Next, we rewrite the Lagrangian in terms of the Hermitian
base

ϕ ¼ 1ffiffiffi
2

p ðϕ1 þ iϕ2Þ; φ ¼ 1ffiffiffi
2

p ðφ1 þ iφ2Þ;

where ϕi;φi; i ¼ 1, 2 are real scalar fields. This lets us put
the potential in a matrix form which we will diagonalize in
order to identify physical fields having separated dynamics.
The potential (A1) becomes

V ¼ 1

2
ΦT

RAΦR;

with ΦR being the vector formed from the above real
scalar field components of ϕ and φ, given by
ΦT

R ¼ ðϕ1;ϕ2;φ1;φ2Þ, and A is the 4 × 4 mass coupling
matrix

A ¼

0
BBBBB@

m2
1 λ2 μ21 0

λ2 m2
2 0 μ21

μ21 0 m2
2 −λ2

0 μ21 −λ2 m2
1

1
CCCCCA
;

where we have defined

m2
1 ¼ μ20 þ μ23; m2

2 ¼ μ20 − μ23; λ2 ¼ 2Reðiα3Þ

and
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μ20 ≡ 2Reðα0Þ; μ21 ≡ 2Reðα1Þ; μ23 ¼ 2Reðα3Þ:

Notice that by definition all of the involved mass terms (m2
1,

m2
2, λ

2, μ20, μ
2
3 and μ

2
1) are real, and by construction we have

made them positive.
Since the matrix A is real and symmetric, by means of a

proper orthogonal rotation of the field base S, through
which we redefine

ΦD ¼ SΦR; AD ¼ SAST;

we should get a diagonal mass sector. It is not difficult to
check that such a matrix can be expressed as

S ¼ ðI2×2 ⊗ B − iσ2 ⊗ HÞ cosðωÞ;

where

B ¼
�
cosðρÞ 0

0 cosðρÞ

�
; H ¼

�
tanðωÞ sinðρÞ
sinðρÞ − tanðωÞ

�
:

In the above, we have made use of the shorthand notation

cosðρÞ ¼ μ21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ41 þ λ4

p ; sinðρÞ ¼ λ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ41 þ λ4

p ;

cosðωÞ ¼ α2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h2ðh2 þ Δ2Þ

p ; sinðωÞ ¼ α2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h2ðh2 − Δ2Þ

p ;

and

α4 ¼ 4ðμ41 þ λ4Þ; Δ2 ¼ m2
1 −m2

2; h4 ¼ Δ4 þ α4:

After performing the S rotation, the potential becomes

V ¼ 1

2
ΦT

DADΦD;

with ΦT
D ¼ ðQ1; ξ1; ξ2;Q2ÞT and

AD ¼ diag

�
m2; M2; M2; m2

�
;

where the eigenvalues m2 and M2 are given by

m2 ¼ μ20 − μ2 and M2 ¼ μ20 þ μ2; ðA2Þ

where μ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ43 þ μ41 þ λ4

p
. In terms of the α couplings,

we get μ20 ¼ 2Reα0 and μ2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðReα1Þ2 þ jα3j2

p
.

The requirement thatM2; m2 > 0, which guarantees that
the potential is bounded from below, is fulfilled if
μ20 > μ2 > 0. If both parameters were of the same order,
μ20 ≈ μ2 > 0, we would naturally getM2 ≫ m2 ≈ 0. In such
a scenario it becomes natural to identify ξ with the inflaton

and Q with the DE field, provided M is as large as the
inflation scale.
Notice that the mass eigenstates in ΦD can be ordered in

a more natural way with the permutation matrix

P ¼

0
BBB@

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

1
CCCA;

such that ðQ1;Q2; ξ1; ξ2ÞT ¼ S0ΦR, with S0 ¼ PS.
In terms of the diagonal base and given that there are two

degenerate scalar degrees of freedom for each mass, the
potential can finally be expressed as

V ¼ m2jQj2 þM2jξj2; ðA3Þ

where we have introduced the new complex scalar fields

Q ¼ 1ffiffiffi
2

p ðQ1 þ iQ2Þ and ξ ¼ 1ffiffiffi
2

p ðξ1 þ iξ2Þ: ðA4Þ

Analogously, after the S0 rotation of ΦR the scalar kinetic
term can be easily put in terms of the new fields to get the
diagonal terms ∂μQ�∂μQþ ∂μξ�∂μξ.
Finally, by introducing the doublet

