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We show that the energy density of the superhorizon modes released in a non-Bunch-Davies vacuum can
be arbitrarily large during inflation and it decreases like lnðaÞ=a4 in the subsequent radiation-dominated
era. This may constitute a dark radiation component which can sufficiently alter the early cosmological
evolution to alleviate the Hubble tension.
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I. INTRODUCTION

There is now considerable evidence implying a genuine
discrepancy between the measurements of the current
Hubble parameter H0 inferred from the direct local obser-
vations [1] and the cosmic microwave background (CMB)
data analyzed in the concordance ΛCDM model [2].
Although there is the possibility that the disagreement
can be explained by experimental systematics (see, e.g.,
Ref. [3] and the reply [4]), the tension has clearly
strengthened over time. Hence, it is worth taking seriously
and to search for possible solutions potentially involving
new physics. Assuming that the local observations are
robust, one should obviously modify the standard ΛCDM
model to reconcile the measurements.
The suggested resolutions in the literature either change

the late-time or early-time cosmic evolution by altering the
energy content of the Universe. Among the late-time
resolutions one may in particular note the phantom dark
energy [5], the interacting dark energy [6] and the vacuum
metamorphosis [7] models. On the other hand, the early-
time modifications involve the early dark energy [8–11]
and the scalar field [12–14] models (some specifically
involving axions [15–17]). There are also alternative ideas
like emerging spatial curvature due to nonlinear evolution
of cosmic structures [18], the large impact of non-Gaussian
correlations between short- and long-wavelength CMB
modes [19], decaying dark matter [20], frame-dependent
effective actions that mimic a cosmological constant [21]
and interacting neutrinos [22]. It is important to note that all
resolutions are tightly constrained by different observables
like baryon acoustic oscillations or the CMB power
spectrum peaks.
One relatively conservative idea is to imagine the presence

of early dark radiation (see, e.g., Refs. [1,23]), which can be
quantified by the effective number of relativistic speciesNeff

which normally equals 3 for the standard model neutrinos.
Indeed, as noted in Ref. [23], for one additional species
corresponding toNeff ¼ 4,H0 inferred from the Planck data
increases about 7 km=sMpc since the size of the sound
horizon at decoupling decreases by a few percent. Such a
modification is enough to ease the Hubble tension since the
Planck data do not exclude this range [23] and the existence
of dark radiation is not disfavored based on the Bayesian
evidence [24].
In this work, we suggest a plausible dark radiation

candidate corresponding to the superhorizon modes of a
scalar field released in a non-Bunch-Davies vacuum during
inflation. It is well known that there is no preferred vacuum
state in a curved background [25], which has profound
physical implications. In Minkowski spacetime the
Poincaré invariance selects a unique ground state, yet even
demanding symmetry invariance is not enough to promote
a vacuum state in curved backgrounds. The classical
example is de Sitter space where there is a one complex
parameter family of different vacua1 which is invariant
under the full de Sitter isometry group [32]. This arbitrari-
ness is usually fixed by implementing some extra physical
condition; the Bunch-Davies ground state is usually pre-
ferred by the argument that short-wavelength modes must
mimic the flat-space propagation. However, inflation is
different than the global de Sitter space (see Fig. 1) and
one must imagine an era preceding it (indeed, an
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1Although the so-called α vacua in de Sitter space yield a
peculiar analytic structure for the Green functions that seemingly
become problematic in the interacting theory by producing
nonlocal interactions between antipodal points [26] and loop
infinities that cannot be removed by de Sitter invariant counter-
terms [27], a careful treatment shows that causality can still be
preserved along with renormalizability [28,29]. Moreover, these
distinctive features of the global de Sitter geometry do not
directly apply to inflation which is only locally embedded in
de Sitter space; see Fig. 1. Some implications of the α vacua for
inflation were discussed, e.g., in Refs. [30,31].
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incompleteness theorem [33] requires this). In that case, it
is more natural to select the Bunch-Davies vacuum in the
earlier period and the corresponding mode functions would
carry both the positive and negative frequencies during
inflation due to Bogoliubov mixing. Therefore, there seems
to be no easy way of solving the vacuum arbitrariness
problem and one can equally motivate non-Bunch-Davies
states for fields in inflation.
In this paper, we focus on the modes which become

superhorizon during inflation. These can be thought to
represent real (rather than virtual) fluctuations. As we will
see, the corresponding vacuum expectation value of the
energy-momentum tensor is IR finite due to its mass
dimension. While there is no UV divergence either as
we focus only on the superhorizon modes, there is a trans-
Planckian issue [34]; namely, some of the late superhorizon
modes, when followed back in time during inflation, enter
the trans-Planckian regime. This shows that one should still
be careful about possible renormalization (or early-time
backreaction) effects. While we will elaborate on this
problem shortly (see the Appendix), it is not the main
concern of this paper, i.e., we will assume that after taking
into account all renormalization (and possible backreac-
tion) effects, one still finds an inflationary period having a
Hubble scale H with relatively small corrections imposed
by the superhorizon energy density.
On dimensional grounds, the energy density of massless

modes during inflation must be proportional to H4. This is
negligible compared to the background energy density
3H2M2

p and thus cannot influence the cosmic evolution
(assuming, of course, H ≪ Mp, which is necessary for the
validity of the classical gravity description). Nevertheless,
we will see that in a non-Bunch-Davies vacuum charac-
terized by the free complex parameter α, the energy density
becomes proportional to jαj2H4. If jαj ∼Mp=H, this
becomes comparable to the background energy density
and modifies the cosmic evolution. Note that depending on
the model, jαj may not be extremely large.

