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We study the nonadiabatic cosmological production of ultralight dark matter (ULDM) under a minimal
set of assumptions: a free ultralight real scalar as a spectator field in its Bunch-Davies vacuum state during
inflation and instantaneous reheating into a radiation dominated era. For ULDM fields minimally coupled
to gravity, nonadiabatic particle production yields a distribution function peaked at low comoving
momentumN k ∝ 1=k3. The infrared behavior is a remnant of the infrared enhancement of light minimally
coupled fields during inflation. We obtain the full energy momentum tensor, show explicitly its equivalence
with the fluid-kinetic one in the adiabatic regime, and extract the abundance, equation of state, and free-
streaming length (cutoff in the matter power spectrum). Taking the upper bound on the scale of inflation
from Planck, the ULDM saturates the dark matter abundance for m ≃ 1.5 × 10−5 eV with an equation of
state parameter w ≃ 10−14 and a free-streaming length λfs ≃ 70 pc. Thus this cosmologically produced
ULDM yields a cold dark matter particle. We argue that the abundance from nonadiabatic production
yields a lower bound on generic ULDM and axionlike particles that must be included in any assessment of
ULDM as a dark matter candidate.
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I. INTRODUCTION

Despite a large effort on the direct detection of weakly
interacting massive particles in the mass range of a few to
100 GeV with weak interaction cross sections, no particle
beyond the Standard Model with these properties has been
found [1–6]. This lack of evidence is motivating the study
of alternative light or ultralight dark matter (DM) candi-
dates, such as sterile neutrinos, axions, or axionlike
particles, “fuzzy” dark matter (FDM), light dark scalars,
and dark vector bosons [7–15]. An FDM candidate with
massm ≃ 10−22 eV and de Broglie wavelength ≃kpc could
be a cold-dark matter (CDM) candidate with the potential
for solving some small scale aspects of galaxy formation
[16–21]. All of these candidates are characterized by very
small masses and couplings to Standard Model degrees of
freedom. Lyman-α [22,23] and pulsar timing [24] provide
constraints on the mass range of ultralight dark matter
(ULDM). Light DM candidates are not only probed by their
gravitational properties [25] but there are various proposals
for direct detection, from high energy colliders [26] to
“tabletop” experiments [27–33]. There are several pro-
posed mechanisms of production of light or ultralight dark
matter [7–11,13–15].
Particle production in a dynamical cosmological back-

ground was studied in pioneering work in Refs. [34–39].

Gravitational production of DM candidates was studied for
various candidates and within different settings: heavy DM
particles [40–43], production from inflaton oscillations or
oscillatory backgrounds [44–46], for “stiff” equations of
state in [47], or during reheating [48,49]. These previous
studies considered heavy DM candidates and often invoked
the adiabatic approximation valid for large masses and/or
wave vectors.
In this article we study the gravitational production of

ultralight DM with important differences from previous
studies:

(i) We study the nonadiabatic gravitational production
of ULDM as a consequence of cosmological ex-
pansion during the inflationary and postinflationary
radiation dominated era until matter-radiation equal-
ity. We obtain the abundance, equation of state,
and free-streaming length (cutoff scale in the matter
power spectrum) to assess whether this candidate
describes cold, warm, or hot DM.

(ii) We consider a real free scalar field describing the
ULDM as a spectator field during inflation; namely
it does not couple to the inflaton, it does not acquire
an expectation value, and hence it does not contrib-
ute to linear isocurvature perturbations that couple
to long-wavelength metric perturbations [50–52].
We discuss the issue of nonlinear entropy perturba-
tions in Sec. VI. This scalar field is in its Bunch-
Davies vacuum state during inflation. A vanishing
expectation value of the field precludes a “misalign-
ment” type production mechanism.
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(iii) This field does not feature self-interactions or
interactions with any other field; it only interacts
gravitationally.

(iv) We focus on scales that are well outside the horizon
at the end of inflation, since these are the scales of
cosmological relevance for structure formation, and
we assume a rapid transition from the inflationary
stage to a radiation dominated (RD) era.

(v) We obtain the full energy momentum tensor; its
expectation value in the “in” Bunch-Davies vacuum
yields the energy density and pressure. We show that
in the asymptotic regime when the evolution be-
comes adiabatic, the zeroth-order adiabatic energy
momentum tensor coincides with the usual fluid-
kinetic one. We obtain the abundance, equation
of state, and free-streaming length near matter-
radiation equality to assess whether this candidate
describes cold, warm, or hot DM. Imposing the
observed DM abundance yields a bound on the mass
of the ULDM particle which only depends on
cosmological parameters.

We discuss ULDM minimally and conformally
coupled to gravity. Although we expect negligible pro-
duction of an ULDM particle conformally coupled to
gravity, its detailed study provides an explicit quantitative
confirmation of this expectation and highlights the
main differences with the case of minimal coupling.
The comparison between the minimally and conformally
coupled cases allow us to conclude that in the minimal
coupling scenario, substantial particle production occurs
during inflation after the corresponding wavelengths
become superhorizon.
Summary of main results: For a minimally coupled light

scalar field taken as spectator in its Bunch-Davies vacuum
state during inflation, nonadiabatic particle production
yields a distribution function peaked at small comoving
momentum N k ∝ 1=k3. The low momentum enhancement
is a distinct remnant of the infrared enhancement of light
minimally coupled fields during inflation. Assuming the
upper bound on the scale of inflation established by Planck
[53], we find that a mass ≃10−5 eV yields the correct dark
matter abundance. Furthermore, we find that this DM
candidate, despite being very light is extremely cold; its
equation of state parameter at matter-radiation equality is
w ≃ 10−14 and features a free-streaming length (cutoff scale
in the matter power spectrum) λfs ≃ 70 pc. Conformally
coupled ULDM features a negligible abundance.
The results of this study apply also to axionlike particles,

albeit with no other interactions but gravitational. The
abundance, equation of state, and clustering properties only
depend on cosmological parameters and the mass; therefore
this study provides the simplest scenario for particle
production of ULDM and for a long-lived DM candidate
a lower bound on the abundance. This lower bound on the
abundance from nonadiabatic cosmological production

should enter in any assessment of ULDM candidates, even
those with interactions.
The model of ULDM is introduced in Sec. II. Section III

discusses the “in” states and define the “out” particle states,
obtaining the number of asymptotic “out” particles pro-
duced nonadiabatically for minimal and conformal cou-
pling to gravity. In Sec. IV we discuss the nonadiabatic
nature of particle production. Section Vanalyzes the energy
momentum tensor, discusses renormalization aspects,
establishes the relation with the fluid-kinetic energy
momentum tensor in the adiabatic regime, and defines
the energy density and pressure of the asymptotic particle
states. In this section we obtain the relation among the dark
matter abundance, the particle’s mass, and the cosmological
parameters. We also obtain the equation of state and free-
streaming length and establish that nonadiabatic production
of ULDM yields a cold dark matter candidate. In Sec. VI
we discuss linear and nonlinear entropy perturbations.
Section VII discusses various aspects and caveats sug-
gesting further questions and avenues of study, and
Sec. VIII summarizes our conclusions. Two appendixes
provide technical details.

II. THE MODEL FOR THE ULDM SCALAR

We consider a free real ultralight scalar degree of freedom
as a dark matter candidate and invoke the following main
assumptions:

(i) It is a spectator field during inflation. Namely, it
does not interact with any other field, including the
inflaton, and it does not acquire a vacuum expect-
ation value; therefore it does not drive inflation.
Because it does not acquire an expectation value, it
does not contribute to linear isocurvature perturba-
tions that source long-wavelength metric perturba-
tions [50–52]. See Sec. VI for a discussion on
nonlinear entropy perturbations.

(ii) The inflationary stage is described by an exact de
Sitter spacetime, the ultralight field is in the Bunch-
Davies vacuum state, and we consider field fluctua-
tions with superhorizon wavelengths at the end of
inflation, since these are the wavelengths of cosmo-
logical relevance for structure formation.

(iii) We assume instantaneous reheating: namely we
consider an instantaneous transition from the infla-
tionary to a radiation dominated stage postinflation.
There is as yet an incomplete understanding of the
nonequilibrium dynamics of reheating. Reheating
dynamics depend crucially on various assumptions
on couplings with the inflaton and/or other fields
and thermalization processes [54] in an expanding
cosmology. The question of how the nearly ≃100
degrees of freedom of the Standard Model attain a
state of local thermodynamic equilibrium after in-
flation and on what timescales is still unanswered.
Most studies model the couplings and dynamics;

HERRING, BOYANOVSKY, and ZENTNER PHYS. REV. D 101, 083516 (2020)

083516-2



therefore any model of reheating is at best tentative
and very approximate. We bypass the inherent
ambiguities and model dependence of the reheating
dynamics and assume instantaneous reheating after
inflation to a RD era. The physical reason behind
this assumption is that we are primarily concerned
with wave vectors that have crossed the Hubble
radius during inflation well before the transition to
RD and are well outside the horizon during this
transition: hence causally decoupled from micro-
physics. These modes feature very slow dynamics at
the end of inflation, and the assumption that they
are frozen during the reheating time interval seems
physically warranted (see further discussion in
Sec. VII). We assume that both the scale factor
and the Hubble rate are continuous across the
transition. Along with the continuity of the mode
functions and their time derivative across the tran-
sition (see below), this, in fact, entails the continuity
of the energy density obtained from the energy
momentum tensor (see below).

(iv) Unlike previous studies that invoked the adiabatic
approximation, we study nonadiabatic cosmological
production of ULDM. This is a direct consequence
of a very small mass and field fluctuations with
superhorizon wavelengths after inflation.

(v) The RD era is dominated by a large number ≃100 of
ultrarelativistic degrees of freedom justifying taking
the spacetime metric during this era as a background
and neglecting the contribution from the single
scalar degree of freedom.

In comoving coordinates, the action for the real ULDM
scalar field is given by

S ¼
Z

d3xdt
ffiffiffiffiffiffi
−g

p �
1

2
_ϕ2 −

ð∇ϕÞ2
2a2

−
1

2
½m2 þ ξR�ϕ2

�
;

ð2:1Þ

where

R ¼ 6

�
ä
a
þ
�
_a
a

�
2
�

ð2:2Þ

is the Ricci scalar (here the dot stands for derivatives with
respect to comoving time t) and ξ is the coupling to gravity,
with ξ ¼ 0; 1=6 corresponding to minimal or conformal
coupling, respectively. We will study each case separately.
We consider a spatially flat Friedmann-Robertson-Walker
(FRW) cosmology in a conformal time coordinate, with the
metric given by

gμν ¼ a2ðηÞημν; ð2:3Þ

where ημν ¼ diagð1;−1;−1;−1Þ is the flat Minkowski
spacetime metric.

Introducing the conformally rescaled fields

ϕðx⃗; tÞ ¼ χðx⃗; ηÞ
aðηÞ ; ð2:4Þ

with

R ¼ 6
a00ðηÞ
a3ðηÞ ; ð2:5Þ

the primes now refer to derivatives with respect to con-
formal time. The action becomes (neglecting an irrelevant
surface term that does not affect the equations of motion or
energy momentum tensor)

S ¼
Z

d3xdη
1

2
½χ02 − ð∇χÞ2 −M2ðηÞχ2�; ð2:6Þ

where

M2ðηÞ ¼ m2a2ðηÞ − a00ðηÞ
aðηÞ ð1 − 6ξÞ: ð2:7Þ

The inflationary stage is described by a spatially flat de
Sitter spacetime (thereby neglecting slow-roll corrections)
with a scale factor

aðηÞ ¼ −
1

HdSðη − 2ηRÞ
; ð2:8Þ

whereHdS is the Hubble constant during de Sitter and ηR is
the (conformal) time at which the de Sitter stage transitions
to the RD stage.
During the RD stage the scale factor is given by

aðηÞ ¼ HRη ð2:9Þ

with

HR ¼ H0

ffiffiffiffiffiffi
ΩR

p
≃ 10−35 eV; ð2:10Þ

and matter radiation equality occurs at

aeq ¼
ΩR

ΩM
≃ 1.66 × 10−4: ð2:11Þ

We model the transition from de Sitter to RD at a
(conformal) time ηR by requiring that the scale factor and
the Hubble rate be continuous across the transition at ηR,
assuming self-consistently that the transition occurs deep in
the RD era so that aðηRÞ ¼ HRηR ≪ aeq. Continuity of the
scale factor and Hubble rate at the instantaneous reheating
time results in that the energy density, namely the expect-
ation value of T0

0, is continuous at the transition. This
important aspect is discussed further in Sec. V.
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UsingHðηÞ ¼ a0ðηÞ=a2ðηÞ, continuity of the scale factor
and Hubble rate at ηR imply that

adSðηRÞ ¼
1

HdSηR
¼ HRηR; HdS ¼

1

HRη
2
R
; ð2:12Þ

yielding

ηR ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HdSHR

p : ð2:13Þ

The most recent constraints from Planck on the tensor-
to-scalar ratio is [53]

HdS=MPl < 2.5 × 10−5ð95%ÞC:L: ð2:14Þ

We take as a representative value HdS ¼ 1013 GeV, from
which it follows that

adSðηRÞ ¼ HRηR ¼
ffiffiffiffiffiffiffiffi
HR

HdS

s
≃ 10−28 ≪ aeq: ð2:15Þ

This scale corresponds to an approximate ambient radiation
temperature after the transition from de Sitter to RD,

TðηRÞ ≃
T0

aRDðηRÞ
≃ 1015 GeV; ð2:16Þ

where T0 ∝ 10−4 eV is the cosmic microwave background
(CMB) temperature today.
We also define the mass of the DM particle in units

of eV as

mev ≡ m
ðeVÞ ; ð2:17Þ

which for ultralight DM particles we define as mev ≪ 1.

