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Equilibrium configurations of a circling electrically charged fluid surrounding a central static black hole
endowed with a test electric charge and embedded in a large-scale asymptotically uniform magnetic field
are presented. Various configurations of the fluid are influenced by the balance between the gravitational
and electromagnetic actions; previous studies of the circling charged fluid configurations around a rotating
black hole showed a strong dependence on the spin of the black hole. In this work, we focus on
configurations centered in the equatorial plane taking shapes of single or double toroidal structures. Our
interest is the existence of these structures, and how various actions, such as electromagnetic, gravitational
and centrifugal, influence their shapes and physics.
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I. INTRODUCTION

The investigation of equilibrium in the toroidal configu-
rations of uncharged or charged fluids is important to
understand the structures of accretion disks. Matter in such
objects is generally modeled by a fluid approach [1–3].
Accretion disks are inferred to exist in objects of very
different scales in the universe, from kilometer to parsec
scale, and then appear in various domains. Our interest is
about accretion disk orbiting around a black hole as
exhibits AGN, quasars or x-ray binaries [4,5]. These
objects are the most powerful and efficient stationary
engines known in the universe. Here, we are interested
in thick accretion disks, especially in those with negligible
mass accretion rate, which can be well modeled by toroidal
equilibrium configurations of fluids.
Many different studies have been devoted to the

uncharged fluid in various spacetimes, from the standard
Schwarzschild and Kerr ones, [6–8] to more specific ones
[9–12]. In those models, gravity plays a key role in toroidal
fluid configurations. However, we know that the magnetic
field is also present during the accretion process and can
influence the accretion of the fluid. Studies about magnet-
ized tori have been performed, by adding a purely toroidal

magnetic field attached to the fluid [13,14], and by
including the effect of self-gravity [15]. In this respect,
interests in charged fluid arise. Electric charges can be
developed by various mechanisms, for instance, in AGN,
dusty tori are charged by strong irradiation by x-rays from
the central sources [16] or charge exchange in plasmas
[17,18]. The magnetic field can be produced either by the
central object, by the fluid itself, or by an external source
of matter as a large-scale organized magnetic field. That
kind of field can occur in the vicinity of magnetic star or
magnetar [19].
Therefore, an extension of the Polish doughnut model

[6,7] has been introduced [20–24] based on an addition of a
global nonzero charge to the circling fluid, consequently
interacting with a background electromagnetic field of
external origin, or with the one coupled to the central
object [25]. Along with this series of papers, it was shown
that bound fluid structures in the equatorial plane exist in
various spacetimes and under the influence of external
electromagnetic forces. Also, unique structures on the polar
axis, named “polar clouds,” have been found only orbiting
around a charged black hole embedded in an external
magnetic field. These structures can scatter and polarize
light on the axis and they can only orbit in rigid rotation.
Following that result, we showed that the rotation of the
central black hole can replace the effect of one of the two*audrey.trova@zarm.uni-bremen.de

PHYSICAL REVIEW D 101, 083027 (2020)

2470-0010=2020=101(8)=083027(12) 083027-1 © 2020 American Physical Society

https://orcid.org/0000-0002-4939-0391
https://orcid.org/0000-0001-7456-216X
https://orcid.org/0000-0002-5760-0459
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.083027&domain=pdf&date_stamp=2020-04-22
https://doi.org/10.1103/PhysRevD.101.083027
https://doi.org/10.1103/PhysRevD.101.083027
https://doi.org/10.1103/PhysRevD.101.083027
https://doi.org/10.1103/PhysRevD.101.083027


external forces and can allow the existence of polar clouds.
Besides that polar solutions, we worked on off-equatorial
tori, meaning “levitating” structures above the equatorial
plane, which can only exist with a constant angular
momentum rotation law. The presence of the electromag-
netic field is also a necessary condition of their existence.
These structures can be seen as diluted halos and can play
the role of coronae. Then, we can study configurations of
charged fluids around uncharged or charged, and static or
rotating, black holes or other compact objects surrounded
by magnetic fields. Note that even if astrophysical black
holes are thought to be quickly neutralized by the accretion
of opposite charge of the fluid, a small net equilibrium
charge remains [28,29]. That small charge can still influ-
ence the charged fluid motion in the ambient electromag-
netic field. Besides, some of the models take into account
the self field produced by the circling fluid (gravitational
and electromagnetic) [26,30–32].
Here, we apply the model introduced and discussed in

