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We account for particle emission and gravitational radiation from cosmic string loops to determine their
effect on the loop distribution and observational signatures of strings. The effect of particle emission is that
the number density of loops no longer scales. This results in a high-frequency cutoff on the stochastic
gravitational wave background, but we show that the expected cutoff is outside the range of current and
planned detectors. Particle emission from string loops also produces a diffuse gamma-ray background that
is sensitive to the presence of kinks and cusps on the loops. However, both for kinks and cusps, and with
mild assumptions about particle physics interactions, current diffuse gamma-ray background observations
do not constrain Gμ.
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I. INTRODUCTION

Most often the dynamics of local cosmic strings formed
in a phase transition in the early Universe (see Refs. [1–3]
for reviews) is described by the Nambu-Goto (NG) action.
This approximation is valid when the microscopic width of
the string

w ∼ μ−1=2 ∼ 1=η ð1Þ

(with μ the string tension and η the energy scale of the phase
transition) is very small relative to its characteristic macro-
scopic size l—a situation which is well satisfied in the early
Universe. Closed loops of NG strings lose energy slowly by
radiating gravitational waves, and as a result, NG string
networks contain numerous loops whose decay generate a
stochastic gravitational wave background (SGWB) ranging
over a wide range of frequencies [1]. Depending on the
details of the particular cosmic string model, the corre-
sponding constraints on the dimensionless string tensionGμ
from the SGWB are Gμ≲ 10−7 at LIGO-Virgo frequencies
[4] and Gμ≲ 10−11 at Pulsar frequencies [5], whereas at
LISA frequencies, one expects to reach Gμ≲ 10−17 [6].

On the other hand, at a more fundamental level, cosmic
strings are topological solutions of field theories. Their
dynamics can therefore also be studied by solving the field-
theory equations of motions. In studies of large-scale field-
theory string networks [7–10], loops are observed to decay
directly into particles and gauge boson radiation on a short
timescale of order of the loop length. Hence, field-theory
string network simulations predict very different observa-
tional consequences—in particular, no SGWB from loops.
Since field-theory and Nambu-Goto strings in principle

describe the same physics, and hence lead to the same
observational consequences, this is an unhappy situation.
Based on high-resolution field-theory simulations, a pos-
sible answer to this long-standing conundrum was pro-
posed in Ref. [11]. In particular, for a loop of length l
containing kinks, a new characteristic length scale l0 ¼ lk
was identified, and it was shown that if l≳ lk gravitational
wave emission is the dominant decay mode, whereas for
smaller loops l≲ lk, particle radiation is the primary
channel for energy loss. That is,

dl
dt

¼
�−γd; l ≫ lk

−γd
lk
l ; l ≪ lk;

ð2Þ

where

γd ≡ ΓGμ

with Γ ∼ 50 being the standard constant describing gravi-
tational radiation from cosmic string loops [12–15]. Notice
that Nambu-Goto strings correspond to lk → 0, and if
particle radiation is dominant for all loops, lk → ∞.
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In practice, lk is neither of these two limiting values, and in
Ref. [11] was estimated (for a given class of loops with
kinks) to be given by

lk ∼ βk
w

ΓGμ
; ð3Þ

where w is the width of the string, Eq. (1), and the constant
βk ∼Oð1Þ. Note that the simulations of Ref. [11] consider
the oscillations of loops with kinks over their entire
lifetime. The results show episodic emission, with the
net result of all the dynamics being the 1=l behavior
of Eq. (2).
If a loop contains cusps, then one expects the above to be

modified to [16,17]

dl
dt

¼
(−γd; l ≫ lc

−γd
ffiffiffiffi
lc
l

q
; l ≪ lc;

ð4Þ

where

lc ∼ βc
w

ðΓGμÞ2 ð5Þ

with βc ∼Oð1Þ. We note that this 1=
ffiffiffi
l

p
dependence is less

certain since, to the best of our knowledge, no field-theory
simulations of loops with cusps over their entire lifetime
exist.1

The aim of this paper is to determine the observational
effects—and corresponding constraints on Gμ—of a finite,
fixed, value of lk or lc. A first immediate consequence of
the presence of the fixed scale is that the distribution
of loops nðl; tÞ, with nðl; tÞdl being the number density of
loops with length between l and lþ dl at time t, will no
longer be scaling. That is, contrary to the situation for NG
strings, the loop distribution will depend explicitly on t as
well as the dimensionless variable γ ¼ l=t. We determine
this nonscaling loop distribution nðγ; tÞ in Sec. II, taking
into account exactly (and for the first time) the backreaction
of particle emission on the loop distribution.
We then study the consequence of the nonscaling

distribution of non–self intersecting loops on the stochastic
gravitational wave (GW) background, determining the
fraction of the critical density in GWs per logarithmic
interval of frequency,

