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Macroscopic dark matter—“macros”—refers to a broad class of alternative candidates to particle dark
matter with still unprobed regions of parameter space. These candidates would transfer energy primarily
through elastic scattering with approximately their geometric cross section. For sufficiently large cross
sections, the linear energy deposition could produce observable signals if a macro were to pass through
compact objects such as white dwarfs or neutron stars in the form of thermonuclear runaway, leading to a
type Ia supernova or superburst, respectively. We update the constraints from white dwarfs. These are
weaker than previously inferred in important respects because of more careful treatment of the passage of a
macro through the white dwarf and greater conservatism regarding the size of the region that must be heated
to initiate runaway. On the other hand, we place more stringent constraints on macros at a low cross section,
using new data from the Montreal White Dwarf Database. New constraints are inferred from the low mass
x-ray binary 4U 1820-30, in which more than a decade passed between successive superbursts. Updated
microlensing constraints are also reported.
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I. INTRODUCTION

Dark matter is the most widely accepted explanation for
cosmological and galactic dynamics (although see [1]), and
yet very little is known about it beyond some upper limits on
interaction cross sections over a wide range of masses (see
e.g., [2]). New fundamental particles, not included in the
Standard Model of particle physics, are popular candidates
because they often arise in models of beyond the Standard
Model physics invented for independent reasons (e.g., the
axion [3–5]). However, it remains an open possibility that
dark matter is comprised instead entirely of macroscopic
bound states of fundamental particles.
Such bound states could avoid strong constraints on the

self-interactions of dark matter by virtue of their low
number density instead of any intrinsic weakness of their
nongravitational couplings. One such open possibility is
that dark matter is comprised of bound states of quarks or
hadrons, as first proposed by Witten [6] as products of a
first-order QCD phase transition and later Lynn, Nelson,
and Tetradis [7] and Lynn [8] again, who argued in the
context of SU(3) chiral perturbation theory that a bound
state of baryons with a well-defined surface may conceiv-
ably form in the presence of kaon condensation. This would
place the dark matter squarely within the Standard Model.
Others have suggested non–Standard Model versions of
such nuclear objects and their formation, for example
incorporating the axion [9].
Such states are referred to as “macros.” A macro is then

characterized by its geometric cross section σχ and mass
Mχ , which are related to the macro’s average density ρχ :

σχ ¼ 2.4 × 10−10 cm2

�
Mχ

g

�
2=3

�
ρnuclear
ρχ

�
2=3

: ð1Þ

Because of the exciting possibility that macros emerge
from essentially the same Standard Model physics as
ordinary nuclei, we regard ρnuclear ¼ 3.6 × 1014 g cm−3

as a reference density of particular interest.
Due to their large mass and low number density, macro

detectors must be extremely large or experience extremely
long integration times to overcome the macros’ extremely
low flux compared to typical particle dark matter. Recent
comprehensive assessments of limits on such macros as a
function of their mass and cross section [2,10] identify
large open windows in the parameter space.
For macro masses Mx ≤ 55 g, careful examination of

specimens of old mica for tracks made by passing dark
matter [11,12] has ruled out such objects as the primary
dark-matter candidate (see Fig. 1). For Mx ≥ 1024 g, a
variety of microlensing searches have similarly constrained
macros [13–16]. A large region of parameter space was
constrained by considering thermonuclear runaways trig-
gered by macros incident on white dwarfs [17]. Dark-
matter–photon elastic interactions were used together with
Planck cosmic microwave background (CMB) data to
constrain macros of sufficiently high reduced cross section
σx=Mx [18]. Prior work had already constrained a similar
range of parameter space, by showing that the consequence
of dark-matter interactions with Standard Model particles is
to dampen the primordial matter fluctuations and essentially
erase all structures below a given scale (see e.g., [19]). The
region of parameter space where macros would have
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produced a devastating injury similar to a gunshot wound on
the carefully monitored population of theWestern world was
also recently constrained [20].
Recently, together with collaborators, we suggested how

ultrahigh-energy cosmic-ray detectors that exploit atmos-
pheric fluorescence could potentially be modified to probe
parts of macro parameter space [24], including macros of
nuclear density and intermediate mass. This analysis has
led to constraints being placed using networks of cameras
that were originally built to study bolides, i.e., extremely
bright meteorites with absolute magnitude Mv ≤ −5 [22].
We have also suggested how the approach applied to mica
[11,12] could be extended to a larger, widely available
sample of appropriate rock [25] and used to search for
larger-mass macros.
There remains a wide range of parametersMx and σx that

