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The detection of gravitational waves (GWs) from binary black holes (BBHs) has allowed the theory of
general relativity to be tested in a previously unstudied regime: that of strong curvature and high GW
luminosities. One distinctive and measurable effect associated with this aspect of the theory is the nonlinear
GW memory effect. The GW memory effect is characterized by its effect on freely falling observers: the
proper distance between their locations differs before and after a burst of GWs passes by their locations.
Gravitational-wave interferometers, like the LIGO and Virgo detectors, can measure features of this effect
from a single BBH merger, but previous work has shown that it will require an event that is significantly
more massive and closer than any previously detected GW event. Finding evidence for the GW memory
effect within the entire population of BBH mergers detected by LIGO and Virgo is more likely to occur
sooner. A prior study has shown that the GW memory effect could be detected in a population of BBHs
consisting of binaries like the first GW150914 event after roughly one-hundred events. In this paper, we
compute forecasts of the time it will take the Advanced LIGO and Virgo detectors (when the detectors are
operating at their design sensitivities) to find evidence for the GW memory effect in a population of BBHs
that is consistent with the measured population of events in the first two observing runs of the LIGO
detectors. We find that after five years of data collected by the Advanced LIGO and Virgo detectors the
signal-to-noise ratio for the nonlinear GW memory effect in the population will be about three (near a
previously used threshold for detection). We point out that the different approximation methods used to
compute the GW memory effect can lead to notably different signal-to-noise ratios.
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I. INTRODUCTION

The first detection of a gravitational waves (GWs) from a
pair of merging black holes (GW150914) by the LIGO
detectors [1] opened a new avenue for testing the pre-
dictions of general relativity for strongly gravitating and
rapidly evolving spacetimes. The observed GWs were
consistent with the predictions of general relativity (GR)
to within the statistical uncertainties of the measurement
[2]. The LIGO, and subsequently Virgo, detectors have
continued to discover new GW events: after the first two
observing runs of the two LIGO detectors now ten GWs

from binary-black-hole (BBH) mergers and one from a
binary-neutron-star merger have been discovered [3]. (The
GWs from these ten additional events are also consistent
with the predictions of GR [4].) Already in the third
observing run of LIGO, over 20 BBH candidate events
have been announced [5] and this number will rapidly
increase once the detectors reach their design sensitivities
in a few years [6]. The improved sensitivity of the detectors
and the large number of events will allow GR to be tested
more precisely for a range of binaries with different masses
and spins.
Before the LIGO and Virgo discoveries, the predictions

of GR were consistent with a range of experiments and
measurements in the Solar System and through observa-
tions of pulsars in the Milky Way (see, e.g., [7] for a
review). Solar System, pulsar, and BBH observations probe
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different aspects of Einstein’s theory: most importantly,
BBHs allow GR to be studied in a more nonlinear and
highly radiating regime of the theory than either Solar
System experiments or pulsar observations. Thus, BBHs
will allow the study of gravitational phenomena that require
nonlinearities and high GW luminosities. One such effect,
called the nonlinear GW memory effect [8,9], is the focus
of this paper.
The GW memory effect is characterized by a lasting

change in the GW strain that occurs for many types
of transient GW sources. Zel’dovich and Polnarev [10]
first computed the GW memory effect in linearized gravity
when they computed the GWs emitted by the gravitational
scattering of compact objects.1 The high luminosities
of neutrinos from supernovae also can produce the GW
memory effect, as was shown by Epstein [12] and Turner
[13]. Christodoulou [8] showed that there is also a non-
linear contribution to the effect in the full theory of GR
(without the linear approximation), which arises from
the energy flux (luminosity per solid angle) from the
GWs. Blanchet and Damour [9] independently computed
the effect within the context of the multipolar-expanded
post-Minkowskian approximation. Binary black holes,
with their high GW luminosities, are expected to have a
non-negligible GW memory effect (see, e.g., [14,15] for
calculations in post-Newtonian theory and [16] for com-
putations of the GW memory in numerical-relativity
simulations).
The GW memory effect can be measured, because when

a GW with memory passes by freely falling observers, the
proper displacement between the observers differs before
and after the burst of GWs pass by their locations. The GW
memory effect also has close connections to the symmetry
group of asymptotically flat spacetimes, the Bondi-
Metzner-Sachs group [17–19], and its corresponding con-
served quantities (see, e.g., [20] for more details). Thus,
because of its distinctive observational signature and its
close connection to fundamental aspects of asymptotically
flat spacetimes, the GW memory effect would be of great
interest to detect.
The GW memory effect is formally the constant differ-

ence in the GW strain before and after a burst of GWs
passes by a GW detector. Interferometric GW detectors
like LIGO and Virgo, however, are sensitive to GWs over a
finite frequency range; thus, they do not always have
the necessary sensitivity at low frequencies to measure
the lasting change in the GW strain associated with the
memory. Nevertheless, the simulations in [16] confirmed
the analytical approximation used in [21], which showed
that the memory effect rapidly settles to a nonzero constant
value over a timescale (and hence frequency range) that

LIGO and Virgo can measure, for stellar-mass BBHs. The
prospects for measuring the GW memory effect from the
full inspiral-merger-ringdown waveform of a BBH showed
more promise for detecting the effect than earlier studies
using just the post-Newtonian approximation to the wave-
form during the inspiral [22,23]. However, Favata [21] and
more recently Johnson et al. [24] showed that for LIGO
and Virgo to detect the GW memory from a single BBH
merger would require a much closer or more massive BBH
event than had previously been observed. Next-generation
ground-based detectors such as the Einstein Telescope [25]
and Cosmic Explorer [26] were shown in [24] to be much
more likely to detect the GW memory effect. The planned
space-based GW detector, LISA [27], could detect the GW
memory from supermassive BBH mergers (see, e.g., [21]).
Pulsar timing arrays (see, e.g., [28]) have also put con-
straints on GWs with memory (see [29] and references
therein), though there are forecasts that suggest pulsar
timing arrays are less likely than LISA is to detect the GW
memory effect [30].
Instead of searching for the GW memory effect asso-

ciated with a single BBH merger, Lasky et al. [31]
proposed to search for evidence for the GW memory effect
in a population of BBH mergers, for which each individual
event is below the threshold for detection. Lasky et al.
showed that for a population of GW150914-like events,
around 100 BBH mergers are needed to find evidence for
the GW memory effect in the population. An important
insight in [31] was that only a subset of mergers in the
population can be used to build evidence for the GW
memory effect, because of degeneracies of certain “extrin-
sic” parameters (parameters that are not the masses or spins
of the black holes) in the detectors’ responses to the GWs.
Moreover, a criteria (which can be computed from the
GWs) was found in [31] to determine whether a given
detection would be likely to contribute evidence for the
GW memory in the population or not.
In this paper, we revisit the forecasts in [31] in light of

the nine additional BBH detections after the GW150914
event. The first ten detections have now allowed models of
the distribution of BBH masses to be constrained by
observational data [32]. We use populations of BBHs
consistent with these models to estimate the amount of
time the Advanced LIGO and Virgo detectors will need to
detect the GW memory effect in these populations.2 We
find that, on average, after a five-year observation period,
the signal-to-noise ratio for the GW memory effect in the
population of BBHs will be about three (near the threshold
to be observed). There have been a number of different
approximations used to compute the GW memory effect

1Note that the possibility of the GW memory effect was
considered by Newman and Penrose in [11], although they did
not explicitly calculate the effect from any source.

2As this work was coming to completion, related forecasts for
the number of events needed to detect the GW memory effect
were made in [33]. We discuss the relationship between [33] and
this paper in greater detail in the note added after the acknowl-
edgments.
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from BBH mergers (see, e.g., [21,24,34,35]). We caution
that these models can differ in their predictions for the
amplitude of the memory effect, and this does have an
impact on the signal-to-noise for the memory effect in our
populations.
The remainder of this article is structured as follows: In

Sec. II, we describe how we calculate the relevant gravi-
tational waveforms used throughout this paper. Section III
describes our data-analysis procedures. Section IV contains
the main results of our study: the criteria to determine when
a BBH merger will contribute to building evidence for the
memory in the population, and the forecasts for the time to
detection for the GW memory effect in our simulated
populations of BBHs. We conclude in Sec. V. A few
additional results are given in Appendices A–C. In the
remainder of this article geometric units G ¼ c ¼ 1 are
used. We use the Planck 2015 [36] cosmology to associate
a luminosity distance of a BBH to its redshift.

II. GRAVITATIONAL WAVEFORM MODELS

In this section, we discuss several different aspects of the
gravitational waveform models we use throughout this
paper: (i) the conventions for the multipolar expansion of
the GW polarizations, (ii) the specific waveform approx-
imants we use in this paper, (iii) the procedure used to
calculate the waveform associated with the nonlinear GW
memory effect, (iv) the effect of using different waveform
approximants in the procedure of (iii), and (v) a degeneracy
among certain extrinsic parameters in the waveform.