Ωgwðt0; fÞ ¼
8πG
3H0

2
f
dρgw
df

ðt0; fÞ; ð6Þ

where H0 is the Hubble parameter and the dρgw=df factor is
the energy density in gravitational waves per unit frequency
f observed today (at t ¼ t0). A scaling distribution of NG
loops gives a spectrum which is flat at high frequencies [1];
we will show below that a consequence of the nonscaling of
the loop distribution is the introduction of a characteristic
frequency f�, with Ωðf > f�Þ → 0. The precise value of f�
depends on lk or lc, as well as Gμ. For cusps and kinks
with lc and lk given, respectively, by Eqs. (2) and (4), the
characteristic frequency f� is outside the LIGO and LISA
band, provided Gμ ≳ 10−17, and so in this case, the new
cutoff will only be relevant for very light strings but for
which the amplitude of the signal is below the observational
thresholds of planned gravitational wave detectors.
In Sec. V, we turn to particle physics signatures. At lower

string tensions Gμ, the gravitational signatures of strings
weaken, while the particle physics ones are expected to
increase. Following Ref. [18], we focus on so-called top-
down models for production of ultrahigh-energy cosmic
rays in which heavy particles, namely, the quanta of
massive gauge and Higgs field of the underlying (local)
field theory trapped inside the string, decay to give ultra-
high-energy protons and gamma rays. We focus on the
diffuse gamma-ray flux which at GeV scales are con-
strained by Fermi-Lat [19]. However, taking into account
backreaction of the emitted particles on the loop distribu-
tion, we find that current gamma-ray observations do not
lead to significant constraints. (Early studies on the
production of cosmic rays assumed NG strings and particle
emission rates that were based on dynamics without taking
backreaction into account. See Refs. [20–24] and [18] for a
review. Other work has focused on strings with conden-
sates, e.g., Refs. [25–27], or strings coupled to other fields
such as Kaluza-Klein or dilaton fields [28,29].)
This paper is organized as follows. In Sec. II, we

determine the effect of an l-dependent energy loss,

dl
dt

¼ −γdJ ðlÞ; ð7Þ

on the loop distribution nðl; tÞ. The function J ðlÞ will
initially be left arbitrary. Specific cases corresponding to
(i) NG loops with J ¼ 1 (ii) loops with kinks [see Eq. (2)],
and (iii) loops with cusps [see Eq. (4)] are studied in
Secs. III A–III C. Given the loop distribution, we then use it
to calculate the SGWB in Sec. IV and the predicted diffuse
gamma-ray flux in Sec. V. We conclude in Sec. VI by
discussing the resulting experimental constraints on Gμ.

II. LOOP DISTRIBUTION

All observational consequences of string loops depend
on nðt;lÞdl, the number density of non–self intersecting
loops with length between l and lþ dl at time t. In this
section, we calculate nðt;lÞ given (7); that is, we take into
account the backreaction of the emitted particles on the

1Reference [17] studies a single cusp on a field-theory string
and gives the energy emitted per cusp, from which one deduces
the 1=

ffiffiffi
l

p
behavior. It shows that the shape of the string is

modified after the cusp event and argues that further smaller
cusps will be formed in future loop oscillations. What we assume
above is that the net result is a 1=

ffiffiffi
l

p
dependence.
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loop distribution. As noted in the Introduction, the exist-
ence of the fixed scale lk or lc means that the loop
distribution will no longer scale, that it will no longer be a
function of the dimensionless variable γ ≡ l=t.

A. Boltzmann equation and general solution

The loop distribution satisfies a Boltzmann equation,
which, taking into account the l dependence of _l (that is,
the flux of loops in l space), is given by [30]

∂
∂t
����
l
(a3nðt;lÞ)þ ∂

∂l
����
t

�
dl
dt

a3nðt;lÞ
�

¼ a3P; ð8Þ

where aðtÞ is the cosmic scale factor and the loop
production function Pðt;lÞ is the rate at which loops of
length l are formed at time t by being chopped of the
infinite string network. On substituting Eq. (7) into Eq. (8)
and multiplying each side of the equation by J ðlÞ, one
obtains

1

γd

∂
∂t
����
l
gðt;lÞ − J ðlÞ ∂∂l

����
t
gðt;lÞ ¼ a3J ðlÞPðt;lÞ; ð9Þ

where

gðt;lÞ≡ γdJ ðlÞa3ðtÞnðt;lÞ: ð10Þ

To solve (9), we first change variables from ðt;lÞ to

τ≡ γdt; ξ≡
Z

dl
J ðlÞ : ð11Þ

Notice from (7) and (11) that for a loop formed at time ti
with length li its length at time t satisfies

ξðlÞ þ γdt ¼ ξðliÞ þ γdti: ð12Þ

In terms of these variables, Eq. (9) reduces to a wave
equation with a source term

∂
∂τ
����
ξ

gðτ; ξÞ − ∂
∂ξ

����
τ

gðτ; ξÞ ¼ Sðτ; ξÞ; ð13Þ

where

Sðτ; ξÞ ¼ a3ðτÞJ ðξÞPðτ; ξÞ:

We now introduce the light-cone variables

2u≡ τ − ξ; 2v≡ τ þ ξ; ð14Þ

so the evolution equation simply becomes

∂
∂u

����
v
gðu; vÞ ¼ Sðu; vÞ; ð15Þ

which is straightforward to integrate. In the following, we
neglect any initial loop distribution at initial time tini (since
this is rapidly diluted by the expansion of the Universe), so
the general solution of (15), and hence the original
Boltzmann equation (8), is

gðu; vÞ ¼
Z

u

−v
du0Sðu0; vÞ: ð16Þ

Finally, one can convert back to the original variables
nðl; tÞ using (10) to find

nðt;lÞ ¼ 1

γdJ ðlÞa3ðtÞ
Z

uðt;lÞ

−vðt;lÞ
du0a3(u0; vðt;lÞ)

× J (u0; vðt;lÞ)P(u0; vðt;lÞ); ð17Þ

where vðt;lÞ is obtained from Eqs. (11) and (14). Notice
that J appears in two places: as an overall factor in the
denominator as well as in the integrand.

