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We consider the implications of the swampland conjectures on scalar-tensor theories defined in the
Einstein frame in which the scalar interaction is screened. We show that chameleon models are not in the
swampland provided the coupling to matter is larger than unity and the mass of the scalar field is much
larger than the Hubble rate. We apply these conditions to the inverse power law chameleon and
the symmetron. We then focus on the dilaton of string theory in the strong coupling limit, as defined in the
string frame. We show that solar system tests of gravity imply that viable dilaton models are not in the
swampland. In the future of the Universe, if the low-energy description with a single scalar is still valid and
the coupling to matter remains finite, we find that the scalar field energy density must vanish for models
with the chameleon and symmetron mechanisms. Hence in these models dark energy is only a transient
phenomenon. This is not the case for the strongly coupled dilaton, which keeps evolving slowly, leading to
a quasi–de Sitter spacetime.

DOI: 10.1103/PhysRevD.101.083514

I. INTRODUCTION

The standard model of cosmology, the ΛCDM model, is
an excellent description of current cosmological and astro-
physical data. It requires two ingredients, which call for
physics beyond the standard model of particle physics: dark
matter and dark energy. Dark matter is believed to be a
particle appearing in theories beyond the standard model
(BSM), while dark energy has yet to find a satisfactory
explanation. The cosmological constant is the simplest
candidate for dark energy and the data are consistent with
it. It predicts that in the far future the Universewill approach
de Sitter spacetime with a constant expansion rate. Theories
which combine the principles of particle physics with that of
general relativity have yet to find an explanation for the
origin of the cosmological constant such as a residual
vacuum energy density. Recently it has been argued that
de Sitter spacetime cannot be realized in string theory; see,
e.g., [1–3], see [4] for a review, and see [5] for a word of
caution about the swampland program. If these results hold,
then either string theory, as currently understood, iswrong or

the current accelerated expansion is not due to a cosmo-
logical constant. Instead, it would have to be driven by other
degrees of freedom in the theory. The de Sitter and distance
conjectures, which we will summarize in the next section,
put constraints on the effective low-energy theory of string
theory. In particular, the de Sitter conjecture strongly
restricts the slope of the potentials for such scalar fields,
which has huge implications for inflation and dark energy
physics; for an incomplete list see [6–27]. At low energy it is
generally expected that, in the absence of underlying
symmetry, the scalar field responsible for the cosmic
acceleration should be coupled to matter. For models of
dark energy this follows from the quantum loops mediated
by gravitons that couple dark energy and matter. In string
theory, this is, for instance, the case of the string dilaton that
couples universally to matter. Such universal couplings
would naturally lead to violations of the solar system tests
of gravity due to the presence of a fifth force modifying
gravity significantly, hence ruling out most of these models
as low-energy candidates for a description of our Universe.
More generally, scalar fields that appear in string theory

could be coupled to different matter species with different
strengths. As such the couplings to dark matter are less
constrained than the ones to standard model particles,
simply because local tests of gravitation are not sensitive
to dark matter per se. However, if these couplings to dark
matter are constant, cosmology bounds them in a stringent
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way [28,29]. In the case of the interactions to the standard
model particles, the coupling of the scalar fields is strongly
constrained by the Cassini experiment [30] when the force
is long-ranged. Such small couplings are not natural unless
they result from the dynamics of the models, i.e., if they
follow from a screening mechanism [31]. Coming back to
the scalar field emanating from string theory whose
evolution would generate the late time acceleration of
the expansion of the Universe, it seems highly relevant
to investigate whether screening mechanisms, which would
lead to a dynamical suppression of fifth force effects, could
be realized in the string theory context. In this paper, we
will discuss three of such mechanisms studied so far in
cosmology, namely the chameleon and symmetron mech-
anisms and the strongly coupled dilaton. These models are
phenomenological, but they serve as a good playground
for other screening mechanisms. The strongly coupled
dilaton is inspired from stringy considerations, i.e., the
self-interaction potential of the runaway dilaton [32] and
the least coupling principle [33]. Let us briefly summarize
the basics of the mechanisms here:

(i) In the chameleon mechanism, the mass of the scalar
fields depends strongly on the environment [34].
This is achieved by an interplay of the interactions
with ambient matter and the self-interactions of the
field. Examples of these theories include fðRÞ
theories that are consistent with local experiments.

(ii) In the symmetron mechanism, the potential of a
scalar field is symmetry breaking, whereas the
conformal coupling is Z2 invariant [35]. The cou-
pling of the scalar field is field dependent. In regions
of high density, the symmetry ϕ → −ϕ is unbroken,
but in the low density region, this symmetry is
spontaneously broken. In dense environments the
coupling to matter would vanish.

(iii) In the case of the strongly coupled dilaton, the
potential of the scalar field is of exponential form,
V ∝ e−λϕ, in the string frame. The conformal cou-
pling of the scalar field to matter possesses a
minimum. In the absence of the potential the field
would be driven toward the minimum of the cou-
pling function during the radiation and matter
dominated areas, where the coupling of the scalar
to matter would vanish (this mechanism has been
called the “least-coupling principle” [33]). The
potential can be arranged such that the scalar field
acts as a dark energy component [36].

All three mechanisms will be discussed in more detail
below, with the emphasis on how these screening mech-
anisms are compatible with the de Sitter and distance
conjectures. As we will see, the swampland conjectures
will put constraints on each of the individual screening
mechanisms and hence on their possible realizations in
string theory. We will also discuss the validity of the
theories as a description of the Universe in the far future.