are currently unconstrained by all the previously mentioned
works. This includes a wide range of the nuclear-density
line (1).
In this paper, we update certain astrophysical constraints

onmacro-dark-mattermass and cross section.As in previous
works, we consider dark matter of a single mass, even
though a broad mass distribution is a reasonable possibility
in the context of a composite dark-matter candidate.
The rest of this paper is organized as follows. In Sec. II,

we update constraints on macros from microlensing and
femtolensing. In Sec. III, we update constraints from the
observation (or not) of type Ia supernova events in white
dwarfs (WDs), weakening previous constraints by more
careful consideration of the propagation of the macro

through the WD and through greater conservatism regard-
ing the minimum size region that must be heated above a
critical temperature. On the other hand, we show that the
large number of WDs that have been collected from the
literature in the Montreal White Dwarf Database (MWDD)
[26] allow more stringent constraints to be placed on
macros at low cross sections. We also produce new
constraints using arguments about thermonuclear runaway,
by applying them to neutron stars (NSs), and the obser-
vation of superbursts. In the process, we rule out macros of
“nuclear density” as the sole dark-matter candidate for
certain mass ranges.

II. LENSING CONSTRAINTS

Massive objects passing between a light source and Earth
will gravitationally lens the source. For appropriately
located objects of sufficient mass, the image can be
measurably affected—it can be amplified, distorted, or even
split into multiple images, some of which are amplified and
others deamplified compared to the unlensed source. These
effects are time dependent and can change over observa-
tionally accessible time frames as the source-lens-observer
geometry changes with the relative motion of elements.

A. Microlensing of M31

A recent seven-hour high-cadence observation of M31
(Andromeda), using the Subaru Hyper Suprime-Cam
(HSC), was used to derive bounds for primordial black
holes (PBHs) [23], based on the nonobservation of a
“lensing event”—the time-dependent amplification of a
source star. The amount of dark matter that would be
expected to pass through the “lensing tube” [27] during this
observation can readily be calculated. For dark-matter
candidates of a particular mass, the lensing tube represents
the volume along the line of sight where the presence of a
lens would cause a lensing event with an amplification and
duration greater than the appropriate threshold values for
detectability.
Null lensing results allow constraints to be placed on the

abundance of dark-matter objects within a certain mass
range, given the sensitivity of the measuring telescope.
Objects that are too large or too small in mass would not be
expected to produce observable lensing events. Objects of
too-low mass produce lensing events with a low amplifi-
cation. Moreover, the duration of a lensing event is
approximately the time it takes for the lens to cross its
Einstein radius [23]:

RE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4GMχ

πc2
d

�
1 −

d
ds

�s
; ð2Þ

where d is the distance to the macro and ds ≈ 770 kpc is the
distance toM31.We assume for simplicity that the lens is in
the Milky Way, so d ≪ ds. The crossing time

FIG. 1. Figure 3 of Ref. [21] with the updated constraints
discussed in the text. Objects within the region in the bottom-
right corner should not exist as they would simply be denser than
black holes of the same mass. The gray region is ruled out from
structure formation [18]; the yellow from mica observation
[11,12]; the red from superbursts in NSs (this work—the hatched
region representing potential future constraints); the dark blue
from WDs becoming supernovae ([17] as revised in this work);
the purple from a lack of human injuries or deaths [20]; the green
from a lack of fast-moving bolides [22]; the maroon from a lack
of microlensing events toward the Large Magellanic Cloud and
the Galactic center [13–16], and, in pink, toward M31 [23].
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tE ≡ RE

v
≈ 34 min

�
MPBH

10−8 M⊙

d
100 kpc

v
200 km=s

�
1=2

: ð3Þ

Lensing events by low-mass objects are therefore brief and
likely to be missed between successive observations.
For a relatively short observational “campaign,” objects

that are too massive produce lensing events that are too
long for the change in brightness of the lensed star to be
detected. For the seven-hour-long observation of M31
using Subaru HSC, the maximum sensitivity to lensing
events was for events with tFWHM ≈ ½0.07; 3� hr. With the
mass density of dark matter fixed by galactic dynamics, the
number of lensing events is also impacted by the number
density of candidate dark-matter lenses being inversely
proportional to their mass.
Reference [23] has shown that diffraction effects become

important and the maximum image magnification is sig-
nificantly reduced forMPBH ≲ 1023 g, as the Schwarzschild
radius of the PBH becomes smaller than the photon
wavelength,1 with no constraints for MPBH ≤ 1022 g.
Since the microlensing interaction is purely gravita-

tional, these results [23] are directly applicable to compact
objects other than PBHs, such as macros. We may therefore
rule out macros with 1022 g ≤ Mχ ≤ 4 × 1024 g as the
dominant dark-matter component. Above Mχ ≤ 4 × 1024,
they have already been excluded by previous microlensing
experiments (see [2] and references therein).
The microlensing constraint does not apply if the macro

blocks a significant fraction of the light that would be
amplified. This happens when the macro radius exceeds the
Einstein radius. The microlensing bound therefore applies
only to