the series of papers [20–24,33] to the case of static charged
black hole immersed in an external asymptotically uniform
magnetic field. The constructed stationary structures give
us an insight into how mass and charge are distributed
within the disk, which may be taken as an initial step
toward dynamical studies. We aim to understand how the
combination of other forces like the magnetic and electric
ones influence the shape and the mass and charge distri-
butions of such structures. We consider a charged fluid
approach with no internal viscosity and heat conduction
(the perfect fluid approach). The field produced by the
charged black hole and the ambient magnetic field are test
fields and do not influence the spacetime. The fluid is
studied in a spherically symmetric gravitational field
described by the Schwarzschild metric, where it circles
with a constant specific angular momentum, in contrast to
related earlier studies that used a constant angular velocity
instead. Moreover, the fluid has zero conductivity, then the
charges are adhered to the fluid particles, and they are
carried convectively. This approach is the opposite scenario
of the ideal magnetohydrodynamics, where the conduc-
tivity is infinite. This opposite concept was first developed
in [20] on the background of Reissner-Nordström black
hole. The electromagnetic field produced by the charged
fluid is neglected compared to the external ones. To achieve
this goal we start in Sec. II by introducing the model. We
describe the general equations, the assumptions, and the
background fields. In Sec. III, we give the expression of the
effective potential which leads to the equipotential surfaces.
The following Sec. IV is devoted to the conditions of
existence of the equilibrium structures. We show how to
choose the set of parameters in a way to reach a bound fluid
configuration. This leads to the construction of the sol-
utions in Sec. V for different sets of parameters. Finally, in
Sec. VI, we discuss the influence of the test charge and test
magnetic field on the solutions.

II. EQUILIBRIUM CONFIGURATIONS—THE
MODEL

A. General equations and assumptions

Within the general relativistic approach, thick accretion
disks with negligible accretion flow can be modeled by
circling fluids, being described by the conservation laws
and Maxwell equations

∇βTαβ ¼ 0; ð1Þ

∇βFαβ ¼ 4πJα; ð2Þ

∇ðγFμνÞ ¼ 0: ð3Þ

Neglecting the viscosity of the fluid and the heat con-
duction, the proper energy-momentum tensor can be
written as Tαβ ¼ Tαβ

PF þ Tαβ
EM, where its perfect fluid and

electromagnetic parts are expressed as

Tαβ
PF ¼ ðϵþ pÞUαUβ þ pgαβ; ð4Þ

Tαβ
EM ¼ 1

4π

�
Fα

γFβγ −
1

4
FγδFγδgαβ

�
; ð5Þ

and p is the pressure in the fluid, ϵ the energy density, and
Uα the four-velocity field of the fluid.
The electromagnetic field Fαβ can be split into two

terms: the tensor describing external electromagnetic forces
acting on the fluid, Fαβ

EXT, and the tensor describing self-
electromagnetic interactions due to charged particles in the
fluid, Fαβ

SELF. In the following, since we neglect the self-
electromagnetic interactions (considering them to be rela-
tively weak), we have Fαβ

SELF ≪ Fαβ
EXT. This means that the

electromagnetic field produced by the fluid itself does not
contribute neither to the given gravitational field, i.e., the
spacetime geometry gαβ, nor to the given external electro-

magnetic field Fαβ
SELF; similarly, we expect the given gravi-

tational field not to be affected by the fluid gravitational self-
field—the fluid is considered to be fully the test one. The
external electromagnetic field Fαβ

EXT can be expressed as

Fαβ
EXT ¼ gαμgβνð∇μAν −∇νAμÞ; ð6Þ

whereAν is the external electromagnetic field four-potential.
Depending on the charge density q, electric conductivity σ,
and on the four-velocity field Uα, the four-current density
field Jα is given by Ohm’s law

Jα ¼ qUα þ σFαβUβ: ð7Þ

By using Eqs. (1), (2), (3), the energy-momentum tensor
decomposition, and the test fluid assumption, we get the
“master formula,”
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∇νT
αβ
PF ¼ Fαβ