The paper is organized as follows: In Sec. II we recall the
conjectures related to the swampland of string theory. We
also summarize some generic facts about scalar-tensor
cosmology. In Sec. III, we find a generic bound on the
coupling between the scalar field responsible for dark
energy and matter. In Secs. III, IV, and V we study the
implications of the de Sitter and distance conjectures on the
chameleon, the symmetron, and the dilaton screening
mechanisms, respectively. We summarize our findings
and conclude in Sec. VI.

II. THE DE SITTER AND DISTANCE
CONJECTURES IN SCALAR-TENSOR

COSMOLOGY

A. The conjectures

De Sitter vacua are particularly hard to find in string
theory. It has recently been conjectured that the vacuum of
string theory is better described by the dynamics of a scalar
field whose potential must satisfy the inequality���� ∂V∂ϕ

���� ≥ c
VðϕÞ
mPl

ð1Þ

or the corresponding constraints on its mass

∂2V
∂ϕ2

≤ −c0
V
m2

Pl

: ð2Þ

Here, c and c0 are constants of order one. The distance
conjecture states that the scalar field should not roll too far
in field space; otherwise, low-energy excitations would
become relevant hence jeopardizing the effective descrip-
tion of the vacuum being simply endowed with a single
scalar field

Δϕ ≤ dmPl; ð3Þ
where d ¼ Oð1Þ and Δϕ is the total excursion of the scalar
field between the very early universe and now. These are
constraints on the low-energy effective field theory allowed
from string theory. If true, they imply that the current
accelerated expansion of the Universe is not due to a
nonvanishing cosmological constant but is driven by at
least 1 degree of freedom in string theory.

B. Scalar-tensor cosmology

We are interested in consequences of the de Sitter and
distance conjectures in scalar-tensor theories with a screen-
ing mechanism. Below we will recall a few useful facts on
scalar-tensor theories which apply to all theories considered
in this paper.
Scalar-tensor theories can be written in either the

Einstein or the Jordan frame. The Jordan frame metric is
related to the Einstein frame metric by a conformal trans-
formation of the form
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gJμν ¼ A2ðϕÞgEμν; ð4Þ

or equivalently, matter particles have a field dependent
mass

m ¼ AðϕÞm0 ð5Þ

in the Einstein frame. The function AðϕÞ will differ for the
different screening mechanism discussed in this paper.
The dynamics of the scalar field are governed by the

effective potential

VeffðϕÞ ¼ VðϕÞ þ ðAðϕÞ − 1Þρ ð6Þ

in the presence of nonrelativistic matter of conserved
energy density ρ. The Friedmann equation can be written as

H2 ¼ ρeff þ ρ

3m2
Pl

: ð7Þ

The energy density ρeff ¼ _ϕ2

2
þ VeffðϕÞ plays the role of

dark energy. The conservation equation

_ρeff þ 3Hðρeff þ pϕÞ ¼ 0; ð8Þ

where pϕ ¼ _ϕ2

2
− VðϕÞ implies that the dark energy

equation of state is

ωϕ ¼ pϕ

ρeff
: ð9Þ

Moreover, the conservation equation (8) implies the Klein-
Gordon equation

ϕ̈þ 3H _ϕþ ∂Veff

∂ϕ ¼ 0; ð10Þ

which depends on the effective potential. Notice that the
effective potential depends on the conserved matter.
In the following we will take the potential VðϕÞ and the

coupling functions AðϕÞ as the low-energy results of
dimensionally reducing extra dimensions, integrating out
heavy fields, and taking into account early universe, i.e.,
high energy, phase transitions. As the de Sitter and distance
conjectures are statements about the scalar fields in the low-
energy field theory, we apply them to the potential VðϕÞ as
this controls the existence of de Sitter space in empty
spacetime, i.e., when all matter in the Universe has been
diluted by the cosmological expansion.

III. THE CHAMELEON

In the chameleon models the effective potential has a
minimum ϕðρÞ and the field tracks the minimum cosmo-
logically [37]. The condition for the minimum of the
effective potential is

∂V
∂ϕ ¼ −βA

ρ

mPl
; ð11Þ

where the coupling to matter is

β≡mPl
∂ lnA
∂ϕ : ð12Þ

We assume without loss of generality that β is positive. The
field tracks the minimum provided the mass [37,38]

m2 ¼ ∂2Veff

∂ϕ2

����
ϕðρÞ

ð13Þ

is greater than the Hubble rate

m ≫ H: ð14Þ

A. The original chameleon model

Let us first look at the original chameleon model [37]
before we move to a more general case that includes fðRÞ
gravity. In the original cosmological model for chameleons,
the potential is of the form

V ¼ Λ4eð
Λ
ϕÞn ; ð15Þ

where Λ is an energy scale of the order of the current dark
energy scale. Notice that in the first chameleon paper [34]
the potential was taken to be VðϕÞ ¼ Λ4þn

ϕn , which does not
lead to dark energy in the absence of a cosmological
constant. The form (15) was chosen in [37] as VðϕÞ ≃
Λ4 þ Λ4þn

ϕn when ϕ≳ Λ has the chameleon screening proper-
ties and leads to the cosmic acceleration. The function AðϕÞ
is assumed to be of exponential form, i.e., AðϕÞ ¼
expðβϕ=mPlÞ with β ≥ 0 constant. Note that this model,
at face value, does not comply with the de Sitter criterion,
as V → Λ4 for ϕ → ∞. But according to the distance
criterion we expect that this low-energy theory breaks down
anyway for large field values, so we have to keep in mind
that the chameleon model, if realized from fundamental
physics, will become invalid at some point in the distant
future. However, we will now show that the de Sitter
conjecture puts a constraint on the coupling β. The field
value at the minimum can be obtained as

ϕnþ1 ¼
�
nΛnVmPl

βAðϕÞρ
�
: ð16Þ

Using this equation and the de Sitter conjecture, we obtain a
bound on the matter coupling,