III. ASYMPTOTICS: “IN-OUT” STATES,
ADIABATIC MODE FUNCTIONS,

AND PARTICLE STATES

A. Asymptotic in-out states

The quantization of the real ULDM scalar field in a finite
comoving volume V proceeds by writing

χðx⃗; ηÞ ¼ 1ffiffiffiffi
V

p
X
k⃗

h
ak⃗gkðηÞe−ik⃗·x⃗ þ a†

k⃗
g�kðηÞeik⃗·x⃗

i
; ð3:1Þ

where k⃗ are comoving wave vectors. The mode functions
gkðηÞ are solutions of the equations of motion

g00kðηÞþ
�
k2þm2a2ðηÞ−a00ðηÞ

aðηÞ ð1−6ξÞ
�
gkðηÞ¼0; ð3:2Þ

and are normalized to obey the Wronskian condition

g0kðηÞg�kðηÞ − gkðηÞg0�kðηÞ ¼ −i ð3:3Þ

so that ak⃗, a
†
k⃗
obey canonical commutation relations.

A familiar interpretation of the mode equation follows by
writing Eq. (3.2) as

−
d2

dη2
gkðηÞ þ VðηÞgkðηÞ ¼ k2gkðηÞ;

VðηÞ ¼ −m2a2ðηÞ þ ð1 − 6ξÞ a
00ðηÞ
aðηÞ ; ð3:4Þ

namely a Schrödinger equation for a wave function gk with
a potential VðηÞ and “energy” k2. The potential VðηÞ and/or
its derivative are discontinuous at the transition ηR; how-
ever, gkðηÞ and g0kðηÞ are continuous at ηR. Defining

gkðηÞ ¼
�
g<k ðηÞ; for ; η < ηR

g>k ðηÞ; for ; η > ηR
; ð3:5Þ

the matching conditions are

g<k ðηRÞ ¼ g>k ðηRÞ;
d
dη

g<k ðηÞ
				
ηR

¼ d
dη

g>k ðηÞ
				
ηR

: ð3:6Þ

As is discussed below (see Sec. V), these continuity
conditions on the mode functions, along with the continuity
of the scale factor and Hubble rate at the transition ensures
that the energy density is continuous at the transition from
inflation to RD.

1. Inflationary stage

We consider that the ULDM scalar is in the Bunch-
Davies vacuum state during the inflationary stage, which
corresponds to the mode functions gkðηÞ fulfilling the
boundary condition

gkðηÞ ⟶
η→−∞

e−ikηffiffiffiffiffi
2k

p ; ð3:7Þ

and the Bunch-Davies vacuum state j0i is such that

ak⃗j0i ¼ 0 ∀ k⃗: ð3:8Þ

We refer to this vacuum state as the in vacuum.
We will consider both cases: conformal coupling (CC)

ξ ¼ 1=6 and minimal coupling (MC) ξ ¼ 0.
During the de Sitter stage (η < ηR), with the scale factor

given by Eq. (2.8), the mode equation becomes
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d2

dτ2
g<k ðτÞ þ

�
k2 −

ν2 − 1=4
τ2

�
g<k ðτÞ ¼ 0; ð3:9Þ

where

τ ¼ η − 2ηR; ν2 ¼
8<
:

9
4
− m2

H2
dS

for ξ ¼ 0 ðMCÞ
1
4
− m2

H2
dS

for ξ ¼ 1=6 ðCCÞ

9=
;:

ð3:10Þ

The solution with the boundary condition (3.7) is given by

g<k ðτÞ ¼
1

2

ffiffiffiffiffiffiffiffi
−πτ

p
ei

π
2
ðνþ1=2ÞHð1Þ

ν ð−kτÞ; ð3:11Þ

where Hð1Þ
ν is a Bessel function. We note that with HdS ≃

1013 GeV it follows that m=HdS ≃mev10
−22 ≪ 10−22 and

can be safely ignored in the expression for ν. Therefore,
neglecting the mass of the ULDM scalar, we find

g<k ðτÞ ¼
8<
:

e−ikτffiffiffiffi
2k

p ½1 − i
kτ� for ξ ¼ 0 ðMCÞ

e−ikτffiffiffiffi
2k

p for ξ ¼ 1=6 ðCCÞ

9=
;: ð3:12Þ

WithHdS≃1013GeV we find that ηR≃106 eV−1≃0.2m.
In what follows we will consider that all the modes of
cosmological interest are well outside the Hubble radius at
the end of inflation, namely

kηR ≪ 1; ð3:13Þ

for the value of HdS assumed above, with ηR ≃ 106 ðeVÞ−1
the superhorizon condition (3.13) corresponds to comoving
wave vectors k ≪ μ eV or comoving wavelengths ≫1 m,
obviously including all astrophysically relevant scales.
The in state is the Bunch-Davies vacuum defined by

Eq. (3.8) and the mode functions (3.12) during the inflation
stage, taken to be de Sitter spacetime, thereby neglecting
small slow-roll corrections.

2. Radiation dominated era

During the radiation era for η > ηR, with aðηÞ ¼ HRη we
set a00 ¼ 0, and the mode equation (3.2) becomes

d2

dη2
g>k ðηÞ þ ½k2 þm2H2

Rη
2�g>k ðηÞ ¼ 0; ð3:14Þ

the general solutions of which are linear combinations
of parabolic cylinder functions [55–58]. As “out” boundary
conditions, we impose that such a combination should
describe asymptotically positive frequency “particle” states
and their Hermitian conjugate. This identification relies on
a Wentzel-Kramers-Brillouin (WKB) form of the asymp-
totic mode functions.

Let us consider a particular solution of Eq. (3.14) of the
WKB form

fkðηÞ ¼
e
−i
R

η

ηR
Wkðη0Þdη0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2WkðηÞ
p : ð3:15Þ

Upon inserting this ansatze in the mode equation (3.14) one
finds that WkðηÞ obeys

W2
kðηÞ ¼ ω2

kðηÞ −
1

2

�
W00

kðηÞ
WkðηÞ

−
3

2

�
W0

kðηÞ
WkðηÞ

�
2
�
; ð3:16Þ

where

ω2
kðηÞ ¼ k2 þm2H2

Rη
2: ð3:17Þ

When ωkðηÞ is a slowly varying function of time, the
WKB Eq. (3.16) may be solved in a consistent adiabatic
expansion in terms of derivatives of ωkðηÞ with respect to η
divided by appropriate powers of the frequency, namely

W2
kðηÞ¼ω2

kðηÞ
�
1−

1

2

ω00
kðηÞ

ω3
kðηÞ

þ3

4

�
ω0
kðηÞ

ω2
kðηÞ

�
2

þ���
�
: ð3:18Þ

We refer to terms that feature n derivatives of ωkðηÞ as of
the nth adiabatic order. During the time interval of rapid
variations of the frequencies the concept of the particle is
ambiguous, but at a long time the frequencies evolve slowly
and the concept of the particle becomes clear.
We want to identify particles (dark matter particles) near

the time of matter radiation equality, so that entering in the
matter dominated era we can extract the energy density
and pressure (energy momentum tensor) associated with
dark matter particles. Therefore, we seek to clearly define
the concept of particles near matter-radiation equality,
namely aðηÞ ≃ aeq ≃ 10−4.
The condition of adiabatic expansion relies on the ratio

ω0
kðηÞ

ω2
kðηÞ

≪ 1: ð3:19Þ

An upper bound on this ratio is obtained in the very
long wavelength (superhorizon) limit, and taking ωkðηÞ ¼
maðηÞ in an RD cosmology leads to the condition

a0ðηÞ
ma2ðηÞ ¼

HR

ma2ðηÞ ≪ 1 ⇒ aðηÞ ≫ 10−17ffiffiffiffiffiffiffiffi
mev

p : ð3:20Þ

Therefore, even for mev ≃ 1 corresponding to aðηÞ ≃ 10−17

there is a long period of nonadiabatic evolution since
the end of inflation aðηRÞ ≃ 10−29 ≪ 10−17=

ffiffiffiffiffiffiffiffi
mev

p
, during

which the ωkðηÞ varies rapidly. However, even for an
ultralight particle with mev ≃ 10−22 yielding a much longer
period of nonadiabatic evolution, the adiabatic condition is
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fulfilled well before matter-radiation equality. The adiaba-
ticity condition becomes less stringent for nonvanishing
wave vectors with k ≫ maðηÞ.
In conclusion, the evolution of the mode functions

becomes adiabatic well before matter radiation equality.
During the adiabatic regime theWKBmode function (3.15)
asymptotically becomes

fkðηÞ →
e−i

R
η
ωkðη0Þdη0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðηÞ
p ; ð3:21Þ

and we refer to the mode functions with this asymptotic
boundary condition as out particle states which obey the
Wronskian condition

f0kðηÞf�kðηÞ − fkðηÞf0�k ðηÞ ¼ −i: ð3:22Þ

The definition of these mode functions as describing
particle states merits discussion. Our spacetime is not
Minkowski spacetime; dark energy entails that the cosmol-
ogy describing our spacetime is nearly de Sitter (if dark
energy is in the form of a cosmological constant), and
Minkowski spacetime is a local approximation valid on
scales much smaller than the Hubble scale. The conformal
and (local) comoving energy are related by

ωkðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2a2ðηÞ

q
¼ aðηÞEkðηÞ; ð3:23Þ

with

EkðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2phðηÞ þm2

q
; kphðηÞ≡ k2

a2ðηÞ ; ð3:24Þ

where kphðηÞ is the physical momentum.
Consider the asymptotic phase of the mode function

fkðηÞ given by Eq. (3.21). Using the relations (3.23)
and (3.24) and aðηÞdη ¼ dt with t being cosmic time, it
follows that

Z
η

η0

ωkðη0Þdη0 ¼
Z

t

t0

Ekðt0Þdt0: ð3:25Þ

Expanding around the lower limit and integrating we find

Z
t

t0

Ekðt0Þdt0 ¼ Ekðt0Þðt − t0Þ

×

�
1 −

1

2
β2kðt0ÞHðt0Þðt − t0Þ þ � � �

�
;

ð3:26Þ

where

βkðt0Þ ¼
kphðt0Þ
Ekðt0Þ

; Hðt0Þ ¼
_aðt0Þ
aðt0Þ

; ð3:27Þ

with Hðt0Þ the Hubble expansion rate at t0. Therefore it is
clear that the phase is associated with particle states over
a timescale t − t0 ≪ 1=Hðt0Þ ≃ 13 Gyr. Thus on these
timescales Minkowski spacetime particle states are a valid
description. This, of course, is just a consequence of the
equivalence principle.
The general solution of Eq. (3.14) is

g>k ðηÞ ¼ AkfkðηÞ þ Bkf�kðηÞ; ð3:28Þ

where fkðηÞ are the solutions of the mode equation (3.14)
with asymptotic boundary conditions (3.21) and Ak and Bk
are Bogoliubov coefficients. Since g>k ðηÞ obeys the
Wronskian condition (3.3) and so does fkðηÞ, it follows
that the Bogoliubov coefficients obey

jAkj2 − jBkj2 ¼ 1: ð3:29Þ

Using the Wronskian condition (3.22) and the matching
condition (3.6), we find that the Bogoliubov coefficients
are determined from the following relations:

Ak ¼ i½g0<k ðηRÞf�kðηRÞ − g<k ðηRÞf0k �ðηRÞ�;
Bk ¼ −i½g0<k ðηRÞfkðηRÞ − g<k ðηRÞf0kðηRÞ�: ð3:30Þ

Since the mode functions g<k ðηÞ also fulfill the Wronskian
condition (3.3), it is straightforward to confirm the iden-
tity (3.29).
For η > ηR the field expansion (3.1) yields

χðx⃗; ηÞ ¼ 1ffiffiffiffi
V

p
X
k⃗

h
ak⃗g

>
k ðηÞe−ik⃗·x⃗ þ a†

k⃗
g�>k ðηÞeik⃗·x⃗

i

¼ 1ffiffiffiffi
V

p
X
k⃗

h
bk⃗fkðηÞe−ik⃗·x⃗ þ b†

k⃗
f�kðηÞeik⃗·x⃗

i
; ð3:31Þ

where

bk⃗ ¼ akAk þ a†
−k⃗
B�
k; b†

k⃗
¼ a†

k⃗
A�
k þ a−k⃗Bk: ð3:32Þ

We refer to bk⃗, b
†
k⃗
as the annihilation and creation operators

of out particle states, respectively. They obey canonical
quantization conditions as a consequence of the relation
(3.29). In the Heisenberg picture the field operators evolve
in time but the states do not. The vacuum state j0i is the
Bunch-Davies vacuum state (3.8) in which the number of
out particles is given by

N k ¼ h0jb†
k⃗
bk⃗j0i ¼ jBkj2: ð3:33Þ
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We identify N k with the number of dark matter particles
produced asymptotically from cosmic expansion. Only in
the asymptotic adiabatic regime can N k be associated with
the number of particles. This point will be discussed further
in Sec. VII.
It remains to obtain the solutions fkðηÞ of the mode

equations (3.14) with asymptotic out boundary condition
(3.21) describing asymptotic particle states.
It is convenient to introduce the dimensionless variables

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mHR

p
η; α ¼ −

k2

2mHR
; ð3:34Þ

in terms of which Eq. (3.14) is identified with Weber’s
equation [55–58]

d2

dx2
gðxÞ þ

�
x2

4
− α

�
gðxÞ ¼ 0; ð3:35Þ

whose real solutions are Weber’s parabolic cylinder func-
tions [55–58],

W½α;�x� ¼ 1

23=4

" ffiffiffiffiffiffi
G1

G3

s
Y1ðα; xÞ ∓

ffiffiffiffiffiffiffiffi
2G3

G1

s
Y2ðα; xÞ

#
;

ð3:36Þ

where

G1 ¼
				Γ
�
1

4
þ i

α

2

�				; G3 ¼
				Γ
�
3

4
þ i

α

2

�				; ð3:37Þ

and [55,56]

Y1ðα; xÞ ¼ 1þ α
x2

2!
þ
�
α2 −

1

2

�
x4

4!
þ � � � ; ð3:38Þ

Y2ðα; xÞ ¼ x

�
1þ α

x2

3!
þ
�
α2 −

3

2

�
x4

5!
þ � � �

�
: ð3:39Þ

With these real solutions we construct the complex
solution that satisfies the Wronskian condition (3.22)
and features the asymptotic “out state” behavior (3.21)
with ω2

kðηÞ ¼ x2
4
− α. It is straightforward to confirm that

such a solution is given by (see Appendix A)

fkðηÞ ¼
1

ð8mHRÞ1=4
�
1ffiffiffi
κ

p W½α; x� − i
ffiffiffi
κ

p
W½α;−x�

�
;

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−2πjαj

p
− e−πjαj: ð3:40Þ

It is shown in Appendix A that these solutions do indeed
satisfy the asymptotic out boundary condition (3.21) and
fulfill the Wronskian condition (3.22).

TheBogoliubov coefficients are obtained fromEqs. (3.30),
where the mode functions during the de Sitter era g<k ðηÞ are
given by Eq. (3.12) (with τ ¼ η − 2ηR).
For ηR ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HdSHR

p
[see Eq. (2.13)] it follows that

xðηRÞ¼
ffiffiffiffiffiffiffiffi
2m
HdS

s
≃

ffiffiffiffiffiffiffiffiffiffi
2mev

p
10−11; −αx2ðηRÞ¼ðkηRÞ2≪1;

ð3:41Þ

therefore for η ≃ ηR we can set Y1ðxÞ ≃ 1; Y2ðxÞ ≃ x in
order to obtain the Bogoliubov coefficients from Eq. (3.30).
We note that the condition xðηÞ ≪ 1 implies that

1

mHRη
2
¼ a0ðηÞ

ma2ðηÞ ≫ 1: ð3:42Þ

Therefore, comparing with the condition for adiabaticity
(3.20) we see that the mode functions after the transition are
strongly nonadiabatic.
The regime of nonadiabatic evolution is where particle

production is most effective (see discussion in Sec. VII).
Furthermore, particle production is enhanced at longer
wavelengths because these modes feature the strongest
departure from adiabaticity.
We emphasize that while we assume an instantaneous

transition from the inflationary to the RD stage, the scale
factor, the Hubble rate, the mode functions, and their
(conformal) time derivatives are all continuous across
the transition, and this continuity implies a continuous
process of particle production. As a consequence of these
continuity conditions the transition does not induce a burst
of particle production, nor is there any discontinuity in the
production dynamics. This important aspect will be high-
lighted again in Secs. IV and V below in more detail.

B. Minimal coupling

We begin by studying the case of MC, namely ξ ¼ 0.
The mode functions during the inflationary (de Sitter)
era are given by (3.12) for MC, and during RD the
general solution of the mode equations is given by
(3.28) in terms of the solutions (3.40) with out (particle)
boundary conditions.
For the minimally coupled case we find from Eq.. (3.12)

g<k ðηRÞ ¼
eikηRffiffiffiffiffi
2k

p
�
1þ i

kηR

�
; ð3:43Þ

d
dη

g<k ðηÞ
				
ηR

¼ −ik
eikηRffiffiffiffiffi
2k

p
�
1þ i

kηR
−

1

ðkηRÞ2
�
: ð3:44Þ

Since kηR ≪ 1, we keep the leading order terms in the
superhorizon limit kηR → 0, writing
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g<k ðηRÞ ¼
iffiffiffiffiffi
2k

p
δ
; ð3:45Þ

d
dη

g<k ðηÞ
				
ηR

¼ i
ffiffiffi
k

pffiffiffi
2

p
δ2

; δ ¼ kηR: ð3:46Þ

From Eq. (3.41) we find

fkðηRÞ ¼
1

ð8mHRÞ1=4
�
1ffiffiffi
κ

p − i
ffiffiffi
κ

p �
W½α; 0�; ð3:47Þ

dfkðηÞ
dη

				
ηR

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mHR

p
ð8mHRÞ1=4

�
1ffiffiffi
κ

p þ i
ffiffiffi
κ

p �
W0½α; 0�; ð3:48Þ

with

W0½a; 0� ¼ −
1

2
W½a; 0�: ð3:49Þ

Using these results with the matching conditions (3.30)
yields the Bogoliubov coefficients,

Ak ¼
i
4δ

� ffiffiffi
κ

p �
Rk −

2

Rkδ

�
þ iffiffiffi

κ
p

�
Rk þ

2

Rkδ

��
; ð3:50Þ

Bk ¼
i
4δ

� ffiffiffi
κ

p �
Rk −

2

Rkδ

�
−

iffiffiffi
κ

p
�
Rk þ

2

Rkδ

��
; ð3:51Þ

where

Rk ¼
23=4

jαj1=4
				Γð34 − i jαj

2
Þ

Γð1
4
− i jαj

2
Þ

				1=2: ð3:52Þ

Therefore, the distribution function of produced particles
is given by

N k ¼ jBkj2 ¼
1

4R2
kδ

4

�
κ

�
R2
kδ

2
− 1

�
2

þ 1

κ

�
R2
kδ

2
þ 1

�
2
�
:

ð3:53Þ

It is convenient to extract the relevant scales and hence
define

ffiffiffiffiffiffi
jαj

p
¼ kffiffiffiffiffiffiffiffiffiffiffiffiffi

2mHR
p ≡ z ð3:54Þ

in terms of which it follows that

δ ¼ kηR ¼ z

ffiffiffiffiffiffiffiffi
2m
HdS

s
; ð3:55Þ

yielding

R2
kδ ¼ 23=2

				Γð34 − i z
2

2
Þ

Γð1
4
− i z

2

2
Þ

				
ffiffiffiffiffiffiffiffi
2m
HdS

s
;

1

R2
kδ

4
¼ 1

z3

�
HdS

m

�
2 1

8
ffiffiffi
2

p
				Γð14 − i z

2

2
Þ

Γð3
4
− i z

2

2
Þ

				; ð3:56Þ

with

HdS

m
¼ 1

mev

�
HdS

1013ðGeVÞ
�
1022: ð3:57Þ

Using Stirling’s approximation we find that the asymp-
totic behavior of the ratio of Gamma functions in Eq. (3.56)
is given by

				Γð14 − i z
2

2
Þ

Γð3
4
− i z

2

2
Þ

				⟶z→∞

ffiffiffi
2

p

z
: ð3:58Þ

We focus on wavelengths that are superhorizon at the end
of inflation, namely kηR ≪ 1 which results in the following
condition:

kηR ¼ z

ffiffiffiffiffiffiffiffi
2m
HdS

s
≪ 1: ð3:59Þ

For large z the product

R2
kδ → 2z

ffiffiffiffiffiffiffiffi
2m
HdS

s
¼ 2kηR; ð3:60Þ

therefore in the regime of validity of the superhorizon
approximation kηR ≪ 1, the product R2

kδ ≪ 1 and can
safely be neglected. Hence we can approximate the distri-
bution function as

N k ≃
1

16
ffiffiffi
2

p
�
HdS

m

�
2DðzÞ

z3
; ð3:61Þ

where

DðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−2πz

2
p 				Γð14 − i z

2

2
Þ

Γð3
4
− i z

2

2
Þ

				: ð3:62Þ

Figures 1 and 2 display DðzÞ and zDðzÞ= ffiffiffi
2

p
vs z,

respectively.
The number of produced particlesN k is strongly peaked

at low momentum N k ∝ 1=k3. This infrared enhancement
and the factor H2

dS are both remnants of the infrared
behavior of light minimally coupled scalars during the
de Sitter era. Because DðzÞ → ffiffiffi

2
p

=z for z ≫ 1, it follows
that for large comoving wave vectors N k → 1=k4.
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The small and large momentum limits of the distribution
function are summarized as follows:

N k ∝
�
1=k3; k ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mHR

p

1=k4; k ≫
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mHR

p : ð3:63Þ

C. Conformal coupling

Massless particles conformally coupled to gravity are not
affected by the cosmological expansion. Therefore, we
expect that very light particles with conformal coupling
will not be substantially produced. However, in order to
fully compare with the minimally coupled case, we study
the production in the conformal case and focus on
establishing the main aspects of the difference.
For conformal coupling the mode functions during the

inflationary stage are given by (3.12) for ξ ¼ 1=6. With
kηR ≪ 1 we find

g<k ðηRÞ ¼
1ffiffiffiffiffi
2k

p ; ð3:64Þ

d
dη

g<k ðηÞ
				
ηR

¼ −i
ffiffiffi
k

pffiffiffi
2

p : ð3:65Þ

During the RD era the mode functions are given by (3.28)
with fkðηÞ given by (3.40). The Bogoliubov coefficients are
found in the same manner as for the minimal coupling by
equating the functions and η− derivatives at η ¼ ηR.
We find

Ak ¼
1

4

�� ffiffiffi
κ

p
Rk þ

2ffiffiffi
κ

p
Rk

�
þ i

�
Rkffiffiffi
κ

p þ 2
ffiffiffi
κ

p
Rk

��
; ð3:66Þ

Bk ¼
1

4

�� ffiffiffi
κ

p
Rk −

2ffiffiffi
κ

p
Rk

�
− i

�
Rkffiffiffi
κ

p −
2

ffiffiffi
κ

p
Rk

��
; ð3:67Þ

where κ and Rk are given by (3.40) and (3.52), respectively.
It is straightforward to confirm the identity (3.29). A
comparison with the Bogoliubov coefficients of the min-
imally coupled case, (3.50) and (3.51), reveals that Ak and
Bk for minimal coupling feature the denominators with
δ ¼ kηR ≪ 1. These denominators are a direct conse-
quence of the infrared enhancement of the mode functions
for nearly massless minimally coupled scalar fields in
de Sitter spacetime, as is evident in Eqs. (3.12), (3.43),
and (3.44).
The distribution function of produced particles is

N k¼jBkj2¼
1

8

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þe−2πjαj

p �
R2
kþ

4

R2
k

�
−4

�
: ð3:68Þ

Using the asymptotic properties of the Gamma func-
tions, we find thatN k → 1=ð32α2Þ2 ∝ 1=k8 for k → ∞ and
as k → 0

N k ∝
1ffiffiffiffiffiffijαjp ∝

1

k
; ð3:69Þ

therefore particles are produced primarily with very small
momentum k ≪

ffiffiffiffiffiffiffiffiffiffi
mHR

p
.