EXTJν; ð8Þ

for the charged fluid moving in the given fields.
In our model, we presume the charged fluid to stationary

circle in the azimuthal direction of the given electromag-
netic Fαβ

EXT and gravitational gαβ fields, both stationary and
axially symmetric. Thus, in the used Boyer-Linquist
coordinates ðt; r; θ;ϕÞ, we have the four-velocity field of
the fluid Uα ¼ ðUt; 0; 0; UϕÞ, the electromagnetic field
four-potential Aμ ¼ ðAt; 0; 0; AϕÞ, and, especially, Jα ¼
ðJt; 0; 0; JϕÞ. It means, the fluid conductivity factor of
the fluid σ ¼ 0; this is the complete opposite of the ideal
magnetohydrodynamics, where the conductivity is infinite.
Our assumptions say that the charges are stuck to the fluid
elements and follow their rotation. Putting a nonzero finite
conductivity could lead to a nonazimuthal current deter-
mined by the term σFαβUβ, which can have nonazimuthal
component for β ¼ ϕ. This would be inconsistent with the
assumption of the pure azimuthal circular motion of whole
the fluid, governed by substantial gravitational and electro-
magnetic “Lorentz” actions.
Under the mentioned conditions, the master formula (8)

gives us the set of partial differential equations for the fluid,

∂rw ¼ −∂r ln jUtj þ
Ω∂rl
1−Ωl

þ q
pþ ϵ

ðUt∂rAt þUϕ∂rAϕÞ;

∂θw ¼ −∂θ ln jUtj þ
Ω∂θl
1−Ωl

þ q
pþ ϵ

ðUt∂θAt þUϕ∂θAϕÞ;

ð9Þ

the so-called “transformed pressure equations,” where w is

the pressure (enthalpy) function defined as ∂μw ¼ ∂μp
pþϵ,

μ ¼ ðr; θÞ. ρ; q; p are respectively the mass density, the
charge density and the pressure of the fluid. The specific
angular momentum, l ¼ −Uϕ=Ut, and the angular veloc-
ity, Ω ¼ Uϕ=Ut, are related by the formula

Ω ¼ −
lgtt þ gtϕ
lgtϕ þ gϕϕ

; ð10Þ

and by using the normalization condition, we can derive the
t-component of the four-velocity field

ðUtÞ2 ¼
g2tϕ − gttgϕϕ

l2gtt þ 2lgtϕ þ gϕϕ
: ð11Þ

B. Background fields

As the background for the circling fluid, we consider
Schwarzschild black hole spacetime, in the dimensionless
system of units described by the line element

ds2 ¼ gttdt2 þ grrdr2 þ gθθdθ2 þ gϕϕdϕ2; ð12Þ

with the metric coefficients

gtt ¼ −
�
1 −

2

r

�
; grr ¼

�
1 −

2

r

�
−1
;

gθθ ¼ r2; gϕϕ ¼ r2sin2θ: ð13Þ

The spacetime is then accompanied by a test asymptotically
uniform magnetic field (aligned with the θ ¼ 0 axis) given
in terms of the four-potential components [28]

At ¼ −
Q
r
; Aϕ ¼ B

2
r2 sin θ2; ð14Þ

where B andQ are the strength of the magnetic field and the
test charge of the black hole.
Note that for gtt < 0 of the Schwarzschild spacetime,

i.e., above the event horizon (r > 2), the condition l2gtt þ
gϕϕ > 0must be fulfilled to maintain ðUtÞ2 > 0. This is the
case when

l2 <
r3sin2θ
r − 2

≡ l2
phðr; θÞ: ð15Þ

In the equatorial plane (θ ¼ π=2), the function l2
phðrÞ

governs the photon motion. The minimum of the function
l2
phðrÞ, corresponding to the values r ¼ 3 and l2 ¼ 27,

represents the location and impact parameter of the circular
photon orbit. Any geodesic that crosses the photon sphere
from the outside is going to spiral into the black hole.

III. EFFECTIVE POTENTIAL

In static spacetimes, where there is Ut ¼ gttUt and
Uϕ ¼ gϕϕUϕ, the set of transformed pressure equations (9)
takes the form

∂rw ¼ −∂r ln jUtj þ
Ω∂rl
1 −Ωl

þ qUt

pþ ϵ
R;

∂θw ¼ −∂θ ln jUtj þ
Ω∂θl
1 −Ωl

þ qUt

pþ ϵ
T ; ð16Þ

where we briefly denote the radial and latitudinal electro-
magnetic terms as R ¼ gtt∂rAt − lgϕϕ∂rAϕ and T ¼
gtt∂θAt − lgϕϕ∂θAϕ. In general, all the solutions of this
set of equations are subjected to the integrability condition

∂r∂θw ¼ ∂θ∂rw; ð17Þ

which must be considered simultaneously.
Particularly, considering the transformed pressure

equations (16), and choosing the fluid circulation so that
l ¼ const, the integrability condition (17) reads
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∂θ