Our main aim here is to find the subsequent evolution of
the energy density of the α-vacuum superhorizon modes
after inflation. From their energy-momentum expressions,
one may naively deduce that while the superhorizon modes
can be characterized by the equation-of-state parameter
ω ¼ −1=3, the modes that reenter the horizon start oscil-
lating and the corresponding equation-of-state parameter
must be effectively ω ¼ 1=3. Although the falloff of the
superhorizon energy density seems much slower, modes
continuously cross the horizon and subhorizon modes are
relatively more energetic. As a result, oscillating subhor-
izon modes dominate the energy density but there appears a
logarithmic correction which yield an effective decay
lnðaÞ=a4, as we will demonstrate. Since this behavior is
very close to that of radiation, one can conveniently
describe its impact on the cosmic evolution in terms of
Neff . We will determine the value of α that would
correspond to Neff ¼ 4, a value that is sufficient to alleviate
the Hubble tension. We will also point out the impact of the
α vacuum on other cosmological observables like the
power spectrum.

II. THE VACUA OF THE de Sitter SPACE

In this section we would like to elaborate on the de Sitter
symmetry group [SOð1; 4Þ] invariant α vacuum found in
Ref. [32]. The derivation given in Ref. [32] uses the global
de Sitter geometry and the analytic properties of the Green
functions. Here we utilize a direct derivation based on the
mode functions, which is more suitable for inflation.
Let ϕ be a real massless scalar field propagating on a

curved spacetime whose dynamics is governed by the
standard minimally coupled action:

S ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ð∇μϕ∇μϕÞ: ð1Þ

It is easy to show that this action is invariant under

δϕ ¼ kμ∂μϕ; ð2Þ

where kμ is a Killing vector. We should emphasize that the
background metric is taken to be fixed (and nondynamical),
and hence the symmetry (2) is global and should not be
confused with diffeomorphism invariance. The correspond-
ing Noether current can be calculated as

jμ ¼ Tμ
νkν; ð3Þ

where Tμν ¼ −2 ffiffiffiffiffiffi−gp
δS=δgμν is the energy-momentum

tensor. The current is (covariantly) conserved, ∇μjμ ¼ 0,
and the charge

Q ¼
Z
Σ
jμnμ; ð4Þ

I

FIG. 1. The Penrose diagram of de Sitter space. Inflation
corresponds to region I whose past and future should be replaced
by appropriate geometries depending on the cosmological model.
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which is defined as the integral over a space-like foliation
with unit normal nμ, is conserved. Therefore, each sym-
metry of the background metric yields a conserved charge
which actually generates the same symmetry in the
scalar field theory. Indeed, introducing the Arnowitt-
Deser-Misner metric

ds2 ¼ −N2dt2 þ hijðdxi þ NidtÞðdxj þ NjdtÞ; ð5Þ

the charge can be found as

Q ¼ −
Z

d3x½k0Hþ kiPϕ∂iϕ�; ð6Þ

where kμ ¼ ðk0; kiÞ, H is the Hamiltonian density

H ¼ 1

2

Nffiffiffi
h

p P2
ϕ þ PϕNi∂iϕþ 1

2
N

ffiffiffi
h

p
hij∂iϕ∂jϕ; ð7Þ

and Pϕ is the conjugate momentum. Not surprisingly, one
finds that (after a Legendre transformation to the
Lagrangian formalism)

fQ;ϕg ¼ k0 _ϕþ ki∂iϕ: ð8Þ

In the quantum theory, one further demands the invariance
of the vacuum by imposing Qj0i ¼ 0, which is a nontrivial
condition, as we will see below.
We now take a general Friedmann-Robertson-Walker

background

ds2 ¼ −dt2 þ aðtÞ2dx⃗2: ð9Þ

To quantize the scalar one imposes the canonical commu-
tation relation ½ϕðt; x⃗Þ; Pϕðt; y⃗Þ� ¼ iδ3ðx⃗ − y⃗Þ, where
Pϕ ¼ a3 _ϕ. Introducing the mode decomposition

ϕ ¼
Z

d3k

ð2πÞ3=2 ½ϕkeik⃗:x⃗ak⃗ þ ϕ�
ke

−ik⃗:x⃗a†
k⃗
�; ð10Þ

the canonical commutation relation can be satisfied by
imposing ½ak⃗; a†k⃗0 � ¼ δ3ðk⃗ − k⃗0Þ and