φ ¼
�
Q

ξ

�
; ðA5Þ

the whole Lagrangian of the scalar sector becomes

Lφ ¼ ∂μφ†∂μφ − φ†Mφ; ðA6Þ

where M is the diagonal mass matrix

M ¼
�
m2 0

0 M2

�
: ðA7Þ

We should emphasize that this new doublet notation is not a
faithful representation of SOð1; 1Þ, since the SOð4Þ rotation
S0 and the SOð1; 1Þ transformations do not commute.
Therefore, the diagonal Lagrangian (A7), which provides
the decoupled field system that evolves and thus explains
inflation and the late-time accelerated expansion of the
Universe, is not explicitly invariant under SOð1; 1Þ, even
though the original model is.
Let us now move on to analyzing the fermion sector of

the theory, for which the corresponding kinetic terms, as
given in Eq. (18), are

LNi
¼

X2
i¼0

N†a
i iσμa_c∂μN _c

i ; ðA8Þ
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and the interaction terms (19) take the form

−LI ¼ N0_afa0ðϕ�N _a
1 þ φ�N _a

2Þ þ a1ðϕ�N _a
2 þ φ�N _a

1Þ
þ a2ðϕN _a

2 − φN _a
1Þ þ a3ðϕN _a

1 − φN _a
2Þg þ H:c:

ðA9Þ

Last, written in terms of the real field components in ΦR,
this leads to

−LI ¼
1ffiffiffi
2

p N0_aΦT
RfVN _a

1 þ IΓVN _a
2g þ H:c:; ðA10Þ

where V is the vector formed from the complex couplings
ai,

V ¼

0
BBB@

a3 þ a0
iða3 − a0Þ
a1 − a2

−iða1 þ a2Þ

1
CCCA;

and IΓ is a 4 × 4 matrix given by IΓ ¼ −σ1 ⊗ σ2. After
performing the S rotation in the scalar sector, and noticing
that IΓ is actually an invariant matrix (since IΓ ¼ SIΓST), the
interaction Lagrangian becomes

−LI ¼
1ffiffiffi
2

p N0_aΦT
DfV 0N _a

1 þ IΓV 0N _a
2g þ H:c:; ðA11Þ

where V 0 ¼ SV .
It is important to note that V 0 just corresponds to a

redefinition of the Yukawa couplings, for which one can
always assume a convenient parametrization, implicitly
defined in terms of the initial ai¼0;…;3 couplings. Hence,
using this freedom we choose the following combinations
to define the couplings in the rotated scalar base:

V 0 ¼ 1ffiffiffi
2

p

0
BBB@

g1 þ g2
h1 − h2

−iðh1 þ h2Þ
iðg1 − g2Þ

1
CCCA; ðA12Þ

where gi¼1;2 and hi¼1;2 are complex numbers. Substituting
the last expression and the redefinition of the scalar fields
given in Eq. (A4) into Eq. (A11), and after some simple
algebra, we finally rewrite the interaction terms as

−LI ¼ N0_afg1QF _a
1 þ g2Q�F _a

2 þ h1ξ�F _a
1 − h2ξF _a

2g þ H:c:;

ðA13Þ

where the newWeyl fields F _a
i¼1;2 are the components of the

doublet

F ¼
�
F _a
1

F _a
2

�
; ðA14Þ

which in turn comes from the transformation

e−iσ2π=4Ψ ¼ F; ðA15Þ

i.e., the diagonalization of the scalar potential through S
imposes an SOð2Þ rotation on the doublet Eq. (13) by an
angle π=4. Note that we can still define the Uð1Þ global
transformation used in Eq. (22) with the same charge for
the new Weyl fields as F → eiqF, and so this convenient
transformation does not alter the argument used to remove
the mass of N0 in the main text. Nevertheless, as for the
scalar sector, the transformations used to rewrite the
interactions hide the SOð1; 1Þ symmetry of the theory;
however, they allow us to write Eq. (A13) in a simple and
compact way,

−LI ¼ N0_afφ†G1Fþ φTG2Fg þ H:c:; ðA16Þ

where we have defined the coupling matrices as

G1 ¼
�

0 g2
h1 0

�
; G2 ¼

�
g1 0

0 −h2

�
: ðA17Þ

Finally, notice that the transformation given in Eq. (A15)
keeps the diagonal form of fermion kinetic terms, as
expected, which can now be expressed as

LF ¼ N†a
0 iσμa_c∂μN _c

0 þ F†iσμ∂μF: ðA18Þ

APPENDIX B: INCLUDING PHASE FIELDS IN
THE SOð1;1Þ MODEL

Here we explore some of the possible effects that using
dynamical phase fields for the cosmological scalars may
have on the outcomes of the model discussed in the main
text, as well as other interesting aspects that we believe
might be of further interest for field dynamics. For this, we
assume that after reheating the Q field remains dynamically
trapped in a homogeneous and isotropic false vacuum
configuration, which sources DE and breaks the Uð1Þ
global symmetry in the neutrino sector, whereas the
inflaton field ξ has already settled to its null value, and
thus quantum perturbations for our cosmological scalar
fields can be conveniently introduced in a polar base as

