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The weak gravity conjecture imposes severe constraints on natural inflation. A trans-Planckian axion
decay constant can be realized only if the potential exhibits an additional (subdominant) modulation with
sub-Planckian periodicity. The resulting wiggles in the axion potential generate a characteristic modulation
in the scalar power spectrum of inflation which is logarithmic in the angular scale. The compatibility of this
modulation is tested against the most recent cosmic microwave background (CMB) data by Planck and
BICEP/Keck. Intriguingly, we find that the modulation completely resolves the tension of natural inflation
with the CMB. A Bayesian model comparison reveals that natural inflation with modulations describes all
existing data equally well as the cosmological standard model ΛCDM. In addition, the bound of a tensor-
to-scalar ratio r > 0.002 correlated with a striking small-scale suppression of the scalar power spectrum
occurs. Future CMB experiments could directly probe the modulation through their improved sensitivity to
smaller angular scales and possibly the measurement of spectral distortions. They could, thus, verify a key
prediction of the weak gravity conjecture and provide dramatic new insights into the theory of quantum
gravity.
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I. INTRODUCTION

The cosmic microwave background (CMB) provides a
window to physics at very high energy scales. It probes the
era of cosmic inflation and could even contain imprints from
the theory of quantum gravity. Within recent years, major
theoretical advances have been made in understanding how
such signatures could possibly look. The progress roots in the
observation that theories of quantum gravity have to fulfill
certain self-consistency conditions. A particular intriguing
example is theweak gravity conjecture (WGC)which—in its
original form—constrains the strength of gauge forces
relative to gravity [1]. The conjecture is motivated by the
absence of an infinite tower of stable black hole remnants
which would otherwise plague the theory.
Possibly even more important is the application of the

WGC to nonperturbative axion physics [1–6]. This is

because axions are the prime candidates to realize large-
field inflation1 within a consistent theory of quantum
gravity—for which string theory is the leading candidate.
String axions, descending from higher-dimensional p-form
gauge fields, possess continuous shift symmetries which
hold at all orders in perturbation theory and survive
quantum gravity effects [7,8]. Nonperturbative instanton
terms break the shift symmetries down to discrete remnants
in a controlled way. In the simplest case, the resulting axion
potential features the familiar cosine shape of natural
inflation [9]. Its periodicity is determined by the axion
decay constant f which—in natural inflation—has to be
trans-Planckian since a too red spectrum of CMB pertur-
bations would otherwise arise. While f > 1 for a single
fundamental axion does not arise in a controllable regime
of string theory [10,11], an effective trans-Planckian f can
consistently be realized via the alignment of two or more
axions with sub-Planckian decay constants [12].
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1While cosmological data do not presently require trans-
Planckian excursions of the inflaton field, a natural choice of
initial conditions and an observable tensor mode signal make
large-field inflation a particular attractive candidate to describe
the early expansion of the universe.
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The WGC imposes that any axion must be subject to a
(possibly subdominant) modulation with sub-Planckian
periodicity fmod. Natural inflation (with f > 1) can still
be realized through the axion alignment mechanism, but it
necessarily comes with subdominant “wiggles” on top of
the leading potential [6,13–16]. The resulting scheme was
dubbed “modulated natural inflation” [16]. It was realized
that the modulations find a simple explanation in terms of
higher instanton corrections. The nonperturbative breaking
of the axionic shift symmetries in many cases comes from
instantons which are described by modular functions (see
e.g., [17–23]). Therefore, the axion potential exhibits the
desired cosine shape with additional wiggles which result
from the higher harmonics in the modular functions. It is, in
fact, not surprising that modular functions play a crucial
role since—as the WGC itself—they are deeply connected
to the duality symmetries of string theory. The explicit
shape of the inflaton potential has been derived in [16],

V ¼ Λ4

�
1 − cos

ϕ

f

��
1 − δmod cos

ϕ

fmod

�
; ð1Þ

where δmod is the amplitude of the modulation term with
sub-Planckian periodicity fmod < 1. It is believed that this
form of the potential applies to a wide class of large-field
inflation models consistent with the WGC.
The purpose of the present work is to derive the

signatures of the weak gravity conjecture in the CMB.
The wiggles in the axion potential, which it requires, seed a
characteristic modulation in the primordial power spectrum
of scalar perturbations which is logarithmic in the angular
scale. Wewill derive analytic expressions for the primordial
power spectra and implement them in the Code for
Anisotropies in the Microwave Background (CAMB) [24].
This will allow us to solve the Einstein-Boltzmann equa-
tions for cosmological perturbations and compute the CMB
temperature and polarization power spectra. We will then
directly test the modulation against the most recent CMB
data by Planck [25,26] and BICEP/Keck [27]. Finally, we
will make exciting predictions for spectral distortions in the
CMB which can be tested with future satellite missions.

II. THE WEAK GRAVITY CONJECTURE

In this section, we review the WGC [1] and its
implications for large-field inflation in more detail.
Originally, the WGC was formulated to constrain the
strength of gauge forces relative to gravity. In its so-called
electric version2 it states that any U(1) gauge theory

coupled to gravity should contain a particle with charge-
to-mass ratio3

q
m

> 1: ð2Þ

In the absence of a lower bound on q, peculiar conse-
quences would arise: for vanishing coupling strength, the
gauge boson kinetic term becomes infinite. A nonpropa-
gating gauge boson implies that the gauge symmetry
effectively behaves as a global symmetry. This appears
problematic in the light of strong arguments against the
existence of exact global symmetries [32–35]. Violation of
the weak gravity conjecture would, furthermore, imply that
extremal black holes cannot decay. The theory would be
plagued by an infinite tower of stable gravitational bound
states. It was pointed out that such relics cause problems
with the covariant entropy bound [36]. Since there appear
subtleties in the argument (see discussion in [37]), the
inconsistency of stable charged black holes is, however, not
yet settled.
There also exists a strong version of the weak gravity

conjecture [1] (strong WGC) which insists that it is the
lightest charged particle which must satisfy the condition
q=m > 1. The stronger version is, however, most likely too
restrictive. While it has originally been motivated in string
theory, counterexamples have later been derived [38,39]. It
was also noted that even if a theory respects the strong
WGC in the ultraviolet (UV), violations can occur in the
effective low-energy theory obtained after Higgsing
[15,28,40].
In this work, we are mainly interested in the application

of the WGC to axion systems [1–6]. We consider an axion
whose shift symmetry is broken to a discrete remnant via
instanton terms. In the simplest case, the resulting axion
potential takes the form

V ¼ Λ4e−S
�
1 − cos

ϕ

f

�
; ð3Þ

where S denotes the instanton action and we use Planck
units (MP ¼ 1) throughout this work. This is the familiar
potential of natural inflation [9]. Consistency with CMB
constraints requires a trans-Planckian axion decay constant.
While f > 1 should not arise for a single fundamental
axion [10,11], an effective trans-Planckian f can be
realized by the interplay of two or more axions [12]. It
is exactly this possibility which is constrained by the WGC.
The string theory duality symmetries provide an inherent

link between U(1) gauge theories and nonperturbative
axion physics. In simple terms, the U(1) gauge charge
translates to the inverse axion decay constant and the mass
translates to the instanton action. For a single axion, the

2There also exists a magnetic version of the WGC which states
that any U(1) gauge theory with coupling g breaks down at a cutoff
scale Λ < 1=g [1]. This condition ensures that the minimally
chargedmagnetic object of the gauge theory is not a black hole. The
application of the magnetic WGC to axion systems is less
straightforward compared to the electric version. In particular, it
is still open, towhich extent themagneticWGCconstrains effective
trans-Planckian axion decay constants [28–31].