β ≥ c
V
ρ
; ð17Þ
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or, using the cosmological density parameter, β ≥ cΩDE=
ΩM. Hence, the coupling cannot be arbitrarily small in this
model.
The discussion so far has assumed that the field sits in the

minimum of the effective potential. If this is not the case,
e.g., in the very early radiation dominated epoch, the de
Sitter conjecture implies

ϕnþ1 ≤
n
c
mPlΛn: ð18Þ

This equation bounds the field value at any given time.
In addition, the field is subject to kicks at times when
species become nonrelativistic, because at that point, the
trace of the energy momentum tensor of the species no
longer vanishes and contributes to the effective potential.
Summing up all contributions it was found in [37] that the
kicks can displace the field by an amount of order βmPl.
The distance conjecture would then imply that β ≤ d.
Together with Eq. (17), this implies that β has to be of
the same order as the numbers c and d in the de Sitter and
distance conjectures. To avoid a violent displacement of the
chameleon, the field needs to settle at the minimum of the
effective potential either during or shortly after inflation.
We will come back to the issue of the initial conditions for
the scalar field in the discussion at the end of the paper.

B. A generic bound on the coupling

We can derive a generic bound on the coupling which is
applicable to more general scalar-tensor theories in the
Einstein frame which have the screening properties of
chameleon models. This includes the fðRÞ models of
gravity once written in the Einstein frame as a function
of the scalaron field ϕ. Awhole class of such models can be
constructed using the tomographic methods [39] which we
will use below; see Sec. III C. To obtain this bound, it is
convenient to write

_ϕ2

2
¼ VðϕÞ þ ωϕρeff ð19Þ

such that

VðϕÞ ¼ ρeff −
_ϕ2

2
− ðA − 1Þρ

¼ ð1 − ωϕÞρeff − VðϕÞ − ðA − 1Þρ ð20Þ

from which we have

VðϕÞ ¼ ð1 − ωϕÞ
ρeff
2

− ðA − 1Þ ρ
2
: ð21Þ

The function AðϕÞ is taken to be differentiable and there-
fore continuous. As a result the distance conjecture (3)
implies that AðϕÞ is bounded on the interval of variation
of ϕ. We denote by Amax its maximal value such that

AðϕÞ ≤ Amax and by ΔA the largest variation jAðϕÞ − 1j ≤
ΔA.1 If we normalize AðϕÞ to be close to unity now, this
defines the excursion of the function AðϕÞ in the past.
Using the minimum equation we find that the de Sitter
constraint (1) gives

βAmaxρ ≥ βAðϕÞρ ≥ cð1 − ωϕÞ
ρeff
2

− cΔA
ρ

2
; ð22Þ

where we have used ðA − 1Þρ ≤ ΔAρ. This implies that

β ≥
cð1 − ωϕÞ
2Amax

ρeff
ρ

− c
ΔA

2Amax
: ð23Þ

Now we are interested in models where ρeff represents the
dark energy component of the Universe. We assume that it
grows monotonically, whereas ρ decreases in the cosmic
history [as it is the case for the original chameleon model as
well as for fðRÞ theories]. Hence the most stringent
constraint is

β ≥
cð1 − ωϕÞ
2Amax

ΩΛ0

Ωm0

− c
ΔA

2Amax
; ð24Þ

where ΩΛ0 and Ωm0 are the dark energy and matter
proportions now, i.e., ΩΛ0

Ωm0
≃ 3. This generalizes (17) in

two ways: first, we allow the equation of state to deviate
from −1. Second, in deriving (24) we took into account the
variation of AðϕÞ, which is bounded thanks to its continuity
and the distance conjecture (3), whereas in deriving (17) we
set A ¼ 1. Thus, the equation above is a stronger result than
(17), allowing us to consider more general models than the
original chameleon model for which A ¼ 1 and wϕ ¼ −1 is
a very good approximation. On the other hand, as we show
below in (28) for screened models where the minimum of
the effective potential is an attractor, the field hardly moves
and therefore A ≃ 1. This leads to the bound (28). Finally
notice that models of the fðRÞ type, for which β ¼ 1ffiffi

6
p , are

under pressure as soon as c ¼ Oð1Þ.

C. Screening and the distance conjecture

Models where the effective potential has a minimum can
be exactly parametrized using the properties of the mini-
mum as a function of the density. This allows one to
construct whole classes of models of screened modified
gravity [39]. In this case and assuming that the field at the
minimum vanishes in dense environments, we can always
parametrize the dependence of the minimum on the density
in an analogous way as in cosmology by writing ρ ¼ ρ0=a3

1In the Jordan frame where particle masses are constant and
Newton’s constant varies, the variation jA − 1j is half the
variation of GN over the corresponding interval. Tight phenom-
enological bounds exist on this variation at less than the ten
percent level [40].
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as a function of a fiducial scale factor a. The dependence of
the minimum on ρ or equivalently on a can be evaluated
exactly using [38]

ϕðρÞ
mPl

¼ 3

Z
a

0

dx
x

ρðxÞβðxÞ
m2

Plm
2ðxÞ ð25Þ

provided the dependence ofmðaÞ, i.e., the mass of the field
at the minimum, and βðaÞ, i.e., the coupling to matter at the
minimum, are known. The original chameleon, fðRÞ
models, and symmetrons can all be constructed in this
fashion with known functions mðaÞ and βðaÞ [38]. Now
(25) corresponds to the full excursion ΔϕðaÞ of the field in
these models as we have assumed here that when ρ
becomes infinite the field at the minimum converges to
zero.2 Writingm ¼ m0m̃ðaÞwhere m̃ðaÞ is a dimensionless
function of a of order one for matter densities close to the
present cosmological matter density, we obtain that