The distribution function N k is solely a function of
z ¼ k=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mHR

p
; Fig. 3 displays Nk vs z ¼ jαj1=2 ¼

k=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mHR

p
. It is then convenient to define the distribution

function

N ðzÞ≡N k; ð3:70Þ

where N ðzÞ is peaked at low momentum and vanishes fast
for z>1, for example, N ðz¼1Þ≃10−3; N ðz¼10Þ≃10−7.
As a corollary, the particles are produced nonrelativistically
at the time of matter-radiation equality, since

k
maeq

≲
ffiffiffiffiffiffiffiffiffiffi
2HR

ma2eq

s
≃
10−13ffiffiffiffiffiffiffiffi
mev

p ; ð3:71Þ

FIG. 2. The function zffiffi
2

p DðzÞ vs z displaying the asymptotic
behavior (3.58).

FIG. 1. The function DðzÞ vs z.
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hence, even for mev ≃ 10−22 it follows that k=maeq ≲ 10−2.
Therefore for m≳ 10−22 eV the produced particles are
nonrelativistic at all times after matter-radiation equality.
Although the distribution function is peaked at low

momentum, there is a striking difference between the
minimal and conformal coupling cases. In the MC case
N k ≃ 1=k3, whereas for CC N k ≃ 1=k as k → 0. This
difference can be traced to the difference in mode functions
during the inflationary stage as displayed by Eq. (3.12),
because during the RD era a00 ¼ 0 and the mode equation
and mode functions are the same for MC and CC. During
the inflationary stage a00 ≠ 0 and minimally coupled fields
with masses m ≪ HdS feature an infrared enhancement,
which propagates through the matching conditions into the
Bogoliubov coefficients.
Note that unlike the MC case, in the CC case the

Bogoliubov coefficients Ak, Bk do not depend on the scale
of inflation HdS, and this is also a consequence of the
infrared enhancement of MC light fields during inflation,
encoded in the factors 1=kη in the MC mode functions.
During the RD era both minimally and conformally

coupled fields obey the same equations of motion because
a00 ¼ 0 in RD; hence the mode functions fkðηÞ are
obviously the same in both cases. The difference in
behavior for η > ηR emerges from the different matching
conditions with the mode functions during inflation. This
leads us to conclude that most of the difference in particle
production between these cases is a consequence of the
evolution during the inflationary stage.

IV. NONADIABATIC PARTICLE PRODUCTION

In the expansion of the field in terms of the exact mode
functions (3.1) the annihilation and creation operators ak⃗,

a†
k⃗
are time independent. Following [34–36,59,60] we can

introduce time dependent operators by expanding in the
basis of adiabatic out particle states. Introduce the zeroth-
order adiabatic modes

f̃kðηÞ ¼
e−i

R
η
ωkðη0Þdη0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðηÞ
p ; ωkðηÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2a2ðηÞ

q
;

ð4:1Þ

and expand the exact mode functions gkðηÞ as

gkðηÞ ¼ ÃkðηÞf̃kðηÞ þ B̃kðηÞf̃�kðηÞ ð4:2Þ

and the η derivative (canonical momentum) [34,59,60]

g0kðηÞ ¼ QkðηÞÃkðηÞf̃kðηÞ þQ�
kðηÞB̃kðηÞf̃�kðηÞ: ð4:3Þ

With

QkðηÞ ¼ −iωkðηÞ þ VkðηÞ; ð4:4Þ

with VkðηÞ a real function it follows that the Wronskian
condition (3.3) yields

jÃkðηÞj2 − jB̃kðηÞj2 ¼ 1: ð4:5Þ

Inserting the ansatz (4.2) and (4.3) into the mode
equations yields the coupled equations of motion for the
coefficients ÃkðηÞ, B̃kðηÞ, obtained in Refs. [59,60]. The
relations (4.2) and (4.3) can be inverted to yield the
coefficients [59]

ÃkðηÞ ¼ if̃�kðηÞ½g0kðηÞ −Q�
kðηÞgkðηÞ�; ð4:6Þ

B̃kðηÞ ¼ −if̃kðηÞ½g0kðηÞ −QkðηÞgkðηÞ�: ð4:7Þ

Different choices of the real functions VkðηÞ yield
different dynamics for coefficients ÃkðηÞ, B̃kðηÞ [59,60].
Taking, for example, VkðηÞ ¼ 0 corresponds to the lowest
(zeroth) adiabatic order, and another choice, VkðηÞ ¼
ω0
kðηÞ=2ωkðηÞ, yields a first adiabatic order correction

[59,60]. For both of these values, the continuity of aðηÞ,
HðηÞ, gkðηÞ, g0kðηÞ across the inflation to RD transition
implies the continuity of the coefficients ÃkðηÞ, B̃kðηÞ.
Namely particle production is a continuous process across
the transition, and not a consequence of the assumption of
instantaneous reheating.
The difference in the η dependence of the coefficients Ã,

B̃ for these two choices has been studied in Ref. [60].
Introducing the expansion (4.2) into (3.1) yields

ak⃗gkðηÞ þ a†
−k⃗
g�kðηÞ ¼ ck⃗ðηÞf̃kðηÞ þ c†

−k⃗
ðηÞf̃�kðηÞ; ð4:8Þ

where

ck⃗ðηÞ ¼ ak⃗ÃkðηÞ þ a†
−k⃗
B̃�
kðηÞ;

c†
k⃗
ðηÞ ¼ a†

k⃗
Ã�
kðηÞ þ a−k⃗B̃kðηÞ: ð4:9Þ

FIG. 3. N k vs z ¼ ffiffiffiffiffiffijαjp ¼ kffiffiffiffiffiffiffiffiffi
2mHR

p for conformal coupling.
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Therefore the number of adiabatic particles at a given
time η is

Ñ kðηÞ ¼ h0jc†
k⃗
ðηÞck⃗ðηÞj0i ¼ jB̃kðηÞj2: ð4:10Þ

We now choose to expand in the basis of the zeroth-order
adiabatic out particle states, by setting VkðηÞ ¼ 0. Note that
if gkðηÞ coincides exactly with the adiabatic mode function
f̃kðηÞ, then ÃkðηÞ ¼ 1; B̃kðηÞ ¼ 0, and there is no particle
production.
During the inflationary stage with aðηÞ¼1=HdSðη−2ηRÞ

and η < ηR, the mode functions gkðηÞ are g<k ðηÞ given by
(3.12). As η → −∞ (η ≪ ηR) these approach the adiabatic
mode functions f̃kðηÞ, and hence it is straightforward to
find that

ÃkðηÞ → 1; B̃kðηÞ → 0; ð4:11Þ

yielding as η → −∞

Ñ kðη → −∞Þ ¼ 0; ð4:12Þ

namely the initial vacuum state. For superhorizon wave-
lengths, kη ≪ 1, the exact mode functions for MC in
Eq. (3.12) differ drastically from the adiabatic ones leading
to nonadiabatic particle production when the wavelengths
cross the horizon during the inflationary stage.
During the RD stage, for η > ηR, the mode functions are

g>k ðηÞ given by (3.28) where fkðηÞ are solutions of Weber’s
equations with out boundary conditions (3.21). At early
times after the transition η≳ ηR, the Weber functions fkðηÞ
differ drastically from f̃kðηÞ; however, asymptotically at
long time fkðηÞ coincide with f̃kðηÞ because of the out
boundary conditions (3.21). Therefore, for η ≫ ηR at
asymptotically long time during RD, it is also straightfor-
ward to show that

ÃkðηÞ → Ak þOðω0
k=ω

2
kÞ; B̃kðηÞ → Bk þOðω0

k=ω
2
kÞ;

ð4:13Þ

hence the interpolating time dependent number of particles
yields asymptotically during RD

Ñ kðη ≫ ηRÞ ¼ jBkj2 ¼ N k: ð4:14Þ

This analysis highlights that the out particles are produced
during the time regimes where the exact mode functions
depart from the adiabatic ones. During inflation particle
production is substantially enhanced after horizon crossing
in the minimally coupled case and continues nonadiabati-
cally into the RD era during the regime of nonadiabatic
evolution (3.20). As clearly discussed in Ref. [60], different
choices of the real function VkðηÞ yield different time
dependence of the interpolating particle number during the

nonadiabatic stages, precisely when particles are produced.
Nevertheless, the asymptotic number of particles coincide
with N k for any definitions of Vk that involve a higher
adiabatic ratio [60]. For example, choosing VkðηÞ ¼
ω0
kðηÞ=2ω2

kðηÞ as in Ref. [59], the asymptotic in and out
behavior as η → −∞ and η ≫ ηR remains the same because
the adiabatic ratio vanishes in the asymptotic limits.
Therefore, whereas the definition of particles and the
evolution of the time dependent interpolating particle
number depends on the particular choice of basis vectors
(adiabatic order) and the real function VkðηÞ, the asymp-
totic (out) particle number N k is independent of such a
choice.
During inflation, for a minimally coupled light scalar

field the mode functions are not adiabatic after the
corresponding wavelength becomes superhorizon, namely
as kη ≪ 1 as evidenced by the exact mode functions for the
MC case given by Eq. (3.12). As we have stated above,
during the RD era after inflation, the Weber mode functions
are also nonadiabatic after the transition for superhorizon
wavelengths. The production of out particles occurs pri-
marily during the nonadiabatic evolution and is continuous
across the transition from inflation to RD domination. As
discussed above, this is a consequence of the continuity of
scale factor, Hubble rate, mode functions, and their
conformal time derivative across the transition.
For a CC light particle and with m=HdS ≪ 1, the mode

function in the inflationary era, given by Eq. (3.12) (CC),
does not differ substantially from f̃kðηÞ; hence there is very
little production during the inflationary era, unlike the
minimally coupled case. Hence we expect, that the CC case
will yield a much smaller abundance, an expectation that is
confirmed by the analysis of the energy momentum tensor
below. Furthermore, during RD both minimally and con-
formally coupled fields obey the same equations of motion,
while the corresponding mode functions are drastically
different during inflation. Therefore, the difference in the
evolution for η > ηR between these cases is imprinted from
the inflationary stage through the matching conditions.
While there is a quantitative difference in the dynamics

for different choices of VkðηÞ, the above statements remain
true for any choice consistent with the adiabatic expansion,
as demonstrated in the study of Ref. [60]. Furthermore,
regardless of the precise definition of an interpolating time
dependent particle number, ultimately what is needed to
understand the production of dark matter and its cosmo-
logical impact is the energy momentum tensor associated
with the ULDM field.