σχ ≤
4GMχ

c2
d ¼ 7 × 10−4

Mχ

g
cm2: ð4Þ

However, this value of σχ lies well within the region of
parameter space already ruled out by consideration of
interactions between macros and CMB photons (shaded
gray in Fig. 1).

B. Femtolensing

Femtolensing refers to gravitational lensing where the
angular separation between two lensed images of the same
source is of order 10−15 arcsec. The separate images cannot
be resolved; however, an interference pattern in the energy
spectrum of background sources could be observable.
In Ref. [28], constraints were placed on the abunda-

nces of PBH with 1017 g≲MPBH ≲ 1020 g, from the

nonobservation of such interference patterns in gamma-
ray bursts (GRBs). However, Ref. [29] revisited these
constraints, taking into account the finite size of the
GRB sources, among several additional corrections. As
the emission size of the GRB grows, changes in the
magnification spectrum are damped more strongly, until
they eventually disappear once the emission size exceeds
the Einstein radius. For realistic emission sizes of gamma-
ray sources—as ≥ 1010 cm—the femtolensing constraint is
removed entirely (see e.g., Fig. 2 of Ref. [29]).
The discovery of a large number of sources with as ≤

109 cm would allow limits to be placed [29] on the
abundance of dark matter in compact objects with
1016 ≤ MCO ≤ 1019 g. The smaller the sources, the more
stringent the constraints (see Fig. 5 of Ref. [29]).

III. CONSTRAINTS FROM
THERMONUCLEAR RUNAWAYS

Reference [30] showed that in a WD a sufficiently large
localized injection of energy might trigger thermonuclear
reactions. If a critical temperature were exceeded in a
region of sufficient size, fusion of carbon atoms would
initiate subsequent reactions before the heat was able to
diffuse away. This chain reaction may lead to thermonu-
clear runaway, and the WD would undergo a type Ia
supernova explosion. The minimum temperature needed to
trigger such reactions is [30] T trig ∼ 3 × 109 K. The mini-
mum size of the trigger region λtrig depends on the local
density. NSs can also exhibit thermonuclear runaway in the
form of a superburst [31]. Thus, it may be that a similar
mechanism could trigger a superburst in NSs.
Using the analysis of Ref. [30], the authors of Ref. [32]

placed constraints on the abundance of PBHs in the mass
range 1019 ≲MPBH ≲ 1020 g from the continued existence
of old WDs. If a PBH traveled through a WD, the adjacent
matter would be gravitationally accelerated toward its
trajectory. Upon thermalization, the temperature would
exceed T trig. If the PBH was sufficiently massive, the size
of this heated region would exceed λtrig. Constraints were
therefore placed on the abundance of PBHs of that or
greater mass. However, it was subsequently shown [33] that
the order-of-magnitude estimates employed by Graham,
Rajendran, and Varela [32] likely constrained PBHs with
masses that were too small to cause thermonuclear run-
aways. It is unlikely that thermonuclear runaway can
constrain any significant portion of the PBH parameter
space below MPBH ∼ 1022 g.
Similar constraints were obtained [17] on dark matter

that deposits energy in the WD by elastic scattering—
objects that we termmacros. Here the region of theWD that
is heated above T trig is potentially much larger, and so
the limits are likely more robust. We will proceed with the
formalism developed in Refs. [17,32] to reexamine the
regions of macro parameter space in which a macro would

1This does not mean that the Schwarzschild radius Rs can be
interpreted as the effective radius of the lens—the typical impact
parameter of photons involved in the lensing event is still RE
rather than Rs.
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have produced observable consequences for WDs or NSs.
We first constrain macros that would have initiated a
superburst on a NS in a shorter time than that which
occurs naturally. Next, we show that the upper bound
derived in Ref. [17] for macros triggering type Ia super-
novae in a WD is too stringent and derive a more accurate
upper bound.