B. Solution for a δ-function loop
production function

We now assume that all loops are chopped off the infinite
string network with length αt at time t. This assumption,
which has often been used in the literature, will lead to
analytic expressions. The value α ∼ 0.1 is suggested by the
NG simulations of Refs. [31,32], particularly in the
radiation era. However, one should note that other simu-
lations [33] are consistent with power-law loop productions
functions [34,35], which have also been predicted analyti-
cally [36–38]. These will be considered elsewhere. Since
αt ≫ ðlk;lcÞ for α ∼ 0.1, we expect that particle radiation
from infinite strings will not affect the (horizon-size)
production of loops from the scaling infinite string net-
work, and hence we consider a loop production function of
the form

Pðt;lÞ ¼ Ct−5δ
�
l
t
− α

�
; ð18Þ

where the constant C, which takes different values in the
radiation and matter eras, will be specified below.
Substituting into (16), assuming a ∝ tν (with ν ¼ 1=2 in
the radiation era and ν ¼ 2=3 in the matter era) gives

gðu; vÞ ¼ C
Z

u

−v
du0J ½lðu0; vÞ�tðu0; vÞ−5a½tðu0; vÞ�3

× δ

�
lðu0; vÞ
tðu0; vÞ − α

�
:

To evaluate this integral, in which v ¼ vðt;lÞ is fixed, let
us denote the argument of the δ function by
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y≡ lðu0; vÞ
tðu0; vÞ − α:

For the given v, the argument vanishes (y ¼ 0) for some
u0ðvÞ, which we will denote u⋆ðvÞ and which therefore
satisfies

lðu⋆; vÞ ¼ αtðu⋆; vÞ: ð19Þ

Let us rewrite this more simply as l⋆ ¼ αt⋆, where l⋆ ≡
lðu⋆; vÞ ¼ l⋆ðvÞ and t⋆ ≡ tðu⋆; vÞ ¼ t⋆ðvÞ. Now, from the
v equation in (14), one has 2v ¼ γdt⋆ðvÞ þ ξ(l⋆ðvÞ).
Furthermore—since our final goal is to write the loop
distribution in terms of ðt;lÞ (rather than v)—we note
from the same equation that v is related to ðt;lÞ by
2v ¼ γdtþ ξðlÞ. Thus, t⋆ðt;lÞ, which will be required
below, is the solution of

γdt⋆ þ ξðαt⋆Þ ¼ γdtþ ξðlÞ; ð20Þ

which physically is simply relating the length of the loop
αt⋆ at its formation time t⋆, with its length l at time t;
see Eq. (12).
The final step needed to evaluate the integral in Eq. (II B)

is the Jacobian of the transformation from u0 to y, which,
upon using (14), is given by

∂
∂u0

����
v
(yðu0; vÞ) ¼ −

γdJ (lðu0; vÞ)tðu0; vÞ þ lðu0; vÞ
γdtðu0; vÞ2

:

Evaluating this at u0 ¼ u⋆ and using l⋆ ¼ αt⋆ gives

∂
∂u

����
v
(yðu⋆; vÞ) ¼ −

γdJ ½αt⋆ðt;lÞ� þ α

γdt⋆ðt;lÞ
:

Having now expressed all the relevant quantities in terms of
ðt;lÞ, one can combine the above results and use the
definition of g in terms of nðt;lÞ in Eq. (10) to find

t4nðt;lÞ ¼ C
1

J ðlÞ
J ðαt⋆Þ

αþ γdJ ðαt⋆Þ
�
t⋆
t

�
−4
�
aðt⋆Þ
aðtÞ

�
3

: ð21Þ

This equation, which is exact, is the central result of this
section and gives the loop distribution for any form of
energy loss dl=dt ¼ −γdJ ðlÞ, provided the loop produc-
tion function is a δ function. It generalizes and extends
other approximate results which may be found in the
literature.
For loops that are formed in a given era (either radiation

or matter domination) and decay in the same era, the above
solution reduces to

t4nðt;lÞ ¼ C
1

J ðlÞ
J ðαt⋆Þ

αþ γdJ ðαt⋆Þ
�
t⋆
t

�
3ν−4

: ð22Þ

In the matter era, however, there also exists a population of
loops which were formed in the radiation era, where
C ¼ CR, and decay in the matter era. Indeed, this pop-
ulation generally dominates over loops formed in the matter
era. From (21), one can find a general expression for the
distribution at any redshift z, provided the loops were
formed in the radiation era (ν ¼ 1=2); it is given by

t4nðt;lÞ ¼ CR
1

J ðlÞ
J ðαt⋆Þ

αþ γdJ ðαt⋆Þ
�
t⋆
t

�
−5=2

ð1þ zðtÞÞ3

×
	
2

ffiffiffiffiffiffiffi
ΩR

p
H0t



3=2

: ð23Þ

This reduces to (21) in the radiation era and has the correct
scaling in the matter era.
In the following, we use standard Planck cosmology

with Hubble constant H0 ¼ 100h km=s=Mpc, h ¼ 0.678,
ΩM¼0.308, ΩR¼9.1476×10−5, and ΩΛ ¼ 1 −ΩM − ΩR
[39]. We model the varying number of effective degrees
of freedom in the radiation era through HðzÞ ¼ H0HðzÞ
with HðzÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛþΩMð1þzÞ3þΩRGðzÞð1þzÞ4

p
, where

GðzÞ is directly related to the effective number of degrees
of freedom g�ðzÞ and the effective number of entropic
degrees of freedom gSðzÞ by [40]