ϕk
_ϕ�
k − ϕ�

k
_ϕk ¼

i
a3

: ð11Þ

The mode functions obey

ϕ̈k þ 3H _ϕk þ
k2

a2
ϕk ¼ 0 ð12Þ

and the vacuum is defined as

ak⃗j0i ¼ 0: ð13Þ

Note that this is as far as one can proceed with the canonical
quantization. The vacuum is associated with the mode
functions, which obey Eqs. (11) and (12), and otherwise are
completely free. There is no preferred ground state implied
by quantization.
Let us now consider de Sitter space,

ds2 ¼ −dt2 þ e2Htdx⃗2: ð14Þ

The Bunch-Davies (BD) mode function is given by

fBD ¼ 1

a
ffiffiffiffiffi
2k

p exp½ik=ðHaÞ�
�
1þ iHa

k

�
; ð15Þ

and the general solution of Eq. (12) obeying Eq. (11) can be
written as

ϕk ¼ αfBD þ βf�BD; ð16Þ

where

jαj2 − jβj2 ¼ 1: ð17Þ

In general, both α and β can depend on k⃗.
In addition to the obvious symmetries related to the

spatial translations and rotations, there are four more
Killing vectors of Eq. (14),

k ¼ 1

H
∂
∂t − xi

∂
∂xi ;

kðiÞ ¼ −xi
∂
∂tþ

�
Hxixj þ δij

2H
ð1 −H2xkxk þ e−2HtÞ

� ∂
∂xj ;
ð18Þ

which correspond to dilatation and special conformal
transformations, respectively. One may demand the vac-
uum to be invariant under these symmetries, i.e., one
imposes Qj0i ¼ 0 for each Killing vector. A straightfor-
ward calculation shows that for any mode function given in
Eq. (16), where α and β are k-independent constants

∂kα ¼ ∂kβ ¼ 0; ð19Þ

Qj0i ¼ 0 is satisfied for the Killing vectors of de Sitter
space. For instance, for the dilatation Killing vector given
in Eq. (18) the charge operator takes the form2

Q¼
Z

d3k½Akak⃗a
†
k⃗
þA�

ka
†
k⃗
ak⃗þBka−k⃗ak⃗þB�

ka
†
−k⃗
a†
k⃗
�; ð20Þ

2In puttingQ in this form one should apply integration by parts
to remove k derivatives acting on the creation/annihilation
operators like

R
d3kfðkÞ∂kak ¼ −

R
d3k∂kfðkÞak. The surface

terms vanish provided one introduces proper iϵ factors into the
mode functions.
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where

Bk ¼
a3

2H

�
_ϕ2
kþ

k2

a2
ϕ2
kþ3Hϕk

_ϕkþHk _ϕk
dϕk

dk
−Hkϕk

d _ϕk

dk

�
:

ð21Þ

The first three terms in Eq. (20) directly annihilate the
vacuum (after normal ordering) and for invariance the last
term must vanish identically. One may check that Bk ¼ 0
for the mode (16) if α and β are k-independent constants.
Thus, in that case the vacuum associated with Eq. (16) is
invariant under the full de Sitter group. Since the overall
phase of the mode is redundant and Eq. (17) must be
obeyed, there remains a one-parameter family of vacua
parametrized by a completely free complex number α, as
first shown in Ref. [32].
Although there are concerns about the validity of the α

vacuum in the interacting theory [26], these are mostly
related to the analytical structure of the Green functions in
the global de Sitter space (and they do not necessarily imply
any physically unacceptable property [28]). In the case of
inflation, one only considers nearly exponential expansion
in a finite duration and the in-in (Keldysh-Schwinger)
perturbation theory must be safe provided that the iϵ
prescription is properly applied. Thus, there is no reason
to doubt the validity of the perturbative interacting theory in
the α vacuum.

III. THE ENERGY DENSITY OF THE
SUPERHORIZON MODES

Our aim in this section is to determine the subsequent
evolution of the energy density of the modes that become
superhorizon at the end of inflation. As pointed out in the
Introduction, these modes can be thought to represent real
quantum fluctuations rather than being virtual. Therefore, it
is physically viable to assume that their energy density
contributes to the spacetime curvature in general relativity.
The scale factor of the universe describing an inflationary
era which is immediately followed by a radiation epoch can
be written as

aðtÞ ¼
�
aIeHt ti ≤ t ≤ tI;

ðt=t0Þ1=2 tI ≤ t;
ð22Þ

where aI is a constant. Matching the scale factor at tI gives

aI ¼ e−1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
H0=H

p
; tI ¼ 1=2H; ð23Þ

where H0 ¼ 1=2t0 is the Hubble parameter at t0. We note
that t0 can be any time of interest in the radiation era.
It is useful to introduce the conformal time dη ¼ dt=a

and shift it so that at the inflation-radiation interface it is
equal to

ηI ¼ −
1ffiffiffiffiffiffiffiffiffiffi
HHo

p : ð24Þ

Then, the scale factor in terms of the conformal time is
given by

aðηÞ ¼
�− 1

Hη ηi ≤ η ≤ ηI;