A. Gravitational waveforms and their spin-weighted
spherical-harmonic expansion

Gravitational-wave detectors, such as LIGO and Virgo,
are not equally sensitive to the two polarizations of the
GWs, which come from different locations on the sky. The
sensitivity of the detector to the plus and cross polarizations
of the gravitational waveform (denoted by hþ and h×,
respectively) is given by two antenna response functions,
Fþðα; δ;ψÞ and F×ðα; δ;ψÞ, which we parametrize by the
right ascension α, the declination δ, and the polarization
angle ψ . [We use the conventions that α ∈ ð0; 2πÞ,
δ ∈ ð−π=2; π=2Þ, and ψ ∈ ð0; πÞ.] The time-dependent
strain measured by the detector is expressed as the
combination of the two polarizations:

hðtÞ ¼ Fþðα; δ;ψÞhþðtÞ þ F×ðα; δ;ψÞh×ðtÞ ð2:1Þ

(see, e.g., Appendix B of [37]). The expressions for Fþ and
F× are taken from the LIGOAlgorithm Library (LAL) [38].
For nonprecessing BBH systems, it is convenient to

decompose the complex strain, hþ − ih×, using a basis of
spin-weighted spherical harmonics (with spin weight
s ¼ −2) that is adapted to the binary. We assume the
binary is in the x-y plane, so that the orbital (and total)

angular momentum points along the z axis. We denote
the spin-weighted spherical harmonics by ð−2ÞYlmðι;ϕcÞ.
We choose our coordinates such that ι represents the angle
between angular momentum and the line of sight to the
detector, and ϕc is the angle between the x axis and
the line of site to the detector projected into the plane of the
binary. The conventions for the harmonics we use are
those implemented in the GWSURROGATE package [39]
(which are computed from recurrence relations given in
Appendix B of [40]). The expansion is then given by

hþ − ih× ¼
X∞
l¼2

Xl
m¼−l

hlmðt; σ⃗Þð−2ÞYlmðι;ϕcÞ; ð2:2Þ

wherewe havewritten the spherical-harmonicmodes hlm of
the gravitational waveform as a function of time t and a set of
parameters σ⃗. For nonprecessing binaries, the parameters
included in σ⃗ are the heavier BH mass m1, the lighter BH
massm2, the dimensionless BH spins χ1z and χ2z (which are
assumed to be aligned or antialignedwith the orbital angular
momentum), and luminosity distance dL.
This spherical-harmonic decomposition is useful,

because for nonprecessing BBHs, the amplitudes of the
different ðl; mÞ modes fall off rapidly with l and the
corresponding frequency of the mode is proportional to m
(see, e.g., [41]). Modes with m ≠ 0 are referred to as
“oscillatory” modes. The dominant oscillatory mode is the
quadrupole mode h22, whereas the modes with ðl; jmjÞ ≠
ð2; 2Þ are notably smaller in their amplitudes, and are
sometimes referred to as “subdominant” or “higher-order”
modes. As we discuss in more detail later in this section,
for the quasicircular, aligned-spin binaries considered in
this paper, the GW memory effect that is computed using
h22 can be expanded in just the two modes h20 and h40 (and
the GW polarization associated with these modes is just the
plus polarization) [34]. Thus, modes with m ¼ 0 are
sometimes called “memory” modes.3 By parity, it can be
shown that for the aligned-spin binaries considered in this
paper the modes with m < 0 are related to the modes with
m > 0 by the relation h�l;m ¼ ð−1Þmhl;−m; thus, we will
subsequently only refer to the modes with m > 0 and not
their counterparts with m < 0 when discussing which
modes we use.
Finally, we conclude this section with a few additional

definitions that are less standard, but which will be useful
later in this paper. Let us denote the plus and cross
polarizations associated with a given mode hlm as

hlmþ ≔ Refhlmð−2ÞYlmg; ð2:3aÞ

3Note, however, that this classification is based on the behavior
of the waveform modes during the inspiral; during the merger and
ringdown the m ¼ 0 modes can have an oscillatory part, and the
memory can appear in modes with m ≠ 0.
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hlm× ≔ −Imfhlmð−2ÞYlmg: ð2:3bÞ

Similarly, let us define the strain measured by the detector
for a particular mode hlm as

hðlmÞðtÞ ≔ Fþðα; δ;ψÞhlmþ ðtÞ þ F×ðα; δ;ψÞhlm× ðtÞ: ð2:4Þ

Thus the full GW strain measured by the detector can be
written as

hðtÞ ¼
X
l;m

hðlmÞðtÞ: ð2:5Þ

While the quantities hðlmÞðtÞ are not something that would
be easily measurable by GW detectors like LIGO and Virgo
for a single ðl; mÞ mode, they will be useful for explaining
certain degeneracies that occur when the GWs measured by
a GW detector are influenced predominantly by a few
individual hðlmÞðtÞ in the total strain hðtÞ.

B. Computing the oscillatory waveform modes

To compute the dominant and higher-order oscillatory
waveform modes, we use the NRHybSur3dq8 surrogate
model [42]. This model can be used to generate waveforms
from BBHs with mass ratios q in the range q ¼ m1=m2 ≤ 8
and with aligned spins with magnitudes jχ1zj, jχ2zj ≤ 0.8.
The model was built from a catalog of spinning, non-
precessing numerical relativity (NR) simulations [43] that
were “hybridized” [44] with post-Newtonian (PN) (see e.g.,
the review article [45] and references therein) and effective-
one-body (EOB) waveforms [46,47]. The surrogate model
is a type of interpolant (based on reduced-order modeling
techniques [48–52]) that allows the waveform model to be
rapidly evaluated with high accuracy in its range of validity.
We use the Python package GWSURROGATE [39] to

evaluate the NRHybSur3dq8 surrogate model. This model
includes ðl; mÞmodes with 2 ≤ l ≤ 4 [though not the (4,0)
or (4,1) modes] and the (5,5) mode. We restrict to
generating the dominant mode h22 and the five higher-
order modes h21, h32, h33, h44 and h55. We neglect the other
modes, as they are either small or not well resolved in the
NR simulations. We choose the duration of the waveform to
be such that the h55 mode starts at a frequency of
f0 ¼ 10 Hz, for all the binaries (of different masses) that
we consider.

C. Computing the nonlinear GW memory

The GW memory effect can be computed from NR
simulations using the technique of Cauchy-characteristic
extraction (see, e.g., [53]) as was done in [16] for a few
nonprecessing, equal-mass BBHs. The more commonly
used methods of waveform extraction (and extrapolation),
however, fail to resolve the effect (see, e.g., [43]). The
memory effect is required by the conservation of

supermomentum (the conserved quantity associated
with the supertranslation symmetries of the Bondi-
Metzner-Sachs group); thus, the memory can be computed
approximately from the gravitational waveform model
without the GW memory effect by determining the wave-
form required to maintain supermomentum conservation
(see, e.g., [54–56]).
While supermomentum conservation provides the theo-

retical underpinning for the approximate method for
computing the GWmemory effect from waveforms without
GW memory, the resulting prescription can be described in
simpler terms: One can compute the nonlinear GWmemory
following the same procedure used to calculate linear
memory from massless fields after replacing the material
stress-energy tensor with the effective stress-energy tensor
of gravitational waves [22]. The derivation of the result
relies on solving the relaxed Einstein equations (in har-
monic gauge), and has been given in several places (e.g.,
[14,15]); as a result, we do not rederive the result, but quote
the final result instead.
The strain associated with the memory effect can be

computed from the expression

hTT;mem
jk ¼ 4

r

Z
u

−∞
du0

�Z
dE

dΩ0du
n0jn

0
k

1 − n0 · n
dΩ0

�TT
: ð2:6Þ

In this expression, we have defined the retarded time u, the
distance to the source r, the unit vector pointing from
the source n ¼ x=r, the solid-angle element dΩ, and the
GW luminosity per solid angle dE=ðdudΩÞ. To relate the
expression in Eq. (2.6) to the two polarizations of the GWs,
it is necessary to contract Eq. (2.6) with the complex
polarization tensor as follows:

hmemþ − ihmem
× ¼ hTT;mem

jk ðejkþ − iejk× Þ: ð2:7Þ

It is convenient to define the polarization tensors using a
complex vectorm�

j (where � denotes complex conjugation).
In spherical coordinates, ðι;ϕcÞ, the vector m�

j is given by

m�j ¼ ½ð∂ ιÞj − i sin ιð∂ϕc
Þj�= ffiffiffi

2
p

, and the polarization ten-
sor is then

ejkþ − iejk× ¼ m�jm�k: ð2:8Þ

For practical computations of the nonlinear memory
effect, it is common to expand the energy flux in terms of
the time derivatives of the GW strain expanded in spin-
weighted spherical harmonics:

dE
dudΩ

¼ r2

16π

X
l0;l00;m0;m00

h _hl0m0 _h�l00m00 ið−2ÞYl0m0 ð−2ÞY�
l00m00 : ð2:9Þ

The angle brackets around the term _hl0m0 _h�l00m00 mean
to average over a few wavelengths of the radiation.
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By substituting Eq. (2.9) into Eq. (2.6), the memory wave-
form becomes a sum over products of two spin-weighted
spherical harmonics. However, it is then useful to expand
hmemþ − ihmem

× in spin-weighted spherical harmonics as

hmemþ − ihmem
× ¼

X
l;m

hmem
lm

ð−2ÞYl0m0 ; ð2:10Þ

so that the multipole moments hmem
lm are functions of time

that are determined by a double angular integral of products
of three spin-weighted spherical harmonics. These integrals,
although somewhat complicated, can be evaluated numeri-
cally (as was done in [35]). Alternately, the integral can be
recast in terms of symmetric-trace-free tensors or scalar
spherical harmonics and evaluated analytically (in terms of
Clebsch-Gordon coefficients or Wigner 3-j symbols)
[15,54,57].
We compute several approximate expressions for the

polarizations in Eq. (2.10) in the next part of this section.