ϕðρÞ
mPl

¼ 9Ωm0H2
0

m2
0

IðaÞ; ð26Þ

where

IðaÞ ¼
Z

a

0

dx
x4

βðxÞ
m̃2ðxÞ ð27Þ

is a function of order one in the present Universe on
cosmological scales; see [39]. Now the tracking of the
minimum by the scalar field requires thatm2

0=H
2
0 ≫ 1 [37],

implying that the distance conjecture is always satisfied
now for d ¼ Oð1Þ. The excursion of the field is always very
small of order OðH2

0

m2
0

Þ ≪ 1 for these models. Hence the

derivation of (24) can be simplified by neglecting the
variation of ϕ altogether. Essentially by taking Amax ≃ 1
and ΔA → 0 the resulting bound becomes

β ≥
cð1 − ωϕÞ

2

ΩΛ0

Ωm0

; ð28Þ

which reduces to the chameleon inequality (17) for models
with ωϕ ≃ −1. In the future when a → ∞, and assuming
thatmðaÞ ≫ HðaÞ to guarantee the tracking behavior, if the
integral IðaÞ is bounded, then the distance conjecture
remains valid for all times.

D. Solar system tests of gravity and the swampland

Before we conclude this section, we will briefly dis-
cuss constraints from solar system gravity tests and the
implications for the swampland conjectures. We refer to
Appendix A for more details.

The Cassini and laser lunar ranging tests of, respectively,
fifth forces and the strong equivalence in the solar system
imply bounds on the excursion of the scalar field in galactic
environments similar to the Milky Way

ΔϕG ¼ ϕG − ϕc ≤ 10−15mPl; ð29Þ

which is well within the Planck scale. Here ϕc is the value
of the field in dense matter, which differs from zero for the
dilaton. Similarly the Cassini bound on the existence of
fifth forces for nearly massless scalar fields imply that

βG ≲ 104; ð30Þ

hence the coupling to matter in the Milky Way cannot be
exceedingly large. Together with the bound (24), this
implies that the coupling to matter is both bounded from
below and from above.

IV. THE SYMMETRON

The cosmological symmetron is a model where a scalar
field undergoes a Z2 breaking transition at low energy. In
the symmetric phase, the coupling of the scalar field to
matter vanishes while it is nonvanishing in the symmetry-
breaking phase. The potential for these models is Higgs-
like with

VðϕÞ ¼ V0 −
μ2

2
ϕ2 þ λ

4
ϕ4: ð31Þ

The value of V0 has to be chosen to lead to the acceleration
of the expansion of the Universe. The coupling function
determining the coupling to matter differs from the one of
the original inverse power law chameleon and is simply a
quadratic function around the origin

AðϕÞ ¼ 1þ ϕ2

2M2
: ð32Þ

This has to be seen as an expansion in powers of ϕ=M.
The de Sitter conjecture implies that μ2m2

Pl > c0V0 and
therefore μ≳H0. This is a very weak condition.
The coupling to matter is

βðϕÞ ¼ mPl

M2
ϕ; ð33Þ

which is linear in the field as long as ϕ ≪ M. When
ρ > μ2M2, the minimum of the effective potential is at the
origin and the coupling to matter vanishes. Otherwise the
minimum is at

ϕðρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ρ

M2

q
ffiffiffi
λ

p : ð34Þ
2This will not be the case for the dilaton of Sec. V.
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We require that μ ≪
ffiffiffi
λ

p
M, which guarantees that ϕ ≪ M.

The cosmological symmetron is such that the Z2 breaking
occurs in the recent past implying that

μM ≃H0mPl: ð35Þ

The vacuum value of the coupling to matter is given by

β0 ¼
μmPlffiffiffi
λ

p
M2

: ð36Þ

The de Sitter conjecture implies that

ρ

M2
ϕðρÞ ≥ c

VðϕÞ
mPl

: ð37Þ

Assuming that the symmetron leads to dark energy now,
we get

β0 ≥ c
ΩΛ0

Ωm0

; ð38Þ

which is another instance of the generic bound (24) when
the equation of state of dark energy is close to −1.
At high density, the field is at the origin due to the

coupling to matter. In the present Universe we find that

Δϕ
mPl

≤
μffiffiffi
λ

p
mPl

≪
μffiffiffi
λ

p
M

≲ 1 ð39Þ

as long asM ≪ mPl and the last step comes from requiring
that ϕ ≪ M for the validity of the ϕ expansion in AðϕÞ. As
outlined in the previous section and in more detail in
Appendix A, tests of the equivalence principle imply that in
the Milky Way ϕG ≤ 10−15mPl. When ρG ≃ 106ρm0 is
assumed to be larger than μ2M2, we have ϕG ¼ 0 and
the distance conjecture is satisfied. When the symmetry
breaking happens at a larger density, then ϕG ≤ μ=

ffiffiffi
λ

p
and

we must require that μ ≤ 10−15
ffiffiffi
λ

p
mPl. As long as λ is not

tiny, the interval H0 ≲ μ ≤ 10−15
ffiffiffi
λ

p
mPl is not empty. The

de Sitter conjecture implies that

M2 ≤
Ωm0

cΩΛ0

μmPlffiffiffi
λ

p ≲ 10−15m2
Pl; ð40Þ

which guarantees that M ≪ mPl. Hence the symmetron is
not in the swampland as long as the coupling to matter in
the present Universe is large enough.

V. THE STRONGLY COUPLED DILATON

So far we have dealt with scalar-tensor theories
where the potential VðϕÞ is defined in the Einstein frame.
In this section we are interested in a string-inspired
model [33] where the scalar field ϕ corresponds to the
dilaton associated with the string coupling constant [36].