A. Size of the trigger region

In Ref. [30] λtrig was calculated for 5 × 107 g cm−3 ≤
ρ ≤ 5 × 109 g cm−3; however, the outer regions of WDs
have densities as low as 107 g cm−3 and lower-mass WDs
are nowhere denser than approximately 107 g cm−3. To
extend the analysis to lower density, we will evaluate below
the scaling relation between λtrig and the local density—
λtrig ∝ ρ−2—obtained in Ref. [32] by comparing the
heat-diffusion rate to the carbon-fusion rate. Timmes and
Woosley showed [30] that the resulting estimate of λtrig was
within a few percent of the value obtained by simulta-
neously solving the hydrodynamics, nuclear kinetics and
transport equations of the deflagration front as it propagates
through the WD.
Nevertheless, it is still unclear how exactly type Ia

supernovae are initiated [34]. Thus, while the initiation
of a deflagration flame may be a necessary condition for a
type Ia supernova, it may not be sufficient. We will proceed
with the caveat that for the constraints produced in this
section it must still be shown through simulations that those
regions of macro parameter space can indeed produce
catastrophic thermonuclear runaway. The situation is sim-
ilar with NSs where the precise nature of the initiation of a
superburst is unclear [31] and so in this case as well we also
proceed with the understanding that the regions of macro
parameter space constrained in this paper still need to be
tested against simulations. We now rederive the scaling
relation from Ref. [32] and briefly describe how we use it.
The characteristic time for heat to diffuse through (and

out of) a region of size λtrig is

τdiffusion ≈
λ2trig
α

; ð5Þ

where α ¼ K=cpρ is the thermal diffusivity of the medium,
cp is the specific heat capacity, ρ is the density,K ∝ T3=ðκρÞ
is the thermal conductivity [35], and κ is the opacity of the
dominant carrier of energy. For ρ < 108 g cm−3, photons are
the dominant energy carriers. As most of the electrons are
ionized, free-free transitions are the main source of opacity,
and so [35] κ ∝ ρ.
The mean free time between carbon-ion collisions (and

consequently fusion reactions) is inversely proportional to
the density:

τfusion ∼ ðσvnÞ−1: ð6Þ

Since the size of the trigger region is obtained by requiring
τfusion < τdiffusion, λtrig ∝ ρ−2. For low-density regions in a
compact object, we use this scaling relation to calculate λtrig
using the results for the trigger size at the lowest density
calculated in reference [30]. For high-density regions,
we use the numerical results for λtrig already tabulated
in Ref. [30].
The presence of iron-group impurities in the heavy-

element ocean located near the surface of a NS reduces the
number density of carbon ions. This increases the minimum
column density that must be accreted for thermonuclear
runaway to be achieved [36].

B. Energy deposition

As a macro passes through a compact object, it causes an
initial rise in the temperature of the affected matter—from
Ti to Tf—through elastic scattering. The magnitude of this
temperature rise depends on the energy deposited per unit
mass of white-dwarf or neutron-star material:

εin ¼
Z

Tf

Ti

CVdT; ð7Þ

where CV is the specific heat. The usual temperature of a
WD or NS is at most only Ti ∼ 1 keV. This is much less
than Tcrit and so can be neglected.
The ions in a WD are nondegenerate and have specific

heat [37]

CV;ions ¼ 3
kB
μ
; ð8Þ

where μ ≈ 1.7mp is the mean molecular weight and mp is
the proton mass.
For large densities, ρ≳ 109 g cm−3, the Fermi energy

approaches the thermal energy and CV acquires a contri-
bution from a relativistic degenerate electron gas [38]:

CV;electrons ¼
�
π2ZkB
Amp

��
kBT
EF

�
: ð9Þ

Here Z is the average atomic number of the material, and A
is the average nucleon number. The Fermi energy of the
degenerate electron gas

EF ¼ 1.9 MeV

�
2Z
A

�
1=3

ρ1=38 ; ð10Þ

with ρ8 the density of that region of the compact object in
units of 108 g cm−3. EF is typically a few MeV for the
range of densities where the degenerate-electron specific
heat contributes significantly.
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Using (8) and (9) in (7) we find

3
kBTf

μ
þ
�
π2Z
2A

� ðkBTfÞ2
mpEF

¼ εinðvx; σx;MxÞ: ð11Þ

The first term on the left-hand side dominates for
kBT ⪅ 1 MeV, above which the second term dominates.
εin, and hence Tf, could depend on the velocity of the

macro vχ , e.g., in the case of elastic scattering. A macro that
is incident on a WD or NS will have been gravitationally
accelerated to much greater than its initial speed; thus,

vχ ≃ vesc ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GMCO

rCO

s
; ð12Þ

whereMCO is the mass of the compact object and rCO is the
radius of the compact object. We have neglected relativistic
corrections because, even for NSs, they are only 3%.
If the final temperature of the heated region