�
qUt

pþ ϵ
R
�

¼ ∂r

�
qUt

pþ ϵ
T
�
: ð18Þ

In the background given by the metric coefficients (13) and
by the four-potential (14), the electromagnetic terms take
the form

R ¼ −
Q

rðr − 2Þ þ l
B
r
; T ¼ lB

cos θ
sin θ

; ð19Þ

which can be conveniently written as

R ¼ ∂rS; T ¼ ∂θS; ð20Þ

where S ¼ S1B, S1 ¼ ½− e
2
lnðr−2r Þ − l ln ðr sin θÞ� and

e ¼ Q=B. Thus, the integrability condition (18), now
written in the form

∂θ

�
qUt

pþ ϵ
∂rS

�
¼ ∂r

�
qUt

pþ ϵ
∂θS

�
; ð21Þ

is perfectly fulfilled when we chose qUt
pþϵ ¼ fðSÞ.

Consequently, the set of transformed pressure
equations (16) can be rewritten as

∂rw ¼ ∂rp
pþ ϵ

¼ −∂r ln jUtj þ fðSÞ∂rS;

∂θw ¼ ∂θp
pþ ϵ

¼ −∂θ ln jUtj þ fðSÞ∂θS; ð22Þ

with its solution w ¼ R p
0

dp
pþϵ expressed in the closed form

wðr; θÞ ¼ −Wðr; θÞ þWin

¼ − ln

���� Ut

Uin
t

����þ
Z

S

Sin
fðSÞdS; ð23Þ

if the fluid equation of state takes the form p ¼ pðϵÞ.
Here, we define Wðr; θÞ as the effective potential, and

denote Win as the integration constant, used as an offset to
choose the radial extension of the bound fluid configura-
tion. The function f is an arbitrary function linked to the
charge density of the torus. To keep consistency with our
previous works, we choose a power law fðSÞ ¼ μnSn for its
specification, whereas the constant μn represents the fluid
charge scaling factor. Thus, the effective potential (23) can
be written it the form

Wðr; θÞ ¼ ln jUtj − k0
Snþ1
1

nþ 1
; ð24Þ

where k0 ¼ μnBnþ1 and U2
t ¼ −gttgϕϕ

l2gttþgϕϕ
; for n ¼ 1, we get

the particular form

Wðr; θÞ ¼ 1

2
ln

−gttgϕϕ
l2gtt þ gϕϕ

− k0
S21
2
: ð25Þ

IV. CONDITIONS OF EXISTENCE OF
EQUILIBRIUM STRUCTURES

A. Mathematical conditions

The conditions of existence of a bound fluid structure is
linked to the existence of a pressure maximum (maximum
of the enthalpy, minimum of the effective potential). We are
going to work with the effective potential. By setting the
coordinates of the minimum of W ðrc; θcÞ, the necessary
conditions for a minimum read

∂rWjr¼rc;θ¼θc
¼ 0; ð26aÞ

∂θWjr¼rc;θ¼θc
¼ 0; ð26bÞ

while the sufficient ones require in addition

∂2
rrWjr¼rc;θ¼θc

> 0; ð27aÞ

detHjr¼rc;θ¼θc
> 0; ð27bÞ

where H is the Hessian matrix,

H ¼
� ∂2

rrW ∂2
rθW

∂2
θrW ∂2

θθW

�
: ð28Þ

Particularly, in this work, we are interested in configura-
tions in the equatorial plane (θc ¼ π=2). In that case, the
cross derivatives vanish, thus condition (27b) reduces to

∂2
θθWjr¼rc;θ¼θc

> 0: ð29Þ

B. Relation between k0 and l

In the case where the center of the bound structure lies in
the equatorial plane, the second necessary condition is
automatically fulfilled and the first condition can be
fulfilled by setting

k0 ¼
½2ðrc − 2Þ2l2 − r3c �ðe ln rc−2

rc
þ 2l ln rcÞ−1

ððrc − 2Þl2 − r3cÞðe − lðrc − 2ÞÞ : ð30Þ

Our system is characterized by five parameters: l; e; n; rc
and k0. Equation (26a) and the two inequations in (27) give
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restrictions to the range of possible values for these
parameters.
We reduce the discussion to the case n ¼ 1. While k0 is