Q ¼ ðhQi þ XÞffiffiffi
2

p eiϑ=hQi; ξ ¼ 1ffiffiffi
2

p jξjeiθ=hQi; ðB1Þ

where the degrees of freedom of the complex scalar field Q
are now given by the real scalar field X and the dynamical
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phase ϑ. Similarly, the degrees of freedom of ξ are given by
its modulus and dynamical phase θ.
Next, we proceed to rewrite the Lagrangian of our model

in terms of the above parametrization. To do this we first
notice that the doublet (A5) can be written as

φ ¼ PφR; ðB2Þ

where we have defined the radial field part as

φR ¼ 1ffiffiffi
2

p
� hQi þ X

jξj

�
ðB3Þ

and the field phase matrix is given by

P ¼
�
eiϑ=hQi 0

0 eiθ=hQi

�
: ðB4Þ

By substituting Eq. (B2) into the scalar sector of the theory,
it is straightforward to see that the Lagrangian (A6) simply
becomes

Lφ ¼ ∂μφT
R∂μφR þ φT

RMφR þ T ðφR;PÞ; ðB5Þ

where T ðφR;PÞ ¼ φT
Rð∂μP†Þð∂μPÞφR is a dimension-six

and highly suppressed operator. Thus, we do not expect it to
be relevant for the later dynamics of DE.
Explicitly, in terms of the inflaton and DE fields, the

above Lagrangian reads

Lφ ¼ 1

2
∂μjξj∂μjξj þ

1

2
∂μX∂μX þ 1

2
m2ðhQi þ XÞ2

þ 1

2
M2jξj2 þ T ðξ;X ;ϑ;θÞ; ðB6Þ

where the last term on the rhs is given by

T ðξ;X ;ϑ;θÞ ¼
jξj2

2hQi2 ∂
μθ∂μθ þ

1

2

�
1þ X

hQi
�

2∂μϑ∂μϑ: ðB7Þ

The interaction with fermions given by Eq. (A16) is now
written as

−LI ¼ N0_aφT
RfP†G1 þ PTG2gFþ H:c: ðB8Þ

¼ N0_aφT
RGF

0 þ H:c:; ðB9Þ

where the new coupling matrix is given by

G ¼
�

g1 g2
h1e−iðθþϑÞ=hQi −h2eiðθþϑÞ=hQi

�
; ðB10Þ

and where we have performed a local phase transformation
over the fermions in the doublet to introduce

F0 ¼
�
F0 _a
1

F0 _a
2

�
; ðB11Þ

with F0 _a
1 ¼ eiϑ=hQiF _a

1 and F0 _a
2 ¼ e−iϑ=hQiF _a

2. This redefini-
tion of the fermion fields removes the dynamical phases in
the X sector, as can be seen from Eq. (B10). Nonetheless,
they will reappear as currents coming from the trans-
formation of the kinetic terms (A18), which now read as

LF ¼ N†a
0 iσμa_c∂μN _c

0 þ F0†iσμ∂μF0 þ ∂μϑ

hQiF
0†σμσ3F0;

where in the last term the effect of σ3 is to switch the sign of
the lower entry of the doublet. Notice that once again the
phase field enters in a suppressed way. Apart from these
new terms where the phase fields are explicit, the part of the
Lagrangian that matters for the model remains the same.

1. Revisiting massive neutrino base

Let us now perform a new transformation with the aim of
removing the constant phases of the couplings g1 and g2
appearing in Eq. (B10), by means of a SUð2Þ rotation of the
doublet fermion sector

η ¼ RF0 ¼
�
η _a1
η _a2

�
; ðB12Þ

with

R ¼ 1

ac

�
g1 g2

−g2� g1�

�
; ðB13Þ

where ac ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jg1j2 þ jg2j2

p
. After this rotation, the inter-

action term (B9) becomes

−LI ¼ N0_aφT
RG

0ηþ H:c:; ðB14Þ

where now the coupling matrix is

G0 ¼ GR† ¼
�

ac 0

C1ðθ; ϑÞ C2ðθ;ϑÞ

�
: ðB15Þ

In the above we have used the shorthand notation

C1ðθ; ϑÞ ¼ ðg11e−iðθþϑÞ=hQi − g22eiðθþϑÞ=hQiÞ=ac;
C2ðθ; ϑÞ ¼ −ðg12eiðθþϑÞ=hQi þ g21e−iðθþϑÞ=hQiÞ=ac;

where g11 ¼ g�1h1, g22 ¼ g�2h2, g12 ¼ g1h2, and g21 ¼ g2h1.
On the other hand, upon the same rotation, the fermion
kinetic terms are now written as