D. Memory waveform models

We describe in this part three different approximate
methods that have been used to compute the GW memory
effect from BBHs. Two of the models differ only in the
number of spherical-harmonic modes included in the
expansion of the GW luminosity in Eq. (2.9). The other
model uses additional approximations that we will discuss
in greater detail herein. We discuss one additional wave-
form model in Appendix A that is used to compute the GW
memory effect in [24]. This model makes several additional
approximations, which have the effects of decreasing the
amplitude of the GW memory effect by a factor of roughly
2, and introducing a small oscillatory part that would not be
expected in these particular spherical-harmonic modes of
the memory effect. For these reasons, we do not include this
model in the calculations in this part. In Fig. 1, we provide
an example that shows that the three different approxima-
tions can lead to results that differ by several tens of a
percent.

1. Descriptions of waveform models

a. Quadrupole approximation.—In [21], Favata consid-
ered the memory generated by the luminosity just from the
spherical-harmonic mode h22 in the luminosity in Eq. (2.9).
However, unlike previous work in the PN approximation
(e.g., [14,23]), Ref. [21] used the full inspiral-merger-
ringdown waveform for h22, which was fit to results from a
NR simulation. The angular integral in Eq. (2.6) can be
performed straightforwardly in this approximation, and the
GW memory is predominantly in the spherical-harmonic
modes hmem

20 and hmem
40 (and is thus plus polarized).4

The resulting waveform for the plus polarization of the
GW memory effect can be written as

hmemþ ðuÞ ¼ r
192π

sin2ιð17þ cos2ιÞ
Z

u

−∞
j _h22j2du0: ð2:11Þ

We evaluate the mode h22 using the surrogate model
described in Sec. II B. We will call the waveform computed
via this procedure the “quadrupole” model.
b. Minimal waveform model.—Favata also constructed

what he called the “minimal waveform model” (MWM) in
[21]. The MWM is an analytical approximation to the time-
domain quadrupole GW memory waveform, which is
based on using the PN approximation to the waveform
during the inspiral and a superposition of quasinormal
modes during the merger and ringdown. It was then
calibrated (by a constant rescaling) to match with the
memory computed from an early effective-one-body (EOB)

FIG. 1. Gravitational waveforms associated with the nonlinear
GW memory effect for a BBH with masses m1 ¼ 30M⊙ and
m2 ¼ 30M⊙, at a luminosity distance dL ¼ 500 Mpc and at an
inclination ι ¼ π=2. The three curves are three different approx-
imations for computing the GWmemory waveform: the blue dot-
dashed line is the MWM of [21], the red solid line is the
quadrupole approximation also in [34], and the dashed brown line
is the higher-mode model of [35] (see the text for more detailed
descriptions of the models). Top: The time-domain waveform
hmemþ ðtÞ for the nonlinear GW memory for the three models.
Bottom: The nonlinear GW memory waveform in the frequency
domain for the three models.

4Note that there can also be small contributions to the mode
h44, though this will be ignored in this approximation.
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waveform model tuned to NR simulations [58]. The time-
domain MWM also has a Fourier transform that can be
computed analytically to give an analytic frequency-
domain waveform for the GW memory effect. This allows
the MWM to be computed rapidly, which has made it
useful in studies that perform Bayesian inference using GW
memory models (e.g., [31,59]). However, the EOB model
[58] against which the MWM was calibrated was not as
precisely tuned to NR, and it overestimates the amplitude of
the GW memory effect (this was noted in [21] and also in
[35]). Nevertheless, because the MWM is a common
approximation, we include it as the second of our three
approximate methods.
c. Quadrupole and higher multipole model.—The wave-

form from the GW memory effect had been computed to
3PN order in [15], and at this order in the PN approxima-
tion, subdominant modes of the oscillatory GW strain enter
into Eq. (2.9). The PN approximation only holds during the
inspiral of a BBH, so it was only more recently in Talbot
et al. [35] that higher multipole moments were included for
the full inspiral-merger-ringdown waveforms used to cal-
culate the GW memory. Specifically, in [35], higher-order
GW modes up to (and including) l ¼ 4 were used in
Eq. (2.9) to compute hmemþ − ihmem

× . Including the higher-
order modes resulted in a roughly ten-percent increase in
the amplitude of the GW memory effect, for comparable
mass binaries. Accompanying the paper [35] was the
release of a Python package called GWMEMORY [60]. We
compute the GW memory waveform using this package
with the oscillatory GW modes generated by the surrogate
waveform model in Sec. II B (we leave out the h55 mode,
because the GWMEMORY package does not compute the
angular integrals for oscillatory modes with l ≥ 5). We will
refer to this third memory waveform model as the “higher-
mode” model.

2. Illustration of differences between waveform models

We now show the differences that arise from using the
different prescriptions for the three gravitational waveform
models of the GW memory effect for a typical stellar-mass
BBH system. Figure 1 shows hmemþ ðtÞ (top panel) and
jh̃memþ ðfÞj (bottom panel) for the three GW-memory wave-
form models for a BBH with masses m1 ¼ 30M⊙ and
m2 ¼ 30M⊙. We choose the luminosity distance to be
dL ¼ 500 Mpc and the inclination angle to be ι ¼ π=2 (we
replace r with dL for binaries at cosmological distances).
We set the value of hmemþ ðtÞ to be zero at the starting time in
the top panel of Fig. 1, for this comparison.5 We compute
the Fourier transform h̃memþ ðfÞ from hmemþ ðtÞ in the follow-
ing ways: For the MWM, we use the analytical expression
given in [21]; for the other two models, we pad the time

domain waveform, window the time-domain waveform
with a Planck window [61] to remove edge effects, and use
the fast Fourier transform (FFT) algorithm [62] imple-
mented in NUMPY [63,64].
While the time dependence of the three models is similar,

the amplitudes are not. The quadrupole and higher-mode
models are similar [they differ in the constant value of
hmemþ ðtÞ at late times t by around ten percent]. These two
models, however, differ from the MWM by a larger
amount. This difference is also present in the frequency
domain waveforms, although it is more difficult to observe
in the bottom panel of Fig. 1.
The higher-mode model of [35] is expected to be the

most accurate of the three, because it introduces the fewest
assumptions and approximations. However, it is also the
slowest to compute, because it involves the largest number
of waveform modes. Because the quadrupole approxima-
tion of [21] differs by a relatively small amount and is faster
to compute, we will use this waveform for most of our
forecasts in Sec. IV; however, this will slightly under-
estimate the signal to noise of the memory effect in the
population of BBHs. The MWM would typically overesti-
mate it instead (we describe this in more detail in
Sec. IV B).