V. THE ENERGY MOMENTUM TENSOR:
RENORMALIZATION, ABUNDANCE, AND

EQUATION OF STATE

The energy momentum tensor for the real scalar field
ϕðxÞ with generic coupling to gravity is given by
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Tμν ¼ ð1− 2ξÞϕ;μϕ;ν −
1

2
ð1− 4ξÞgαβϕ;αϕ;βgμν − 2ξϕϕ;μ;ν þ

1

2
ð1− 6ξÞm2ϕ2gμν þ

ξ

2
gμνϕ□ϕ− ξ

�
Rμν −

1

2
ð1− 6ξÞRgμν

�
ϕ2:

ð5:1Þ

Writing ϕðxÞ in terms of the conformally rescaled field χðxÞ as in Eq. (2.4) and with the mode expansion (3.1) the
expectation value of the energy momentum tensor in the Bunch-Davies vacuum state defined by Eq. (3.8) in the spatially
flat FRW cosmology is given by1

h0jT0
0j0i ¼ ρðηÞ ¼ 1

4π2a4ðηÞ
Z

∞

0

k2dk

�
jg0kðηÞj2 þω2

kðηÞjgkðηÞj2 − ð1− 6ξÞ
�
a0

a

�
gkðηÞg0�k ðηÞ þ g0kðηÞg�kðηÞ−

a0

a
jgkðηÞj2

��
;

ð5:2Þ

h0jTμ
μj0i ¼ ρðηÞ − 3PðηÞ ¼ 1

2π2a4ðηÞ
Z

∞

0

k2dk

�
m2a2ðηÞjgkðηÞj2 − ð1 − 6ξÞ

�
jg0kðηÞj2 − ω2

kðηÞjgkðηÞj2

−
a0ðηÞ
aðηÞ ðgkðηÞg

0�
k ðηÞ þ g0kðηÞg�kðηÞÞ −

�
a00ðηÞ
aðηÞ −

�
a0ðηÞ
aðηÞ

�
2
�
jgkðηÞj2 þ ð1 − 6ξÞjgkðηÞj2

a00ðηÞ
aðηÞ

��
; ð5:3Þ

where ρðηÞ and PðηÞ are the energy density and pressure,
respectively. Using the mode equations (3.2) it is straight-
forward to show the covariant conservation of h0jTμ

νj0i.
We note that the continuity of the scale factor, the Hubble
rate, and the mode functions and their conformal time
derivatives at the inflation-RD transition at ηR guarantees
the continuity of the energy density h0jT0

0j0i as is evident
from Eq. (5.2). Hence particle production is not a conse-
quence of the approximation of a sudden transition but
rather a consequence of the nonadiabatic evolution, as
emphasized previously.
The instantaneous reheating approximation, with the

continuity of mode functions, scale factor, and Hubble
rate across the transition, cannot yield a continuity in a00.
The reason for this is physically clear: the expectation value
of the energy momentum tensor of the background in the
homogeneous and isotropic Bunch-Davies vacuum is of the
ideal fluid form h0jTμ

νj0i ¼ diagðρ;−P;−P;−PÞ with
h0jTμ

μj0i ¼ ρ − 3P. The Ricci scalar R ¼ 6a00=a3 ∝
h0jTμ

μj0i ¼ ρ − 3P, during the inflationary stage the equa-
tion of state is P ¼ −ρ yielding h0jTμ

μj0i ≠ 0, whereas in
an RD era P ¼ ρ=3 and h0jTμ

μj0i ¼ 0, hence a vanishing

Ricci scalar.2 Therefore instantaneous reheating implies a
discontinuity in the Ricci scalar, hence a00. For the scalar
DM particle h0jTμ

μj0i given by (5.3) depends explicitly on
a00; therefore, while the energy density is continuous, the
pressure features a discontinuity as a consequence of the
change in the background equation of state for instanta-
neous reheating.
During the inflationary stage η < ηR the mode functions

are g<k ðτÞ given by (3.11) corresponding to the “in” Bunch-
Davies vacuum state. Therefore during this stage the energy
density is simply the zero point energy density associated
with the Bunch-Davies vacuum.
For η > ηR, the mode functions in (5.2) and (5.3) are

gkðηÞ ¼ g>k ðηÞ ¼ AkfkðηÞ þ Bkf�kðηÞ, with the Bogoliubov
coefficients given by Eqs. (3.30) obeying the relation
(3.29). We now write h0jTμ

ν j0i in terms of the mode
functions fkðηÞ describing the asymptotic particle states
with out boundary conditions. Since we are interested
in the energy momentum tensor near matter radiation
equality, we average over rapidly varying phases in the
interference terms of the form ff; f�f� (and derivatives).
We find

h0jT0
0j0i ¼ ρðηÞ ¼ 1

4π2a4ðηÞ
Z

∞

0

k2dkð1þ 2N kÞ
�
jf0kðηÞj2 þ ω2

kðηÞjfkðηÞj2

− ð1 − 6ξÞ
�
a0

a

�
fkðηÞf0�k ðηÞ þ f0kðηÞf�kðηÞ −

a0

a
jfkðηÞj2

��
; ð5:4Þ

1We take the infinite volume limit with 1
V

P
k⃗ →

R
d3k
ð2πÞ3.

2This neglects the conformal anomaly [61,62].
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h0jTμ
μj0i ¼

1

2π2a4ðηÞ
Z

∞

0

k2dkð1þ 2N kÞ
�
m2a2ðηÞjfkðηÞj2 − ð1 − 6ξÞ

�
jf0kðηÞj2 − ω2

kðηÞjfkðηÞj2

−
a0ðηÞ
aðηÞ ðfkðηÞf

0�
k ðηÞ þ f0kðηÞf�kðηÞÞ −

�
a00ðηÞ
aðηÞ −

�
a0ðηÞ
aðηÞ

�
2
�
jfkðηÞj2 þ ð1 − 6ξÞjfkðηÞj2

a00ðηÞ
aðηÞ

��
; ð5:5Þ

where N k ¼ jBkj2 and used the relation (3.29). The next
step consists of expanding WkðηÞ defining the WKB form
of the mode functions (3.15) in the adiabatic expansion
(3.18). We follow the steps in Refs. [59,61,62] and expand
the expectation values of the energy momentum tensor up
to fourth order in the adiabatic expansion, with the result

ρðηÞ ¼ ρð0ÞðηÞ þ ρð2ÞðηÞ þ ρð4ÞðηÞ þ � � � ; ð5:6Þ

h0jTμ
μj0i ¼ T ð0ÞðηÞ þ T ð2ÞðηÞ þ T ð4ÞðηÞ þ � � � ; ð5:7Þ

where the superscripts refer to the order in the adiabatic
expansion. The respective contributions are similar to the
results of Refs. [61,62] but with the extra factor 1þ 2N k in
the integrand.
Of particular interest for this study are the zeroth

adiabatic order energy density and pressure, which are
given by

ρð0ÞðηÞ ¼ 1

4π2a4ðηÞ
Z

∞

0

k2½1þ 2N k�ωkðηÞdk; ð5:8Þ

T ð0ÞðηÞ ¼ 1

4π2a4ðηÞ
Z

∞

0

k2½1þ 2N k�
m2a2ðηÞ
ωkðηÞ

dk; ð5:9Þ

yielding

Pð0ÞðηÞ ¼ 1

3
½ρð0ÞðηÞ − T ð0ÞðηÞ�

¼ 1

12π2a4ðηÞ
Z

∞

0

½1þ 2N k�
k4

ωkðηÞ
dk: ð5:10Þ

The energy momentum tensor features ultraviolet diver-
gences that must be regularized and renormalized. This
is explicit at zeroth adiabatic order given by Eqs. (5.8)
and (5.9), and the higher order adiabatic corrections can
be found in Refs. [61,62] by multiplying the integrand in
momentum by the factor 1þ 2N k. Appendix B shows
some second order adiabatic contributions that yield ultra-
violet divergences in hTμ

νi for N k ¼ 0. These adiabatic
terms feature inverse powers of ωk as befits the adiabatic
expansion, in particular 1=ωk; 1=ω3

k which yield quadratic
and logarithmic ultraviolet divergences.
For the minimally coupled case N k ∝ k−4 at large

momenta [see Eq. (3.63)]. Therefore the terms with N k
for the higher adiabatic orders do not contribute to the
ultraviolet divergences. Consider, for example, the second

adiabatic corrections ρð2Þ, explicitly given in Appendix B,
as compared to the zeroth order contribution during the
radiation dominated area near matter radiation equality
(5.8) where it is suppressed by a factor

∝
�
a0

ma

�
2

≃
�

HR

maeq

�
2

≃
�
10−31

mev

�
2

; ð5:11Þ

with much larger suppression factors for the terms of
higher adiabatic order. The same argument holds for T ð2Þ,
for which several contributions are explicitly given in
Appendix B.
Renormalization The ultraviolet divergences in the

energy momentum tensor must be regularized and renor-
malized. For N k ¼ 0 such a program is well established
and has been thoroughly studied and implemented in
Refs. [35,59,61–66]. As discussed in detail in these
references, the ultraviolet divergences are absorbed into
renormalizations of the cosmological constant, Newton’s

constant G, and into the geometric tensors Hð1;2Þ
μν which

result from the variational derivative of a gravitational
action that includes higher curvature terms ∝ R2, RμνRμν.
These higher curvature terms are added in the action
multiplied by counterterms, which are then required to
cancel the coefficients of the geometric tensors in such a
way that the renormalized action is the Einstein-Hilbert
action.
Since our focus is to study the contribution from particle

production, namely N k ≠ 0, we absorb the full energy
momentum tensor for N k ¼ 0 into these renormalizations.
This is tantamount to subtracting the zero point or vacuum
energy density during the inflation and radiation eras.
After this subtraction and renormalization, only the terms
proportional to N k in (5.8) and (5.7) are considered.
Since, as shown explicitly in Eq. (3.63), N k ∝ 1=k4 as

k → ∞ for the minimally coupled case, the corrections
of second adiabatic order and higher do not feature ultra-
violet divergences and are suppressed by factors of order
10−62=m2

ev near matter-radiation equality. Hence, we keep
solely the contribution of zeroth adiabatic order from
particle production. After renormalization and to leading
adiabatic order we find the contributions to the energy
density and pressure from particle production to be
given by

ρðppÞðηÞ ¼ 1

2π2a4ðηÞ
Z

∞

0

k2N kωkðηÞdk; ð5:12Þ
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PðppÞðηÞ ¼ 1

2π2a4ðηÞ
Z

∞

0

1

3
kvkðηÞN kk2dk;

vkðηÞ ¼
k

ωkðηÞ
: ð5:13Þ

This result is noteworthy: the density and pressure are
exactly the diagonal components of a kinetic energy
momentum tensor describing a (perfect) fluid. Note that
the integrals are over comoving momentum; in terms of the

physical (local) energy EkðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2phðηÞ þm2

q
and physi-

cal momenta kphðηÞ ¼ k=aðηÞ these expressions can be
written as

ρðppÞðηÞ ¼ 1

2π2

Z
∞

0

F ½aðηÞkph�EkðηÞk2phdkph; ð5:14Þ

PðppÞðηÞ¼ 1

2π2

Z
∞

0

1

3
kph

kph
EkðηÞ

F ½aðηÞkph�k2phdkph; ð5:15Þ

where

F ½aðηÞkph�≡N k; ð5:16Þ

is a frozen, i.e., a time independent distribution function of
produced particles. It is straightforward to show covariant
conservation, namely

_ρðppÞðtÞ þ 3
_aðtÞ
aðtÞ ðρ

ðppÞðtÞ þ PðppÞðtÞÞ ¼ 0: ð5:17Þ

We highlight this result: the usual fluid-kinetic energy
momentum tensor emerges as the leading order (zeroth
order) in the adiabatic expansion after subtracting the
“vacuum” contribution which is absorbed in the renorm-
alization of the cosmological and Newton’s constant, and
cancel counterterms that multiply higher curvature terms
in the action. The full expectation value of the energy
momentum tensor during the nonadiabatic stage cannot be
written in the kinetic form in terms of the distribution
function; such simplification is only available during
adiabatic evolution.
As discussed above, in the minimally coupled case the

distribution function N k ∝ 1=k4 in the large k limit, and
therefore both the energy density (5.12) and pressure (5.13)
at zeroth adiabatic order feature a priori ultraviolet loga-
rithmic divergences. However, these divergences are
actually beyond the realm of validity of two of our main
approximations, (i) superhorizon wavelengths at the end of
inflation, namely kηR ≪ 1. As discussed in Sec. III, taking
the upper bound on the scale of inflation, this condition
implies that k ≪ μeV, which is hardly an ultraviolet large
cutoff in momentum. Therefore, in principle and for
consistency, the momentum integrals must be cutoff at
this scale, and thus the “divergences” associated with

particle production are not physical. (ii) As discussed in
detail in Sec. VII the assumption of instantaneous reheating
will definitely not be warranted for subhorizon wave-
lengths, and the distribution function for these (large) wave
vectors (with k ≫ μeV) may differ drastically from that
of the wave vectors that are super-Hubble at the end of
inflation. Hence, consistency with our main assumptions
implies that the contributions from particle production to
the energy momentum tensor must be cut off at a comoving
momentum scale ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HRHdS

p
≃ μeV for HdS ≃ 1013 GeV,

which corresponds to wavelengths longer than a meter.
Therefore, we regularize the integrals featuring N k by

introducing a comoving upper momentum cutoff kmax≲
1=ηR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