LF ¼ N†a
0 iσμa_c∂μN _c

0 þ η†iσμ∂μηþ
∂μϑ

hQi η
†σμYη; ðB16Þ

where Y is a coupling matrix that comes from the trans-
formation of σ3 under Eq. (B13), given by
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Y ¼
�

y1 −y2
−y�2 −y1

�
;

where y1 ¼ ðjg1j2 − jg2j2Þ=a2c and y2 ¼ 2g1g2=a2c, i.e.,
y1 ∈ R and y2 ∈ C. (Notice that y21 þ jy2j2 ¼ 1.)
Let us now concentrate our analysis on the interaction

among neutrinos and the DE field, which after the above
mathematical manipulations has the simple expression

−LνX ¼ acffiffiffi
2

p ðhQi þ XÞfN0_aη
_a
1 þ H:c:g: ðB17Þ

The part between braces can also be expressed as

N0_aη
_a
1 þ H:c: ¼ N0_aη

_a
1 þ η†a1 N†

0a

¼ 1

2
fN0_aη

_a
1 þ N0_aη

_a
1 þ η†a1 N†

0a þ η†a1 N†
0ag

¼ 1

2
fN0_aη

_a
1 þ η1_aN _a

0 þ η†a1 N†
0a þ N†a

0 η†1ag;
ðB18Þ

where for both the second and fourth terms in the last line
we have used the anticommutation properties plus an extra
minus sign coming from the change from _a

_a to _a
_a (and

similarly for the undotted indices). Now we define two
four-component Dirac neutrinos as

u1 ¼
�
N†

0a

η _a1

�
; u2 ¼

�
η†1a

N _a
0

�
; ðB19Þ

in terms of which the last line in Eq. (B18) can be written as

N0_aη
_a
1 þ H:c: ¼ 1

2
fū1u1 þ ū2u2g: ðB20Þ

As it can be seen from Eq. (B19), the neutrinos u1 and u2
are charge conjugates, which allows us to express them in
terms of two Majorana neutrinos ν1 and ν2 via another
rotation, which is given by

�
ν1

ν2

�
¼ 1ffiffiffi

2
p

�
1 1

−i i

��
u1
u2

�
: ðB21Þ

Therefore, Eq. (B20) directly becomes

N0_aη
_a
1 þ H:c: ¼ 1

2
fν̄1ν1 þ ν̄2ν2g; ðB22Þ

which explicitly provides the neutrino mass eigenstates,
with the mass given by

mk ¼
achQiffiffiffi

2
p : ðB23Þ

Notice that this same rearrangement of the neutrinos
provides the interaction Lagrangian with X fields,

−LIX ¼ ac
2

ffiffiffi
2

p Xðν̄1ν1 þ ν̄2ν2Þ; ðB24Þ

which we use in our discussions throughout the paper. We
stress that these results are independent of the phase fields
and link the origin of the heavy right-handed neutrino
masses with DE, as argued in the main text.
As a final note on this subject, notice that the Majorana

neutrinos, in four-component notation, can be expressed as

νi ¼
�
K†
ia

K _a
i

�
; i ¼ 1; 2: ðB25Þ

In the last equation, we have introduced the new right-
handed Weyl field in two-component notation: K _a

i¼1;2. Note
that the transformation (B21) together with Eq. (B19) is
equivalent to the transformations

�
K _a
1

K _a
2

�
¼ 1ffiffiffi

2
p

�
1 1

i −i

��
N _a

0

η _a1

�
ðB26Þ

and

�
K†
1a

K†
2a

�
¼ 1ffiffiffi

2
p

�
1 1

i −i

��
η†1a

N†
0a

�
: ðB27Þ

It is important to remark that these transformations do not
respect the Uð1Þ invariance of the fermionic sector since
they mix fields with different global charges.
In summary, we can either substitute Eq. (B25) into

Eq. (B22) or directly operate over Eq. (B18) with
Eqs. (B26) and (B27) to get

N0_aη
_a
1 þ H:c: ¼ 1

2
fK1_aK _a

1 þ K2_aK _a
2g þ H:c: ðB28Þ

By substituting Eq. (B28) into Eq. (B17), one gets the mass
terms

−Lm ¼ 1

2
mkðK1_aK _a

1 þ K2_aK _a
2Þ þ H:c:; ðB29Þ

with the mass given as before and the interaction term

−LIX ¼ ac
2

ffiffiffi
2

p XðK1_aK _a
1 þ K2_aK _a

2Þ þ H:c: ðB30Þ

On the same footing and for future use, we use the
inflaton-neutrino interactions [as derived from Eq. (B14)]
with the redefinition K _a