η−2ηI
2t0

ηI ≤ η;
ð25Þ

where the continuity at η ¼ ηI can be verified easily.
Defining

μk ¼ aϕk; ð26Þ

the mode equation (12) implies

μ00k þ
�
k2 −

a00

a

�
μk ¼ 0; ð27Þ

where a prime denotes a derivative with respect to η. During
radiation a00 ¼ 0, and therefore the two solutions of
Eq. (27) are cosðkηÞ and sinðkηÞ.
Consider a moment η during the radiation epoch. A given

comoving scale can be either subhorizon/superhorizon in
its entire history or it reenters the horizon by the time η.
This behavior can be summarized as follows:

0 < k <
1

ηþ jηIj
∶ always superhorizon;

1

ηþ jηIj
< k <

1

jηIj
∶ superhorizon → subhorizon;

1

jηIj
< k∶ always subhorizon: ð28Þ

The modes of our interest that become superhorizon at the
end of inflation are given by

0 < k <
1

jηIj
: ð29Þ

Some of these modes become subhorizon later on, as
pointed out in Eq. (28). From the energy-momentum tensor
Tμν ¼ ∇μϕ∇νϕ − 1

2
gμνð∇ϕÞ2, one can calculate the follow-

ing vacuum-expectation values for these modes:

ρ ¼ 1

4π2a4

Z
1=jηI j

0

k2
�
j _ϕkj2 þ

k2

a2
jϕkj2

�
dk;

P ¼ 1

4π2a4

Z
1=jηI j

0

k2
�
j _ϕkj2 −

k2

3a2
jϕkj2

�
dk: ð30Þ

Since the momentum integral is cut off at a fixed comoving
scale, the energy conservation _ρþ 3Hðρþ PÞ ¼ 0 is
obeyed provided that the mode equation (12) holds.
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We will assume that the modes are released in the α
vacuum so that

μk ¼
αffiffiffiffiffi
2k

p
�
1−

i
kη

�
e−ikηþ βffiffiffiffiffi

2k
p

�
1þ i

kη

�
eikη; η< ηI ð31Þ

during inflation. When the modes evolve through the
radiation era, their solution takes the form

μk ¼ μIk cos ½kðη−ηIÞ�þ
μI0k
k
sin ½kðη−ηIÞ�; ηI < η; ð32Þ

where μIk ¼ μkðηIÞ and μI0k ¼ μ0kðηIÞ must be read from
Eq. (31) to match the mode functions at η ¼ ηI . The Bunch-
Davies ground state corresponds to α ¼ 1, β ¼ 0 and it is
motivated by having a single (negative) frequency solution
which asymptotes to the flat-space mode function at short
wavelengths when kη → ∞. However, a pure positive- or
negative-frequency mode picks up both frequencies when it
passes from one cosmological epoch to another [see, e.g.,
Eq. (32) for α ¼ 1]. It is natural to assume that the modes
were born before inflation as suggested by the incomplete-
ness theorem of Ref. [33], and hence it is also natural to
take the general mode solution carrying both the positive
and negative frequencies during inflation. (As discussed in
the previous section, demanding the symmetry invariance
does not help either in preferring a vacuum state in this
setup.) Without a detailed model that describes the cos-
mology before inflation, one cannot determine α; therefore,
at this time it should be treated as a free parameter to be
determined by observations.
We can now calculate the energy density of the modes by

using Eq. (31) during inflation or Eq. (32) during the
radiation era. Using Eq. (31) in Eq. (30), one can see that
the energy density stored in the modes (29) at the end of
inflation becomes

ρðηIÞ ¼
jαj2 þ jβj2 þ Refαβ�zg

8π2
H4; ð33Þ

where z ≃ −1.4þ 0.8i. Not surprisingly the energy density
is proportional to H4 as can be expected by dimensional
analysis. Still, it is also proportional to jαj2 and in principle
one can have ρðηIÞ ≫ H4 if jαk ≫ 1. This possibility helps
one to address the Hubble tension, as we will show in the
next section.
Before discussing how this energy density evolves after

inflation in the radiation era, one may note its earlier
behavior. The physical wave number of the mode which
becomes superhorizon at the end of inflation is k=aðηIÞ ¼
H and this enlarges to eNH when followed back in time
withN e-folds. The modes clearly enter the trans-Planckian
regime at an exponentially increasing rate. Using Eq. (30)
at a generic time at inflation gives

ρðηÞ¼
�
ðjαj2þjβj2Þη

2ðη2þη2I Þ
η4I

þRe

�
3αβ� þαβ�e−2iη=ηI

�
4η2

η2I
− i

6η

ηI
−3

���
H4

16π2
:

ð34Þ

One may check that this ρðηIÞ agrees with Eq. (33). On the
other hand, when η=ηI ¼ eN corresponding to an earlier
time with N e-folds to the end of inflation, the dominant
contribution e4NH4 exceeds the background energy density
when N is sufficiently large. Therefore, the backreaction of
these modes cannot be neglected and Eq. (34) loses its
validity at earlier times corresponding to jηj ≫ jηIj.
The trans-Planckian problem can be addressed in differ-

ent ways and obviously renormalization of the physical
quantities should be taken into account (in the Appendix
we discuss possible regularization schemes). We avoid this
discussion by simply focusing on the superhorizon modes
at a given time η in inflation, which corresponds to the
range 0 < k < 1=jηj as opposed to Eq. (29). In that case the
upper limit of the integrals in Eq. (30) must be replaced by
1=jηj, which gives

ρðηÞ ¼ jαj2 þ jβj2 þ Refαβ�z1g
8π2

H4;

PðηÞ ¼ Refαβ�z2g
48π2

H4; ð35Þ

where z1 ¼ z ≃ −1.4þ 0.8i and z2 ≃ 3.0 − 2.2i. One
should be careful here since the energy conservation is
not satisfied as the comoving integration range is chosen to
be time dependent, i.e., extra modes keep entering the
superhorizon regime continuously. Indeed, one can verify
that _ρþ 3Hðρþ PÞ ≠ 0 and the nonzero right-hand
side equals the influx of the modes, which is given by
ð−1=ηÞ0 × ½the energy density per comovingwave number at
k ¼ −1=η�. As long as backreaction is neglected and Eq. (35)
is not used as a source for gravity, energy nonconservation is
not a problem since Eq. (35) simply gives the energy density
of an open system.Note that ρðηIÞ calculated from Eq. (35) is
equal to Eq. (33). It is thus reasonable to assume that the
energy density of the superhorizon modes at the end of
inflation is given by Eq. (33), which can either be obtained
from Eq. (34) or Eq. (35). The mode momentum integrals
carried out above are all IR finite since the integrands are not
singular as k → 0 and there is also no UV divergence since
the integrals are cut off at a suitable scale.
Let us now determine the evolution of Eq. (33) in the

radiation era. This can be done exactly by using Eq. (32) in
Eq. (30), which gives
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ρðηÞ¼
Z

1=jηI j

0

dk
H2

0

8π2a6
f½k2jμIkj2þjμI0k j2�½1þ2k2ðη−2ηIÞ2�

þ ½k2jμIkj2− jμI0k j2−4k2RefμI�k μI0k gðη−2ηIÞ�
×cosð2kðη−ηIÞÞþk½2RefμI�k μI0k g
þ2½k2jμIkj2− jμI0k j2�ðη−2ηIÞ�sinð2kðη−ηIÞÞg: ð36Þ

Recall that μIk ¼ μkðηIÞ and μI0k ¼ μ0kðηIÞ, where μk is given
in Eq. (31). It is possible to evaluate this integral exactly;
however, the final result is cumbersome and not very
illuminating since there are terms with many different
structures. We note that as k → 0 the integrand in Eq. (36)
becomes

jαj2 þ jβj2 − 2Refαβ�g
8π2a2

H2kþOðk0Þ; ð37Þ

and thus the integral is IR finite, which is not surprising
since the mass dimension of the integrand is 3. To simplify
the computation, one may note that in the range of k
integration ½0; 1=jηI], the exponential phase factor e�ikηI

appearing in μIk and μI0k does not actually oscillate since the
phase kηI takes values in the interval [0, 1] in radians.
Therefore, to an excellent approximation, e�ikηI can be
replaced by its power series up to a desired order. Keeping
the second-order terms in this power series and integrating
Eq. (36) yields 12 different terms. At late times the energy
density can be seen to take the following form:

ρðηÞ ≃ jα − βj2
8π2

H2

H2
0

1

η4
ln

�
η

jηIj
�
þO

�
H2

H2
0η

4

�

þO
�

H2

H2
0η

4

ηI
η

�
; η ≫ jηIj: ð38Þ

The leading-order contribution containing the logarithm is
proportional to jα − βj2. To understand this dependence,
one may note that in the deep superhorizon regime Eq. (31)
evaluated at η ¼ ηI can be approximated as

μIk ≃
−iðα − βÞffiffiffi
2

p
ηIk3=2

; μI0k ≃
iðα − βÞffiffiffi
2

p
η2I k

3=2
: ð39Þ

It turns out that using this approximate form in Eq. (36) also
yields the same leading-order term in Eq. (38), which
explains the dependence on α − β. This is a curious
example of an IR logarithm which shows up in an epoch
following inflation.
By noting

aðηÞ ≃ ηH0; η ≫ jηIj;

aðηIÞ ¼ jηIjH0 ¼
ffiffiffiffiffiffi
H0

H

r
; ð40Þ

and using Eq. (33), the evolution of the energy density can
be written as

ρðηÞ ≃ ln

�
aðηÞ
aðηIÞ

�
aðηIÞ4
aðηÞ4 ρðηIÞ: ð41Þ

Here we assume that the phases of α and β are generically
chosen so that jα − βj has the same order of magnitude as
jαj. If this is not satisfied and jα − βj ≪ jαj, one must look
at the second-order term in Eq. (38) which corresponds to
the falloff 1=a4. In any case, we see that the energy density
stored in the modes which become superhorizon at the end
of inflation decreases very similarly to that of radiation.