3More precisely, q in this expression stands for the product of
charge and gauge coupling.
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WGC then requires ðfSÞ−1 > 1 for at least one instanton of
the theory. It is straightforward to generalize the WGC to
multiaxion systems with Lagrangian

L ¼ 1

2
∂μϕα∂μϕα − Λ4

i e
−Si ½1 − cos ðci;αϕαÞ�; ð4Þ

where the index α runs over the axions and i runs over the
instanton terms. The WGC is satisfied if the convex hull,
spanned by the vectors �ðci;α=SiÞ, contains a ball with
radius unity.4 More precisely, the required minimal radius is
of Oð1Þ, but its exact value depends on the type of axion
under consideration. Some examples are discussed in [6].
In a system with many axions of different masses, the
convex hull condition ensures that the one-axion WGC is
satisfied after all heavier axions have been integrated out.
The strong WGC imposes that the leading instanton(s)
fulfill(s) the WGC.
One immediately realizes that the WGC has dramatic

implications for large-field inflation which are illustrated in
Fig. 1. The strong WGC entirely excludes natural inflation.
This is because it requires a periodicity f < 1 of the leading
instanton term, i.e., of the one which dominates the
potential. Given that the strong WGC is most likely
overrestrictive, the more interesting scenario is, however,
that only the “standard” WGC applies which is theoreti-
cally on much firmer grounds. In this case, the condition
ðfSÞ−1 > 1 can be satisfied by a subleading instanton.
Large-field inflation with f > 1 can now be realized, but it
necessarily comes with a subdominant high-frequency
modulation on the potential.
We expect that the amplitude of this modulation cannot

be arbitrarily small. In the next section, we will discuss the
explicit realization of trans-Planckian f through the align-
ment mechanism. We will see that the modulation term

increases rapidly for trans-Planckian f and leads to an
effective cutoff scale Λ4 < e−cf with an Oð1Þ number c. In
the observationally most interesting regime f ¼ 2–10, the
modulation can still be controlled, but it affects cosmo-
logical observables. This raises the exciting prospect of
testing the WGC through CMB data. Before we discuss this
in detail, we turn to the concrete realization of natural
inflation with modulations.

III. MODULATED NATURAL INFLATION

Natural inflation (NI) in its simplest form assigns a
cosine potential to the inflaton [cf. (3)]. Let us briefly
describe the axion alignment mechanism for realizing an
effective trans-Planckian decay constant for the axion [12].
One considers two canonically normalized axion fields ϕ1;2
with potential

V ¼ Λ4
ae−Sa

�
1 − cos

�
ϕ1

f1
þ ϕ2

f2

��

þ Λ4
be

−Sb

�
1 − cos

�
ϕ1

g1
þ ϕ2

g2

��
; ð5Þ

where all individual axion decay constants f1;2, g1;2 are
taken to be sub-Planckian. For simplicity, we consider
the case Λ4

be
−Sb ≫ Λ4

ae−Sa such that we can integrate out
the heavy axion direction ϕ̃ ∝ ϕ1

g1
þ ϕ2

g2
. The potential for the

light axion ϕ ∝ ϕ1

g2
− ϕ2

g1
is

V ¼Λ4
ae−Sa

�
1− cos

�
ϕ

f

��
; f¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21þ g22

q f1f2
g1f2− g2f1

:

ð6Þ

The effective axion decay constant f is strongly enhanced
compared to the individual axion decay constants in the

FIG. 1. Implications of the weak gravity conjecture for large-field inflation (schematic illustration of the potential). If the WGC is
incorrect, standard natural inflation with a trans-Planckian axion decay constant can be achieved (left panel). If the WGC holds, large-
field inflation can still be realized. However, a small-period modulation on top of the leading potential is required (middle panel). The
resulting scheme is dubbed modulated natural inflation. The strong WGC (right panel) requires the small-period modulation to dominate
such that inflation is completely spoiled.

4The convex hull condition has originally been formulated for
the gauge theory version of the WGC in [41].
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alignment limit f1=f2 ≃ g1=g2, allowing in particular
for f > 1.
However, we have seen in the previous section that the

pure cosine potential in combination with a trans-Planckian
axion decay constant is in conflict with the WGC. Indeed,
one easily verifies that the convex hull for the potential (5)
becomes increasingly narrow in the alignment limit and
does not contain the unit ball. Hence, the convex hull
condition is violated. As described earlier, a subdominant
modulation with sub-Planckian periodicity can reconcile
NI with the WGC [6,13–15]. From the bottom-up per-
spective, introducing the modulation may seem ad hoc.
However, subleading instantons appear quite naturally in
string theory. Nonperturbative terms often contain a series
of higher harmonics. This is well-known for toroidal string
compactifications [17–19,21], but also established in more
general string theory setups [20,22,23]. The possible
impact of higher instantons on inflation models has also
been noted in [42,43].
The subleading instantons manifest in the form of η- or

θ-functions which replace the exponential shape of a single
instanton. As an example, we consider toroidal string
compactifications with superpotential and Kahler potential
[16,44]

W ¼ ψ1ðA1ηðT1Þ2n1ηðT2Þ2n2 − B1Þ
þ ψ2ðA2ηðT1Þ2m1ηðT2Þ2m2 − B2Þ;

K ¼ jψ1j2 þ jψ2j2 − logðT̄1 þ T1Þ − logðT̄2 þ T2Þ; ð7Þ

with the chiral superfields ψ1;2 and the Kahler moduli T1;2

which parametrize the volume of two internal subtori. The
imaginary parts of the Ti are identified with the two axions
participating in the alignment mechanism. The parameters
A1;2 and B1;2, which are taken to be constants, descend
from integrating out heavy chiral fields with nonvanishing
vacuum expectation values. The coefficients n1;2, m1;2 are
determined by the localization properties of the chiral
fields. The model above can e.g., be realized in heterotic
orbifold compactifications, where the nonperturbative
terms are identified with world-sheet instantons [45]. By
expanding the Dedekind η-function, one can verify that the
superpotential contains an infinite number of subleading
instantons,

ηðTÞ ¼ e−πT=12 ×
Y∞
j¼1

ð1 − e−2jπTÞ: ð8Þ

Including the full series of higher harmonics, it can be
shown that the convex hull condition is satisfied even in the
alignment case (see [16]).
The relevant potential of the light axion direction ϕ

follows after setting the remaining fields to their vacuum
expectation values and integrating out the heavy axion
direction. We choose the indices 1,2 such that B2 > B1 and

T1;0 > T2;0, where Ti;0 denotes the expectation value of Ti.
This leads to the approximate form of the potential [16]