GðzÞ ¼ g�ðzÞg4=3S ð0Þ
g�ð0Þg4=3S ðzÞ

: ð24Þ

We model this by a piecewise constant function whose
value changes at the QCD phase transition (T ¼ 200 MeV)
and at electron-positron annihilation (T ¼ 200 keV):

GðzÞ ¼
8<
:

1 for z < 109;

0.83 for 109 < z < 2 × 1012:

0.39 for z > 2 × 1012

ð25Þ

III. LOOP DISTRIBUTIONS FOR PARTICLE
RADIATION FROM CUSPS AND KINKS

Given a specific form of J ðlÞ, the loop distribution
nðl; tÞ is given by (21), where t⋆ðt;lÞ is obtained by
solving (20). The existence or not of an analytical solution
depends on the form of J ðlÞ. In this section, we consider
three cases:
(1) Nambu-Goto loops.—Here, _l ¼ −γd so that J ¼ 1.
(2) Loops with kinks.—The asymptotic behavior of

J ðlÞ is given in Eq. (2). This can be captured,
for instance, by J 1 ¼ 1þ lk=l or alternatively by

J k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
lk

l

�
2

s
: ð26Þ

This second form gives a simpler analytic expression
for t⋆, and we work with it below. (We have checked
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that the differences in predictions arising from the
choice of J 1 or J k are negligible.)

(3) Loops with cusps.—Following Eq. (4), we take

J c ¼
�
1þ

�
lc

l

�
3=2

�
1=3

; ð27Þ

which has the correct asymptotic behavior and also
leads to analytical expressions. An alternative, and
seemingly simpler, form J ¼ 1þ ffiffiffiffiffiffiffiffiffiffi

lc=l
p

does not
give analytical expressions for nðt;lÞ.

We now determine the corresponding loop distribution in
scaling units, namely, in terms of the variables

γ ≡ l
t
; γkðtÞ≡ lk

t
; γcðtÞ≡ lc

t
; ð28Þ

and determine

N ðt; γÞ≡ t4nðt; γÞ: ð29Þ

A. NG strings

A first check is that the above formalism yields the
well-known, standard, loop distribution for NG strings
(J ¼ 1). Equation (11) yields ξ ¼ l, and from Eq. (20), it
follows that

t⋆
t
¼ γ þ γd

αþ γd
:

Hence, from Eq. (22),

N NGðt; γÞ ¼ C
ðαþ γdÞ3ð1−νÞ
ðγ þ γdÞ4−3ν

; ð30Þ

which is the standard scaling NG loop distribution for a
delta-function loop production function [1]. In the radia-
tion/matter eras, and on the scales α ≫ γd observed in
simulations, comparison with the numerical results of
Refs. [31–33] sets the values of C to, respectively,

CRα
3=2 ≃ 0.18 ðradiation eraÞ

CMα ≃ 0.27 ðmatter eraÞ

The scaling distribution Eq. (30) is shown in the black
(solid) curve in Fig. 1, in which we have taken α ¼ 0.1,
γd ¼ 10−6, and ν ¼ 1=2 (radiation era).

B. Loops with kinks

From Eq. (11), with J k given Eq. (26), we now have
ξðlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ l2

k

p
. Thus, from Eq. (20), t⋆ satisfies a

quadratic equation with solution

t⋆
t
¼

−γ̄ðγdαÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ̄2 − γ2k(1 − ðγdα Þ2)

q
α(1 − ðγdαÞ)

; ð31Þ

where γkðtÞ is given in (28) and

γ̄ðt; γÞ≡ γd þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2kðtÞ þ γ2

q
: ð32Þ

Since α ∼ 0.1 and γd ≡ ΓGμ ≲ 10−6 (from cosmic micro-
wave background constraints on cosmic strings [41]), in

FIG. 1. Loop distribution for kinks in the radiation era, with α ¼ 0.1 and γd ¼ 10−6, and at several different epochs. Black solid line:
γk ¼ 0 (t → ∞), the NG loop distribution. Red dashed line: γkðtÞ ¼ 10−5γd (corresponding to t ¼ 105tk). Blue dotted-dashed line:
γkðtÞ ¼ γd (corresponding to t ¼ tk). Green dotted line:γkðtÞ ¼ 104γd (corresponding t ¼ 10−4tk).
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our analytical expressions below we ignore terms in γd=α
so that ðαt⋆=tÞ2 ¼ γ̄2 − γ2kðtÞ. (This approximation was not
used in our numerical calculations.) Thus, from Eq. (21) we
find, assuming α ≫ γd,

N ðt; γÞ ¼ Cα3ð1−νÞ
�

γ̄2ðt; γÞ
1þ γ2kðtÞ=γ2

�
1=2

(γ̄2ðt; γÞ − γ2kðtÞ)
3ν−5
2

where γ ≤ α: ð33Þ

This distribution, in the radiation era, is plotted in Fig. 1 for
illustrative values of γkðtÞ, with γd ¼ 10−6, α ¼ 0.1.
The important qualitative and quantitative features to

notice are the following:
(i) The existence of the fixed scale lk gives rise to a

nonscaling distribution: N is explicitly t dependent.
(ii) When γk → 0, namely, when t → ∞, Eq. (33) re-

duces to the standard scaling NG loop distribution
given in Eq. (30) (in the limit α ≫ γd).