3 ≡ η _a2 to write

−Lg ¼
1

4
C1ðθ; ϑÞjξjðK1_aK _a

1 þ K2_aK _a
2Þ

þ 1

2
ffiffiffi
2

p C2ðθ; ϑÞjξjðK1_a − iK2_aÞK _a
3 þ H:c: ðB31Þ
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Similarly, by expanding Eq. (B16) and using the trans-
formation (B26), whereas the kinetic terms for K _a

i¼1;2;3

remain as usual,

LK ¼
X3
i¼1

K†a
i iσμa_c∂μK_c

i ; ðB32Þ

the current couplings among the phase scalar ∂μϑ and the
neutrinos are

Lc ¼ Lc1 þ Lc2 ; ðB33Þ
where

Lc1 ¼ y1
∂μϑ

hQi
�
1

2
ðK†a

1 σμa_cK
_c
1 þ K†a

2 σμa_cK
_c
2Þ

þ i
2
ðK†a

1 σμa_cK
_c
2 − K†a

2 σμa_cK
_c
1Þ − K†a

3 σμa_cK
_c
3

	
; ðB34Þ

and

Lc2 ¼ −
∂μϑ

hQi
�
y2ffiffiffi
2

p ðK†a
1 − iK†a

2 Þσμa_cK_c
3 þ H:c:

	
: ðB35Þ

2. Energy density and equations of
motion for the DE sector

We close this Appendix by presenting the results of the
calculation of the equation-of-state parameter for DE in the
present model. For this purpose, we make explicit use of the
model Lagrangian defined in Eq. (B6), with the DE part
written as

LX ;ϑ ¼ 1

2
∂μX∂μX þ 1

2

�
1þ X

hQi
�

2∂μϑ∂μϑþ VðXÞ;

ðB36Þ

where the potential is defined as

VðXÞ ¼ 1

2
m2ðhQi þ XÞ2: ðB37Þ

From Eq. (B36) and by calculating the energy-momentum
tensor in a FLRW universe, we obtain both the energy
density and the pressure in terms of X and the phase ϑ.
These are given by

ρDE ¼ 1

2
_X2 þ 1

2

�
1þ X

hQi
�

2
_ϑ2 þ 1

2a2
ð∇XÞ2

þ VðXÞ þ 1

2a2

�
1þ X

hQi
�

2

ð∇ϑÞ2 ðB38Þ

and

PDE ¼ 1

2
_X2 þ 1

2

�
1þ X

hQi
�

2
_ϑ2 −

1

6a2
ð∇XÞ2

− VðXÞ − 1

6a2

�
1þ X

hQi
�

2

ð∇ϑÞ2: ðB39Þ

In the homogeneous case the previous equations are
reduced to

ρDE ¼ 1

2
_X2 þ 1

2

�
1þ X

hQi
�

2
_ϑ2 þ VðXÞ ðB40Þ

and

PDE ¼ 1

2
_X 2 þ 1

2

�
1þ X

hQi
�

2
_ϑ2 − VðXÞ: ðB41Þ

In order to realize the accelerated expansion, the DE field
has to satisfy an equation of state such that

ω≡ PDE

ρDE
≈ −1;

which means that, according to Eqs. (B40) and (B41), the
first slow-roll condition is of the form

1

2
_X2 þ 1

2

�
1þ X

hQi
�

2
_ϑ2 ≪

1

2
m2ðhQi þ XÞ2: ðB42Þ

The dynamics of the homogeneous background involv-
ing both X and ϑ is given by substituting Eq. (B40) into the
first Friedman equation, after applying the first slow-roll
condition, together with the terms coming from applying
the Euler-Lagrange equations to Eq. (B36). For complete-
ness, we also include DM, baryons (b), photons (γ), and
active neutrinos (n). Taking the first slow-roll condition
into account, the whole system is

H2 ¼ 1

3M2
pl

VðXÞ;

Ẍ þ 3H _X þ VðXÞ;X ¼ 0;

ϑ̈þ 3H _ϑ ¼ 0;

_H ¼ −1
2M2

pl

�
ρDM þ ρb þ

4

3
ργ þ

4

3
ρν

�
;

_ρDM;b þ 3HρDM;b ¼ 0;

_ργ;n þ 4Hργ;n ¼ 0: ðB43Þ
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