The model is naturally defined in the four-dimensional
(4D) string frame. We briefly review the model in the
following.
In the string frame the dilaton action reads

S ¼
Z ffiffiffiffiffiffi

−g̃
p

d4x

�
e−2ψðϕ̃Þ

2l2s
R̃þ Zðϕ̃Þ

2l2s
ð∇̃2ϕ̃Þ − Ṽðϕ̃Þ

�

þ SmðΨi; g̃μν; giðϕ̃ÞÞ; ð41Þ

where ls is the string length, Ψi are the matter fields, and gi
are coupling constants that depend on the dilaton ϕ̃. Notice
that in the weak string coupling regime ϕ̃ → −∞, we have
ψðϕ̃Þ ≃ ϕ̃ − 1

2
ln v6 where v6 is the volume of the six-

dimensional (6D) compactifying manifold in string units.
In the strong coupling regime, the dependence on the
dilaton of the function ψðϕ̃Þ would require a resummation
of string diagrams involving large powers of e2ϕ̃ or non-
perturbative techniques. In [33], the behavior of this
function was conjectured and assumed to follow the “least
coupling principle” which will be recalled below. In a
nutshell, ψðϕ̃Þ is assumed to be a function with a minimum
for a value ϕ̃0. Notice too that the ansatz for the dilaton
action (41) assumes that all the other moduli such as the
volume of the compactification manifold v6 have been
stabilized. In the following we will simply use (41) as our
starting point and bring it into the Einstein frame in which
we have performed our analysis so far. We define the
Einstein metric gμν by

g̃μν ¼ A2ðϕ̃Þgμν; ð42Þ

where the coupling function is given by

AðϕÞ ¼ lseψðϕ̃Þ=κ4 ð43Þ

and the gravitational coupling is given by κ24 ¼ 8πGN. We
have the freedom to normalize Aðϕ̃Þ such that Aðϕ̃0Þ ¼ 1

now where ϕ̃0 will be identified below. We introduce the
ratio between the string scale and the Planck scale in the
Einstein frame as c1 ≡ ls=κ4 ¼ exp ð−ψðϕ0ÞÞ. The kinetic
terms are now dependent on

k2ðϕ̃Þ ¼ 3β2ðϕ̃Þ − A2ðϕ̃ÞZðϕ̃Þ=2c21; ð44Þ

where

β̃ðϕÞ ¼ ðlnAÞ;ϕ̃ ð45Þ

is the coupling to matter for the unnormalized field ϕ̃.
The resulting action becomes
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S ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
RðgÞ
2κ24

−
k2ðϕ̃Þ
κ24

ð∇ϕ̃Þ2 − Vðϕ̃Þ
�

þ SmðΨi; A2ðϕ̃Þgμν; ϕ̃Þ; ð46Þ

where the potential is

Vðϕ̃Þ ¼ A4ðϕ̃ÞṼðϕ̃Þ: ð47Þ

In the strong coupling limit when ϕ̃ is large, we will assume
following [32,41] that

Ṽðϕ̃Þ ∼ V0e−ϕ̃ þOðe−2ϕ̃Þ;

Zðϕ̃Þ ∼ −
2c21
λ2

þ bZe−ϕ̃ þOðe−2ϕ̃Þ;

g−2i ∼ ḡ−2i þ bie−ϕ̃ þOðe−2ϕÞ: ð48Þ

The constants are assumed to be such that bZ ≃ bi ¼ Oð1Þ.
Similarly the ratio c1=λ is assumed to be of order one at
least to avoid naturalness issues. In the strong coupling
regime we expect thus

kðϕ̃Þ ≈ λ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3λ2β2ðϕ̃Þ

q
; ð49Þ

which depends on the coupling to matter. It is useful to
normalize the field to connect with the other sections of this
paper. We now define

κ4dϕ ¼
ffiffiffi
2

p
kðϕ̃Þdϕ̃: ð50Þ

The effective potential that governs the evolution of ϕ is
given by

VeffðϕÞ ¼ V0A4ðϕ̃Þe−ϕ̃ þ ðAðϕ̃Þ − 1Þρ ð51Þ

in the presence of nonrelativistic matter. Notice the crucial
factor of A4 in the matterless part of the potential. The
minimum of the potential is obtained for

β̃ðϕ̃minÞ ¼
Vðϕ̃minÞ

Aðϕ̃minÞρm þ 4Vðϕ̃minÞ
; ð52Þ

which is an equation for ϕ̃min. Notice that β̃ðϕ̃minÞ ≤ 1
4
.

Moreover, the fact that the theory is originally defined in
the string frame will modify the bound on the coupling to
matter that we will find below.
The coupling to gravity β of the normalized scalar field is

defined by

βðϕÞ ¼ β̃ðϕ̃Þffiffiffi
2

p
kðϕ̃Þ : ð53Þ

We have the relation

2β2 ¼ β̃2

3β̃2 þ 1
λ2
: ð54Þ

Gravitational tests in the solar system require that β ≪ 1,
which cannot be achieved if β̃λ≳ 1, as then β ≃ 1ffiffi

6
p . Tests of

gravity can only be passed when λβ̃ ≪ 1, i.e., λ is bounded
from above. In this case we have

ϕ ≃
ffiffiffi
2

p

λ
mPlϕ̃; ð55Þ

and the potential becomes

Ṽ ≃ V0e−λϕ=
ffiffi
2

p
mPl : ð56Þ

Similarly the coupling to gravity is then

β ≃
λffiffiffi
2

p β̃: ð57Þ

We will assume that the least coupling principle [33]
applies in the recent past of the Universe and expand
Aðϕ̃Þ around its minimum taken to be the value of field in
very dense environments ϕ̃0. Notice again that this assumes
that the function ψðϕ̃Þ can be resummed. Although e−2ψðϕ̃Þ

involves an infinite series of powers of e2ϕ̃, its resummation
could have very different properties from each individual
power of e2ϕ̃. This is the essence of the conjecture in [33] as
used in [36]