(iii) For γ ≫ γkðtÞ, the loop distribution is scaling since
γ̄ ∼ γ þ γd, so

N ðt; γÞ ≃ Cα3ð1−νÞðγ þ γdÞ3ν−4: ð34Þ

This behavior is clear in Fig. 1, in which for
γ ≫ γkðtÞ the various curves coincide with the
NG curve. Hence, for loops of these lengths,
gravitational radiation is important, but particle
radiation plays no role. Furthermore:
(a) when γd ≫ γ ≫ γk, the distribution is flat; see

Fig. 1’s dashed red curve.
(b) when γ ≫ ðγd; γkÞ, N drops off as γ3ν−4, as for

NG loops, a dependence which is simply due to
the expansion of the Universe.

(iv) For γ ≪ γkðtÞ, the distribution no longer scales
because of particle radiation. Indeed, γ̄ ∼ γkðtÞ þ γd,
so

N ≃Cα3ð1−νÞγ
3ν−5
2

d

�
γ

γkðtÞ
�
ð2γkðtÞþγdÞ3ν−52 ðγkðtÞþγdÞ:

ð35Þ

This linear dependence on γ for γ ≪ γk is visible in
Fig. 1. Notice that when γd ≪ γk there is no plateau
in the distribution, which goes from the linear
behavior (35) to the scaling behavior (34), at a
value of γ obtained by equating these two equa-
tions, namely,

γ�kðtÞ ≃
ffiffiffiffiffiffiffiffiffiffiffi
2γkγd

p
:

This is clearly visible in the dotted green curve
in Fig. 1.

When γkðtÞ ≪ γd, an excellent approximation to the
distribution is

N ðγ; tÞ ≃ Cα3ð1−νÞ
1

J ðγ; tÞ ðγ þ γdÞ3ν−4; ð36Þ

where, for the kinks considered here,

J ðγ; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
γkðtÞ
γ

�
2

s
:

On the other hand, when γkðtÞ ≥ γd, the distribution
changes behavior, and for γkðtÞ ≫ γd, its amplitude is
significantly suppressed due to particle emission. Indeed,
when γ ¼ γ�kðtÞ, which is at the maximum of N (see

the green curve, Fig. 1), N scales as γ−ð4−3νÞ=2k , which
decreases with increasing γk. The equality γd ¼ γkðtÞ
defines a characteristic time tk by

tk ≡ lk

γd
: ð37Þ

For t ≪ tk, particle emission is dominant, γkðtÞ ≥ γd, and
the distribution is suppressed. Using lk given by Eq. (3),

tk ¼ βk
tpl

Γ2ðGμÞ5=2 ≃ βkteq

�
2.5 × 10−24

Gμ

�
5=2

;

or in terms of redshift,

zk ≃ zeq

�
Gμ

2.5 × 10−24

�
5=4 1ffiffiffiffiffi

βk
p ; ð38Þ

where zeq ≃ΩM=ΩR ∼ 3367. The left-hand (LH) panel of
Fig. 2 shows the loop distribution for different redshifts
for lk given in Eq. (3) and βk ¼ 1. The effect of the
suppression of the loop distribution at z ≫ zk on the
SGWB will be discussed in Sec. IV.

C. Loops with cusps

For loops with cusps, where J ¼ J c given in Eq. (27),
the analysis is very similar. We only give the salient
features. As for kinks (see Eq. (37), one can define a
characteristic time through γd ¼ γcðtÞ, namely,

tc ≡ lc

γd
; ð39Þ

and again, as for kinks, when t ≪ tc, the effects of particle
radiation are more important, and the loop distribution is
suppressed. For lc given in Eq. (5), we have

tc ¼ βc
tpl

Γ3ðGμÞ7=2 ≃ βcteq

�
4.6 × 10−18

Gμ

�
7=2

; ð40Þ

or in terms of redshift,
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zc ≃ zeq

�
Gμ

4.6 × 10−18

�
7=4 1ffiffiffiffiffi

βc
p : ð41Þ

For the relevant range, namely, Gμ < 10−6, we have
zc < zk, and hence the observational consequences of
cusps, both on the SGWB and the diffuse gamma-ray
background, are expected to be more significant than those
of kinks—since, as discussed above, the loop distribution is
suppressed when z < ðzc; zkÞ; see Fig. 2.
The explicit γ dependence of the distribution is the

following. First, substituting J c in the definition of ξðγÞ
and t�, Eqs. (11) and (20), respectively, we find

ξðlÞ ¼ ðl3=2 þ l3=2
c Þ2=3;�

αt⋆
t

�
3=2

¼ ½γd þ ðγ3=2 þ γ3=2c Þ2=3�3=2 − γ3=2c for α ≫ γd:

It then follows from Eq. (22) that the resulting distribution
again scales for γ ≫ γc, where it is given by Eq. (34); and
for γ ≪ γd, N ∝ ffiffiffi

γ
p

. When γc ≫ γd, we find

N ∝

(
γ3ν−4 ðγ ≫ γ�cÞffiffiffi
γ

p ðγ ≪ γ�cÞ
;

where

γ�c ≃ ðγd
ffiffiffiffi
γc

p Þ2=3:

IV. STOCHASTIC GRAVITATIONAL
WAVE BACKGROUND

The stochastic GW backgroundΩgwðt0; fÞ given in (6) is
obtained by adding up the GW emission from all the loops
throughout the whole history of the Universe which have

contributed to frequency f. Following the approach devel-
oped in Refs. [1,15,42],

Ωgwðln fÞ ¼
8πG2μ2f
3H0

2

X∞
j¼1

CjðfÞPj; ð42Þ

where

CjðfÞ ¼
2j
f2

Z
zfriction

0

dz
HðzÞð1þ zÞ6 n

�
2j

ð1þ zÞf ; tðzÞ
�

ð43Þ

and zfriction is the redshift below which friction effects on the
string dynamics become negligible [1],

zfriction ≃ zeqð4.4 × 1016Þ
�

Gμ
10−11

�
: ð44Þ

The Cj depend on the loop distribution nðl; tÞ through
nð2j=ðð1þ zÞfÞ; tðzÞÞ, while the Pj are the “average loop
gravitational wave power spectrum,” namely, the power
emitted in gravitational waves in the jth harmonic of the
loop. By definition of Γ, these must be normalized to

Γ ¼
X∞
j¼1

Pj:

For loops with kinks, Pj ∝ j−5=3, whereas for loops with
cusps, Pj ∝ j−4=3 [1,12,43].
As explained above, the effect of γk and γc on the loop

distribution is particularly important at large redshifts
z > ðzc; zkÞ, and hence in the radiation era. Therefore,
we expect the effect of particle radiation to be visible in
the high-frequency part of the spectrum. This is indeed
observed in Fig. 3, in which the LH panel is for kinks with

FIG. 2. Loop number density N ¼ t4n for kinks (left-hand panel) and cusps (right-hand panel), for Gμ ¼ 10−17. Thus, zk ∼ 1012 and
zc ∼ 104. From bottom to top, the curves show snapshots of the loop distribution at redshifts z ¼ 1013; 1011; 109; 107; 105, and the black
curve is the scaling loop distribution at z → 0. The loop distributions are suppressed for z ≫ zk or z ≫ zc.
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lk given in Eq. (3) and Pj ∝ j−5=3, whereas the right-hand
(RH) panel is for cusps with lc given in Eq. (5) and
Pj ∝ j−4=3. As a result of the nonscaling loop distribution,
the spectrum is no longer flat at high frequencies, and, as
expected, the effect is more significant for cusps than for
kinks since zc < zk.
We can estimate the frequency abovewhich the spectrum

decays as follows. In the radiation era,

HðzÞ ¼ ð1þ zÞ2
ffiffiffiffiffiffiffi
ΩR

p
H0 ð45Þ

tðzÞ ¼ 1

2ð1þ zÞ2
1ffiffiffiffiffiffiffi

ΩR
p

H0

: ð46Þ

At high frequency, the lowest harmonic j ¼ 1 is expected
to dominate [1], so we set Pj ¼ Γδj;1. Then, using (45) and
(46), Eq. (42) simplifies to

Ωgwðln fÞ ¼ 24
16πðΓGμÞ2

3Γ
H0

f
Ω3=2

R

Z
zfriction

zeq

dzN
�

2

ð1þ zÞf ; tðzÞ
�

∝
H0

f

�Z
zc;k

zeq

dzN
�

2

ð1þ zÞf ; tðzÞ
�
þ
Z

zfriction

zc;k

dzN
�

2

ð1þ zÞf ; tðzÞ
��

:

≃
H0

f

Z
zc;k

zeq

dzN
�

2

ð1þ zÞf ; tðzÞ
�
: ð47Þ

Here, in going from the second to the third equality, we
have used the facts that (i) for Gμ≳ 10−18, which is the
relevant range for current and future GW detectors, zeq <
ðzc; zkÞ ≪ zfriction [see Eqs. (38), (41), and (44)], and that
(ii) the loop distribution above zðc;kÞ is subdominant; see,
e.g., the discussion above Eq. (37) in Sec. III B. Using
Eq. (46) as well as the approximation for the loop
distribution for z < zk given in Eq. (36), it follows that
for kinks

½Ωgwðln fÞ�k ∝
Z

xk

xeq

�
1þ

�
lkxf2

8H0

ffiffiffiffiffiffiffi
ΩR

p
�

2
�−1=2

× ðγd þ xÞ−5=2dx; ð48Þ

where we have changed the variable from z to

x ¼ 4

f
ð1þ zÞH0

ffiffiffiffiffiffiffi
ΩR

p

so that

xeq ¼
4

f
ð1þ zeqÞH0

ffiffiffiffiffiffiffi
ΩR

p
; xk ¼

4

f
ð1þ zkÞH0

ffiffiffiffiffiffiffi
ΩR

p
:

To understand the frequency dependence of Ωgw, let us
initially focus on the standard NG case, namely, lk ¼ 0.
[Here, the same change of variable starting from the first
line of Eq. (47) again yields Eq. (48) but with the upper

FIG. 3. SBGW including the backreaction of particle emission on the loop distribution. LH panel: kinks on loops, RH panel: cusps on
loop. The spectra are cut off at high frequency, as indicated by the black vertical lines. Gμ ranges from 10−17 (lower curve), through
10−15, 10−13,10−11, 10−9, and 10−7 (upper curve). Also plotted are the power-law integrated sensitivity curves from SKA (pink dashed)
[44], LISA (yellow dashed) [45], adv-LIGO (gray dashed) [46], and Einstein Telescope (blue dashed) [47,48].
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bound replaced by xfriction ¼ 4ð1þ zfrictionÞH0

ffiffiffiffiffiffiffi
ΩR

p
=f].