E. Degeneracies between waveform parameters

We discuss in this section properties of the quantities
hðlmÞðtÞ introduced in Eq. (2.4) that will affect whether a
given detection will be likely to contribute any significant
evidence for the GW memory in the population of binaries
(similarly to what was done in [31]).
In GW parameter estimation, it is well known that there

are strong correlations between some parameters measured
from a BBH merger by interferometric detectors when
performing parameter estimation using just the dominant
l ¼ 2, m ¼ 2 waveform mode (e.g., the correlation
between inclination ι and luminosity distance dL [65]).
It is also well known, however, that by including higher-
order modes in the waveform model, some of these
correlations can be broken and improved constraints on
the parameters of the gravitational waveform model can be
obtained [66–70].
One salient type of correlation for detecting the GW

memory effect was noted by Lasky et al. in [31]: namely,
they described a degeneracy for the dominant l ¼ 2,m ¼ 2
under transformations of the form

ðψ ;ϕcÞ → ðψ 0;ϕ0
cÞ ¼ ðψ þ π=2;ϕc þ π=2Þ: ð2:12Þ

The quantity hð22ÞðtÞwas invariant, but other modes hðlmÞðtÞ
were not. The reason for the degeneracy of hð22ÞðtÞ is
straightforward to understand: At fixed sky location
ðα; δÞ, the antenna patterns Fþ and F× are periodic in
the polarization angle ψ ∈ ð0; πÞ; thus, the transformation
ψ → ψ þ π=2 changes the sign of the antenna patterns

5The MWM includes an initial offset from zero that is
computed from the PN approximation, while the other models
do not.
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Fþ → −Fþ and F× → −F×. Because the polarizations
associated with the mode h22 satisfy h22þ − ih22× ∝ e2iϕc,
then under the transformationϕc → ϕc þ π=2 it follows that
h22þ − ih22× → −ðh22þ − ih22× Þ. This leaves the mode hð22ÞðtÞ
invariant under this transformation.
For the purposes of discussing some of the correlations

we have found in this work, it will be useful to consider the
slightly more general transformation

ðFþ; F×;ϕcÞ → ð�Fþ;�F×;ϕc þ βÞ: ð2:13Þ

For a general mode hðlmÞðtÞ, a straightforward calculation
then shows that under the transformation (2.13), the mode
transforms as

hðlmÞðtÞ → �½Fþhlm× ðtÞ − F×hlmþ ðtÞ� sinmβ

� hðlmÞðtÞ cosmβ: ð2:14Þ

The case m ¼ 2, β ¼ π=2, and the sign flip for Fþ and F×
recovers the degeneracy of the mode hð22ÞðtÞ discussed in
detail above [and the expression above shows it is actually
valid for any mode with m ¼ 2 (mod 4) and β ¼ π=2].
We conclude this part by noting a few other degener-

acies, and how these degeneracies can be broken. For
example, the degeneracy of the mode hð22ÞðtÞ discussed
above is not shared by a number of other modes. For
example, whenm ¼ 1 orm ¼ 3 (mod 4) and β ¼ π=2, then
the hðlmÞðtÞ transform in a nontrivial way under (2.13).
Similarly, when m ¼ 0 (mod 4) and β ¼ π=2, then the
expression in Eq. (2.14) reduces to hðlmÞðtÞ → �hðlmÞðtÞ.
Thus, the presence of any of these higher-order modes
hðlmÞðtÞ in hðtÞ (including the memory modes with m ¼ 0)
will break this degeneracy in Eq. (2.12). If hðtÞ has as its
dominant two modes hð22ÞðtÞ and hð44ÞðtÞ, then the degen-
eracy in Eq. (2.12) will still be broken; however, there will
be an additional degeneracy under the transformation that
leaves Fþ and F× invariant and has β ¼ π (this will be
discussed further in Sec. IVA). Finally, it need not be
simply the transformation ψ → ψ þ π=2 that changes the
sign of the antenna patterns Fþ and F×. In Appendix C is
an example of an unfortuitous sky location that leads to an
additional degeneracy among the right ascension and
declination.

III. METHODS FOR ASSESSING THE
PRESENCE OF THE GW MEMORY
EFFECT IN A BBH POPULATION

In this section, we discuss how we assess when the
GW memory effect is present in a population of BBHs.
Specifically, we describe computing signal-to-noise ratios
(SNRs) for individual events and for populations of events,
and determining a criteria like that used in [31] for when a
given event will contribute significant SNRs towards
finding the memory effect in the population of BBHs.

In connection with this last point, we discuss Bayesian
inference.

A. Computing signal-to-noise ratios

In the context of GW data analysis, matched filtering is
an important component of finding and assessing the
significance of a GW signal that is buried in what is
generally assumed to be stationary Gaussian noise of a GW
detector (see, e.g., [65,71]). The filter involves cross
correlating the detector output dðtÞ ¼ sðtÞ þ nðtÞ [where
sðtÞ is the GW signal and nðtÞ is the detector noise] with a
bank of template gravitational waveforms, hðtÞ. This cross
correlation of the data and a template is most conveniently
written in terms of the noise-weighted inner product in the
frequency domain as

hdjhi ¼ 4Re
Z

f1

f0

df
d̃�ðfÞh̃ðfÞ
SnðfÞ

: ð3:1Þ

Here d̃ðfÞ and h̃ðfÞ are the Fourier transforms of the dðtÞ
and hðtÞ, respectively, and SnðfÞ is the one-sided power
spectral density (PSD) of the detector’s noise. The frequen-
cies f0 and f1 define, respectively, the lower and upper
range of the detector’s sensitivity in the frequency domain.
The inner product of the signal with itself is the square of
the optimal signal-to-noise ratio (SNR):

ρ2 ¼ hsjsi: ð3:2Þ

Equations (3.1) and (3.2) are important elements in
assessing the likelihood of a signal existing in noisy data
(see, e.g., [71] for more detail).
The signal sðtÞ is generally not known a priori, so in

practice, the square of the SNR is estimated from the data
by computing the inner product of the data dðtÞ with a
family of templates hðt; θ⃗Þ with different parameters θ⃗. If
Bayesian parameter estimation is used to construct a
posterior probability distribution pðθjdÞ for the parameters
θ⃗, then in general, there will be a distribution of squared
matched filter SNRs, which can be computed from

ρ2ðθ⃗; dÞ ¼ hdjhðθ⃗Þi; ð3:3Þ

where hðθ⃗Þ are the template waveforms that are consistent
with the parameters θ⃗ of the posterior probability distri-
bution. For a single noise realization, the median of this
distribution will not necessarily equal the optimal SNR
given by

ffiffiffiffiffiffiffiffiffiffihsjsip
. However, for an event with a high SNR in

Gaussian noise, the expected value of this median will be
the optimal SNR, when averaging over different noise
realizations. This will not necessarily be the case for signals
with low SNRs or signals that transform nontrivially under
some of the degeneracies discussed in Sec. II E (as we will
discuss in more detail in Sec. IVA).
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In this paper, we will compute a number of SNRs. For
individual events in a single GW detector these SNRs are as
follows: (i) the SNR ρosci , which corresponds to the SNR for
the ith GW detector (LIGO Hanford, LIGO Livingston, or
Virgo) from the oscillatory GWmodes for a BBH described
in Sec. II B; (ii) the SNR ρ22i , which is the SNR of just the
dominant l ¼ 2, m ¼ 2 mode; (iii) the SNR ρhomi , which
contains all the oscillatory modes except for h22 and h32;
and (iv) the SNR ρmem

i , which is the SNR for the GW
memory signals described in Sec. II D. For signals that are
measured in Nd detectors (where Nd ¼ 3 in this paper), the
network SNR is typically taken to be the sum in quadrature
of the individual detector SNRs for each relevant class of
signal:

ρ2N ¼
XNd

i¼1

ρ2i : ð3:4Þ

This is a reasonable definition when the Gaussian noise in
each detector is independent of the other detectors.
As a practical matter, we compute the SNRs for all the

different types of GW signals as follows. If the signal is not
already in the frequency domain, we take the time-domain
signal and apply a Planck window [61] before computing
the Fourier transform. The upper limit of the relevant
integral is taken to be the Nyquist frequency, (i.e., half of
our sampling frequency fs ¼ 8192 Hz). The lower limit is
chosen to be f0 ¼ 10 Hz, which is the low-frequency
cutoff of the noise curves that we use for the PSDs of
the Advanced LIGO and Virgo detectors. Specifically, we
use the PSDs for aLIGO and Virgo at their design
sensitivities, which are given in [72,73].

B. The case for combining subthreshold
GW-memory-effect signals

For nonprecessing BBH mergers, there is a clear
hierarchy of SNRs for the dominant, higher-order, and
memory modes of the waveform (i.e., ρ22N > ρhomN > ρmem

N ).6

As a rough rule of thumb, when the SNR of a particular
signal is less than around 1, that signal is sufficiently weak
that neither can it be claimed to be detected, nor can much
be inferred about it from the data. More concretely, if, for
example, ρoscN exceeds the threshold of detection, but ρmem

N
is less than 1, then neither would it be possible to claim
detection for the memory effect nor would including the
memory effect in waveforms used for parameter estimation
inform the posterior distributions for the parameters in the
waveform model. At the same time, when there is a
confident detection of the dominant mode h22, but the
SNR for the higher-order modes does not itself pass the
SNR threshold, the higher-order modes may still influence

the estimation of parameters if ρhomN is still greater than
around 1. This last point has important implications for
detecting the GWmemory effect, which were noted in [31],
because the higher-order modes turn out to be useful for
breaking some of the degeneracies mentioned in Sec. II E.
Given what is currently known about the population of

BBHs from the LIGO and Virgo observations [32], the
sensitivities of the Advanced LIGO and Virgo detectors,
and the relative strengths of the dominant, higher-order, and
memory modes, it is expected that the detected events will
fall into the following classes of SNRs for the different
modes: (i) a significant fraction of the events will have ρ22N
passing the threshold for detection, ρhomN < 2, and
ρmem
N < 1; (ii) a smaller fraction of events will have ρ22N
passing the threshold for detection, ρhomN > 2 but under the
threshold of detection, and ρmem