IV. IMPLICATIONS FOR THE
HUBBLE TENSION

In this section we will discuss how the above dark
radiation component can help to resolve the Hubble
tension. From Eq. (33) the initial energy density of the
dark radiation at the end of inflation can be taken as

ρD ≃
jαj2
4π2

H4: ð42Þ

We approximate its time evolution by the simple power-law
decrease 1=a4 by neglecting the slow change caused by the
logarithm. The energy density in the known radiation
component can be parametrized as

ρR ¼ g�
π2

30
T4; ð43Þ

where T is the equilibrium temperature and g� is the
effective number of relativistic degrees of freedom given by

g� ¼ gB

�
TB

T

�
4

þ gF
7

8

�
TF

T

�
4

: ð44Þ

Here gB and gF are the bosonic and the fermionic degrees of
freedom with temperatures TB and TF, respectively, and the
factor 7=8 accounts for the difference in the Fermi/Bose
statistics. When T ≫ me, g� ¼ 11=2 which corresponds to
gB ¼ 2 for photons and gF ¼ 4 for e� pairs, all having the
same temperature T. After e� annihilation, the photon
temperature increases since the entropy g�ðaTÞ3 remains
constant. After decoupling, g� ¼ 2 and thus the photon
temperature increases by the factor ð11=4Þ1=3 relative to
other relativistic species like neutrinos. As a result the
known component of the radiation energy density can be
parametrized like

ρR ¼
�
1þ 7

8

�
4

11

�
4=3

Neff

�
ργ; ð45Þ

where ργ is the photon energy density and Neff ¼ 3 for the
three standard model neutrino species.
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As pointed out in the Introduction, a new neutrino
species which would give Neff ¼ 4 can resolve the
Hubble tension without violating the observational con-
straints. Assuming that the background inflaton energy
density after inflation is converted by reheating to known
radiation with Neff ¼ 3, one obtains

�
1þ 21

8

�
4

11

�
4=3

�
ργ ¼ 3H2M2

p: ð46Þ

Then, to get a total radiation energy density with Neff ¼ 4
one must have

3H2M2
p þ ρD ¼

�
1þ 28

8

�
4

11

�
4=3

�
ργ; ð47Þ

which implies

ρD ¼ 7

8

�
4

11

�
4=3

ργ: ð48Þ

From Eqs. (42) and (46) this yields

jαj ≃ 4
Mp

H
: ð49Þ

Typically, the inflationary Hubble scale is taken as
H ¼ 10−3Mp, which gives jαj ≃ 4000. Fortunately, this
is not an extremely large number, but its naturalness cannot
be judged either. Remember that we have motivated the
non-Bunch-Davies vacuum by referring to an epoch
preceding inflation and without having the complete
history it is difficult to estimate the magnitude of α.
Consistency requires that the same (or very similar)

vacuum choices must be made for all quantum fields in a
model. This is particularly necessary if the α vacuum is
imagined to arise because of mode crossing towards
inflation, as we have argued. In that case, basic cosmo-
logical observables should also be modified accordingly.
The power spectrum is the most crucial of such observables
and one must in particular ensure that the scale-freeness is
not spoiled. Fortunately, from the α-vacuum mode function
(31) one still gets a scale-free power spectrum

Pk ≡ jϕkj2 ≃ jα − βj2 H
2

2k3
; kη ≪ 1: ð50Þ

Compared to the Bunch-Davies vacuum, only the ampli-
tude is modified by the constant factor jα − βj2. Therefore,
neither the scalar-to-tensor ratio nor the running of the
index are altered in the α vacuum.
Finally, in models containing more than one scalar field,

the estimate of jαj in Eq. (49) is reduced by the number of
fields since each contributes the same amount to the energy
density. Moreover, the neglected slow logarithmic growth

also helps to reduce the value of jαj. In this work we treated
the dark radiation as a noninteracting component which is
decoupled from the thermal plasma of the standard model
particles. It would be interesting to study the other
possibility, e.g., to work out the cosmological conse-
quences of a dark radiation consisting of Higgs particles.
We leave this curious problem as a topic for future research.
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APPENDIX: REGULARIZATION
IN THE α VACUUM