T ≥ Tcrit ∼ 1010 K, we expect some of this energy to be
used in endothermic photodisintegration reactions. Thus,
the size of the region with T > T trig is not expected to be
much larger than σx. For example, at T ¼ 1010 K, the
carbon photodisintegration rate to three alpha particles
(the reverse of the triple-alpha process) is ∼1010 s−1.
The carbon fusion rate [39] at this temperature and
ρ ¼ 107 g cm−3 is ∼ few × 1010 s−1. However, due to the
strong temperature dependence of these rates, fusion
becomes the fastest process below T ∼ 1010 K. We there-
fore expect the propagation of a deflagration flame to begin
once the temperature drops below T ∼ 1010 K.
We require that the macro diameter be significantly

larger than λtrig (calculated as described in Sec. III A
above):

σx > 10
π

4
λ2trig: ð13Þ

We adopt the factor of 10 to ensure that photodisintegration
does not quench the deflagration flame—by requiring a
region much larger than the trigger size to be heated above
T trig, we expect the propagation of a deflagration flame to
be more likely. The requirement (13) is used to determine
the lower bound on σx as can be seen in Fig. 1 and
discussed below in Sec. III C 2.
We also demand that enough energy is deposited to raise

that area σx above T trig:

vx >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CVT trig

p ≳ 6 × 108 cm s−1: ð14Þ

As we will show in Sec. III C 1, this is important in
determining the maximum reduced cross section σx=Mx
that can be probed by considering thermonuclear runaways
triggered at a particular depth within a compact object.

C. Elastic scattering bounds

We consider the bounds on the σx −Mx parameter space
from energy deposition by the macro into the compact
object through elastic scattering. We begin by showing that
the maximum value of σx for the constrained region,
previously obtained in Ref. [17] through the study of a
population of WDs, was overly optimistic (i.e., too high);
we derive a more accurate (lower) value. We also derive the
analogous quantity for NSs, subject to some additional
assumptions due to the more extreme nature of the
environment compared to WDs.
Next, we determine the lower boundary of the con-

strained region (i.e., the smallest σx for each Mx), which is
the minimum cross section necessary to initiate the propa-
gation of a deflagration flame in aWD or on the surface of a
NS. Finally, we determine what mass ranges can be probed
by each of WDs and NSs, to determine the constraints
subject to the caveats described above.
Both WDs and NSs that are in binary systems can

undergo thermonuclear runaway. WDs undergo a type Ia
supernova event if the WD accretes enough mass from its
companion for its mass to reach the Chandrasekhar limit,
the maximum possible white-dwarf mass that can be
supported by electron degeneracy pressure [40].
Unlike WDs, NSs will not explode catastrophically. The

outer layer of a NS consists of an ocean of heavy elements
including a significant amount of carbon at high densities
[Oð100 mÞ below the surface]. Ignition of this carbon layer
can cause a NS to undergo a “superburst” [41]. These have
been observed with recurrence times ranging from a few
days to ∼10 yr [31]. Typically, superbursts occur once the
mass of the layer of carbon—formed from the accretion of
hydrogen or helium onto the NS—reaches ∼1024 g [36,42].
Heat flowing out from the crust is deposited in the carbon
“ocean” by electron capture and pycnonuclear reactions
[42], augmenting compressional heating by the overlying
material. Only once this much material has accumulated is
the base of the carbon ocean hot enough to initiate a
thermonuclear runaway. This yields a superburst energy of
∼1042 erg, assuming all the carbon ignites.

1. Maximum constrained reduced cross section

The energy deposited through elastic scattering by a
macro transiting a compact object is

dE
dx

¼ σxρCOv2x; ð15Þ

where ρCO is the local density at a point within the compact
object. vx is a function of the depth of the macro in the
compact object. The drag force experienced by a macro will
decelerate it:

ax ¼
GMCO

R2
CO

−
1

2
CdρCOv2xσx=Mx: ð16Þ
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Here Cd is the drag coefficient and depends on the
Reynolds number Re of the flow:

Re ¼ ρuL
μdyn

; ð17Þ

where u ¼ vx is the relative velocity between the macro and
the material of the compact object, L ¼ rx is the character-
istic length scale of the problem, and μdyn is the dynamical
viscosity, which is not known for WDs or the outer regions
of a NS. For values suggested from theory [43], the range of
Re for our purposes here is never low enough for the drag
coefficient to deviate from the typical value for a sphere of
0.1–2 [44]. However, for low values of Re, Cd could
increase by several orders of magnitude, resulting in the
macro experiencing a much higher drag force. If the
dynamical viscosity is subsequently determined to be
significantly higher, this would further reduce the param-
eter space that may be probed by thermonuclear runaway.
For now, we proceed with the most conservative value in
the standard range, Cd ¼ 2, in producing our constraints.
To solve (16), which we do numerically, we must use a

density profile for a typical compact object. We use the
density profile of a typical WD [45] and of a typical NS
crust [46] to simulate the evolution of the velocity of an
incident macro for various values of σx=Mx. We then find
the deepest point in the compact object where a macro of a
certain reduced cross section satisfies (14), having properly
accounted for the column density encountered by the
macro. The relevant point on the trajectory is the deepest
point because that corresponds to the largest density along
the trajectory of the macro where it satisfies Eq. (14). This
maximum density point then has the smallest value
of λtrig, because λtrig ∝ ρ−2 (as discussed in Sec. III A).
Consequently, per Eq. (13), this gives us the smallest cross
sections that can be constrained.
For macros with a sufficiently high σx=Mx, the macro is

slowed down before it reaches the relevant depth in a
compact object and is unable to transfer enough energy to
trigger thermonuclear runaway. We find this limiting value
of the reduced cross section to be σx=Mx⪆10−16 cm2 g−1
for WDs and σx=Mx⪆10−12 cm2 g−1 for NSs. However,
there is a narrow range of values of σx=Mx around these
two values where sufficient energy is transferred to initiate
thermonuclear runaway that is dependent on where exactly
in the compact object thermonuclear runaway is initiated.
The upper bound on the reduced cross section for WDs is

significantly smaller than that derived in Ref. [17]. In
Ref. [17], the macro was assumed to be able to trigger a
type Ia supernova once it penetrated the nondegenerate
surface layer of a WD, which is typically narrow and much
less dense than central densities. This assumption over-
estimated the parameter space that was constrained. For a
given cross section σx, macros of too small a massMx were
constrained. In this work, we have used a typical WD

density profile from Ref. [45] to better estimate the true
boundary from WDs. This is itself uncertain, since the
radial density profile of WDs has not been determined
definitively—the correct bound could lie above or below
our bound; however, the upper bound in Ref. [17] is indeed
an overestimate.
We find that NSs might “reconstrain” some of the

parameter space that was previously ruled out by WDs.
However, these NS constraints merit additional scrutiny
due to the relativistic speeds reached by macros incident on
the surface of a NS, v ∼ 0.7c. We require that the macro not
be destroyed in transiting the outer layers of the NS before
reaching the heavy-element ocean. The exact constrained
region therefore depends on the microphysics of the macro
and how tightly it is bound. We can get an estimate of the
constraints by taking the macro to be made of baryons and
estimating that the logarithm of the binding energy per
baryon Eb scales linearly with the logarithm of the density,
between atomic density (ρatomic ≃ 1 g=cm−3, Eb ≃ 10 eV)
and nuclear density (ρnuclear ≃ 1014 g=cm−3, Eb ≃ 1 MeV).
This yields an expression for the scaling between binding
energy and density:

Eb ∼ 10 eV

�
ρx

g=cm−3

�
3=7

; ð18Þ

where of course

ρx ¼
3Mxπ

1=2

4σ3=2x

:

Crudely, we require the energy transferred to be less than
the binding energy per baryon multiplied by the number of
baryons in the macro:

Eb
Mx

mb
≥ σxv2x

Z
ρdL; ð19Þ

wheremb < 940 MeV is the mass of a baryon and
R
ρdL is

the integrated column density along the trajectory of the
macro up to the point where the macro just satisfies (14).
(This ignores the very definite possibility of ablation of the
macro surface.) This enforces a bound similar to that found
above, σx=Mx ≲ 10−11 cm2 g−1. The exact constrained
region depends on the microphysics of the macro and
the details of how it is held together. However, the upper
limit in σx on the constrained region comes from consid-
ering the drag on the macro through the overlying layers of
the compact object, which is more stringent than the
considerations of binding energy.