Aðϕ̃Þ ¼ 1þ A2

2
ðϕ̃ − ϕ̃0Þ2 þ � � � ; ð58Þ

where the neglected terms are higher powers of ðϕ̃ − ϕ̃0Þ.
As the conformal factor A deviates very little from unity in
the late-time Universe, we can identify the dark energy
scale with

ρΛ ≃ V0e−ϕ̃0 : ð59Þ
The minimum equation implies that in a dense environment
we have

A2ðϕ̃min − ϕ̃0Þ ¼
Vðϕ̃minÞ

Aðϕ̃minÞρþ 4Vðϕ̃minÞ
: ð60Þ

In dense environments such as the matter and radiation
epochs the field value is essentially given by ϕ̃0, while at
late time we have the approximation

ϕ̃min − ϕ̃0 ≃
1

A2

ρΛ
ρþ 4ρΛ

: ð61Þ

This is also related to the excursionΔϕ of the field since the
early universe
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Δϕ
mPl

≃
λffiffiffi
2

p
A2

ρΛ
ρþ 4ρΛ

≤
λ

4
ffiffiffi
2

p
A2

ð62Þ

as the value of the field in very dense matter is ϕ0. Using
that Aðϕ̃Þ is close to unity we also find the constraint from
the de Sitter conjecture,

λ ≥
ffiffiffi
2

p
c: ð63Þ

If we assume the naturalness constraint c1 ≳ λ, this selects
models where ls ≳ lPl in the strong coupling regime. One

can relax these assumptions as long as c2
1

λ2
≫ bZe−ϕ̃0 to

guarantee that Zðϕ̃Þ is dominated by its constant term in the
series expansion (48).
As the value of the dilaton in very dense region does not

vanish, the lunar ranging constraint reads

jϕG − ϕ0j ≃
λffiffiffi
2

p
A2

ρΛ
ρG

mPl ≤ 10−15mPl ð64Þ

as ϕ ≃ ϕ0 inside matter. This implies that

A2

λ
≥ 109 ð65Þ

and the excursion (61) is extremely small in Planck units as
A2=λ is so large. Moreover, in this regime the mass of the
dilaton cosmologically is

m0 ≃
ffiffiffiffi
A

p
2

λ
H0; ð66Þ

which is always large enough to guarantee that the dilaton
tracks the minimum of the effective potential. Coming back
to the value of the coupling and using (63) we find that

β ≳ c
ρΛ

ρþ 4ρΛ
; ð67Þ

which is a weaker version than the generic bound
we obtained previously [in Eq. (24)]. The main change
comes from the 4ρΛ term in the denominator which comes
from the fact that the dilaton potential is defined in the
string frame and not in the Einstein frame. Thus, the
strongly coupled dilaton does not violate the de Sitter and
the distance conjectures. Note that dark energy is eternal as
the scalar field approaches ϕ̃min but never reaches it
[see Eq. (61)].

VI. DISCUSSION AND CONCLUSION

In this paper we have discussed the implications of the
swampland on three screened modified gravity theories,
namely the chameleon, the symmetron, and the strongly
coupled dilaton. In these theories, the dark energy scalar is
universally coupled to matter, and hence producing a fifth

force which needs to be hidden by a screening mechanism.
While some of the screening mechanisms are meant to be
only effective descriptions, which are not valid for all
values of the scalar field, our considerations have impli-
cations for each of the models. Let us summarize the
findings for each of these theories separately:

(i) Since the chameleon field tracks the minimum of the
effective potential for most of the cosmological
history, the derivative of the potential is related to
the matter density and the coupling between the
chameleon field and matter. The distance and de
Sitter conjectures then imply a lower bound on the
coupling [Eq. (24)]. Note that this bound is time
dependent and strictly speaking we require it to be
valid only up to the present epoch. The ratio ρeff=ρ
will grow over time and larger values of β are
required. One expects that the field excursion over
the cosmic history will eventually exceed one Planck
unit at which point the theory will cease to be valid,
even probably before this time. Alternatively, the
field will stop tracking the minimum of the effective
potential in the very near future. Moreover, the
original chameleon model can be an effective
description of the Universe only up to the present
epoch, as the potential energy does not vanish for
arbitrary large field values and the Universe ap-
proaches de Sitter spacetime. If the field description
does not break down in the future, the chameleon
models must be modified with a vanishing potential
asymptotically. Hence in these models, dark energy
can only be transient.

(ii) As the chameleon, the symmetron tracks the mini-
mum of the effective potential for most of the
cosmological history. The coupling of the symme-
tron is linear in the field [see Eq. (33)]. The distance
conjecture is easily fulfilled, and again we find that
the de Sitter conjecture implies that the coupling has
to be large enough for the symmetron not to be in the
swampland. In the future of the Universe, the
symmetron will converge to a finite value well
below the Planck scale. The bound on the coupling
to matter (24) implies that the minimum of the
potential in vacuummust vanish, hence adjusting the
constant V0 in the potential. As in the chameleon
model, in the symmetron model dark energy is only
transient.

(iii) The strongly coupled dilaton, contrary to chame-
leons and symmetrons, is best defined in the string
frame. The action in the Einstein frame is then
derived, implying that the bound on the coupling to
matter (67) is modified compared to (24) as obtained
for all chameleonlike theories defined in the Einstein
frame. When the least coupling principle is satisfied,
we find that the strongly coupled dilaton tracks the
minimum of its effective potential. In field space, its
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excursion is always finite and of small magnitude in
Planck units. As the field keeps evolving, the
cosmology of spacetime is the one of a quasi–de
Sitter universe. Contrary to chameleons and symme-
trons, dark energy is eternal.