HRHdS
p

. Because the distribution function N k is
enhanced at low momentum we also include a lower
momentum cutoff kmin ≃H0 corresponding to horizon-
sized wavelengths today. Hence the energy density and
pressure from particle production are given by

ρðppÞðηÞ ¼ 1

2π2a4ðηÞ
Z

kmax

kmin

N kωkðηÞk2dk; ð5:18Þ

PðppÞðηÞ ¼ 1

6π2a4ðηÞ
Z

kmax

kmin

N k
k2

ωkðηÞ
k2dk: ð5:19Þ

The abundance ΩðaÞ and the equation of state wðaÞ are,
respectively,

ΩðaÞ ¼ ρðppÞðηÞ
ρc

; ρc ¼
3H2

0

8πG
≃ 0.4 × 10−10 ðeVÞ4;

ð5:20Þ

wðaÞ ¼ PðppÞðηÞ
ρðppÞðηÞ : ð5:21Þ

A. Minimal coupling

For the minimal coupling caseN k is given by Eq. (3.61)
in terms of the variable z defined by Eq. (3.54), and in this
case we find the abundance (5.20)

ΩðaÞ ¼ m
ρca3ðηÞ

�
HdS

m

�
2

ðmHRÞ3=2
1

16π2

Z
zM

zm

DðzÞ

×

�
z2

a2ðηÞ
�
2HR

m

�
þ 1

�
1=2 dz

z
: ð5:22Þ

The minimum zm provides an infrared cutoff, with
kmin ≃H0, and it follows that zm ¼ H0=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mHR

p
. Values

of comoving momentum k ≫ m inside the integral of the
distribution function yield contributions that redshift as
1=a4ðηÞ, hence contributing to the radiation component.
The matter contribution for aðηÞ ≳ aeq is extracted from
contributions to the integrals from comoving momenta
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k≲maeq; hence we introduce an upper cutoff
zM ≤ maeq=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mHR

p
. Therefore for aðηÞ > aeq we find

the contribution to the DM abundance

ΩðaÞ ≃ 0.5
ffiffiffiffiffiffiffiffi
mev

p
a3ðηÞ

�
HdS

1013 GeV

�
2
Z

zM

zm

DðzÞ
z

dz≡ Ωpp

a3ðηÞ :

ð5:23Þ

Taking as the maximum comoving wave vector k ≃maeq
and the minimum k ≃H0, it follows that zM ≃ ffiffiffiffiffiffiffiffi

mev
p

×
1013 ≫ 1 and zm≃H0=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mHR

p
≃10−16=

ffiffiffiffiffiffiffiffi
mev

p ≪1; hence

DðzMÞ ≃ 10−13=
ffiffiffiffiffiffiffiffi
mev

p ≪ 1 and DðzmÞ ≃
ffiffiffi
2

p Γð1
4
Þ

Γð3
4
Þ. Upon

integration by parts the integral in (5.23) is given byZ
zM

zm

DðzÞ
z

dz ≃ −
ffiffiffi
2

p Γð1
4
Þ

Γð3
4
Þ ln

�
H0ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mHR

p
�

−
Z

∞

0

lnðzÞ dDðzÞ
dz

dz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≃0.6

; ð5:24Þ

where in the second term (integral) we have taken zm → 0;
zM → ∞ because the integrand vanishes fast at both limits,
and the remaining integral is carried out numerically.
Therefore to leading order we find

ΩðaÞ ¼ Ωpp

a3ðηÞ ;

Ωpp ¼ 2.09
ffiffiffiffiffiffiffiffi
mev

p �
HdS

1013 GeV

�
2

ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mHR

p
H0

�
: ð5:25Þ

For a given value of mev this equation yields the
contribution to the dark matter abundance as a function
of mev and the only uncertain cosmological parameter HdS.
Requiring that the abundanceΩpp ¼ ΩDM ¼ 0.25 gives the
dependence of the mass that yields the correct abundance
on HdS, namely

ffiffiffiffiffiffiffiffi
mev

p ½ln½ ffiffiffiffiffiffiffiffi
mev

p � þ 36� ¼ 0.12

�
1013 GeV

HdS

�
2

: ð5:26Þ

For HdS ≃ 1013 GeV we find that the correct DM abun-
dance yields the value

m ≃ 1.5 × 10−5 eV: ð5:27Þ

The superhorizon approximation kηR ≪ 1 entails a
maximum value of the mass for which the approximations
involved are consistent. We have set the maximum value
of the momentum integral as kM ≃maeq so as to capture all
the values of momenta that contribute to the (nonrelativ-
istic) matter contribution. For this upper limit to be
consistent with the superhorizon approximation it follows

that the mass of the ULDM particle is constrained by the
upper limit

maeqηR ≲ 1 ⇒ m≲ 0.02

�
HdS

1013 GeV

�
1=2

eV: ð5:28Þ

Figure 4 displays ln½Ωpp

ΩDM
� with ΩDM ¼ 0.25 vs ln½mev�

for HdS ¼ 1013 GeV.
The pressure and equation of state are given by

Eqs. (5.19) and (5.21), respectively. For the nonrelativistic
component describing a matter dominated “fluid” we take
ωkðηÞ ¼ maðηÞ in the integrands. The remaining integrals
are similarly obtained with the above cutoffs. The equation
of state parameter is given by

wðaÞ ¼ 2

3

HR

ma2ðηÞ

R
zM
zm

DðzÞzdzR
zM
zm

DðzÞ
z dz

; ð5:29Þ

taking zM ¼ maeq=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mHR

p
and zm ≃H0=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mHR

p
we find

wðaÞ ≃ 2Γð3=4Þ
3Γð1=4Þ

ð HR
2ma2eq

Þ1=2

ln½
ffiffiffiffiffiffiffiffiffi
2mHR

p
H0

�

�
aeq
aðηÞ

�
2

: ð5:30Þ

Taking the value of the mass as given by (5.27) with
HdS ≃ 1013 GeV we find

wðaeqÞ ≃ 2.5 × 10−14: ð5:31Þ

For a nonrelativistic species we find

hV2ðηÞi ¼
R
N k

k2

m2a2ðηÞ k
2dkR

N kk2dk
≡ 3

PðηÞ
ρðηÞ ¼ 3wðaÞ: ð5:32Þ

Therefore, indeed this is a very cold dark matter
candidate despite being so light. The main reason is that
the distribution function strongly peaks at small values of

FIG. 4. ln½Ωpp

ΩDM
� vs ln½mev� for HdS ¼ 1013 GeV. The blue-

shaded region corresponds to underabundance and the red-shaded
area to overabundance.
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momentum. The redshift behavior of wðaÞ is that expected
for a nonrelativistic component.

1. Free-streaming length

The comoving free-streaming wave vector is defined in
analogy with the Jeans wave vector in the fluid description
of perturbations, namely [67]

k2fsðηÞ ¼
4πGρmðηÞ
hV2ðηÞi a2ðηÞ ¼ 3

2

H2
0Ωm

hV2
eqia2eq

aðηÞ; ð5:33Þ

where hV2ðηÞi is given by Eq. (5.32), which we have
written as

hV2ðηÞi ¼ hV2
eqi

�
aeq
aðηÞ

�
2

: ð5:34Þ

As shown in Ref. [67] the cutoff scale in the power
spectrum is the comoving free-streaming length

λfs ≡ 2π

kfsðaeqÞ
¼ 2π

�
2hV2

eqiaeq
3ΩM

�
1=2

dH; ð5:35Þ

where dH ¼ 1=H0 ¼ 3 Gpc=h is the Hubble distance. This
definition differs from the usual definition of the comoving
free-streaming distance lfs during matter domination by
factors of Oð1Þ:

lfs ¼
Z

η0

ηeq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hV2ðηÞi

q
dη ¼

ffiffiffiffiffiffiffiffiffiffiffi
hV2

eqi
q

aeq

Z
η0

ηeq

dη
aðηÞ : ð5:36Þ

During the matter dominated era it follows that

dη ¼ 1

H0

ffiffiffiffiffiffiffi
ΩM

p da

a1=2
; ð5:37Þ

hence the free-streaming distance from matter-radiation
equality until a0 ≃Oð1Þ is given by

lfs ¼ 2

�hV2
eqiaeq
ΩM

�
1=2

dH: ð5:38Þ

Using the results (5.31) and (5.32) corresponding to
HdS ≃ 1013 GeV, we find

λfs ≃ lfs ≃ 70 pc: ð5:39Þ

This is the cutoff scale in the matter power spectrum;
thus we see that even for a very light DM candidate with
m ≃ 10−5 eV the cosmological production yields a very
cold species with a rather small free-streaming length
comparable to that of heavy weakly interacting massive
particles.

B. Conformal coupling

For the case of conformal coupling, the distribution
function N k that enters in the abundance and equation of
state [(5.18)–(5.21)] is given by (3.68). The integral for the
density, Eq. (5.18), cannot be obtained in closed form.
However, N k is solely a function of z ¼ k=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mHR

p
and

localized in the region 0 ≤ z ≤ 1 as discussed in Sec. III C
and displayed in Fig. 3. Furthermore for aðηÞ ≃ aeq this
region of comoving momenta corresponds to nonrelativ-
istic particles and we can safely replace ωkðηÞ ≃maðηÞ
inside the integrand in (5.18), yielding (near matter
radiation equality)

ρðppÞðηÞ ¼ m
a3ðηÞ

Z
N kk2

dk
2π2

; ð5:40Þ

therefore the low momentum peak of the distribution
function entails that the density redshifts as nonrelativistic
matter.
Changing variables to z and writingN k ≡N ðzÞ, we find

ρðppÞðηÞ ¼ 1

2π2
m4

a3ðηÞ
�
2HR

m

�
3=2

Z
zM

0

N ðzÞz2dz; ð5:41Þ

where zM ≲maeq=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mHR

p
and the lower limit can be

taken to zero because the integrand does not feature an
infrared divergence.
The remaining integral is rapidly convergent and is

carried out numerically with an upper limit z ≃ 20 [with
N ð20Þ ≃ 10−20], for which the integral yields the value
≃0.01. Hence we find the abundance

ΩðaÞ ≃ 1.3 ×
1

a3ðηÞ
�

m
ðeVÞ

�
4
�
2HR

m

�
3=2

× 107

≃
ðmevÞ5=2
a3ðηÞ × 10−46: ð5:42Þ

Thus, even for m ≃ ðeVÞ the dark matter abundance for
conformally coupled particles is negligible. This is in
qualitative agreement with our expectations of a very small
abundance in this case, but implementing the framework
described in the previous section allowed us to obtain a
quantitative understanding of the abundance in this case.
The main differences with the minimally coupled case

can be traced back to the factors δ ¼ kηR in Eqs. (3.50) and
(3.51). These are a result of the behavior ∝ 1=ðkηRÞ of the
MC mode functions during the inflationary stage [see
Eq. (3.12)], a hallmark of the infrared enhancement of
correlations of nearly massless particles minimally coupled
to gravity in de Sitter spacetime. These factors result in the
infrared enhancementN k ∝ 1=k3 and the factorH2

dS for the
MC case vs N k ∝ 1=k for the CC case.
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VI. ON ENTROPY PERTURBATIONS