Then, Eq. (48) gives

½Ωgwðln fÞ�NG ∝
1

ðfeqf þ 1Þ3=2
−

1

ðffrictionf þ 1Þ3=2 ;

where

feq ¼
4H0

ffiffiffiffiffiffiffi
ΩR

p ð1þ zeqÞ
γd

∼
10−18

Gμ
s−1;

ffriction ¼
4H0

ffiffiffiffiffiffiffi
ΩR

p ð1þ zfrictionÞ
γd

∼ 1010 s−1;

and where in the last equality we have used Eq. (44). At
frequencies f for which ffriction ≫ f ≫ feq, it follows that
½Ωgwðln fÞ�NG → constant, meaning that the spectrum is
flat, which is the well-known result for NG strings [1].
For lk ≠ 0, the argument is altered because of the

frequency dependence of the term in square brackets in
Eq. (48). A further characteristic frequency now enters: this
can be obtained by combining the typical scales of the two
terms in Eq. (48). Namely, on one hand, from the first term
(in square brackets), we have lkf2 ∼ 8H0

ffiffiffiffiffiffiffi
ΩR

p
x−1, and on

the other hand, from the second (standard NG) term, we
have x ∼ γd. Combining these yields the characteristic
frequency

fk ∼
�
8H0

ffiffiffiffiffiffiffi
ΩR

p
lkγd

�
1=2

: ð49Þ

For fk > f > feq the spectrum is still flat, as in the NG
case. However, for f > fk, it decays since the first term in
square brackets in Eq. (48) dominates. With lk given in
Eq. (3), fk ∝ ðGμÞ1=4β−1=2k , and this behavior is clearly
shown in Fig. 3, in which fk is shown with a vertical black
line for each value of Gμ and we have assumed βk ¼ 1.
For cusps, the analysis proceeds identically with

fc ¼
�
8H0

ffiffiffiffiffiffiffi
ΩR

p
lcγd

�
1=2

: ð50Þ

Now, upon using lc defined in Eq. (5), we have fc ∝
ðGμÞ3=4β−1=2c . The spectrum of SGWB in this case is shown
in the RH panel of Fig. 3, in which fc is shown with a
vertical black line for each value of Gμ and we have
taken βc ¼ 1.
As the figure shows, with βc ¼ 1 and in the range of Gμ

of interest for GW detectors, the decay of ΩGW for f > fc
is outside the observational window of the LIGO and LISA
(and future ET) detectors. To have fc ∼ fLIGO, one would
require large values of βc, which are not expected.

V. EMISSION OF PARTICLES

The loops we consider radiate not only GW but also
particles. Indeed, for loops with kinks, from Eq. (2),

_ljparticle ¼ −γd
lk

l
: ð51Þ

The emitted particles are heavy and in the dark particle
physics sector corresponding to the fields that make up the
string. We assume that there is some interaction of the dark
sector with the standard model sector. Then, the emitted
particle radiation will eventually decay, and a significant
fraction of the energy feff ∼ 1 will cascade down into γ
rays. Hence, the string network will be constrained by the
diffuse gamma-ray bound measured at GeV scales by
Fermi-Lat [19]. This bound is

ωobs
DGRB ≲ 5.8 × 10−7 eV cm−3; ð52Þ

where ωDGRB is the total electromagnetic energy injected
since the Universe became transparent to GeV γ rays at
tγ ≃ 1015 s; see, e.g., Ref. [25].
The rate per unit volume at which string loops lose

energy into particles can be obtained by integrating (51)
over the loop distribution nðl; tÞ ¼ t−4N ðγ; tÞ, namely,

ΦHðtÞ ¼ μγdlk

Z
αt

0

nðl; tÞ dl
l

¼ μt−3γdγk

Z
α

0

N ðγ0; tÞ
γ0

dγ0:

ð53Þ
The diffuse gamma-ray background (DGRB) contribution
is then given by (see, e.g., Ref. [25])

ωDGRB ¼ feff

Z
t0

tγ

ΦHðtÞ
ð1þ zÞ4 dt

¼ feffμγd

Z
t0

tγ

γkðtÞ
t3ð1þ zðtÞÞ4

�Z
α

0

N ðγ0; tÞ
γ0

dγ0
�
dt

¼ Γð8.4× 1039Þfeff
�
Gμ
c4

�
2

×
Z

t0

tγ

γkðtÞ
t3ð1þ zðtÞÞ4

�Z
α

0

N ðγ0; tÞ
γ0

dγ0
�
dt eVcm−3;

ð54Þ
where in the last line we have explicitly put in factors of c
converted to physical units of eV=cm3. For cusps, one finds

ωDGRB ¼ Γð8.4× 1039Þfeff
�
Gμ
c4

�
2

×
Z

t0

tγ

ffiffiffiffiffiffiffiffiffiffi
γcðtÞ

p
t3ð1þ zðtÞÞ4

�Z
α

0

N ðγ0; tÞffiffiffiffi
γ0

p dγ0
�
dt eVcm−3:

ð55Þ
In the matter-dominated era, the loop distribution is

dominated by those loops produced in the radiation era but
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decay in the matter era; its general expression is given in
Eq. (23) and can be deduced straightforwardly from the
results of Secs. III B and III C for kinks and cusps,
respectively. We have calculated (54) and (55) numerically,
and the results are shown in Fig. 4 for kinks (LH panel) and
cusps (RH panel), together with the Fermi-Lat bound. It is
clear from this figure that particle radiation from loops
containing kinks and/or cusps, with lk and lc given in (3)
and (5), are not constrained by the Fermi-Lat data.
The general shape of the spectra in Fig. 4 can be

understood from the results of Sec. II. Let us focus on
the case of cusps (for kinks, the analysis is similar). First,
we can determine the range of Gμ for which the character-
istic time tc defined in Eq. (39) falls within the range of
integration of (55), namely,

tγ ≤ tc ≤ t0 ⇔ 10−19 ≲ Gμ≲ 10−18

[we have assumed βc ¼ 1, and from Eq. (40), t ¼ tc implies
Gμ ∼ 4.6 × 10−18ðteq=tÞ2=7]. This range of Gμ defines the
position of the maximum of the DGRB in the RH panel of
Fig. 4. For lower Gμ, all times in the integration range are
smaller than tc. As we have discussed in Sec. III C, in this
case, the loop distributions are suppressed due to particle
radiation; there are fewer loops, and hence fewer particles are
emitted, leading to a decrease in the DGRB. This is shown
in Fig. 4, and using the results of Sec. III C, one can show
that for Gμ ≪ 10−19, ΦHðtÞ ∝ μ2=3l−1=6

c ð1þ zÞ3t−4=3,
leading to

ωDGRB ∝ μ2=3l−1=6
c ∝ ðGμÞ13=12 ðGμ ≪ 10−19Þ:

On the other hand, forGμ ≫ 10−18, all times in the integration
range are larger than tc. There is no suppression of the loop
distribution, since GR dominates over particle emission (see
Sec. II). But precisely because GR dominates, fewer particles
are emitted, and hence we also have a decrease in the DGRB.
We now find that ΦHðtÞ ∝ γ−1d μ

ffiffiffiffiffi
lc

p ð1þ zÞ3t−2 so that

ωDGRB ∝
ffiffiffiffiffi
lc

p
∝ ðGμÞ−5=4;

which is the slope seen in Fig. 4. For kinks, the discussion is
very similar, and the slopes are given in the caption of the
figure.However, eachkink event emits fewer particles, leading
to a lower overall DGRB.

VI. CONCLUSION

Cosmic string loops emit both particle and gravitational
radiation. Particle emission is more important for small
loops, while gravitational emission dominates for large
loops. In this work, we have accounted for both types of
radiation in the number density of loops and calculated the
expected stochastic gravitational wave background and the
diffuse gamma-ray background from strings. Our results
show that the number density of loops gets cut off at small
lengths due to particle radiation. The strength of the cutoff
depends on the detailed particle emission mechanism from
strings—if only kinks are prevalent on strings, small loops
are suppressed but not as much as in the case when cusps
are prevalent (see Fig. 2). The cutoff in loop sizes implies
that the stochastic gravitational wave background will get
cut off at high frequencies (see Fig. 3). The high-frequency

FIG. 4. Contribution of cosmic strings to the diffuse gamma-ray background. The (blue) horizontal line is the experimental constraint
from Fermi-LAT, while the (orange) line is the exact numerical calculation for kinks (LH panel) and cusps (RH panel). On either side of
the maxima, the slope and amplitude can be estimated using the results of previous sections. Kinks: for lowGμ, the slope is 9=8 (dashed
green line), and for high Gμ, it depends on μ−2 logðμÞ (dashed red line). Cusps: For low Gμ, the slope is 13=12 (dashed green line), and
for high Gμ, it is −5=4 (dashed red line). The slightly different amplitude between the numerical calculation and the analytical one is
because the latter assumes a matter-dominated Universe, and hence neglects effects of late-time acceleration.
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cutoff does not affect current gravitational wave detection
efforts but may become important for future experiments.
Particle emission from strings can provide an important

alternate observational signature in the form of cosmic
rays. Assuming that the particles emitted from strings decay
into standard model Higgs particles that then eventually
cascade into gamma rays, we can calculate the gamma-ray
background from strings. This background is below current
constraints in the case of both kinks and cusps.
It is important to evaluate more carefully the prevalence

of kinks versus cusps on cosmological string loops. In
Ref. [11], particle radiation from a loop of a specific shape
was studied in which the shape was dictated by general
expectations for the behavior of the cosmological string
network. That particular loop only contained kinks. It
would be of interest to study other loop shapes that are
likely to be produced from the network and that contain
cusps and to assess if the 1=

ffiffiffi
l

p
dependence in (4) (and

assumed throughout this paper) is an accurate characteri-
zation of such loops over their lifetimes. In practice, one
might expect that if kinks are smoothed out by particle
emission, then cusps (perhaps minicusps) must be pro-
duced, and if cusps (or minicusps) annihilate, then kinks
must be produced. Hence, in reality, the situation might be a

combination of both cases. Finally, it would also be
interesting to study other loop production functions,
particularly those of Refs. [36–38], which predict a larger
number of small loops relative to the situation studied in
Sec. II B; hence, one might expect a larger gamma-ray
background from strings in this case.2
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