V ¼ Λ4

�
1 − cos

ϕ

f

��
1 − δmod cos

ϕ

fmod

�
: ð9Þ

Up to the last bracket, this is simply the potential of natural
inflation with

Λ4 ≃ Λ4
ae−Sa ¼

A1B1

2T1;0T2;0
e−ðn1T1;0þn2T2;0Þπ=6 ð10Þ

and

f ¼ 3
ffiffiffi
2

p

πðn1m2 −m1n2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1

T2
2;0

þ m2
2

T2
1;0

s
: ð11Þ

This part of the potential is obtained from the leading term
in the expansion of ηðT1Þ and ηðT2Þ. A trans-Planckian
axion decay constant is realized under the alignment
condition n1=n2 ≃m1=m2.
The last bracket in the expression (9) quantifies the

deviation from natural inflation induced by the higher
instantons in the η-series.5 It arises in the form of a
modulation on top of the leading potential with relative
amplitude

δmod ≃ 2n2e−2πT2;0 ð12Þ

and period

fmod ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þm2
2

p
m1

1

2
ffiffiffi
2

p
πT2;0

: ð13Þ

The relative modulation amplitude δmod increases toward
the alignment limit. This is because the leading instantons
partly cancel for alignment, whereas the higher orders are
not affected by cancellation. Note that fmod is of the size
of the original axion decay constants; i.e., it is generically
sub-Planckian. The ratio f=fmod is a measure for the
alignment—the more the axion decay constants are aligned,
the bigger this factor becomes.
Avery interesting property of the model is that it exhibits

an intrinsic relation between the alignment factor and the
cutoff scale. Among all possible parameter choices we find6

Λ4 < exp

�
−

π

36

f
fmod

�
; ð14Þ

5It is sufficient to include the next-to-leading terms in the
η-expansion in order to arrive at the potential (9). Contributions
beyond this order are suppressed even in the alignment limit.

6We required T1;2 > 1 and A1;2, B1;2 < 1 in order to be in the
controllable regime of the theory.
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where the factor π=36 in the exponent is related to the
expansion of the η-function and may somewhat differ for
other modular functions. Since Λ effectively determines the
scale of inflation, it can be constrained observationally. The
correct normalization of the CMB power spectrum requires
Λ > 10−3 which implies

f
fmod

≲ 103: ð15Þ

The scheme described by the potential (9) will in the
following be called modulated natural inflation (MNI). We
point out that the shape of the potential does not depend on
the concrete compactification, but merely on the fact that
the higher harmonics exist. Presumably, it is applied
universally to natural inflation models consistent with
the weak gravity conjecture.
In Table I, we provide an exemplary parameter choice for

the MNI model. We will later show that this benchmark
point provides a very good fit to existing CMB data.

IV. PRIMORDIAL POWER SPECTRUM OF
MODULATED NATURAL INFLATION

In this section we derive analytic expressions for the
scalar and tensor power spectra of MNI. It is convenient to
start with the simpler case of natural inflation, i.e., to set
δmod ¼ 0 for the moment. In a second step, we will later
derive how the expressions are modified for nonvanishing
δmod. We introduce

V0 ¼ Vjδmod¼0 ¼ Λ4

�
1 − cos

ϕ

f

�
: ð16Þ

Furthermore, we define the (potential) slow-roll parameters

ε0 ¼
1

2

�
dV0=dϕ

V0

�
2

; η0 ¼
d2V0=dϕ2

V0

; ð17Þ

where the index 0 again indicates that we are neglecting the
modulation for the moment. The scalar and tensor power
spectra are well-approximated by a power-law form deter-
mined by the slow-roll expressions,

PR;0 ¼ A0

�
k
k�

�
n0−1

; Pt;0 ¼ −8ntA0

�
k
k�

�
nt
; ð18Þ

where k� denotes the pivot scale. The normalization A0 is
given as

A0 ≃
V0

24π2ε0

����
ϕ¼ϕ�

≃
Λ4ðcosh½N�

2f2� þ 4f2 sinh½N�
2f2�Þ2

24π2f2
: ð19Þ

The scalar and tensor spectral indices are determined as

n0 ≃ 1 − 6ε0 þ 2η0jϕ¼ϕ� ≃ 1 −
coth½N�

2f2�
f2

; ð20Þ

nt ≃ −2ε0jϕ¼ϕ� ≃
1 − coth½N�

2f2�
1þ 2f2

: ð21Þ

In the above expressions, we have introduced N� which
denotes the number of e-foldings when the CMB scales
crossed the horizon. One typically finds N� ≃ 50–60 with
the exact value depending on the postinflationary evolution
of the universe. We have also employed that the corre-
sponding field value ϕ� is determined by

N� ¼
Z

ϕ�

ϕend

dϕffiffiffiffiffiffiffi
2ε0

p ⇒ ϕ� ¼ 2f arccos

2
64e−N�=ð2f2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
2f2

q
3
75;
ð22Þ

with ϕend marking the end of inflation (where the slow-roll
condition is violated).
We now turn to the power spectrum of MNI including the

modulation. The slow-roll parameters ε and η of the full
model are introduced as in (17), with V0 replaced by V
[defined in (9)]. Notice that each derivative acting on the
modulated part of the potential pulls out a factor f−1mod > 1.
Therefore, the modulations have a much stronger impact on
η than on ε. In order to remain in the slow-roll regime, we
need to require jηj ≪ 1 which translates to

δmod ≪ f2mod: ð23Þ

If this condition is violated, a strong scale dependence of
the power spectrum arises which is inconsistent with
observation. The only caveat consists in very small fmod,
for which the power spectrum oscillations are so rapid that
they are not individually traced in the CMB. This situation
can, for example, arise in axion monodromy inflation
models [46–48]. However, in MNI such high-frequency
oscillations are inaccessible due to the constraint on the
alignment factor (15) which prevents too small fmod. We
expect not more than a few oscillations over the range of

TABLE I. Set of benchmark parameters for the model defined in (7). Also shown are the derived potential parameters which enter (9)
and the resulting power spectrum parameters [cf. (28) and (29)].

n1 n2 m1 m2 A1 A2 104B1 103B2 T1;0 T2;0 102Λ f fmod 103δmod 109A0 n0 −102nt δ Δ

3 7 2 5 0.17 0.30 0.28 0.70 1.96 1.53 0.34 3.87 0.198 0.96 1.862 0.931 0.119 0.28 −0.52
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scales observable in the CMB. Therefore, we can safely
require slow roll and impose (23).
The condition (23) ensures that we can treat the

modulation as a perturbation in ε. Including terms up to
first order in δmod, we find

ε ≃ ε0

�
1þ δ sin

�
ϕ

fmod

��
; ð24Þ

where we introduced

δ ¼
ffiffiffi
2

p
δmod

fmod
ffiffiffiffiffiffi
ε0�

p : ð25Þ

Notice that we have replaced ε by ε0� (= ε0 evaluated at the
pivot scale) in the definition of δ. This is justified since it
merely amounts to neglecting a second order correction (we
fully keep track of the scale dependence of ε0 in the leading
term). The modulation in ε causes a modulation in the
scalar power spectrum

PR ≃ PR;0

�
1 − δ sin

�
ϕðkÞ
fmod

��
: ð26Þ

As a final step, we need to relate the field value to a
physical scale in the CMB. The modulation does (mildly)
affect the relation ϕðkÞ. However, this is negligible com-
pared to the direct impact of the modulation term in (26).
We will, therefore, employ the “unperturbed” relation (22)
and perform an expansion around ϕ�. Neglecting the
scale dependence of ε in the vicinity of the pivot scale,
we find ϕ ¼ ϕ� þ

ffiffiffiffiffiffiffi
2ε0

p ðN − N�Þ. Taking into account that
k=k� ≃ e−ðN−N�Þ, we finally arrive at

ϕ ¼ ϕ� −
ffiffiffiffiffiffiffi
2ε0

p
log

k
k�

; ð27Þ

with ϕ� determined from (22). Our final expression for the
scalar and tensor power spectra of MNI reads

PR ≃ A0

�
k
k�

�
n0−1

�
1 − δ sin

�
Δ −

ffiffiffiffiffiffiffiffi−nt
p
fmod

log
k
k�

��
; ð28Þ

Pt ≃ −8ntA0

�
k
k�

�
nt
; ð29Þ

where we expressed ε0� in terms of the tensor spectral index
nt and introduced

Δ ¼ ϕ�
fmod

: ð30Þ

Notice that we neglected modulations in the tensor power
spectrum. The latter is set by the energy scale of inflation V,
while the scalar power spectrum scales with V=ε.