determined by satisfying Eq. (26a) [see Eq. (30)], one of the
remaining parameters (in this discussion we chose l) is
restricted to certain values depending on the choice of the
remaining parameters. The restriction on the choice of l
will be evaluated depending on k0—and therefore [accord-
ing to Eq. (30)] on rc—for a prescribed value of e in terms
of bifurcation sets. To do so, we use catastrophe theory
(branch of bifurcation theory in the study of dynamical
systems) and, in particular, the cusp catastrophe [34–38]. It
is used to study critical points of a potential. At these
points, not only the first derivative but also higher deriv-
atives of the potential become zero. Small changes in the
value of one of the potential parameters will cause sta-
tionary points (minima or maxima in the potential) to
appear or disappear. In the case of Wðr; θÞ, the critical
points are given by

∂rWðrc; θcÞ ¼ 0; ð31Þ

∂2
rWðrc; θcÞ ¼ 0: ð32Þ

The bifurcation set consists of the parameter pairs ðk0;lÞ of
all critical points of Wðr; θÞ, for n ¼ 1 and a fixed value
of e. An exemplary bifurcation set is shown in Fig. 1, for
n ¼ 1 and some fixed value of e. The bifurcation set allows
us to discuss the range of values for l and k0 for which
bound charged fluid structures can be found for a given
value of e. Due to the symmetryWðe;lÞ ¼ Wð−e;−lÞ, the
following discussion is restricted to l > 0.

By its definition the bifurcation set divides the control
space into two different areas, whose corresponding poten-
tials Wðr; π

2
Þ show a different number of one or otherwise

three extrema. Wðr; θÞ shows the following behavior:
(i) for k0 > 0, Wr→2;∞ðr; θcÞ → −∞,
(ii) for k0 < 0, Wr→2;∞ðr; θcÞ → þ∞.

The case k0 ¼ 0 describes the uncharged case. This leads to
a total of one to two minima and no or one maximum for
k0 < 0 and no or one minimum and one or two maxima for
k0 > 0, in the effective potential. The qualitative structure
of Wðr; θcÞ for a ðk0;lÞ parameter set from the different
areas of the control space is shown in Fig. 1. Local minima
mark the center of a possible bound structure solutions,
maxima correspond to possible inner and outer cusp points.
For these points, to form actual centers of bound structure
solutions (representing the thick accretion disk), the second
sufficient condition ∂2

θθW > 0 has to be fulfilled at these
points as well. We will discuss that condition later in this
section. If the bound fluid structure ends at a cusp point, the
matter is expected to flow out of the structure at this point.
Then, it might either be accreted by the central object (in
case of an inner cusp, where the corresponding maximum is
located at a radius smaller than the center of the fluid
structure) or it can flow away from the central object (in
case of an outer cusp, where the corresponding maximum is
located at bigger radii than the center of the fluid
structure).We can see that no outer cusp points are possible
except if an inner cusp is also present. Moreover, we can
note that for k0 < 0 no inner cusp points exist, while they
do for k0 > 0. As mentioned above, the system is also
depending on e, the ratio of the test charge over the test
magnetic field. Therefore, the bifurcation set has to change
with e. Figures 2 and 3 depict the bifurcation set for
several positive and negative values of e for n ¼ 1 in the
control space ðk0;lÞ. One can see that the behavior of the
potential changes with e, meaning that the equilibrium
structure is influenced by the charge and the magnetic field
of the background. Moreover, for each value of e, all the
bifurcation sets cross in ðk0 ¼ 0;l ¼ ffiffiffiffiffiffiffiffiffi

13.5
p Þ. This point

corresponds to the specific angular momentum of an
uncharged test particle moving along the marginally stable
circular orbit (ISCO). In Fig. 4 the special case of e ¼ 350
is shown, where a new area is formed. The cusp shown in
the right plots in Figs. 2 and 3 comes to cross the
bifurcation set in the left plots. In this particular space,
the potential should exhibit three maxima and two minima.
As we said, these minima points can be centers of
bound structure solutions if the second sufficient condition
∂2
θθW > 0 is fulfilled. This is plotted in Fig. 5 for

positive values of e. Three area appears, where solutions
are possible:

(i) area I shrinks for larger values of e (indicated by
lightening up the blue coloring) in Δe ¼ 2 steps
from e ¼ 1 (darkest blue color) up to e ¼ 19 (light-
est blue color),

FIG. 1. The blue curve depicts a typical structure of the
bifurcation set for n ¼ 1 in the ðk0;lÞ-control space (the blue
curve contains all extremal points of Wðr; θÞ for which ∂2

rW ¼ 0
is satisfied).
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FIG. 2. Bifurcation set for n ¼ 1 for various values of e. The qualitative structure ofWðr; θcÞ can be read from the plots as described in
Fig. 1.