In this appendix, we discuss how the UV infinities of the
energy-momentum tensor expectation values can be regu-
larized in the α vacuum. Since the high-energy limit of the
mode functions differs from the flat-space behavior, it is
natural to expect some distinguishing features to appear.
Yet, it will be quite surprising to observe the failure of the
regularization procedure in a free theory given the fact that
the α-vacuum interacting field theory in de Sitter space
physically makes sense [28]. In any case, any unwanted
behavior that might possibly arise in the regularization/
renormalization process can be avoided by taking a
truncated α vacuum if necessary,3 by choosing α and β

as k⃗-dependent functions. (Of course, this dependence
breaks some of the de Sitter symmetries, but the slow-roll
inflationary models have a smaller number of symmetries
anyway, so this is not an immediate point of concern.)
Since for the main conclusion of this paper it is enough to
take the α vacuum only for the superhorizon modes, the
issues about the short-distance behavior can be evaded in
this way.
On the other hand, we have mentioned that one way of

motivating the α vacuum during inflation is to presume the
existence of a preceding era during which the modes are
released in their corresponding Bunch-Davies ground
states. It is possible to see that such a model naturally
yields states that look like a truncated α vacuum during
inflation, where the subhorizon excitations have the Bunch-
Davies mode functions and the superhorizon excitations
have the α-vacuum mode functions. To see how this may
arise, note that both α and β become k⃗-dependent coef-
ficients in inflation due to the change in the modes evolving
from one era to another. This change can be interpreted as a
particle creation process and the effect must depend on the
physical momentum k=a; hence, one should have α ¼
αðk=aÞ and β ¼ βðk=aÞ. The spacetime curvature does not

3We thank the anonymous referee for suggesting this possibility.
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alter the short-wavelength subhorizon behavior signifi-
cantly, and therefore one expects

αðk=aÞ ≃ 1; k=a ≫ H;

βðk=aÞ ≃ 0; k=a ≫ H ðA1Þ

since the modes were originally released in their Bunch-
Davies ground states. This corresponds to a suitable
truncated α vacuum having the standard UV behavior.
To resolve the Hubble tension it is enough to have the
estimate (49) for the superhorizon modes,

jαðk=aÞj ≃ 4
Mp

H
; k=a < H: ðA2Þ

Note that this setup is equivalent to the resolution of the
trans-Planckian problem discussed around Eq. (35).
Yet, one may still wonder how regularization works for

the pure α vacuum in de Sitter space. Let us illustrate this
for the two-point function using dimensional regulariza-
tion. For this calculation one must carry out the quantiza-
tion procedure in (dþ 1)-dimensional de Sitter space. In
that case, the massless scalar mode equation and the
Wronskian condition in d spatial dimensions become

ϕ̈ðdÞ
k þ dH _ϕðdÞ

k þ k2

a2
ϕðdÞ
k ¼ 0;

ϕðdÞ
k

_ϕðdÞ�
k − ϕðdÞ�

k
_ϕðdÞ
k ¼ i

ad
: ðA3Þ

The de Sitter space Bunch-Davies mode function is
given by

fðdÞBD ¼ 1

ad=2

ffiffiffiffiffiffiffi
π

4H

r
exp ðiπd=2ÞHð1Þ

d=2

�
k
aH

�
; ðA4Þ

where Hð1Þ
n is the Hankel function of the first kind. The

α-vacuum mode function is defined as usual by

ϕðdÞ
k ¼ αfðdÞBD þ βfðdÞ�BD : ðA5Þ

We will regularize the two-point function in the coincident
limit as

h0jϕ2j0i ¼ μδ
Z

ddk
ð2πÞd jϕ

ðdÞ
k j2; δ≡ 3 − d; ðA6Þ

where we introduced a mass scale μ to compensate the
dimensional mismatch of the fields, as is customary in
dimensional regularization. After the scaling k ¼ aHk̂,
Eq. (A6) becomes

h0jϕ2j0i¼e2H2

32π2

�
2πμ

H

�
δ

×
Z

d3−δk̂jαHð1Þ
ð3−δÞ=2ðk̂ÞþβHð2Þ

ð3−δÞ=2ðk̂Þj
2; ðA7Þ

where Hð2Þ
n is the Hankel function of the second kind,

which obeys Hð2Þ
n ¼ Hð1Þ�

n for real n. For the dimensional
regularization to work, the integral in Eq. (A7) must obey

lim
δ→0

Z
d3−δk̂jαHð1Þ

ð3−δÞ=2ðk̂Þ þ βHð2Þ
ð3−δÞ=2ðk̂Þj

2 ¼ F0

δ
þ F1;

ðA8Þ

where F0 and F1 are finite numerical factors.
To see that Eq. (A8) is actually satisfied, one may use

the following integral representation of the Hankel
function [35]:

Hð1Þ
n ðk̂Þ ¼ Γ½1

2
− n�ð1

2
k̂Þn

π
3
2i

I ð1þÞ

1þi∞
eik̂zðz2 − 1Þn−1

2dz; ðA9Þ

where the simple loop contour starts at z ¼ 1þ i∞ in the
complex z plane, circles z ¼ 1once in the counter-clockwise
direction, and returns to z ¼ 1þ i∞ (see Fig. 2). The
nonanalytic function ðz2 − 1Þn−1=2 is continuous on the
contour, where its principal value is read from the inter-
section of the pathwith the ð1;∞Þ line. This representation is
valid for any n ≠ half-integer and when argðk̂Þ < π=2. For
us n ¼ ð3 − δÞ=2, and one can see that the loop integral
about z ¼ −1 vanishes when it shrinks to zero size.
Therefore, one may assume that z always has a positive
imaginary piece and expðik̂zÞ has an exponentially decaying
factor. In evaluating Eq. (A8), one can now use Eq. (A9) for
one of the Hankel functions (after expanding the absolute
value squared). In that case, the momentum integral

R
d3−δk̂

becomes well defined as k̂ → ∞ because of the exponential
decay coming from expðik̂zÞ. For example, one can rewrite

Z
d3−δk̂Hð1Þ

ð3−δÞ=2ðk̂ÞHð2Þ
ð3−δÞ=2ðk̂Þ

¼ Γ½δ
2
− 1�ð1

2
k̂Þð3−δÞ=2

π
3
2i

Z
d3−δk̂

×
I ð1þÞ

1þi∞
eik̂zðz2 − 1Þ1−δ

2Hð2Þ
ð3−δÞ=2ðk̂Þdz; ðA10Þ

where the integrals are well defined even when δ ¼ 0. As a
result, Eq. (A9) lets one hide the originalmomentum integral
infinity in the gamma function, and in the limit δ → 0
Eq. (A8) becomes
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lim
δ→0

Z
d3−δk̂jαHð1Þ

ð3−δÞ=2ðk̂Þ þ βHð2Þ
ð3−δÞ=2ðk̂Þj

2

¼ lim
δ→0

Γ
�
δ − 2

2

�
GðδÞ; ðA11Þ

whereGðδÞ is an analytic function of δ that also depends onα
and β. This verifies Eq. (A8), where the terms F0 and F1 can
be read from the expansions ofGðδÞ and the gamma function
Γ½δ=2 − 1� as δ → 0. Consequently, Eq. (A6) becomes

h0jϕ2j0i¼e2H2

32π2
lim
δ→0

ð1þδlnð2πμ=HÞÞðF0=δþF1Þ; ðA12Þ

where the singular 1=δ piece must be canceled out by a
counterterm. We thus see that the α vacuum and the Bunch-
Davies vacuum are similar from the dimensional regulari-
zation perspective.
Finally, it is instructive to consider a brute-force cutoff

regularization to see what differences appear between the
vacua. Introducing a (comoving) momentum cutoff Λ gives
the energy density and pressure as

ρ ¼ 1

4π2a4

Z
Λ

0

k2
�
j _ϕkj2 þ

k2

a2
jϕkj2

�
dk;

P ¼ 1

4π2a4

Z
Λ

0

k2
�
j _ϕkj2 −

k2

3a2
jϕkj2

�
dk: ðA13Þ

These integrals can be carried out exactly for the α vacuum,
which of course have diverging terms as Λ → ∞. A
straightforward calculation in the limit Λ → ∞ gives (recall
that a ¼ −1=Hη)

ρ ¼ H4

16π2
Refe2iΛηα�βð4Λ2η2 þ 6iΛη − 3Þg

þH4ðjαj2 þ jβj2Þ
16π2

ðΛ4η4 þ Λ2η2Þ

þ 3H4ðαβ� þ α�βÞ
32π2

þO
�
1

Λ

�
;

P ¼ H4

16π2
Re

�
e2iΛηα�β

�
8i
3
Λ3η3 −

16

3
Λ2η2 − 6iΛηþ 3

��

þH4ðjαj2 þ jβj2Þ
48π2

ðΛ4η4 − Λ2η2Þ − 3H4ðαβ� þ α�βÞ
32π2

þO
�
1

Λ

�
: ðA14Þ

As opposed to the dimensional regularization, in the cutoff
method the α vacuum shows a peculiar behavior that
involves oscillating infinities (note that these vanish for
the Bunch-Davies vacuum, which has β ¼ 0). On the other
hand, like the Bunch-Davies vacuum, the nonoscillating
part of the energy-momentum tensor which has quartic
infinities has the equation-of-state parameter ω ¼ 1=3,
while the part containing quadratic infinities has the
equation-of-state parameter ω ¼ −1=3. Canceling these
infinities requires counterterms that break the general
covariance (note that this is also the case for the Bunch-
Davies vacuum). This is not a surprising result, which is
actually similar to the loss of Lorentz invariance in the flat-
space quantum field theory when the brute-force cutoff
regularization is applied. Remarkably, however, the finite
Λ0-order terms correspond to a cosmological constant that
simply modifies the bare value. Assuming that the diverg-
ing terms are removed, one can still get a de Sitter space
with the α vacuum.
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