N < 1; and (iii) a handful of
events with ρ22N passing the threshold for detection,
ρhomN > 2, and ρmem

N > 1 (some of these events may have
ρhomN near the threshold for detection, but it is not expected
that ρmem

N will reach this level). More detailed numbers for
specific BBH populations are given in Sec. IV C.
Because there are expected to be a large number of

detections of BBHs, and because the SNR of the memory
effect is not expected to exceed the threshold for detection,
it seems reasonable to follow the approach of Lasky et al.
[31], who proposed combining multiple BBH detections
with subthreshold memory signals to provide evidence for
the effect in a population of BBH mergers. To assess
whether the memory was present in the population, [31]
uses two methods, one based on computing evidence ratios
for signals with and without memory modes, and a second
based on computing the SNR of the memory in the
population of BBH events. We more closely follow the
second approach of [31] based on the total SNR of Ne
events measured in network of Nd detectors (though we
briefly discuss the relationship between the two methods
in Sec. V).
Assuming that all the events are independent, the noise in

the network is Gaussian, and the signal in the data is known
exactly, then the total SNR for the memory waveforms in
the population of BBHs is given by

ρtot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNe

j¼1

ðρmem
N;j Þ2

vuut : ð3:5Þ

Here ρmem
N;j is the network SNR of the GWmemory effect in

the detector network for the jth detection. The SNR in
Eq. (3.5) will grow approximately with the number of
detections and detectors as

ffiffiffiffiffiffiffiffiffiffiffiffi
NeNd

p
.7 If the memory signals

for each event are known, then the quantity ρmem
N;j could be

6For example, for an event consistent with GW150914
[1,3,74], the SNRs are ρoscN ¼76.5, ρ22N ¼ 75.9, ρhomN ¼3.9, and
ρmem
N ¼ 0.21 (for the quadrupole memory waveform model).

7This growth is also explained in Appendix B, using an
analogy based on stacking GW memory waveform signals.

BOERSMA, NICHOLS, and SCHMIDT PHYS. REV. D 101, 083026 (2020)

083026-8



computed from Eqs. (3.2) and (3.4). However, when the
signal is not known a priori, one might instead consider
using the median value of the SNR in Eq. (3.3) to determine
the network SNR (3.4) of the memory effect for the jth
detection.
Using the median value in Eq. (3.3) leads to certain

complications, because of the hierarchy of SNRs described
in this part and the degeneracies among the waveform
parameters discussed in Sec. II E. Consider, for example,
the case when ρ22N passes the threshold for detection,
ρhomN < 2, and ρmem

N < 1. Because of the degeneracies
described in Sec. II E, then the SNRs for the parameters
θ⃗ and θ⃗0 [defined by the transformation in Eq. (2.12)] will
satisfy ρ2memðθ⃗0; dÞ ≈ −ρ2memðθ⃗; dÞ. Thus, both sets of
parameters will be nearly equally consistent with the
observed data, and the distribution of matched-filter
SNRs for the GW memory effect will contain significant
support for both positive and negative values (so that the
median would be close to zero). However, as Lasky et al.
observed in [31], there could be a sufficient number
of events with ρ22N passing the threshold for detection,
ρhomN > 2 but under the threshold of detection, and
ρmem
N < 1. For these events, the higher-order modes can
break the degeneracies that allow strains hmem with oppo-
site signs to be consistent with the data, so that the true
value of the SNR will be close to the median value (this will
also be shown in more detail in Sec. IVA).
Therefore, if one were to use all detected events, Ne, to

estimate the total SNR for the memory effect in the
population, ρtot, in Eq. (3.5), this would generally
overestimate the SNR, because of the degeneracies
discussed in the previous paragraph. Instead, there are
two approximations that one could make to obtain a
more realistic estimate of the SNR ρtot: The first would
be to replace ρmem

N;j in Eq. (3.5) with the median value
that is consistent with the posterior distribution of
parameters of the waveform. We will not take this
approach in this paper. Rather, we will instead follow
a procedure like that in [31], in which we will only
consider those events in which ρhomN satisfies a SNR
threshold cut (similarly to in [31], we choose this to
be ρhomN > 2, for reasons which we discuss more in
Sec. IVA). Thus, we will estimate the SNR of the
memory effect in a BBH population by

ρtot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN0

e

j¼1

ðρmem
N;j Þ2

vuut ; ð3:6Þ

where N0
e is the number of detected events that satisfy

our SNR cut for the higher-order modes, and ðρmem
N;j Þ2 is

computed from Eqs. (3.2) and (3.4).
Note that choosing the hard cut of ρhomN > 2 may

underestimate the total SNR of the memory effect, because

some events near the threshold, but that do not make the
cut, could still contribute a reduced, though nonzero, SNR.
Thus, we will typically compute the SNR using both
Eqs. (3.5) and (3.6) as ways of roughly estimating a lower
and upper bound for the memory SNR. In the next part of
this section, we discuss our choice for the SNR threshold in
more detail, and the Bayesian methods that we used to
determine this criteria.

C. Determining the “sign” of the memory effect through
inference of the source parameters

In [31], Lasky et al. determined a criteria based on the
SNR required in a particular combination of higher-order
modes with m ¼ 1 and m ¼ 3 which broke the degeneracy
in Eq. (2.12) for the mode hð22Þ. In terms of the somewhat
more general transformation in Eq. (2.13), the degeneracy
we would like to break is that between the two signs of the
antenna patterns �Fþ and �F× for some of the specific
angles β discussed in Sec. II E. The reason for this is as
follows: In the quadrupole approximation the strain hmemþ
[computed from Eq. (2.11)] is non-negative and is inde-
pendent of β; thus, the sign of memory strain measured by a
GW detector, hmem, is completely determined by the sign of
the antenna pattern Fþ. We will sometimes then refer to the
breaking of the degeneracy in Eq. (2.13) [or (2.12)] as
determining the sign of the memory effect (or just “the
memory sign”), as was done in [31]. Rather than using the
specific combination of higher-order modes used in [31], we
will base our criteria on the SNR ρhomN [as we discussed in
Sec. II E, other modes besides them ¼ 1 andm ¼ 3modes
can break the degeneracy in Eq. (2.13) for particular values
of β].
To determine whether we can measure the sign of the

memory effect, therefore, we need to determine how
accurately we can measure the four parameters that
determine the degeneracy in Eq. (2.13): right ascension
α, declination δ, polarization ψ , and phase ϕc. For most
sufficiently well localized sources at most sky locations,
this degeneracy reduces to resolving the degeneracy
between the latter two parameters ψ and ϕc.
To ascertain how well we can recover the unknown

signal parameters, we use Bayesian inference [75–77] to
compute posterior probability density functions (PDFs) for
the relevant parameters. Specifically, given the detector
output d and a signal hypothesis H that involves a set of
parameters θ⃗, we compute the posterior PDF for the
parameters θ⃗ via Bayes’ theorem:

pðθ⃗jd;HÞ ∝ Lðdjθ⃗; HÞpðθ⃗jHÞ: ð3:7Þ

Here pðθ⃗jHÞ is the prior PDF for the parameters θ⃗ and
Lðdjθ⃗; HÞ ¼ pðdjθ⃗; HÞ is the likelihood function. For our
detector network, we assume that the noise is Gaussian and
that the noise in each detector is uncorrelated with the other
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detectors. This implies we can write the joint likelihood as
the product of the individual likelihoods [65,77]:

LN ¼
YNd

i¼1

Liðdijθ⃗; HÞ: ð3:8Þ

The log of the individual likelihoods of the data in each
detector given some signal model H ≡ hðθ⃗Þ is given by
(see, e.g., [65])

logLðdjθ⃗; HÞ ∝ −
1

2

XNd

i¼1

hdi − hiðθ⃗Þjdi − hiðθ⃗Þi: ð3:9Þ

For a BBH in a quasicircular orbit, there are 15
parameters in θ⃗. We will restrict to nonspinning binaries
for our parameter estimation studies, which reduces the
dimension of the parameter space to nine. Because the
degeneracy is among the extrinsic parameters and there
generally are not strong correlations between intrinsic
and extrinsic parameters [65], we fix the component
masses of the binary to their true values. This leaves
us with the extrinsic parameters, given by the set
θ⃗ ¼ fdL; ι; α; δ;ψ ;ϕc; tcg. The last parameter tc, which
had not been introduced previously, is the time at coa-
lescence. For each of these extrinsic parameters we specify
the prior PDFs to be uninformative priors. Specifically, we
take the priors for the source’s sky location to be isotropic
and the luminosity distance to be uniform in volume. The
width of the distance prior is adjusted to cover a sufficiently
large range around the true luminosity distance of the
binary. For the prior on the orientation of the binary with
respect to the line of sight, we again assume an isotropic
prior. Finally, we take the priors for the polarization to be
uniform in ð0; πÞ and for the coalescence time tc to be
uniform in a 200 ms window centered on the true value.
Although, in general, the detector output consists of both