Therefore, the modulation in Pt is suppressed by δmod=δ ∼
ðfmodε0Þ−1 ≪ 1 compared to the one in PR. Therefore, in
the regime, where PR is consistent with observation, the
modulations in Pt play no role.7

In order to test the validity of our analytic approximation,
we also performed exact numerical calculations of the
primordial power spectra for a number of benchmark
points. This was done by solving the full Mukhanov-
Sasaki mode equations (as described in [16]). Figure 2
compares the exact scalar power spectrum with our analytic
approximation (28) for the parameter points listed in
Table II. The spectra are in perfect agreement if we allow
for a very mild refitting of the effective parameters A0, n0,
δ, fmod, Δ compared to (19), (20), (25), and (30). The
mismatch typically resides at the few percent level8 as long
as δ≲ 0.5.
The deviation of PR from the standard power-law form

results in an intriguing deviation from ΛCDM cosmology.
If the modulations of the CMB power spectrum could be
experimentally proven, this would yield a strong indication
that the WGC holds in nature. The prospect of testing

FIG. 2. Primordial scalar power spectra for the parameter points
listed in Table II. Shown is the exact numerical solution based on
the Mukhanov-Sasaki mode equations and the approximate
analytic solution (28).

7The expressions (28) and (29) seem to suggest a (slight)
violation of the inflationary consistency relation r ¼ −8nt in
MNI. In reality, the consistency relation is, however, satisfied due
to a small modulation in nt. The latter is neglected in (29) since its
effect on Pt resides at the per mill level in the relevant parameter
space of MNI.

8Only the phase Δ is not very accurately determined by our
approximation (30). This is expected since the phase is extremely
sensitive to changes of the remaining parameters. We can safely
ignore this issue since the phase is essentially a free parameter.
Through a very minor change of fmod one can realize any value of
Δ while virtually not affecting the power spectrum otherwise.
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general laws of quantum gravity by the spectra of cosmo-
logical perturbations is extremely exciting.

V. CMB ANALYSIS

The analytic expressions of the primordial power spectra
(28) and (29) can directly be implemented in standard tools
for cosmological analysis and the corresponding predic-
tions can be derived. We are particularly interested in the
consistency of MNI with present CMB data and in the most
striking observable differences compared to ΛCDM. In the
following, we describe the analysis method adopted in this
work. The discussion of the results is given in Sec. VI.

A. Monte Carlo analysis

We perform a Monte Carlo Markov chain (MCMC)
analysis to explore the parameter space of MNI and to
derive constraints on parameters from a combination of the
latest cosmological data, employing the publicly available
sampler COSMOMC [49]. In order to solve the Einstein-
Boltzmann equations for cosmological perturbations and
compute the theoretical predictions, such as the CMB
temperature and polarization power spectra, we modified
the current version of the Code for Anisotropies in the
Microwave Background (CAMB) [24], so that the primordial
spectra9 are now given as (28) and (29). Since it is of
particular interest, whether CMB data favor a nonvanishing
modulation, we will treat the case δ ¼ 0 separately. It
corresponds to standard natural inflation and will, hence, be
dubbed NI in the following. For comparison with the
cosmological standard model, we will also perform the
CMB analysis for the ΛCDM scenario (as reference model)
with one parameter extension, i.e., leaving the tensor-to-
scalar ratio as a free parameter (¼ ΛCDMþ r).
The cosmological models are fully specified by the

following set of parameters: the physical densities of cold
dark matter Ωch2 and baryons Ωbh2, the angular size of the
sound horizon at recombination θ, the reionization optical
depth τ, the primordial amplitude lnð1010AsÞ, and the
remaining inflationary parameters. For ΛCDMþ r, we

vary the spectral index ns of scalar perturbations and the
tensor-to-scalar ratio r.
For the MNI model, the choice of input parameters is

ambiguous: we could express the model in terms either of
the potential parameters in (9) or directly by the derived
power spectrum parameters. In order to allow for a more
meaningful statistical comparison with ΛCDMþ r, the
input primordial power spectra should share a similar
structure; i.e., we should treat n0 on the same footing as
ns in ΛCDMþ r. Therefore we decided in favor of the
second option and to sample over n0, δ and fmod, Δ
complemented with the constraint n0 < 1 − 2

N�
(n0 < 0.967

for N� ¼ 60).10 Notice that nt is not treated as an
independent parameter. At each sampling step, we can
invert (20) to get f and then obtain nt from (21). While (20)
cannot be inverted analytically, a very precise estimate is
found by employing the Warner approximation for the
inverse Langevin function. We obtain

f ≃
�
1 − n0 −

2

N�

�
−1=4

�
1 − n0 þ

4

N�

�
−1=4

: ð31Þ

Due to the increased number of parameters and their mutual
degeneracies, the MCMC analysis for MNI is extremely
time-consuming. Therefore, we decided to fix the e-fold
number N� ¼ 60 which would correspond to the case of
instantaneous reheating after inflation. We have run a test
case to verify that our results are qualitatively unchanged if
we allow N� to float in the range N� ¼ 50–60.11 In the
special case of NI (δ ¼ 0), the parameters fmod and Δ
become irrelevant.
We impose the following priors to the MNI (and NI)

inflationary parameters:
(i) linear prior on n0 ∈ ½0.8∶0.967�;
(ii) linear prior12 on δ ∈ ½0∶0.5�. The parameter δ

describes a perturbation to the power-law scalar
spectrum, so it must be δ < 1;

(iii) linear prior on Δ ∈ ½−π∶π�;

TABLE II. Parameter sets leading to the primordial scalar power spectra of Fig. 2. For the parameters A0, n0, δ, fmod, Δ we first give
the values derived from (19), (20), (25), (30). Refitted values obtained by matching the analytic approximation to the exact numerical
power spectrum are given in brackets. The pivot scale was set to k� ¼ 0.05 Mpc−1 and N� ¼ 60.

P Λ f δmod fmod n0 −nt × 102 A0 × 109 δ Δ

1 0.0033 3.7 0.0007 0.16 (0.15) 0.925 (0.929) 0.09 (0.11) 2.25 (2.33) 0.29 (0.27) −1.55 (−1.86Þ
2 0.0042 5.0 0.0002 0.08 (0.07) 0.952 (0.949) 0.39 (0.34) 1.18 (1.17) 0.08 (0.08) 1.42 (0.62)
3 0.0043 7.0 0.0010 0.20 (0.19) 0.963 (0.962) 0.84 (0.83) 0.50 (0.49) 0.11 (0.13) 0.96 (0.59)

9In the standard CAMB code, the primordial power spectrum is
parametrized, at first order, as the power-law PR ¼ As

k
k�
ðns−1Þ,

which we retain when we focus on constraints on the ΛCDM
model.