Adiabatic and entropy perturbations from inflation have
been thoroughly studied in Refs. [50–52], and we refer the
readers to these for details. In Refs. [50,51] the case of two
fields is studied in detail; this is the case that is most
relevant for our discussion: one of the fields is the inflaton,
the other is the ULDM field with action given by (2.1).
While the inflaton field develops an expectation value that
drives the inflationary stage, the ULDM does not acquire an
expectation value and is taken to be in its Bunch-Davies
vacuum state. In Ref. [50] “adiabatic” and “entropy” fields
are obtained from the fluctuations of the two fields around
their expectation value, by introducing a “mixing” angle
that depends explicitly on the time derivative of the
expectation values of both fields. The adiabatic field
represents a fluctuation along the background trajectory,
while the entropy field is the orthogonal combination in
terms of the mixing angle. We identify the ULDM field
with the second χ-field in Ref. [50]. Since in our case this
field does not acquire an expectation value, it follows that
the mixing angle vanishes identically. In this case, the
inflaton fluctuations are the adiabatic field and the
ULDM field is identified with the entropy field.
Therefore, considering perturbations linear in the fluctua-
tions, the vanishing of the mixing angle implies that the
entropy perturbation does not source the long-wavelength
evolution of the comoving curvature perturbation, nor is
there any cross-correlation between the adiabatic and
entropy perturbations [see for example Eqs. (47), (48),
(52), and (55) and comment below Eq. (50) in Ref. [50] ].
Reference [68] focused on superheavy dark matter, and

following on previous study in Ref. [69] recognized that in
the case in which the dark matter field does not acquire an
expectation value the treatment of isocurvature perturba-
tions must be modified substantially. The authors of
Ref. [68] also recognized that when the superheavy dark
matter field does not acquire an expectation value (back-
ground) there is no mixing between the fluctuations of this
and the inflaton field to linear order.3

The treatment advocated in Ref. [68] defines the energy
density perturbation of the dark matter field as

δρðdmÞðx⃗Þ ¼ ∶TðdmÞ
00 ðx⃗Þ∶ − h∶TðdmÞ

00 ðx⃗Þ∶i
ρðdmÞ ; ð6:1Þ

ρðdmÞ ¼h∶TðdmÞ
00 ðx⃗Þ∶i; ð6:2Þ

where normal ordering is referred to the Bogoliubov rotated
vacuum state (see Ref. [68] for details) and identifies the
power spectrum of entropy perturbations from the spatial
Fourier transform of the connected correlation function,
namely

Z
d3r
ð2πÞ3 e

ik⃗·r⃗hδρðdmÞðx⃗ÞδρðdmÞðx⃗þ r⃗Þi ∝ PðdmÞðkÞ: ð6:3Þ

In free field theory the connected correlator in Eq. (6.3) is a
one loop diagram.
In Ref. [68] the expectation value ρðdmÞ depends explic-

itly on the Bogoliubov coefficient β associated with particle
production during inflation and vanishes identically when
this coefficient vanishes, which is the case in our study.
The above definitions do not apply to our case since

during the inflationary stage the quantum state in our
treatment is the Bunch-Davies vacuum state, and conse-
quently, the energy momentum tensor during this stage
describes the zero point energy density of this vacuum state.
There is no Bogoliubov coefficient β and as per the result
Eq. (90) in Ref. [68] the energy density ρðdmÞ given by (6.2)
vanishes identically. Furthermore, as discussed in Sec. V we
have renormalized the energy momentum tensor by sub-
tracting the full contribution from the zero point energy
density during inflation and the radiation eras. Therefore the
definition (6.1) cannot be applicable to our study.
There is another important caveat in the interpretation

of entropy perturbations advocated in Ref. [68]: as we
discussed in detail in Sec. V the expectation value of the
energy momentum tensor features quartic, quadratic, and
logarithmic divergences and requires subtractions up to
fourth adiabatic order to be renormalized. These aspects
had already been addressed in Refs. [34,61,62,65]. The
various divergences are absorbed into renormalizations of
the cosmological and Newton constants, but also in higher
curvature counterterms in the bare action (corresponding to

the tensors Hð1.2Þ
μν [61]).

Different regularizations (subtractions) yield different
finite contributions to the energy density; therefore the
finite contribution to the expectation value yielding ρðdmÞ is
not uniquely defined and depends on the subtraction
scheme. As discussed in Sec. V we substract the full zero
point energy throughout the evolution. In fact, this pro-
cedure subtracts completely the zero point contribution
during inflation and radiation eras; hence in our case ρðdmÞ
vanishes identically during inflation after renormalization.
This is the usual procedure in semiclassical gravity: for
example during inflation only the background (expectation
value) contribution is considered and in radiation domina-
tion only the finite temperature (kinetic) contributions to
the energy momentum tensor are considered. Furthermore,
there are several other caveats associated with the definition
of the power spectrum (6.3) proposed in Ref. [68] [see
Eq. (96) in Ref. [68] ]: (i) It is straightforward to show that
the kinetic term contribution to the energy momentum
tensor yields an ultraviolet divergence with the fifth power
of an ultraviolet cutoff to PðdmÞðkÞ. In Ref. [68] this
divergence in the kinetic contribution is not manifest
because this contribution is evaluated near the end of3See the discussion prior to Eq. (87) in Ref. [68].
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inflation when the mode functions are dominated by the
superhorizon contributions and the integrals have been
cutoff in the ultraviolet, with an upper momentum aeHe.
But the leading ultraviolet divergences are similar to those
in Minkowski spacetime and dominate the earlier dynam-
ics. (ii) Even for the mass term contribution of the energy
momentum tensor, the one-loop connected diagram that
yields PðdmÞðkÞ still features a linear ultraviolet divergence,
which was neglected in Ref. [68] because it is multiplied
by a function of time that becomes vanishingly small near
the end of inflation. (iii) unlike the renormalization of the
energy momentum tensor whose subtractions are absorbed
systematically into the parameters of the total action
(including higher curvature terms), there is no natural
manner to absorb the divergences in the power spectrum
(6.3). In Ref. [68] all the divergent integrals are cut off at
wave vectors ≃aeHe, namely those that cross the horizon at
the end of inflation. However, a complete treatment should
include a proper renormalization of the divergences and the
zero point energy. In our study, the fact that during inflation
the full energy density is the zero point corresponding to the
Bunch-Davies vacuum makes the framework to describe
nonlinear entropy perturbations advocated in Ref. [68] not
applicable to our case. Some of these caveats have been
recognized in Ref. [68].4

Entropy perturbations postinflation: The discussion
above has focused on the generation of entropy perturba-
tions during inflation and the applicability of the frame-
work introduced in Ref. [68]. However, the important
aspect is the impact of entropy (isocurvature) perturbations
upon the CMB. In the usual approach to cosmological
perturbations, adiabatic and isocurvature perturbations
during inflation provide the initial conditions of the
respective perturbations upon horizon reentry during the
radiation (or matter) dominated era. As discussed in detail
in Refs. [51,52], the initial conditions of isocurvature
perturbations are determined by the set of transfer functions
discussed in Ref. [51]. These, in turn, are proportional to
the mixing (or correlation) angle associated with the
expectation value of the entropy field [see for example
Eqs. (44) and (45) in [52] ], which in our case vanishes
identically. Furthermore, the framework introduced in
Ref. [68] does not apply to our case as discussed above.
Therefore, for the case that we study, the initial conditions
for isocurvature perturbations during the radiation domi-
nated era cannot be determined in the inflationary stage. As
discussed above, the energy momentum tensor during
inflation describes the vacuum zero point energy and is
completely subtracted out by renormalization. In the post-
inflationary stage it features three contributions: the vac-
uum contribution is subtracted out in the renormalization
procedure, the interference term is rapidly oscillating in
the adiabatic regime and therefore its expectation value

averages out on short timescales, and the contribution from
particle production, which in the adiabatic regime, features
the kinetic fluid form. It is this latter term that is the relevant
one (after renormalization) to understand dark matter
perturbations, the distribution function is completely deter-
mined by the Bogoliubov coefficient jBkj2. The influence
of isocurvature perturbations on the CMB is a result of
solving the system of Einstein-Boltzmann equations for
linear cosmological perturbations, in which jBkj2 is the
distribution function of the unperturbed DM component,
and ρpp (5.18) describes the background density. This set
of Einstein- Boltzmann equations must be appended with
initial conditions, which are determined from the respective
superhorizon perturbations at the end of inflation. From the
above discussion, it is clear that in the case that we study,
the proper initial conditions for isocurvature perturbations
remain to be understood at a deeper level.
The corollary of this discussion is that a proper definition

of the power spectrum of entropy perturbations in the case
when the fields do not acquire expectation values remains
to be understood at a deeper level. The caveats associated
with the renormalization of the energy momentum tensor
along with its correlations remain to be clarified in a
consistent and unambiguous manner. These include a
proper account of the fact that there is no natural manner
to renormalize the divergences in a power spectrum
obtained from the connected correlation function of the
energy momentum tensor. These remain even when the
zero point contribution to the energy density is completely
subtracted. The contribution of zero point energy correla-
tions to nonlinear perturbations merits deeper scrutiny,
since even the fluctuations of the inflaton yield zero point
contributions to the energy density and all other fields that
are either produced or excited postinflation presumably
also contribute to the zero point energy density during
inflation. A satisfactory resolution of these important
issues, necessary to quantify reliably the impact of non-
linear entropy perturbations is still lacking and is clearly
well beyond the scope of this study.

VII. DISCUSSION AND CAVEATS

On reheating: Reheating dynamics, namely the non-
equilibrium processes that lead to a RD dominated era after
the inflationary stage, are still being vigorously studied.
Most studies of reheating necessarily input particular forms
for the inflaton potential and model the couplings of
(standard model) particles to the inflaton and/or other
degrees of freedom thereby yielding model dependent
descriptions with widely different timescales depending
on unknown couplings and masses [54].
One of our main assumptions is that the transition

from the inflationary stage to the RD dominated stage is
instantaneous. The main physical reason behind this
approximation is that we focus on wavelengths that are
superhorizon at the end of inflation. The dynamics of the4See for example the comments after Eq. (86) in Ref. [68].
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mode functions for these wave vectors is on long time-
scales, and hence insensitive to the reheating dynamics
occurring on much shorter timescales. Furthermore, in
principle, wavelengths larger than the particle horizon
are causally disconnected from the causal microphysical
processes of thermalization. While this assumption seems
physically reasonable, it must be tested quantitatively.
However, this requires studying a particular model of
reheating dynamics. While conclusions of a particular
model will not be universally valid, perhaps a simple
model that dynamically and continuously interpolates (with
continuous scale factor and Hubble rate) between a near
de Sitter inflationary stage and a postinflation RD stage
would illuminate the validity of the instantaneous approxi-
mation. Most likely such a study would require a sub-
stantial numerical effort to solve the mode equations during
the transition and matching to the solutions in the sub-
sequent RD era. Clearly such study is beyond the scope of
this article but merits further attention.
Inflationary particle production: During the RD era the

equations of motion are the same for MC and CC fields
because a00ðηÞ ¼ 0. However, during inflation the equations
of motion for the two cases are very different, yielding the
drastically different solutions given by Eq. (3.12). Whereas
the mode functions for the CC case are “close” to the
adiabatic mode functions, those of the MC depart substan-
tially when the wavelength becomes superhorizon kη ≪ 1.
This difference is imprinted on the evolution of the mode
functions for η > ηR through the matching conditions
(continuity of function and derivative at ηR). The results
from the CC case confirm negligible particle production in
this case, this leads us to conclude that the largest contri-
bution to particle production in the MC case occurs during
the inflationary stage. This conclusion is bolstered by the
analysis of Sec. IV, where it is shown that the MC mode
functions depart substantially from the adiabatic ones for
superhorizon modes thus resulting in substantial particle
production, whereas those for the CC case are similar to the
adiabatic ones with little particle production.
Bose Einstein condensate vs distribution function: We

have shown that for minimally coupled ultralight particles
the distribution function peaks at very low comoving
momentum with N k ∝ 1=k3. As discussed in the previous
section the distribution function of the produced particles
“inherits” the infrared enhancement of the mode functions
of minimally coupled ultralight particles during the infla-
tionary era (taken to be a de Sitter spacetime). This
enhancement, however, does not imply Bose Einstein
condensation, particle number of the real scalar field is
not conserved, and the field does not acquire a vacuum
expectation value. Namely, there is no off-diagonal long
range order and no expectation value that would break a
Uð1Þ symmetry both of which are typically associated with
Bose-Einstein condensation. The description of this ULDM
is in terms of the contributions to the energy momentum