the GW strain and a realization of Gaussian noise, for our
parameter estimation studies, we do not include any noise.
The intent of this approximation is to better understand the
correlations and degeneracies among parameters as a
function of ρhomN without introducing a bias from a specific
noise realization (though with noise, one may sometimes
require a higher value of ρhomN to break the degeneracies).
The results we find without noise also should be similar to
those that would be obtained from averaging over many
random Gaussian noise realizations with zero mean. The
detector noise is taken into account when calculating the
noise-weighted inner product in Eq. (3.9), because it
involves the noise power spectral density of the GW
detectors.
We use the ensemble MCMC sampler KOMBINE [78] to

determine the posterior PDF from Eq. (3.7) for detector
data consisting of the waveform from a binary with
parameters θ⃗true. From the posterior PDF, we can determine

if the degeneracy between ψ and ϕc is broken (i.e., if the
PDFs of these angles will be concentrated around the true
values) or not (i.e., there is similar support in the posterior
PDFs for ψ and ϕc and both values shifted by π=2). This
will determine how conclusively we can measure the sign
of the memory for this particular binary. With the posterior
PDFs, we can then also compute for each point θ⃗s in the
parameter space the associated GW memory waveform
hmemðθ⃗sÞ using the quadrupole model, and the correspond-
ing estimate for the square of the SNR in Eq. (3.3).
We will discuss the results of these calculations in the
next section.

IV. RESULTS: MEMORY SIGN AND
FORECASTS FOR DETECTION
OF THE GW MEMORY EFFECT

In the first part of this section, we illustrate how the
presence of higher-order GW modes allows the sign of the
GWmemory effect to bemeasured. In the next two sections,
we highlight the number of detections and the amount of
detector time necessary to detect the GW memory effect in
several different types of populations of BBHs. We first
consider a BBH population of GW150914-like events
followed by two classes of BBH populations that are
consistent with the models of the BBH populations com-
puted by the LIGO and Virgo collaborations in [32].

A. Measuring the memory sign

In principle, it would be possible to perform Bayesian
inference on every binary in a population of BBHs, to
determine whether we can confidently determine the
median network SNR of each GW memory effect in the
data. Because of the significant computational cost of doing
this, similarly to in [31], we instead look for a criteria based
on ρhomN that will be satisfied when we confidently know the
sign of the memory, which we can then use in lieu of full
Bayesian parameter estimation. To establish this criterion,
we perform Bayesian inference on a handful of BBHs of
different masses, sky locations, polarizations, and orienta-
tions of the binaries. A representative result for an equal
mass BBH is shown in Fig. 2. We use this result to
demonstrate that the criteria of ρhomN > 2 will be sufficient
for most BBHs. However, we caution that there can be
small regions of the extrinsic parameter space where this
criteria is not as strong, for particular sky locations. One
such example is shown for a BBH with q ¼ 3=2 in
Appendix C.
For each binary, we tune the amplitude of ρhomN either by

changing the luminosity distance dL or the inclination ι
(in the former approach, all the SNRs of the different
modes scale inversely with the distance in the same way,
whereas in the latter approach, the relative amplitudes
of the SNRs of the different modes change much more).
We run Bayesian parameter estimation, as described in
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Sec. III C, to determine how large ρhomN must be to break
the degeneracies and to determine the sign of the GW
memory effect.
We show the results for an equal mass BBH with

m1 ¼ m2 ¼ 30M⊙ in Fig. 2. The three rows correspond

to three luminosity distances dL ¼ 1250, 650, and 325Mpc
(going from top to bottom); the corresponding SNRs ρhomN

are given by ρhomN ≈ 1, 2 and 4, respectively. This binary is
detectable by the advanced detector network at all three
distances, because the oscillatory SNRs are roughly 25, 48

FIG. 2. Posterior distributions (not normalized) for a nonspinning, equal-mass binary with m1 ¼ m2 ¼ 30M⊙ with extrinsic
parameters given by α ¼ 4.2 rad, δ ¼ −0.8 rad, ψ ¼ 0.3 rad and ι ¼ 2.1 rad. Left column: The overlap between the true signal,
hmemðθ⃗trueÞ, and templates consistent with the posteriors, hmemðθ⃗sÞ, for three different SNRs in the higher-order modes, ρhomN . From top to
bottom the SNRs are ρhomN ≈ 1, 2, and 4; the different SNRs were obtained by varying the luminosity distance of the source, while
keeping other parameters fixed. The inner product for Advanced LIGO Hanford, LIGO Livingston and Virgo are shown in green, blue,
and orange, respectively. The vertical dashed lines represent the optimal ρ2 injected values and the vertical dot-dashed lines represent the
median values of the distributions. Right column: The 2D PDFs for ψ and ϕc, for the same binaries in the corresponding rows. Red
dashed lines show the “true” injected values and the white dashed line shows the degenerate values. Already at an SNR of 1, the ψ-ϕc
degeneracy is partially broken, whereas for the SNRs 2 and 4 in the middle and bottom rows, the degeneracy is broken, and the sign of
the detector’s response to the memory effect is well known for all detectors.
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and 96. The left column shows the inner product of the data
[the true signal hmemðθ⃗trueÞ] with templates that are con-
sistent with the posteriors, hmemðθ⃗sÞ. The blue and green
histograms correspond to this inner product for the
Advanced LIGO Livingston and Hanford, respectively,
and the inset orange histogram shows this for the Virgo
detector. The right column shows the 2D posterior PDF for
the parameters ψ and ϕc.
When ρhomN ≈ 1, we find that the degeneracy in Eq. (2.12)

between ψ and ϕc is not fully broken; thus, there is
nontrivial support for both signs of noise-weighted inner
product hhmemðθ⃗trueÞjhmemðθ⃗sÞi in the left panel. This
occurs because although the true values of ψ and ϕc are
favored (indicated by the intersection of the red dashed
lines), there is also some support for the true values both
shifted by π=2 (indicated by the intersection of the white
dashed lines). The presence of the negative noise-weighted
inner product is most obvious for Virgo (in the inset), where
the amplitude of the inner product is smallest; however, it is
also visible in the histograms for LIGO-Hanford and
LIGO-Livingston, despite the larger amplitude for the inner
product.
For ρhomN ≈ 2, almost all templates hmemðθ⃗sÞ consistent

with the posterior PDFs have the correct sign, which occurs
because the degeneracy of Eq. (2.12) is now almost fully
broken. For ρhomN ≈ 4, ψ and ϕc are even better constrained,
and the overlap for all detectors is closely centered around
the optimal SNR squared. Note that there is a remaining
degeneracy between ϕc and ϕc þ π apparent in the 2D
posteriors even at the large values of ρhomN . This occurs
because the majority of the SNR in ρhomN comes from hð44Þ
(this was noted in Sec. II E). This residual degeneracy does
not affect the sign of the GW memory effect, however.
The results in Fig. 2 are representative of the required

network SNR in the higher-order modes, ρhomN , that is
needed to break the degeneracies that determine the sign
of the memory in at least one detector (though see
Appendix C for an example of a very specific sky
location and polarization that requires a slightly higher
value of ρhomN ). Thus, we conclude that binaries for which
the network SNR ρhomN ≥ 2 is sufficient to be able to
determine the memory sign. As a result, we will use this
criteria to determine when we include a given detection in
the total SNR for the memory in Eq. (3.6) in a BBH
population. This criteria is used throughout the next two
subsections.

B. GW150914-like binary-black-hole population

Before we investigate different populations from those
studied in [31], we first aim to understand the effects of
using a different waveform model and a slightly different
criteria for the SNR in the higher-order GW modes on the
same population of BBHs used by [31]. Specifically, we
consider in this section a population of GW150914-like

binaries. These are nonspinning binaries withm1 ¼ 36M⊙,
m2 ¼ 29M⊙ and dL ¼ 410 Mpc, which are values con-
sistent with GW150914 [74]. The rest of the binary’s
parameters are distributed uniformly in α, sin δ, cos ι, ψ and
ϕc. In this analysis, as in Ref. [31], we use a detector
network of the two LIGO detectors at design sensitivity
[72], and we use a network SNR for the oscillatory part
of the signal of 12 as our threshold for detection
(i.e., ρoscN ≥ 12).
We calculate the GW memory waveforms for all detec-

tions using the three different waveform models described
in Sec. II D. For each model, we calculate the associated
total memory SNR from Eq. (3.5) for a population of 100
GW150914-like binaries. For detections with ρhomN ≥ 2
(where just higher-order modes with l ≤ 3 and odd jmj
are used), we include the network SNR for the memory
effect in the sum, and for the remaining detections, we set
ρmem
N;j ¼ 0, for each of the waveform models (as was
described in Sec. IVA).8

We repeat the above analysis for 100 realizations of this
GW150914-like population (and we use the same realiza-
tions for the three different waveform models). Figure 3
shows how the total SNR for the memory effect grows over
the 100 detections. The solid lines show the median SNR
over the 100 realizations of the population, hρtoti, and the
shaded regions indicate the 1-σ confidence intervals (i.e.,

FIG. 3. The total memory SNR versus the detection number for
a population of GW150914-like binaries computed with the three
GW memory waveform models in Sec. II D. The solid lines are
the median values over 100 realizations of this population, and
the shaded regions are 1-σ confidence intervals. The colors red,
maroon, and blue correspond to the quadrupole, higher-mode,
and MWM models, respectively. The dot-dashed and dashed
black lines show two SNR thresholds used in [31]. Our
calculations with the MWM are consistent with the ones in
[31] (which also used the MWM). The other two models have
notably smaller SNRs for the memory effect.