10The upper bound on n0 is approached in the limit f → ∞.
11For the test case, the final distribution is somewhat peaked

toward the boundary N� ¼ 60, with negligible spread in the other
parameters with respect to the case of fixed N�.

12We also tested a logarithmic sampling over δ. The loga-
rithmic prior tends to give more statistical weight to smaller
values of δ, therefore making the results less distinguishable
from NI.
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(iv) linear prior on fmod ∈ ½0.01∶0.5�. The modulation
frequency has to be sub-Planckian (see Sec. III).

In the analysis, we assume purely adiabatic initial
conditions. For the concrete realization of modulated
natural inflation described in Sec. III this amounts to
neglecting quantum fluctuations in field directions orthogo-
nal to the inflaton. This is a valid approximation in a large
fraction of the model parameter space, where an effective
single field description arises. We also include a contribu-
tion of Neff ¼ 3.046 active neutrinos, with a total mass
of

P
mν ¼ 0.06 eV.13

We recall that sampling over the phenomenological
parameters describing the primordial power spectra PR
and Pt is only one of the possible choices for deriving
constraints on inflationary parameters. For example, the
Planck Collaboration has extensively used the method of
sampling the Hubble flow functions (HFF) [52–54]. Here,
we opt for the phenomenological approach of sampling
over the power spectra parameters for two reasons: first, all
the models under scrutiny in this work obey slow-roll
conditions, and therefore we do not need a method that
allows for a more general description beyond slow-roll
approximations. Second, it has been shown that the two
methods (phenomenological and HFF) agree at a level that
is acceptable to answer the question of whether the MNI
model reasonably describes current cosmological data [55].
We choose to build our dataset combining measurements

of CMB temperature and polarization anisotropies as well
as measurements of the CMB lensing signal from the latest
Planck satellite data release (the baseline combination
labeled as “TTTEEE+lowE+lensing” in the Planck papers
[25,26]), measurements of the CMB degree-scale BB
power spectrum from the BICEP/Keck Collaboration
(“BK15”) [27], and measurements of the angular scale
of the baryon acoustic oscillations (BAO) from the SDSS-
BOSS Collaborations [56–58]. In addition to the afore-
mentioned cosmological parameters, we also vary nuisance
parameters describing foreground contamination to the
cosmological signal, following the prescriptions adopted
by the Planck and BICEP/Keck Collaborations.
We present the results of the analysis in Sec. VI.

B. Model comparison

We also perform a model-comparison analysis of MNI
with respect to the standard ΛCDMþ r model and NI

(i.e., MNI with fixed δ ¼ 0). Indeed, in addition to
providing constraints on the model parameters, we also
want to know to what extent MNI describes the cosmo-
logical data as well as the standard ΛCDMþ r scenario
and whether a nonvanishing modulation is preferred
(comparison with NI). To answer these questions, we
employ the deviance information criterion (DIC) as a
statistical tool [59]. Given a certain model M, the corre-
sponding DIC is defined as

DICM ≡ −2lnLðθÞ þ pD; ð32Þ

where the first term is the posterior mean of LðθÞ, i.e.,
the likelihood of the data given the model parameters θ,
and the second term is the Bayesian complexity pD ¼
2lnLðθÞ−2 lnLðθ̃Þ. The latter is a measure of the effec-
tive number of degrees of freedom in the model quantified
as the difference in information content when the model is
fitted with (pseudo)true parameters (represented by the
posterior mean likelihood) and with an estimator of the true
parameters (θ̃). In what follows, we choose the best fit point
θ̃≡ θ̂ as an estimator of the true parameters, although
different choices (posterior mean, mode, medians) are
equally valid. With the choice θ̃≡ θ̂, the model DIC can
be rewritten as DICM ¼ 2 lnLðθ̂Þ − 4lnLðθÞ. The mean
likelihood can easily be obtained from the output chains
of the MCMC analysis. The best fit likelihood is com-
puted separately for each model, employing the BOBYQA
algorithm implemented in CosmoMC for likelihood
maximization.
The choice of the DIC as a model-comparison criterion

with respect to other statistical tools such as the Bayesian
evidence and/or AIC (Akaike information criterion)/BIC
(Bayes information criterion) is dictated by the fact that it is
not trivial to identify the correct number of effective
degrees of freedom. Therefore, the implementation of
AIC/BIC is not easily obtained. In addition, we have
checked that the values of the Bayesian evidence of the
models under scrutiny arevery close to eachother.14 From the
Bayesian evidence alone, we are not able to tell whether we
are overfitting the data. Therefore, we need a measure of the
effective number of parameters that a model can constrain.
This measure is given by the Bayesian complexity pD
[60,61]. The DIC finally assesses the average performance
of a model (given by the mean likelihood) with a penalty
given by the Bayesian complexity. Equivalently, DIC mea-
sures the relative balance between the goodness of fit of a
model (represented by the best fit likelihood) and the average

13In particular, we include one massive neutrino with mass
0.06 eVand 2.046 massless species. This choice approximates the
case of minimal mass in the normal ordering scenario for massive
neutrinos and has been adopted extensively by the Planck
Collaboration [26] and in the literature. A different choice for
the parametrization of massive neutrinos and/or the presence of
extra radiation in the early universe might have an impact on the
constraints on inflationary parameters; see e.g., [50,51]. We defer
the investigation of such effects to future works, as they are
beyond the scope of this paper.

14We obtained this result with MultiNest runs and Planck 2015
data. Given the high computational cost of implementing Mul-
tiNest analysis with complex cosmological models, and given
that we do not expect the result to change qualitatively with
Planck 2018 data, we have decided not to run MultiNest analyses
with the latest Planck 2018 data.
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performance of a model (represented by the mean
likelihood).
Models with lower DIC have to be preferred with respect

to the reference value. It is always arbitrary to define the
threshold for a model to be significantly preferred over
another. In the case of DIC, an issue to take into account is
the statistical noise introduced by the MCMC analysis and/
or the minimization algorithm for the best fit. In other
words, the ΔDIC ¼ DICM − DICMref

should be high
enough that any statistical fluke can be considered negli-
gible when assessing the model selection criterion. With
this caveat, we follow previous works in literature and
consider ΔDIC ¼ 10=5=1 to provide, respectively, a
strong/moderate/null preference for the reference model.