FIG. 3. Bifurcation set for n ¼ 1 for various values of e. The qualitative structure ofWðr; θcÞ can be read from the plots as described in
Fig. 1.

FIG. 4. Bifurcation set for n ¼ 1 and e ¼ 350. Two cusps overlap in the bifurcation set. This leads to a potential structure ofWðr; θcÞ
with two minima and three maxima for a parameter set ðk0;lÞ from the region bordered by the two cusps.
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(ii) area II grows for larger values of e,
(iii) area III is solely confined by l > 0.

The second sufficient condition is therefore always satisfied
for l > 0 for any value of e > 0. Due to the symmetry
Wðe;lÞ ¼ Wð−e;−lÞ, the plot contains the discussion for
negative values of e, simply by flipping the plot along with
the r–axis. Every minimum of Wðr; θcÞ corresponds to the
existence of a bound fluid structure, while maxima at radii
smaller or bigger than rc might serve as an inner cusp or
outer cusp of a bound fluid structure. Here a “double
solution” of two bound fluid structures is possible if
Wðr; θcÞ possesses two minima. According to Figs 2–4,
this is the case for certain choices of ðk0 < 0;lÞ, but also
for certain ðk0 > 0;lÞ-pairs in case of a sufficiently big
value of e (see Fig. 4 for e ¼ 350). As we said, at the
beginning of this section, another parameter is playing a
role, n, the power law of the f-function. While the overall
structure of the bifurcation sets does not change for bigger
values of n ðn > 1Þ, it changes significantly for smaller
values of n (n < −1). However, for very small values of n,
the behavior of Wðr; θÞ seems to approach that of the
uncharged case for a broad range of k0. Something
comparable can be found for very big values of n, however,
the behavior of Wðr → ∞; θcÞ changes drastically.

V. EQUILIBRIUM CONFIGURATIONS
OF A CHARGED FLUID

In this section, we are going to construct solutions in the
equatorial plane by setting the parameter n ¼ 1, and
choosing the couple ðl; k0Þ and e according to the kind
of solution we want (see Fig. 2). Then we can have:

(i) Structures with a cusp only, for instance, for the
following parameters l ¼ ffiffiffiffiffi

11
p

, k0 ¼ 0.002 and
e ¼ 10. This type of solutions is plotted in the Fig. 6.

(ii) Structures with a bound fluid configuration only, for
instance, for l ¼ 3.5, k0 ¼ −0.006 and e ¼ 21. This
kind of solutions is shown in the Fig. 7.

(iii) Finally, we can have solutions with a bound fluid
surrounded by an inner and an outer cusps and

FIG. 5. Map of the extremal points ðrc; θc ¼ π=2Þ of W for
different values of e plotted over l. Scaling parameter k0 (Eq. (30)
is chosen such that necessary conditions (∂rW ¼ 0; ∂θW ¼ 0) are
satisfied at each point and hence changes throughout the plot. The
second sufficient condition of a local minimum in W (meaning
∂2
θθW > 0) is satisfied for points located in one of the three

areas I–III. The black area indicates the region of superluminal
motion.

FIG. 6. Map of the equipotential surfaces using the following
parameters: l ¼ ffiffiffiffiffi

11
p

, k0 ¼ 0.002, and e ¼ 10. The dashed line
correspond to the equipotential surface of the cusp.

FIG. 7. Map of the equipotential surfaces using the following
parameters: l ¼ 3.5; k0 ¼ −0.006 and e ¼ 21. The thick black
curve shows a closed equipotential surface, meaning a bound
fluid structure. The dashed line corresponds to the equipotential
surface of the inner cusp.
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double solutions with two bound fluid structures
connected by a cusp. These configurations can be
obtained, for instance, for the following set of
parameters: l ¼ ffiffiffiffiffiffiffiffiffi

13.2
p

; k0 ¼ −0.002 and e ¼ 28,
and l ¼ ffiffiffiffiffi

15
p

, k0 ¼ 0.0001 and e ¼ 10 respectively.
They are plotted in Figs. 8, 9 and 10. Even if the
assumption of the model is the pure circular and
stationary motion, the cusp point can serve as a point

where an accretion flow or outflow can occur. If the
fluid reaches that point, it will flow out of the bound
structure. Note that we cannot find solutions that
exhibit an inner cusp alone with a bound structure or
an outer cusp alone with a bound fluid structure. An
inner cusp is present with an outer cusp and vice
versa but only for a special combination of param-
eters both cusps lie on the same equipotential
surfaces. More frequently, the bound structure is
surrounded by a critical surface with only one cusp
(inner or outer).