2. Minimum cross section of constraint region

For the elastic-scattering mechanism, εin ¼ v2x ∼ v2C,

where vC ∼
ffiffiffiffiffiffiffiffi
kBTf

mC

q
is the speed of the carbon ions in the
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immediate vicinity of the macro and v2x ∼ v2C because the
speed of the impacted ions will be approximately that of the
macros that impacted them. Thus, whether or not Etrig is
reached depends—as discussed earlier—on the speed of the
macro as it impacts the carbon atoms.
The lower bound on σx was determined using (13). Since

λtrig ∝ ρ−2, it varies along the trajectory of the macro
through the WD or NS crust. For smaller values of
σx=Mx the macro will decelerate to the minimum speed
at which it can still trigger thermonuclear runaway at a
greater depth, corresponding to a higher density and
consequently a smaller λtrig. Given (13), for smaller values
of σx=Mx, smaller values of σx can be probed. Requiring
that the macro not lose appreciable kinetic energy through
the nondegenerate surface layer of a WD is not a sufficient
requirement for triggering thermonuclear runaway. For
WDs, the trigger sizes are given in Ref. [30]. For NSs,
λtrig is now larger because the heavy-element ocean in a NS
is expected to be only ∼20% carbon [36]. Thus, the mean
free time between collisions of carbon atoms increases
since the number density of carbon atoms decreases. The
diffusion rate decreases because the number density
decreases, although the specific heat and thermal conduc-
tivity are not changed significantly. Thus, λtrig increases.
For NSs, to obtain the most restrictive constraints, we

take into consideration the evolution of the column density
as matter is accreted from the companion in the binary
system. As accretion proceeds, the underlying layers are
compressed to higher densities. Thus, some time is required
to form carbon of a certain minimum density. Although the
maximum effective exposure time for the NS we use to
place constraints is T ¼ 2.5 yr (as discussed below), the
denser the carbon, the shorter the period for which it is
“exposed.” Consequently, smaller cross sections (corre-
sponding to smaller λtrig and higher densities) can only be
probed for smaller-mass macros, which have higher fluxes.
For white-dwarf constraints, at the lower boundary of

cross sections, we will constrain significantly higher-mass
macros below than did Ref. [17]. This is simply a result of
the increased total exposure obtained by using the sample
of WDs in the MWDD [26].

3. Mass bounds

Mass constraints can be derived by considering the
expected number of macros incident on a sample of
WDs or NSs:

Nevents ¼ f
ρDM
Mχ

vx
XNsample

i¼1

Agccs;iΔti: ð20Þ

Here f is the fraction of dark matter comprised of
macros; ρDM is the dark-matter density; Mx is the mass
of the macro. For the ith compact object in the sample,
Agccs;i ¼ πR2

CO;ið1þ v2esc;i=v
2
xÞ is its gravitationally

enhanced capture cross section (for a CO with radius
RCO;i and surface escape velocity vesc;i), while vx ∼
10−3c is the macro velocity far from the surface; Δti is
the object’s exposure time.
For WDs, we use data from the MWDD [26] to place

constraints on more massive macros. For each of a
sequence of threshold central densities, corresponding to
threshold masses, we apply (20) to all WDs in the MWDD
with known lifetimes and masses exceeding the threshold.
The constrained region in Fig. 1 is the union of the
constraints for all choices of minimum central density.
The MWDD allows us to push the constrained region to
higher masses than in Ref. [17] or certain cross-section
ranges. Enlarging the MWDD to include more WDs with
known lifetimes would extend the range of accessible
masses at a given cross section.
For NSs, the monitoring of x-ray binaries can be used to

constrain lower-mass macros. Since the low-mass x-ray
binary 4U 1820-30 exhibited back-to-back superbursts more
than a decade apart [41], wewill use it to place constraints on
macros. This x-ray binary is located approximately 1 kpc
from the Galactic center. The dark-matter density there is
expected to be at least 20 times higher than in the Solar
neighborhood (see e.g., [47]), ρDM ≈ 10−17 gm−3.
Since macro impacts are approximately a Poisson

process, the probability PðnÞ of n macro passages through
a given NS over a given exposure time is

Pðn;NeventsÞ ¼
ðNeventsÞn

n!
e−Nevents ; ð21Þ

where Nevents is the expected number of macro passages
through that NS in that time:

Nevents¼2×1011f

�
g
Mx

��
δt

10 yr

��
Agccs

2×108 km2

�
: ð22Þ

As expected, Agccs ¼ πð10 kmÞ2ð1þ v2esc=v2xÞ, with
vesc ≈ ð2=3Þc. However, we must take care with determin-
ing the exposure time δt. After a superburst from 4U 1820-
30, it will take some time Δt to accrete sufficient column
density y from its companion to support another superburst.
Δt ¼ yπR2