VI. RESULTS OF THE CMB ANALYSIS

The main results of our analysis are presented in
Table III, where the constraints on the inflationary param-
eters are presented. Noteworthy, the ones on the other
cosmological parameter do not present significant
differences from those of the standard model, so it was
decided not to show them. To facilitate comparison, we also
show the derived inflationary parameters, calculated at the
pivot scale k� ¼ 0.05 Mpc−1. We employ the standard
definitions As ¼ PRðk�Þ and

ns ¼ 1þ d logPR

d log k

����
k¼k�

; nrun ¼
d2 logPR

dðlog kÞ2
����
k¼k�

;

nrunrun ¼
d3 logPR

dðlog kÞ3
����
k¼k�

: ð33Þ

Turning first to natural inflation with the pure cosine
potential, we confirm a mild tension with CMB data (in
agreement with Planck results). In the parameter region,
where NI reproduces the preferred spectral index, the
tensor-to-scalar ratio is slightly too high. The best fit point
features an axion decay constant of f ¼ 6.8 which min-
imizes the tension. It exhibits a smaller ns, but larger r
compared to ΛCDM.
We observe that MNI is able to resolve the tension faced

by NI. This possibility is enabled by the modulation term in
(28) whose presence is enforced by the weak gravity
conjecture.15 As stated in Table III, the data prefer a
nonvanishing modulation amplitude of δ ¼ 0.05–0.23 (at
the 1σ level). The key feature in MNI is the possibility to
allow for a smaller value of n0, while keeping ns in the
preferred window of 0.96–0.97. Indeed, there is an inverse
degeneracy between n0 and δ as shown in Fig. 3: when
larger values of δ can be sampled, smaller values of n0 are
allowed. The modulation term adjusts such that it

“compensates” the otherwise too strong scale dependence
of the scalar power spectrum which would derive from the
small n0 (remember that in NI n0 simply corresponds to ns).
A satisfactory description of CMB data is, however, only
obtained within a limited range of n0 ≳ 0.93. For smaller
values of n0, one can still obtain ns in the desired range
through a relatively large modulation term. However, the
resulting power spectrum would deviate too strongly from
the power-law form leading to a degraded fit.
Another interesting observation is that CMB data pin

down the axion decay constant of MNI in a relatively
narrow window f ≃ 4.1–5.4 (at the 1σ level). This implies
that no large parametric enhancement of the axion decay
constant is required to match CMB observations. Indeed,
the typical alignment factor favored by CMB data is

TABLE III. Constraints and best fit values of the inflationary
parameters in ΛCDM, natural inflation (NI), and modulated
natural inflation (MNI) models, using the combination of Planck
2018, BICEP/Keck, and SDSS/BOSS data; see text for details.
Constraints are 68% C.L. When only upper bounds can be placed,
those bounds are 95% C.L. The scalar spectral index ns and the
tensor-to-scalar ratio r in the left table, and parameters in rows
4-8 are of the right table are computed at the pivot scale
k� ¼ 0.05 Mpc−1. We neglected the very tiny running in NI in
our parametrization of the power spectrum. The tensor spectral
index nt is a derived parameters in the three models, with nt ¼
−r=8 in ΛCDM and nt given by (21) in NI and MNI. In both
tables, derived parameters are reported in the table sections below
a horizontal line.

ΛCDM NI

Parameter Mean Best fit Mean Best fit

109As 2.109� 0.030 2.108 2.096� 0.028 2.093
ns 0.9669� 0.0038 0.9671 0.9612þ0.0029

−0.0020 0.9621
r <0.06 0.02 0.061þ0.011

−0.015 0.064
nt −0.0034þ0.0030

−0.0014 −0.0025 −0.0077þ0.0019
−0.0014 −0.0080

χ2 3547� 8 3517 3552� 8 3523

MNI

Parameter Mean Best fit

109A0 1.93þ0.18
−0.14 2.077

n0 0.9498þ0.0089
−0.0061 0.9514

δ [0.05, 0.23] 0.08
Δ −0.71þ0.97

−0.86 −0.20
fmod >0.26 0.30
ns 0.9646� 0.0039 0.9672
nrun −0.0020� 0.0037 −0.001
nrunrun −0.00062þ0.00073

−0.00022 −0.0006
r 0.0273þ0.0074

−0.016 0.029
nt −0.0037þ0.0022

−0.0011 −0.0036
f 4.94þ0.44

−0.86 4.88

χ2 3547� 8 3517

15Other possibilities to resolve the tension of natural inflation
with CMB data have e.g., been discussed in [62,63].
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f=fmod ¼ Oð10Þ. This is well within the regime f=fmod <
1000 suggested by theory arguments (see Sec. III). In order
to substantiate that the CMB preferred parameter range can
be accessed in concrete UV models, we refer to our
benchmark example of Table I. The corresponding scalar
power spectrum is virtually indistinguishable from the best
fit power spectrum within the range of scales probed by the
CMB temperature data (see Fig. 6).

The two-dimensional probability contours in the ns − r
plane are reported in the left panel of Fig. 4. The red
contours are for MNI, while the gray contours refer to
ΛCDMþ r. The preferred regions are similar for both
models. We observe a very mild shift of the MNI preferred
region toward a smaller spectral index compared to
ΛCDMþ r. However, the 1σ-regions strongly overlap.
A more striking result concerns the tensor-to-scalar ratio.
In the ΛCDMþ r model, there is currently only an upper
limit, r < 0.065 at 95% C.L. The latter was obtained in the
context of power-law primordial spectra with the inflation
consistency relation nt ¼ −8r imposed.
The situation changes drastically for MNI. As can be

seen in Fig. 4, the probability contours in Fig. 4 close at
nonvanishing r. We derive the lower limit

r > 0.002 ðat 99%C:L: inMNIÞ: ð34Þ

If MNI is realized in nature, we hence expect a discovery of
tensor modes by the next generation of CMB experiments.
This is easy to understand: CMB constraints on the spectral
index (and its scale dependence) exclude too small values
of n0 (see Fig. 3). The lower bound on n0 translates to a
lower bound on r through (31) and (21). We emphasize that
this lower limit is not driven by a preference of r > 0 in the
existing CMB data. Rather, it is forced by the model (in
combination with the experimental constraints on n0). We
can conclude that the observation of a nonvanishing tensor
mode signal is crucial for probing the weak gravity
conjecture. If future experiments exclude r > 0.002, there
would be little hope for observing any signature of the

FIG. 4. Left: Two-dimensional contours in the ns − r plane for a combination of current cosmological data (Planck 2018, BICEP/
Keck, BAO). The red contours are for modulated natural inflation while the gray contours are for the ΛCDMþ r model. The best fit
points are shown as the black dot (MNI) and the black cross (ΛCDMþ r). For comparison we also show the best fit point for natural
inflation (black triangle). The pivot scale is k� ¼ 0.05 Mpc−1. Note that the red contours close at 95% C.L.; i.e., vanishing r is excluded
at more than 95% C.L. in the MNI model (see text for further details). Right: Two-dimensional contours in the nrun − nrunrun plane for
modulated natural inflation, for the same combination of data as in the left panel. The horizontal and vertical dashed lines indicate the
expected values of the two parameters in ΛCDM þ r, i.e., nrun ¼ 0, nrunrun ¼ 0. This point is at the border of the 68% C.L. region
in MNI.