8Although we do not include GW modes l > 3 in the
oscillatory waveform to match with [31], the higher-mode
memory waveform is calculated using all modes up to l ¼ 4
as stated in Sec. II D.
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the symmetric, 68% credible region). The three colors
(blue, maroon, and red) correspond to the three different
waveform models described in Sec. II D (the MWM,
higher-mode, and quadrupole, respectively).
For reference, we give the median value of the SNR

hρtoti and the 1-σ confidence intervals for the population
after 30 and 90 detections in Table I. We choose these
numbers, because they are round numbers where the
median value of ρtot for the MWM (the model used in
[31]) is close to the two values of 3 and 5 used for the
thresholds of detection in [31] (which are intended to
represent 3- and 5-σ significant detections of the memory
effect in the GW150914-like population). Our results for
the MWM are similar to those found in [31]. As Table I
shows, the higher-mode and quadrupole models (which
make fewer assumptions when computing the GWmemory
effect) produce significantly smaller values for the total
memory SNR in the GW150914-like population. We
consider the results of these models to be more represen-
tative of the GW memory signal (for the reasons discussed
in Sec. II D), so we expect the total SNR of the memory in
this population of BBHs to be closer to these values.
We conclude this part by noting that for this GW150914-

like population, on average two-thirds of the detections
pass the SNR threshold in the higher-order modes.

C. Power-law mass-function populations

Nine additional BBHs were detected by the LIGO-Virgo
collaboration after GW150914, in the first two observing
runs, and these nine detections informed models of the
population of BBHs [32]. We now repeat our calculations
of hρtoti for populations that are consistent with the models
in [32].

1. Simulated BBH populations

Specifically, we use model A of [32] for the distribution
of the BH masses in a BBH system. For this model, the
mass ratio of the binary q is assumed to follow a uniform
distribution; the distribution of the primary component
mass, m1, is taken to be a power law (with index αpow) and
the mass range is restricted between mmin and mmax. This
means that the mass distribution can be written in the form

pðm1; m2jmmin; mmax; αpowÞ ¼ Cðm1Þm−αpow
1 ; ð4:1Þ

for mmin ≤ m2 ≤ m1 ≤ mmax [where Cðm1Þ is the normali-
zation] and the probability is zero outside this mass range.
The minimum black hole mass mmin is fixed to be 5.0M⊙,
so there are two free parameters in the mass distribution:
mmax and αpow. The parameters αpow and mmax were
inferred in [32] by assuming that the GW detections in
the first and second observing runs followed a Poisson
process with an unknown rate per comoving volume of
BBH mergers, R. The three parameters were jointly
inferred from the GW detections using Bayesian tech-
niques. The median values of the mass-distribution param-
eters are αpow ¼ 0.4 and mmax ¼ 41.6M⊙, while the rate
per volume’s median value is R ¼ 64.9 Gpc−3 yr−1. These
three parameters are correlated in nontrivial ways; see [32]
for more detail.
We also allow the BHs in our population to have aligned

spins. We again use the results of [32] to determine the
distribution of spin parameters. Specifically, we assume
that the aligned-spin magnitudes of each BH in the binary
are independent of one another, and we assume that they
follow the nonparametric binned distribution illustrated in
the bottom panel of Fig. 7 of [32]. This model favors small
aligned spins, so we do not expect the results to differ much
from a population of nonspinning BBHs.
Because the surrogate model is valid for a subset of the

allowed mass ratios and spins, we restrict to aligned-spin
binaries with mass ratios 1 ≤ q ≤ 8 and dimensionless spin
magnitudes jχ1zj, jχ1zj ≤ 0.8. We generate BBH mergers
uniformly in comoving volume up to dL ¼ 2 Gpc (we do
not observe a significant change in the total memory SNR
by increasing dL). The remaining extrinsic parameters of
the binary are distributed in the same way as they were for
the BBH population in Sec. IV B.
Because of the large range of masses and distances for

the binaries in this BBH population, a more significant
number of the simulated BBHs will not reach the SNR
threshold for detection. We select the criteria for detection
as follows: For the detector network, we choose the two
Advanced LIGO detectors and the Virgo detector at their
design sensitivities [72,73]. We consider a BBH merger to
be detected if the three-detector network SNR satisfies
ρoscN ≥ 8 and if the single-detector SNRs satisfy ρosc ≥ 4.5
for LIGO and ρosc ≥ 3.0 for Virgo. To determine binaries
for which we know the memory effect’s sign, we use the
criteria ρhomN ≥ 2, as in Sec. IV B, although we now use all
modes mentioned in Sec. II B except for the l ¼ 3, m ¼ 2
mode which does not break the degeneracies mentioned in
Sec. II E.
The LIGO and Virgo detector network is not operational

for all times, but just for a fraction of the time (which gets
called the network’s “duty cycle”). We therefore keep only
the fraction of the detections consistent with the duty cycle
of the three-detector network, which based on [79] is 50%
(i.e., we exclude 50% of the binaries that make the SNR cut
for detection). We calculate the total memory SNR for the

TABLE I. Total memory SNR hρtoti for the three different
waveform models of Sec. II D after 30 and 90 detections. The
numbers are the median value, and the error bars are 1-σ
confidence intervals.

Detection number MWM Higher mode Quadrupole

30 3.10þ0.33
−0.41 2.11þ0.23

−0.28 1.79þ0.19
−0.23

90 5.30þ0.36
−0.36 3.61þ0.24

−0.25 3.06þ0.21
−0.21
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population in two ways. As a more conservative estimate,
we use Eq. (3.6) to compute the SNR from the binaries that
pass all three detection, duty-cycle, and higher-mode-SNR
cuts. As an upper bound, we also calculate the total
memory SNR in the same way except that we include
the binaries that do not pass the higher-mode-SNR cut (this
was also done in [31]). To determine the uncertainty arising
from different realizations of the population, we generate
300 realizations, and we compute the median values and
confidence intervals for the SNR over these different
realizations. We use the quadrupole memory waveform
model to model the memory effect in these simulated
populations.
We simulate each realization for an observation period of

five years; with the assumed duty cycle, this corresponds to
2.5 years of coincident data for the three-detector network.
We find it more useful to compute the total SNR of the
memory effect as a function of observation time, because
both the number of detections and the types of detected
binaries will vary over different realizations of the pop-
ulation, even for fixed values of the parameters αpow, mmax,
and R.
We perform two types of analyses with the BBH

population based on model A, which differ only in how
we treat the parameters αpow, mmax, and R. First, we fix the
parameters αpow, mmax, and R to their median values and
sample the masses from 300 different realizations of
populations with these median parameters. This highlights
the uncertainty from different realizations of a fixed
population. However, there are also uncertainties on the
merger rate, the maximum mass, and the power law index.
Thus, for our second analysis, we let the values of αpow,
mmax and R be drawn randomly from their respective
posterior distributions given in [32]. This allows us to
understand how the total GW memory SNR varies because
of the uncertainty in the three parameters αpow, mmax,
and R.

2. SNR for the GW memory effect

Figure 4 shows the total memory SNR gained versus
detector operation time in years. The shaded regions
indicate the 1-σ confidence intervals and the solid lines
show the median SNR hρtoti for 300 realizations. The top
panel of Fig. 4 shows the results from fixing R, αpow, mmax

to their median values. The bottom panel of Fig. 4 is the
same as the top, except now R, αpow and mmax are allowed
to vary. We give the median value of the SNR hρtoti and the
1-σ confidence intervals for both analyses after five years in
Table II.
Figure 4 and Table II show that after five years of

detector operation time, the total SNR for the GW memory
in the population is approaching the SNR threshold of 3.
Specifically, this threshold is close to the upper limit of the
1-σ confidence interval for the conservative estimate (the

red region) and the lower limit of the confidence interval for
the upper bound (the purple region). The SNR for the
memory effect does not differ greatly between the pop-
ulations with fixed and with varied parameters; the only
obvious difference is a somewhat greater width of the 1-σ
confidence intervals when the population parameters are
varied. This is not surprising, because the fixed population

TABLE II. Total memory SNR hρtoti for the two different
analyses of Sec. IV C after five years of detector operation time.
The numbers are the median value, and the error bars are 1-σ
confidence intervals.