It is interesting to see the various configurations that can be
constructed within the presented model. Especially, the
double cusp and double tori structures. They seem to be
always possible when the charge and the magnetic field are
present with constant l or with a dipolar magnetic field
with constant l or Ω.

VI. INFLUENCE OF CHARGE AND
ELECTROMAGNETIC FIELD

A. Vector fields

In this section, we aim to understand the involvement of
the various processes in the creation of the double tori
solution, as depicted in Fig. 8. As already described in [23],
the function fðSÞ involves the specific charged distribution
through the disk. Then, the electromagnetic force will
interact with the fluid through the following term fðSÞ∂μS,
μ ∈ fr; θg. This term contains one term describing the
electric force acting on the charged particles of the fluid,
namely fðSÞgtt∂μAt and another term describing the
Lorentz force acting on the charged particles moving in
the magnetic field, namely fðSÞgϕϕ∂μAϕ. Depending on the

FIG. 9. Map of the equipotential surfaces using the following
parameters: l ¼ ffiffiffiffiffi

15
p

, k0 ¼ 0.0001, and e ¼ 10. The dashed line
corresponds to the equipotential surfaces of the inner cusp and the
dot dashed line the one of the outer cusp.

FIG. 8. Map of the equipotential surfaces using the following
parameters: l ¼ ffiffiffiffiffiffiffiffiffi

13.2
p

; k0 ¼ −0.002 and e ¼ 28. The thick
black curve shows two closed equipotential surfaces of same
potential value. The dashed line is the equipotential surface
of the cusp.

FIG. 10. Zoom of the Fig. 9. The dashed line is the equipo-
tential surface of the inner cusp and the thick curve one of the
closed equipotential surface.
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value of l, both terms can result in an attractive or repulsive
force. We can plot, the strength of the different terms for
certain configurations to understand the impact of the
processes involved.
In Fig. 11, we plot the different vector fields correspond-

ing to the different terms of the pressure equation.
(i) As expected, all the arrows in Fig. 11(d) point the

direction of the pressure maximum.
(ii) We can see that both the fields of the magnetic and

electric forces change signs through the fluid.
(iii) As expected, the field due to themagnetic force is only

in the R − direction. As the magnetic field is uniform
in the vertical direction, this result is coherent.

We can assume, regarding the four plots that, the extended
shape in the outer region should be due to the electric force
which is dominant here. On the other hand, close to the
inner edge, the effect of the electric force decreases and is
balanced by the acceleration. The same study is done for
another interesting configuration, the double tori structure
(see Fig. 12). We can see that a change of sign happens for
both the electric and magnetic parts. It is close to the second
pressure maximum. As expected, the vector of the total

force points to the direction of the three points of interest,
the two pressure maxima, and the cusp point. Except in the
equatorial plane, where the flow is escaping the cusp point
to go in the direction of one of the pressure maximum.

B. Influence of the parameter e on the cusps and
pressure maximum

It is also interesting to see the influence of the parameter
e on the position of the cusps and maxima of pressure in
certain interesting configurations. One of them is depicted
in Fig. 9; it is composed of two cusps points surrounding a
bound fluid structure. We fix the following parameters to
the values: k0 ¼ 0.0001 and l ¼ 15, and then vary the
value of e, from −10 to 30. The result is shown in Fig. 13.
We find the following different behavior.

(i) The inner cusp: increasing the value of e tends to
move the inner cusp inward, closer to the black hole,
until a certain value of e is reached. At this point, the
cusp starts to move outward for increasing e, further
away from the black hole.

(ii) For the pressure maximum, the behavior is opposite.
For increasing values of e it is pushed away from the

(a) (b)

(c) (d)

FIG. 11. Maps of the vectors field, in cylindrical coordinates
(R, Z) for the bound fluid structure presented in Fig. 7. In every
plot the thick black line corresponds to a closed equipotential
surface. The size of the arrows are fixed and does not represent
the strength of each term.