NS= _M, with _M ≈ 1017 g s−1 the accretion rate
onto 4U 1820-30. At a time T after the last superburst, the
exposure time is δt ¼ maxð0; T − ΔtÞ. Although the time
between superbursts was observed to be approximately one
decade, the duty cycle of the instrument that observed these
superbursts, RXTE-ASM, is around 40% [48]. Combined
with spacecraft maneuvers that were planned to produce a
highly stochastic pattern of sky coverage, a randomly
chosen source was scanned typically 5–10 times per day
[48], corresponding to an average time between scans of at
most 5 hr. A typical superburst lasts around 3 hr [36]. This
gives an effective duty cycle of ∼60%. Thus, there is a non-
negligible chance that a superburst will be missed.
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With this effective duty cycle of ∼60%, there is less than
a 5% probability that we will miss all superbursts in a
decade if there are at least four superbursts during this time.
This yields

Nevents¼4×1010f

�
g
Mx

��
δt

2.5 yr

��
Agccs

2×108 km2

�
: ð23Þ

Since no events are observed in this time T, Nevents ≥ 3
may be ruled out at 95% confidence since Pð0; 3Þ ¼ 0.05;
this corresponds to

Mx ≤ 1 × 1010 f g: ð24Þ

Another superburst constraint could potentially be
derived by comparing the expected macro-induced rate
for thermonuclear runaway in NSs to that observed. For a
population of NNS Milky Way NSs that are found in
compact binaries and are accreting from a companion star,
we expect

Nevents ¼ f NNS
ρDM
Mx

Agccsvxt ð25Þ

macro-induced superbursts in time t. As before, if n
superbursts have occurred, where Nevents were expected,
and PPoissonðn;NeventsÞ ≤ 0.05, then that value of Nevents is
ruled out at the 95% level.
Currently, only 15 known NSs are known to have

experienced a superburst [31]. As the data from observed
superburst become better, we can expect to probe beyond
Mx ¼ 5 × 1010 g. For example, the observation of 100
superbursters (Fig. 12 of Ref. [49] indicates there are about
100 low-mass x-ray binaries and high-mass x-ray binaries,
respectively), each undergoing superbursts no more than
twice annually, would allow Mx ≤ 1012 g to be probed.
It should be noted that it is possible that some of the

superbursts that are observed are, in fact, macro induced.
However, absent an observable signature that distinguishes
macro-induced superbursts from ordinary superbursts, the
best we can do is put limits on macro-parameter space from
the fact that superbursts are not more common than
observed.
We present our results in Fig. 1. The blue region

represents our revised constraints from WDs. The red
region with no hatching represents constraints from obser-
vations [36] of 4U 1820-30. The red hatched region

represents constraints that could eventually be inferred
from monitoring of NSs in x-ray binaries. The lower
bounds are in general determined by (13), where λtrig is
bigger for NSs than WDs as discussed in Sec. III C 2. The
mass bounds are determined as in Sec. III C 3, by requiring
that at least one macro transit should have occurred and
triggered thermonuclear runaway. Finally, the slanted upper
bounds are determined by requiring that the criterion (14)
be satisfied. This criterion can be satisfied by macros with
different σx;min for different values of σx=Mx. This is
because these macros can satisfy (14) at shallower depths
in a compact object.

IV. CONCLUSION

We have applied the analyses of Refs. [17,23] to macros
and identified the regions of cross-section-versus-mass
parameter space that can be excluded based on micro-
lensing of stars in M31, superbursts in NSs, and type Ia
supernovae in old WDs. Of particular interest, parts of the
nuclear-density line in that parameter space have been ruled
out. However, there remain three windows for nuclear
density macros: 55 g≲MX ≲ 103 g, 5 × 104 g≲MX≲
108 g, and 1010 g≲MX ≲ 1018 g. A substantial portion
of the parameter space above and below nuclear density
remains unconstrained. The atomic-density line is ruled
out, except for a small window between 1020 and 1022 g.
We reiterate that certain constraints reported here are

subject to additional scrutiny because it is not certain that
the conditions identified in Ref. [30] are indeed sufficient to
initiate thermonuclear runaway; i.e., there remains some
uncertainty whether in fact heating a region of size at least
λtrig to T ∼ few × 109 K necessarily causes type Ia super-
novae in WDs and superbursts in NSs. We have exercised
additional conservatism compared to past analyses in
deploying that condition (by taking a larger λtrig); however,
future simulations of the relevant systems could refine or
eliminate the associated constraints.
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