FIG. 3. Two-dimensional contours in the n0 − δ plane for a
modulated natural inflation (MNI) model, for a combination of
current cosmological data (Planck 2018, BICEP/Keck, BAO).
Note the inverse degeneracy especially for smaller values of δ: the
MNI model can be a good fit to current cosmological data if the
redder power-law term is compensated by the modulation term.
However, current data already exclude values of n0 that are
too low.
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WGC in the CMB. If, on the other hand, a tensor mode
signal is detected, experimental tests of the WGC may
become feasible (see next section). These will be related to
the scale dependence of the spectral index which is visible
in the right panel of Fig. 4, where we depict the probability
contours for the running nrun and running-of-the-running
nrunrun of the spectral index. Notice a preference for
negative running in MNI.
We can now present the results of the model comparison

analysis. We take ΛCDMþ r to be the reference model, so
that the DICMref

≡ DICΛCDM and ΔDICM ≡ DICM−
DICΛCDM. We obtain the following:

(i) ΔDICMNI ¼ 0.5, that is a no preference of the
current cosmological data between ΛCDMþ r
and modulated natural inflation. Both models de-
scribe the existing data equally well;

(ii) ΔDICNI ¼ 3.8, that is a mild preference of both
ΛCDMþ r and modulated natural inflation with
respect to natural inflation.

A deeper understanding can be obtained if we break
down the DIC values in their components, according to
(32). The three models show the same Bayesian complexity
pd ≃ 30, with differences at the level of the first decimal
figure. Therefore, they share the same number of effective
parameters needed to describe the data. The best fit and
average likelihoods are also similar between ΛCDMþ r
and MNI, with −2 ln L̂ ≃ 3517 and −2lnL ≃ 3547. Natural
inflation is penalized with respect to both ΛCDMþ r
and MNI by significantly higher values of the best fit
likelihood −2 ln L̂ ¼ 3523 and of the average likelihood
−2lnL ¼ 3552.
We should, hence, emphasize that the modulation term in

the MNI potential fulfills two purposes: it renders the
inflation model consistent with quantum gravity constraints
(in the form of the weak gravity conjecture) and resolves
the (mild) tension of NI with CMB data.

VII. FUTURE PROSPECTS

In the previous section, we have seen that MNI provides
as good as a fit to all current cosmological data as the
cosmological standard model (ΛCDMþ r). In this section,
we briefly discuss how future cosmological surveys can
distinguish between the two models.
From the discussion in the previous section, we have

seen that current data, when interpreted in the context of
MNI, prefer nonzero values of r > 0.002; see Fig. 4. Future
CMB experiments will strongly improve the sensitivity to
B modes, and therefore will be beneficial to our under-
standing of the viability of the MNI model. For the reader’s
convenience, we briefly report the expected sensitivity σðrÞ
on the tensor-to-scalar ratio r, or the expected exclusion
limit at 95% C.L.:

(i) The ground-based Simons Observatory (first light in
2021) [64,65] will probe σðrÞ ¼ 0.003.

(ii) CMB-S4 (proposed project completion in 2029)
[66,67] will set a limit r < 0.001 in the absence
of a tensor signal or clearly detect tensor modes
if r > 0.003.

(iii) The satellite mission LiteBIRD (selected for launch
in 2028) [68] will reach σðrÞ ∼ 0.001 (exact value
depends on the specific noise model).

(iv) The proposed satellite mission PICO [69] would
discover tensor modes at 5σ significance if r >
5 × 10−4.

With future CMB surveys, we envisage that we could face
two different situations: one possibility is that the overall
amplitude of the primordial gravitational wave spectrum is
so low that only an upper bound on r will be put by future
experiments. In this case, the probability contours for MNI
in the ðns; rÞ plane will shrink, but they will still be centered
at nonzero r given the improved sensitivity of future
cosmological surveys on n0 (see the discussion in the
previous section about the relation between n0 and r in
MNI). Via the statistical tools employed in this work, one
would find a strong statistical preference for ΛCDMþ r
compared to MNI once the exclusions approach the lower
bound set by data when interpreted in the context of MNI.
At this point it would be clear that MNI is not the correct
model of inflation and there is no hope of detecting
signatures of the weak gravity conjecture in the CMB.
The much more exciting possibility is that future CMB

experiments discover tensor modes at a high statistical
significance. Not only is the detection of nonvanishing r a
scientific milestone, it would also be an important step
toward testing the MNI model and, thus, the possible
signatures of the WGC. In Fig. 5, we show the BB power
spectra for both ΛCDMþ r and MNI at the corresponding
best fit points. The expected sensitivity from future surveys
is represented with the error bars forecasted from
LiteBIRD16 as the pink error bars on top of the tensor
BB in ΛCDMþ r [68,70]. For comparison, the current
error bars from BK15 are also shown [27].17 Notice that the
expected BB signal is larger in MNI compared to ΛCDMþ
r due to the higher value of r at the best fit point (see
Table III). The magnitude of a detected tensor signal, in
combination with sensitivity improvements on the spectral
index, could thus already lead to a slight statistical
preference for either MNI or ΛCDMþ r. We defer to
future works for a thorough forecast analysis.

16We have chosen to show LiteBIRD as a reference case in
Fig. 5 because it will have access to a wide range of angular scales
from space with respect to ground-based experiments that are
limited to the recombination bump (l ∼ 80). Nevertheless, we
would like to remind the reader that the expected sensitivity from
other future surveys would be able to detect a nonvanishing
tensor signal roughly at the level of the lower bound on r found in
this analysis with current data.

17Data products available at http://bicepkeck.org/bk15\_2018\_
release.html.
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In addition to observable imprints on the tensor spec-
trum, a key feature of MNI is a scale-dependent modulation
term in the spectrum of scalar perturbations. In Fig. 6, we
show the comparison between the best fit scalar power
spectra obtained within ΛCDMþ r (black line) and MNI
(red line). We also show the power spectrum in the
MNI benchmark model (see Table I) as the dashed black
line. The vertical lines delimit the range of scales that
can be accurately probed by current cosmological data,
0.01 Mpc−1 ≲ k≲ 0.1 Mpc−1. Within this range, the MNI
parameters can be arranged in such a way to recover an
almost featureless power spectrum that deviates less than
percent from the ΛCDMþ r power spectrum. Within this
range, a free-form Bayesian reconstruction of the power
spectrum performed by the Planck Collaboration [71] has
shown that the (log) primordial spectrum can be recovered
with a precision of a few percent. It is, however, clear that
outside the range of scales probed by current CMB data, the
uncertainty on a free-form reconstruction is much larger.
Outside the CMB range, the difference between MNI and
ΛCDMþ r becomes relevant. In particular, the MNI
spectrum features a considerable loss of power at small
scales (large wave numbers k). This suggests that to probe
with greater accuracy much smaller scales than those

currently accessible can be the key to identify the modu-
lation seeded by MNI.
The upcoming CMB experiments Simons Observatory

[64,65], CMB-S4 [66,67], and possibly the proposed PICO
[69] satellite will increase the sensitivity to smaller angular
scales (higher multipoles) and improve the constraints on
the reconstruction of the scalar power spectrum with
respect to the current sensitivity from Planck. If MNI is
the correct model of inflation, these surveys could find
indications of its scale-dependent spectral index. Large
scale structure observations may offer another possibility to
access the running of the spectral index favored by MNI
(see e.g., [76]).
In addition to experiments aimed to measure CMB

anisotropies, future surveys have been proposed that can
measure spectral distortions in the CMB frequency spectrum
(see e.g., the PIXIE proposal [72,73]). These surveys would
be able to probe much smaller scales (k ≃ 103 Mpc−1) than
those accessible to experiments targeted to CMB anisotro-
pies, and they have the potential to test deviations from a
standardpower-lawbehavior ofPR [74,75]. It is clear that the

FIG. 5. Best fit BB power spectra in ΛCDMþ r (black lines)
and modulated natural inflation (MNI) models (red lines), as
found in this work for a combination of current cosmological data
(Planck 2018, BICEP/Keck, BAO). The solid lines show the total
signal, including lensing and tensor contributions. The dashed
lines show the contribution from tensor modes only. The 68%
credible intervals for the CMB signal (lensing and possible tensor
contribution) at the 150 GHz channel from the BICEP/Keck 2015
measurements are also reported as blue error bars, with the point
marking the most probable value, or the 95% upper limit with no
point if the 68% interval includes zero [27]. The pink error bars
on top of the ΛCDM þ r tensor spectrum are reported as an
indication of the expected sensitivity from the future LiteBIRD
satellite mission, and include cosmic variance, instrumental
noise, and foreground residuals [68,70].