In a similar vein, we can discuss the initial conditions for
the three types of models. Indeed, we have assumed that the
field sits at the minimum of its effective potential since
early times. Once at the minimum, the condition on the
mass of the scalar field m ≫ H guarantees that the field
tracks the time-evolving minimum. In each of the three
mechanisms let us discuss how the field could be attracted
to the minimum of the effective potential:

(i) For chameleon models [37] such as the inverse
power law chameleon, the effective potential pos-
sesses a minimum during the inflationary era as the
trace of the energy-momentum tensor of the inflaton
is nonvanishing and nearly constant. The field falls
exponentially fast toward the nearly static minimum.
When inflation stops and assuming that reheating is
quasi-instantaneous, the minimum of the effective
potential evolves rapidly toward a much larger value
than during inflation. The field then starts evolving
fast and overshoots the minimum before stopping

after an excursion of around
ffiffiffiffiffiffiffiffiffi
6Ωi

ϕ

q
mPl where Ωi

ϕ is

the initial energy fraction in the scalar, i.e., a small
number. Notice that the field stops short of the
Planck scale. Subsequently in the radiation era, the
field is kicked by a negative fraction of the Planck
scale every time a species decouples. This should
eventually bring back the field within the basin of
attraction of the minimum where it will eventually
settle. The validity of this scenario has been ques-
tioned in [42]. In the absence of a concrete model of
reheating, it is far more conservative to assume that
the field sits at the minimum after reheating. This
protects the field from being kicked during the
decoupling of species.

(ii) For symmetrons, at high density, i.e., during in-
flation and after reheating, the field sits at the origin.
When the matter density decreases, the field follows
the minimum [43]. In this model, there is no initial
condition problem as the minimum is not shifted
from its position during inflation, i.e., at the origin,
to a new position in the early radiation era.

(iii) For dilatons the situation is similar to the one for
symmetrons, i.e., very early in the Universe the field
sits at the minimum of the coupling function. As the
energy density of matter decreases, the field evolves
with the minimum.

To conclude, we have shown that the de Sitter and
distance conjectures have important implications for all
three screening mechanisms. In the case of chameleons, we
find that fðRÞ models come under pressure from the de
Sitter conjecture, at least as long as the scalar field tracks

the minimum of the effective potential [see [44] on a
different view of fðRÞ gravity and the swampland]. The
lower bound on the coupling (24) implies that those
theories cannot hold for arbitrarily long into the future.
As the original chameleon model, the theory will have to
break down at some point (or the field no longer tracks the
minimum of the effective potential). For example, other
corrections to the Einstein-Hilbert action may become
important. Moreover, as shown in [45] and elaborated in
Appendix A, the quantum corrections to the screened
models do not lead to more fine-tuning than the usual
cosmological constant problem provided one considers
them as low-energy effective theories below a cutoff scale
of order 10−2 GeV. This is the low-energy regime of
cosmology where screening should take place, i.e., from
big bang nucleosynthesis onwards.
Given the implications of the swampland for dark energy

physics, it seems highly relevant to study the consequences
of couplings of the scalar field to matter within string
theory. This coupling can be universal either to all forms of
matter or to only one sector, such as dark matter. Given the
theoretical difficulties of constructing quintessential mod-
els within string theory [5,45,46], the swampland conjec-
tures lead us to surmise that coupled models with screening
mechanisms should play a role within string theory. The
chameleon models with a constant coupling is difficult to
construct within N ¼ 1 supergravity [47] (see also [48] for
an alternative point of view). They are also under pressure
from the de Sitter and distance conjectures. Furthermore, it
has been argued that the form of the potential energy of the
scalar field should be related to the tower of particles via the
Gibbons-Hawking (GH) entropy [3]. If this is the case, then
screening via the chameleon mechanism might not be
possible. For example, if the mass of particles depends
exponentially on the field, then the GH entropy suggests
that the potential energy of the scalar does as well; in such a
setup the thin-shell mechanism in chameleon theories does
not exist [36]. Alternatives such as field dependent cou-
plings may be promising as hinted by the strongly coupled
dilaton (there are also examples of chameleon theories with
field dependent couplings—see, e.g., [49]; these theories
need to be studied in more detail). In particular, once solar
system constraints on gravity are imposed, the strongly
coupled dilaton keeps evolving without violating the
distance conjecture and its potential energy leads to a
quasi–de Sitter spacetime which evades Weinberg’s no-go
theorem [50]. A more thorough investigation of the
strongly coupled dilaton from the string theory point of
view would certainly add to this discussion.
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APPENDIX A: SOLAR SYSTEM
GRAVITY TESTS

In this appendix we briefly summarize constraints
coming from solar system experiments.