tensor. This is very different from the phenomenological
Schrödinger-Poisson equation advocated for “fuzzy”
dark matter [16–18] which relies on a “many-body”
Schrödinger-like wave function for a classical order param-
eter field akin to the Gross-Pitaevskii equation (nonlinear
Schrödinger equation) for a superfluid. In many body
physics such an equation is typically obtained from a
variational derivative of the expectation value of a many-
body Hamiltonian in a coherent state [70].
Self-consistency and backreaction: We have taken the

cosmological expansion as a RD background, neglecting
the contribution of the (ULDM) to the radiation compo-
nent. Such a contribution is obtained from the momentum
region with k ≫ maeq in the integrals for the density and
pressure. In principle this contribution modifies the ulrar-
elativistic content of the plasma contributing a term that
redshifts such as radiation ∝ 1=a4ðηÞ and, in principle,
should be treated self-consistently. However, we consider
that the RD era is dominated by the ≃100 ultrarelativistic
degrees of freedom of the standard model (and possibly
beyond); therefore the contribution of 1 extra degree of
freedom can be neglected as a first approximation.
Lower bound on abundance: Including possible inter-

actions with either the inflaton or other fields within or
beyond the standard model entails additional production
mechanisms for a very long-lived DM particle. Production
from reheating or from other mechanisms only increases the
abundance, and loss mechanisms, such as decay, will occur
on timescales comparable to or larger than the Hubble time
today. Therefore, this study yields a baseline for the
production of ultralight dark matter particles; any other
production mechanism will increase the abundance. This is
an important corollary of our study: this simplest of models
describing the darkest of dark matter (only gravitational
interactions) yields an abundance from nonadiabatic particle
production which must be accounted for in any model of
ULDM particles featuring interactions. Thus the abundance
resulting from this mechanism is a lower bound to the
abundance of any interacting species of long-lived (ULDM),
and applies, for example, to axionlike candidates.
Similarities and differences with vector dark matter

production: The production of a massive vector boson
during inflation has been recently studied in Ref. [71].
The authors show that the longitudinal component behaves
similarly to a massive, minimally coupled scalar field,
whereas the transverse components are conformally
coupled to gravity. Remarkably, in this reference it is
found that the abundance of the longitudinal component is
very similar to the result Eq. (5.25) above (up to loga-
rithmic contributions). While the equivalence between the
longitudinal component and a massive, minimally coupled
scalar field is, perhaps, expected, the origin of the similarity
in the abundance is by no means clear to us.
In particular, we match the mode functions with “in”

(Bunch-Davies vacuum) boundary conditions during
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inflation to the exact mode equations in the radiation
dominated era with “out” boundary conditions determined
by the positive adiabatic frequencies at long time near
matter radiation equality, with the matching conditions
described in Sec. III. Furthermore we obtain the full energy
momentum tensor, confirm covariant conservation, and
identify the particle production contribution after the proper
renormalization and well into the adiabatic regimewhen the
renormalized energy momentum tensor attains the kinetic
form in terms of the distribution function. Finally, the total
matter density is obtained from the integral of this dis-
tribution function, which again is extracted during the
adiabatic regime. While perhaps all of these aspects are
somehow included in the scaling argument in Ref. [71], we
have not been able to find the proper equivalence between
our treatment and the framework of Ref. [71]. However,
this aspect notwithstanding, the similarities between the
abundance in both results is remarkable.
Caveats: The result (5.26) implies that for a very low

inflation scale, namely with HdS ≪ 1013 GeV and for a
fixed, given mass mev, the ULDM gravitationally produced
yields a much smaller abundance. Or, equivalently, the
value of the mass that yields the correct DM abundance
increases substantially, whereas consistency of the
approach requires the upper bound given by (5.28).
Since there is a large uncertainty on the scale of inflation,
to be resolved by a clear measurement of primordial
gravitational waves (or the tensor-to-scalar ratio), it is
possible that a very low scale would lead to a revision
of the assumption on instantaneous reheating. Furthermore,
the only direct observational evidence of a RD era is from
big bang nucleosynthesis via the primordial abundance
of light elements; this scale, however, corresponds to a few
MeV. Thus it is possible that the reheating temperature is as
low as a few MeV [72]. If this were the case, a very large
discrepancy between the scale of inflation and the reheating
temperature cannot be accommodated within the instanta-
neous reheating approximation because modes that are
superhorizon during inflation may reenter during the
dynamical evolution between the end of inflation and
the RD stage, thus modifying the final distribution function
even for long wavelengths. Such a large discrepancy will
require a fundamental understanding of the cosmological
evolution between the two eras suggesting that there
may be a long epoch after the end of inflation that is
not described by a RD cosmology. This scenario would
invalidate one of our main assumptions and require a
completely different approach to describing cosmological
production, and at the fundamental level, a complete
revision of assumptions on postinflationary cosmology.

VIII. CONCLUSIONS

We have studied the nonadiabatic cosmological produc-
tion of ultralight dark matter particles under a minimal set
of assumptions: a single ultralight real scalar field that only

interacts with gravity and no other field, it is a spectator
field in its Bunch-Davies vacuum state during inflation, it
does not contribute to the inflationary dynamics nor to any
linear metric perturbation (such as isocurvature). We focus
on superhorizon wavelengths after inflation, since these are
the cosmologically relevant scales for structure formation,
and assume an instantaneous reheating into a RD cosmol-
ogy. The cases of minimal and conformal coupling to
gravity are analyzed separately. The mode equations in
either case are solved exactly both in the inflationary and in
the RD eras with a continuous matching of scale factor,
Hubble rate, mode functions, and conformal time derivative
at the transition. These continuity conditions imply the
continuity of the energy density across the transition.
The out particle states are carefully defined in terms of
the zeroth-order adiabatic states at an asymptotically long
time after the transition, and these states are locally
identified with particle states as in Minkowski spacetime.
The matching conditions at the transition between inflation
and RD yield the Bogoliubov coefficients from which we
obtain the distribution function of produced particles. We
establish a correspondence with a (conformal) time depen-
dent particle number by introducing an adiabatic basis of
out particle states and show explicitly that particle pro-
duction is a direct consequence of nonadiabatic cosmo-
logical evolution during inflation and well into the RD era.
We show that for a mass 10−22 eV≲m cosmological
evolution becomes adiabatic well before matter-radiation
equality. The number of produced particles only depends on
cosmological parameters. Whereas a conformally coupled
light scalar particle is produced with negligible abundance,
there is substantial production for minimally coupled light
particles with masses much smaller than the Hubble scale
during inflation. The distribution function of minimally
coupled light fields features an infrared enhancement
“inherited” from the inflationary stage yielding a behavior
N k ∝ 1=k3 at small comoving wave vectors. We obtain the
full energy momentum tensor for the ULDM from which
we obtain the energy density and pressure near matter-
radiation equality after renormalization, which is per-
formed by subtracting the zero point energy density during
inflation and radiation domination. An important result
is that the fully renormalized energy momentum tensor
coincides with the fluid-kinetic one at zeroth order in the
adiabatic expansion. The abundance and equation of state
depend solely on the mass and cosmological parameters,
in particular the scale of inflation for the minimally
coupled case. The main results of this study are the
following, for a minimally coupled ULDM: the ratio
of the abundance of produced particles Ωpp to ΩDM is
given by

Ωpp

ΩDM
¼ 8.36f ffiffiffiffiffiffiffiffi

mev
p ½ln½ ffiffiffiffiffiffiffiffi

mev
p � þ 36�g

�
HdS

1013 GeV

�
2

;
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where mev ¼ m=ðeVÞ and HdS is the Hubble scale during
inflation. For the upper bound on the scale of inflation
from Planck [53] HdS ≃ 1013 GeV, we find that the
produced particles saturate the DM abundance for

m ≃ 1.5 × 10−5 eV:

For this value of the mass we find the equation of state
parameter at matter-radiation equality

wðaeqÞ ≃ 2.5 × 10−14;

and a free-streaming length (cut-off scale of the matter
power spectrum)

λfs ≃ 70 pc: ð8:1Þ

Therefore the produced particles while very light are
a cold dark matter candidate with a free-streaming
length comparable to that of weakly interacting massive
particles.
This is the simplest model for the darkest of ULDM

since this particle only features gravitational interactions.
As such, the results for the abundance provide a lower
bound and a baseline for the abundance of any ULDM
candidate with a lifetime equal to or longer than 1=H0.
Interactions with degrees of freedom of the standard
model or beyond that leads to particle production will

only increase the abundance. This lower bound applies to
axionlike particles and must be accounted for in the DM
contribution of any ULDM candidate. A study of cosmo-
logical production of fermionic degrees of freedom will be
reported elsewhere [73].
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We have also discussed the caveats associated with a
proper treatment of isocurvature perturbations in the case
when the ULDM (entropy) field does not acquire an
expectation value, suggesting that a deeper understanding
of this case is needed for a reliable estimate of isocurvature
perturbations from the ULDM field. We note that such
an analysis has not been done even for the inflaton
fluctuations.

APPENDIX A: CONNECTION BETWEEN
THE MODE FUNCTIONS (3.40)
AND WKB ASYMPTOTICS

The mode functions (3.40) can be written as

fkðηÞ ¼
jF ðx; αÞj
ð8mHRÞ1=4

e−iφðx;αÞ; ðA1Þ

with x, α defined in Eq. (3.34). For jαj ≫ x2 the Weber
function features the asymptotic behavior [55]

jF ðx; αÞj ¼ 1

jαj1=4
�
1 −

x2

16jαj þ � � �
�
¼ ð2mHRÞ1=4ffiffiffi

k
p

�
1 −

1

4
m2H2

Rη
2 þ � � �

�
;

φðx; αÞ ¼ π

4
þ

ffiffiffiffiffiffi
jαj

p
x

�
1þ 2x2

48jαj þ � � �
�
¼ π

4
þ kη

�
1þm2H2

Rη
2

6k2
þ � � �

�
: ðA2Þ

And for x2 ≫ jαj

jF ðx; αÞj ¼
ffiffiffi
2

pffiffiffi
x

p
�
1 −

jαj
x2

þ � � �
�
¼

ffiffiffi
2

p

ð2mHRÞ1=4 ffiffiffi
η

p
�
1 −

k2

4m2H2
Rη

2
þ � � �

�
;

φðx; αÞ ¼ x2

4
þ jαj lnðxÞ þ � � � ¼ 1

2
mHRη

2 þ k2

2mHR
ln
h
η

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mHR

p i
þ � � � ðA3Þ

Up to an overall constant phase these expansions coincide with the expansions of

fkðηÞ ¼
e−i

R
η
ωkðη0Þdη0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðηÞ
p ðA4Þ

in both limits k ≫ mHRη and k ≪ mHRη, respectively.

APPENDIX B: SECOND ORDER ADIABATIC CONTRIBUTIONS TO Tμν

We gather the results of the second adiabatic order for the expectation value of the energy momentum tensor (see
[61,62]).
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ρð2ÞðηÞ ¼
�
a0

ma
1

4π2a4ðηÞ
Z

∞

0

k2dkmð1þ 2N kÞ
�
m5a4

8ω5
k

þ 1

2
ð1 − 6ξÞ

�
m
ωk

þm3a2

ω3
k

��
; ðB1Þ

T ð2ÞðηÞ ¼ 1

4π2a4ðηÞ
Z

∞

0

k2dkð1þ 2N kÞ
�
m6a4

4ω5
k

�
a00

m2a
þ
�
a0

ma

�
2
�
−
5m8a6

8ω7
k

�
a0

ma

�
2

þ ð1 − 6ξÞ
�
m2

ωk

�
a00

m2a
−
�
a0

ma

�
2
�
þm4a2

2ω3
k

�
2

a00

m2a
−
�

a
ma

�
2
�
−
3m6a4

ω5
k

�
a0

ma

�
2
��

: ðB2Þ

The terms with 1=ωk; 1=ω3
k yield ultraviolet divergences for N k ¼ 0, which are subtracted and absorbed into the

renormalization counterterms as discussed in Sec. V, whereas the term proportional to N k yields ultraviolet finite
contributions because N k ≲ 1=k4 at large k. During the RD dominated era and near matter-radiation equality, these terms
are suppressed by a factor

≃
�
a0

ma

�
2

≃
10−62

m2
ev

; ðB3Þ

with respect to the zeroth-adiabatic order contributions (5.9) and (5.10). A similar analysis confirms that the terms of the
fourth adiabatic order which features N k in the integrand are much further suppressed and can be safely neglected.
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