(a) (b)

(c) (d)

FIG. 12. Maps of the vectors field, in cylindrical coordinates
(R, Z), of the double tori presented in Fig. 8. In every plot the
thick black line corresponds to the equipotential surface of the
cusp equipotential. The size of the arrows are fixed and does not
represent the strength of each term.
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black hole, until a certain value of e is reached. It
then starts to move inward.

(iii) The outer cusp: Its radius is moving inward when the
value of e is increasing.

Another interesting configuration is the double tori one (see
Fig. 14). In the case when e approaches 0, the inner bound
solution approaches the horizon, then it is tricky to compute
the configuration. Therefore, we vary e from −10 to −0.4
and from 1 to 30 (see Fig. 14). The variations exhibit, as
above, various behavior.

(i) For the radius of the inner pressure maximum, we
notice that for increasing values of e, the radius
moves outward. For smaller values of e, solutions
approach the horizon, until the solution disappears.

(ii) The cusp point: A similar behavior compared to the
previous case is found. The cusp moves outward for
an increasing value of e. At a certain value of e it
starts to go back inward.

(iii) For the radius of the outer pressure maximum, we
see that the behavior is the opposite of the one of the
cusp point.

In the case of a bound fluid structure only, as depicted in
Fig. 7, the variation of the radius of the pressure maximum
is close to the one shown for the inner maximum of the
double tori solution, except that it can be pushed further
outward.

VII. CONCLUSION

In this paper,wehave presented a relativistic descriptionof
an electrically charged fluid in circular motion surrounding a

static black hole. The system is embedded in an electric field
induced from the uniform magnetic field and a large scale
asymptotically uniformmagnetic field.Both the fields are the
test ones and do not influence the spacetime; the electric and
magnetic fields produced by the charged fluid are neglected.
We showed that in the special case of constant specific
angular momentum, we succeeded to construct the effective
potential and built the equipotential surfaces. This effective
potential shows various behavior leading to the existence of
bound fluid structures in the equatorial plane. Those bound
structures can appear with or without cusp points (inner or
outer point). We found that equilibrium solutions of two
bound fluid structures linked by a cusp can exist. Moreover,
we succeeded to constrain the values of themodel parameters
ðk0;lÞ, and to know by choosing a fixed value of e and n,
which behavior exhibits the effective potential by using
bifurcation theory. Also, we have shown that even if both the
electric and the magnetic fields do not influence the space-
time, they have an impact on the existence of the equilibrium
solutions. By varying the parameter e, we showed that the
bifurcation set changes, meaning for a fixed value of ðk0;lÞ,
the behavior of the potential can exhibit different forms. The
configuration of the solutions will then be different.Wewent
further by studying the vector fields of each part (acceler-
ation, electric force andmagnetic force separately).We found
some expected behaviors as the direction of the field due to
the magnetic force, the radial behavior of the force due to the
electric field and finally the attraction of the pressure
maximum and the cusp point. All vectors point in the
direction of these two particular points, except in the
equatorial plane, where they escape from the cusp point.

FIG. 13. From the left to the right: Variation of the radius of the inner cusp, the pressure maximum of the bound fluid structure and the
outer cusp for k0 ¼ 0.0001, l ¼ ffiffiffiffiffi

15
p

and various values of e. For e ¼ 10 the related configuration is shown in Fig. 9.

FIG. 14. From the left to the right: Variation of the pressure maximum of the inner bound fluid structure, of the cusp and the pressure
maximum of the second bound structure, for k0 ¼ −0.006, l ¼ 5 and various values of e. These parameter sets are related to
configurations with potentials that have the same qualitative shape as the one pictured in Fig. 8.
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One of the interesting results is that both the electric and
magnetic vector fields change sign through the fluid at the
same radius. We have also shown that the vertical extension
in the outer part is due to the strength of the electric field
which counteracts the effect due to the acceleration. In the
inner part, the effect is the opposite. The acceleration is
stronger than the electric part and make the shape thinner.
Finally,we showed how the radius of the inner and outer cusp
points and the one of the pressure maximum vary for a fixed
ðk0; n;lÞ in function of e.
We can conclude that external fields like electric and

magnetic fields have a clear effect on the shape of the fluid
structure, but also on the behavior of the effective potential.
In this work, the specific charge density is set arbitrary, and
the model highly depends on it. We have to remind that all
the results shown in the paper are valid for the specific form

of q that we have chosen. This point has to be improved, to
find more realistic specific charged profiles and is the
subject of ongoing work.
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