FIG. 6. Primordial power spectrum of scalar perturbations
PRðkÞ. We report the best fit power spectrum in ΛCDMþ r
(black line) and modulated natural inflation (MNI) model (red
line) from a combination of current cosmological data (Planck
2018, BICEP/Keck, BAO). We also report the power spectrum as
computed from the benchmark parameter choice listed in Table I
(dashed black). The inset in the upper left corner shows the scalar
spectrum ratio with respect to ΛCDMþ r for MNI (red line) and
MNI benchmark (dashed black line). Current cosmological data
tightly constrain the range of scales delimited by the two vertical
lines, 0.01 Mpc−1 ≲ k≲ 0.1 Mpc−1 [71]. In this range, the three
power spectra differ only at the subpercent level. At small scales
(large k), the MNI model predicts less power. Cosmological
surveys targeting CMB spectral distortions could probe the range
of scales where MNI currently predicts the largest deviations
from the standard power-law spectrum, if the target sensitivity
shown as the blue dot-dashed line can be reached. For compari-
son, we show the expected sensitivity from the proposed satellite
mission PIXIE [72,73]. The figure is adapted from Refs. [74,75].
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possibility to access such awide range of scales would either
reduce the region of parameter space available to MNI to
mimic a power-law behavior or allow one to identify
deviations from a standard power law that manifest only
at the smallest scales.
In essence, we have identified a promising path to discover

modulated natural inflation and, thus, to directly verify a key
prediction of the weak gravity conjecture (namely the
modulations in the power spectrum). Specifically, we have
predicted a tensor mode signal correlated with a small scale
suppression in the scalar power spectrum. In Fig. 7, we
provide the posterior distribution in the two key observables:
the tensor-to-scalar ratio and the amplitude of the scalar
power spectrum at small (k ¼ 103 MPc−1) scales. A clear
separation between the preferred regions is observed
between MNI and ΛCDMþ r.

VIII. SUMMARY AND CONCLUSIONS

The weak gravity conjecture imposes striking constraints
on quantum field theories coupled to gravity. While the
conjecture is supported by strong arguments related to black
hole remnants, efforts toward its direct theoretical proof are
still ongoing. In this work, we followed a different avenue
and asked the question, whether predictions of theWGC can
be tested experimentally. Specifically, we concentrated on
signatures in the cosmic microwave background.
Our working assumption was that inflation is realized

through an axion field and that its potential is generated by
nonperturbative instanton effects. This framework is par-
ticularly appealing since the flatness of the inflaton
potential carries a strong protection from the underlying
shift symmetry which is preserved at the perturbative level.

In the simplest case, the resulting potential would display a
cosine shape as in the prominent model of natural inflation.
The observed nearly scale invariant spectrum of infla-
tionary perturbations requires the corresponding axion
decay constant to be trans-Planckian.
The WGC provides concrete constraints on trans-

Planckian axions. It states that a trans-Planckian axion
decay constant can be realized only if the potential exhibits
an additional (possibly subdominant) modulation with sub-
Planckian periodicity which manifests in the form of
wiggles on the leading potential. We provided a concrete
realization of the modulation within string theory, where
instanton effects arise in the form of modular functions.
These contain a series of higher harmonics which can
naturally be identified with the sub-Planckian modulation
imposed by the WGC. The explicit inflaton potential,
which is expected to hold rather generically in natural
inflation models consistent with the WGC, is given in (9).
The model was dubbed modulated natural inflation.
We then derived analytic expressions for the scalar and

tensor power spectra [see (28) and (29)]. The wiggles in the
inflaton potential imposed by the WGC translate to
modulations in the scalar power spectrum. The latter
exhibit a frequency which changes logarithmically on
angular scales. The power spectrum is distinct from the
cosmological standard model (ΛCDMþ r) in which it is
restricted to a plain power-law behavior.
We implemented the primordial spectra of modulated

natural inflation in the CAMB code and computed cos-
mological predictions such as the temperature and polari-
zation power spectra. These were tested against the latest
CMB data from Planck, BICEP/Keck and BAO data from
SDSS-BOSS. Parameter constraints were derived in an
MCMC analysis employing the sampler CosmoMC.
The first important result was that the modulations

improve the consistency of natural inflation with the
CMB. We then performed dedicated statistical comparison
of modulated natural inflation against ΛCDMþ r. The
outcome was that both models describe all existing cos-
mological data equally well. The deviance information
criterion yielded absolutely no statistical preference for any
of the models. They also share very similar posterior
distributions in the familiar ns − r plane (see Fig. 4).
A striking difference between both models is, however,

that modulated natural inflation requires a nonvanishing
tensor mode signal r > 0.002 at 99% C.L. This lower limit
is within reach of near-future ground-based CMB experi-
ments such as the Simons Observatory. Furthermore, the
scalar power spectrum of modulated natural inflation looks
strikingly different from a power law outside the regime of
scales presently probed by the CMB. In particular, a
significant suppression of power at k≳ 100 Mpc−1 is
predicted (see Fig. 6). Such small angular scales (large k)
are accessible to proposed future CMB missions such
as PIXIE via the measurement of spectral distortions.

FIG. 7. Two-dimensional contours in the r − P1000 plane for
modulated natural inflation (red) and ΛCDMþ r (grey), where
P1000 is the scalar power spectrum at k ¼ 103 Mpc−1. The
contours are for a combination of current cosmological data
(Planck 2018, BICEP/Keck, BAO). The pivot scale for the tensor-
to-scalar ratio r is k� ¼ 0.05 Mpc−1.
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Although the expected signal is a factor of a few below the
forecast sensitivity of PIXIE, we argue that the possibility to
test the weak gravity conjecture via spectral distortions
deserves further attention. Additional signatures related to
the power suppression may arise e.g., in structure formation.
We can, hence, envision two situations: CMB experi-

ments will exclude r > 0.002 and rule out modulated
natural inflation. This would blow all hopes of observing
a signature of the WGC in the cosmic microwave back-
ground. If, on the other hand, a tensor mode signal is
discovered, the weak gravity conjecture predicts that it
must be intrinsically linked to a small scale suppression of
the scalar power spectrum.
The prospect of finding evidence for the weak gravity

conjecture in future CMB data is extremely exciting. It
would provide invaluable insights into the theory of
quantum gravity. Provided that a tensor mode signal in
the CMB is measured by near future CMB experiments, our
analysis makes a powerful case for a dedicated satellite
mission devoted to spectral distortion as a probe of signals
generated by inflation.
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