1. Strong equivalence principle

The screening models lead to a violation of the strong
equivalence principle for screened bodies. Contrary to point
particles that couple to the scalar field with the coupling
βðϕÞ, extended bodies couple with a scalar charge

βeff ¼
jϕout − ϕinj
2mPlΦ

; ðA1Þ

where Φ is the Newton potential at their surface. These
objects are screened when

βeff ≤ βðϕoutÞ; ðA2Þ

where ϕin is the field value deep inside the body corre-
sponding to the field value associated with the density of
the object and ϕout is the field value far away from the
object associated with the density of the environment. For
most chameleon models, ϕ decreases with ρ in such a way
that we can approximate

βeff ¼
jϕoutj
2mPlΦ

; ðA3Þ

which depends both on the environment and on the inner
gravity of the object. For dilatons, ϕin has to be kept in the
previous expression. Three screened bodies A, B, and E
embedded in the same background but with differing
Newton potentials couple differently to the scalar implying
a nonzero value for the Eötvos parameter

ηAB ¼ jaA − aBj
jaA þ aBj

≃ βEjβA − βBj; ðA4Þ

where aA;B are the accelerations toward E. In the Moon-
Earth-Sun system and as the couplings depend on the

objects as in (A3), the constraint given by the laser lunar
ranging experiment on the violation of the equivalence
principle for the Earth and the Moon falling toward the Sun
is [34]

β⊕ ≤ 10−6: ðA5Þ

As Φ⊙ ¼ 10−9, this implies for the screened field in the
Milky Way

ϕG ≲ 10−15mPl: ðA6Þ

Hence as long as the density dependence of ϕðρÞ is not too
strong as well as using ρG ≃ 106ρ0, we find that the distance
conjecture is always satisfied for screened models which
pass the Lunar Laser Ranging test.

2. The Cassini experiment

The Cassini satellite has given a strong constraint on
long range forces in the solar system [30]. Assuming that
the Compton wavelength of the screened scalar in the solar
is larger than the solar system, the deviation from Newton’s
law (or the Shapiro effect) implies that

βsatβ⊙ ≤ 10−5: ðA7Þ

Assuming that the satellite is not screened as it is a small
object and using Φ⊙ ¼ 10−6 implying that β⊙ ≤ 10−9 from
(A5), this leads to

βG ≤ 104: ðA8Þ

Hence the constraint from the Cassini experiment on the
coupling in the galactic environment is quite loose. It is
certainly compatible with (24) when the density depend-
ence of β is weak.

APPENDIX B: QUANTUM CORRECTIONS

We have focused on classical properties of scalar-tensor
theories with screening. In this appendix, we will discuss
the quantum corrections in these models. We will face the
usual fine-tuning of the vacuum energy at low energy
which requires one fine-tuning using a bare cosmological
constant as a counterterm. Other quantum corrections are
also important and will give a restriction on the quantum
validity of the models.
Let us concentrate on the matter contributions to the

quantum corrections following [51]. In the Jordan frame,
matter quantum corrections to the vacuum energy do not
involve the scalar field at all and come from the vacuum
diagrams with matter particles running in the loops. The
result is formally divergent and equal to Λ4

quðμÞ after
regularization and renormalization. For instance, in dimen-
sional regularization, the contributions involve quartic
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powers of the masses of particles up to logarithmic
corrections which depend on the sliding scale μ. In the
Einstein frame, this would lead to a new potential
δVðϕÞ ¼ Λ4

quðμÞA4ðϕÞ. In general, ΛquðμÞ is much bigger
than the dark energy scale. This is simply the usual
cosmological constant problem. At the quantum level,
one can always require that the bare cosmological constant
Λbare whose role is to cancel the infinities of the quantum
corrections would also absorb the finite part for a given
value μ ¼ μ0. For this value of the sliding scale, the dark
energy potential VðϕÞ is not corrected by quantum effects.
This requires the same fine-tuning as in all models of dark
energy when facing the cosmological constant problem.
The quantum corrections to the potential VðϕÞ coming

from the scalar itself have for magnitude δVðϕÞ ≃m4
ϕ

which is negligible as long as mϕ ≪ 10−3 eV as required
for dark energy scalar to have some influence on cosmo-
logical scales. Matter-scalar mixing can also lead to new
contributions. For instance, at two loops with one insertion
of a scalar propagator, a fermion loop gives a contribution
of order

δV ≃ β2
m6

ψ

m2
Pl

; ðB1Þ

which, for β ≳ 1, is a negligible correction to the late-time
dark energy when mψ ≪ 10−2 GeV [45]. As a result,
screened models of dark energy are only low-energy
effective field theories with a low cutoff. Notice that this
does not preclude the use of these models at low energy
since big bang nucleosynthesis, which takes place around
the energy scale of the order of the electron mass.
Finally we must analyze the quantum corrections to

the coupling to matter β. When scalar and gravitational
nonlinearities are neglected, it has been argued in [52]
that the coupling β receives only corrections from the

wave-function renormalization of the scalar ϕ by matter
loops. The wave function renormalization is Zϕ ≃ 1þ δZϕ

inducing a correction δβ ≃ − 1
2
βδZϕ to β. At leading order

for a fermion of mass mψ , we have

δZψ ≃ β2
m2

ψ

m2
Pl

; ðB2Þ

which is negligible when β ≃ 1 at low energy. Mixing
between the scalar and gravitons leads to a logarithmic
correction to β from a graviton loop

δβ ≃
m2

ϕϕ

m3
Pl

≲ d
m2

ϕ

m2
Pl

ðB3Þ

using the distance conjecture. This is very small. Finally
scalar loops give contributions in

δβ ≃mPlA00V 000
eff ; ðB4Þ

which involves the triple derivative of the effective potential
with respect to ϕ at the minimum of the effective potential.
This can be estimated using the tomographic map as

A00 ≃
A
m2

Pl

�
d ln β
da

þ β

�
m2

ϕ

H2
; V 000 ≃

1

βmPl

m2
ϕ

H2

dm2
ϕ

da
: ðB5Þ

This leads to competing factors. Dimensionally we have
dm2

ϕ

da ∼m2
ϕ ≪ m2

Pl which cannot be compensated by
m4

ϕ

H4

unless in extremely dense environments. As a result the
correction to β is negligible.
In conclusion, the quantum corrections are no worse than

in usual quintessence models as long as the models are used
at low energy below 10−2 GeV.
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