Population A ρhomN ≥ 2 All

Fixed 2.58þ0.50
−0.32 3.24þ0.42

−0.26
Varied 2.57þ0.61

−0.50 3.24þ0.75
−0.56

FIG. 4. The total memory SNR for two populations of BBHs
generated using model A of [32] (see the text of Sec. IV C for
further details). The memory SNR is calculated using the
quadrupole memory model. The shaded regions indicate the
1-σ confidence intervals and the solid lines show the median SNR
hρtoti. In red, only the detections are included which pass our
higher-mode-SNR cut ρhomN ≥ 2. In purple, all detections are
included. Top: The population parameters R, αpow, and mmax are
fixed to their median values. Bottom: R, αpow andmmax are drawn
according to the distributions given in [32]. In both analyses, top
and bottom panels, the GW memory effect is on the verge of
being detected after five years of operation of the Advanced
LIGO and Virgo detector network at design sensitivity.

BOERSMA, NICHOLS, and SCHMIDT PHYS. REV. D 101, 083026 (2020)

083026-14



does not incorporate uncertainties on the rate, the
maximum mass, and the power law, whereas the varied
population does.
Because the results with and without the SNR cut for the

higher order modes are not very different, it is of interest to
know what fraction of the events pass this cut. This is
highlighted in Table III. It shows that the majority of the
events (around 70%) do not pass this cut. Thus, despite the
large number of these events, their SNR is generally
sufficiently small that they do not make a substantial
difference to the total SNR for the memory effect.
Table III also shows that it will be unlikely for a given
realization of a population to have an event in the population
that has ρmem

N ≥ 1. Thus, the majority of the total SNR
for the memory comes from the louder subset of events that
satisfy the criteria ρhomN ≥ 2 and ρmem

N < 1. This also was
noted in [31].

V. DISCUSSION

In this paper, we investigated the prospects for detecting
the nonlinear GW memory effect by the Advanced LIGO
and Virgo detectors in different populations of BBHs. We
first noted that of three commonly used methods to
compute the memory effect, two produced similar results,
whereas the other one differed by a larger amount. The two
methods that more closely agreed made fewer approxima-
tions to compute the GW memory waveforms, and thus
seem to be the more reliable waveform models for
computing the GW memory effect and performing esti-
mates of when the memory effect will be detected.
We also revisited the criteria used in [31] for assessing

when an individual event will provide useful evidence for
the presence of the memory in the population. An important
insight in [31] was that degeneracies in the GW mode h22
lead to the SNR of the memory effect being uncertain for a
single detection. However, even if the SNR of the memory
effect is small, as long as higher-order modes of the GWs
are measurable for each individual BBH detection, then the
event will be useful for contributing to the total SNR for the
memory effect in the population. We performed Bayesian
inference on several simulated BBH detections to find that
on average, a network SNR of 2 in the higher-order modes
is sufficient to determine the memory effect’s sign (and thus
its SNR for that event). This criterion was similar to the one

used in [31], but it used a different subset and combination
of the higher-order modes.
We then simulated two classes of populations of BBHs to

determine when the memory effect would be present in
these populations. We first looked at the population of
GW150914-like BBHs that was considered in [31]. Our
results were consistent with those in [31] when we used the
same GW waveform model as in [31], but the SNR of the
memory was notably smaller when computed with the more
recent waveform models that make use of fewer approx-
imations. We then investigated the SNR for the memory
effect in the simplest model for the astrophysical population
of BBHs that was inferred from the first ten GW detections
of BBHs in [32]. We considered two cases of this model,
one where the parameters of the mass distribution and the
rate were fixed to the median values, and one where we
considered different realizations of the mass distribution and
rate. In both cases, the SNR for thememory in the population
was near the threshold of detection after five years (SNR of
3), when using one of the more recent GW memory wave-
formmodels. The spread of SNRs over different realizations
of the populations for the two cases was larger when the
parameterswere not fixed to theirmedianvalues, though, as a
result of taking into account the additional uncertainties on
the parameters describing the population.
The data used to generate the figures in this paper are

available here [80].
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Note added.—Recently, a paper by Hübner et al. [33]
appeared that estimated the number of BBH observations
required to detect the nonlinear GWmemory effect in BBH
populations. There were several differences in methodol-
ogy between this paper and [33]. First, [33] computed
evidence ratios for signal hypotheses including and omit-
ting the GW memory effect and the Bayes factor (BF) for
the presence versus the absence of the memory effect in the
population of BBHs (rather than computing the total SNR
for the memory effect, as was done in this paper). Second,
they used the higher-mode model rather than the quadru-
pole model as the fiducial waveform model for the GW

TABLE III. Percentages of detections that satisfy the given
criteria for the SNRs for the higher-order modes and for the
memory effect for individual detections. The criteria are given for
both the fixed and varied populations discussed in Sec. IV C.

ρhomN < 2 ρhomN ≥ 2 ρhomN ≥ 2

Population A ρmem
N < 1 ρmem

N < 1 ρmem
N ≥ 1

Fixed 69.5% 30.4% 0.1%
Varied 70.4% 29.5% 0.1%
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memory effect. Third, they use a different model for the
population of BBHs: namely, model B of [32] for a specific
set of parameters given in [33]. Fourth, they do not exclude
events for which the sign of the GW memory effect is not
well determined. With these differences in methodology,
they find 1830þ1730

−1100 detections (errors are 90% confidence
intervals) are needed to reach a logBF ¼ 8 for the GW
memory effect.
A direct comparison of our results will require additional

future work. As a rough comparison, we computed the
number of detections needed to reach a total memory SNR
hρtoti ¼ 3 for the same population as in [33] using their
same waveform model for the GW memory effect. We find
we need 1488þ725

−879 (errors are 90% confidence intervals) to
reach our SNR threshold. Thus, the results seem roughly
consistent.

APPENDIX A: QUADRUPOLE KLUDGE
MEMORY WAVEFORM MODEL

In this Appendix, we discuss one additional waveform
model that was recently used in [24] to make estimates of
the SNR for the GW memory effect in a wide range of GW
detectors. We show that it produces a signal related to the
GWmemory effect that is roughly half the amplitude of the
curves shown in Fig. 1, and which will also have some
small oscillatory part that would typically not be expected
in the corresponding spherical-harmonic modes for the
memory.
The model of [24] begins with the procedure in [22],

which proposed a method to simplify evaluating the
angular integrals that appear in Eq. (2.6). The method is
to compute the GW polarizations [similarly to what was
done in Eq. (2.7)], but to work in coordinates adapted to the
detector and the incoming radiation rather than the source.
These coordinates are defined by choosing as the x
direction any direction that is transverse to the vector
pointing between the detector and the source. The GW
polarizations are then computed with respect to the com-
plex combination eijþ þ ieij× of polarization tensors, where
eijþ ¼ ðx̂ix̂j − ŷiŷjÞ=2 and eij× ¼ ðx̂iŷj þ ŷix̂jÞ=2, and where
x̂i and ŷi are unit vectors in the x and y directions,
respectively, in the frame described in [22]. This simplifies
the part of the integral proportional to n0jn

0
k=ð1 − n0 · nÞ

[although potentially at the expense of complicating the
expansion of dE=ðdΩ0duÞ, which we had previously been
computing in terms of multipole moments of the GW strain
in coordinates in which the binary is in the x-y plane].
Johnson et al. [24] compute the GW polarizations

following [22]. Rather than working out the detailed
transformation of the multipole expansion of the luminosity
per solid angle between the source coordinates and their
coordinates for each line of sight from source to detector,
they make the following approximate model that they
describe as a “kludge”: They take the angular dependence

of the memory given in Eq. (2.11) [i.e., sin2 ιð17þ cos2 ιÞ],
but instead of multiplying by the integral of j _h22j as in
Eq. (2.11), they multiply by the integral of _h2þ evaluated at
an inclination of ι ¼ 0 in the source coordinates, where hþ
is the full plus polarization, including (in principle) all
ðl; mÞmodes [as in Eq. (2.2)]. See [24] for the details about
the rationale behind this prescription. This procedure leads
to a real GW strain, which in the coordinates of [22] implies
that the GWmemory strain is plus polarized and is given by

hðKÞmem;þðuÞ ¼
r

68π
ΦðιÞ

Z
u

−∞
_h2þjι¼0du

0: ðA1Þ

We have definedΦðιÞ¼sin2ðιÞð17þcos2ιÞ for convenience.
For the inclination and phase ϕc that points to the line of

sight to the detector, the polarizations eþ and e× defined in
the source coordinates in Eq. (2.8) are transverse (and
traceless) tensors with respect to the direction of the line
of sight. Thus, these polarizations in the source coordinates
and those in the coordinates of [22] must be related by a
rotation about the line of sight between the source and
detector. In the quadrupole approximation in Sec. II D, the
memory is plus polarized, but it is also plus polarized in
Eq. (A1); thus, at this level of approximation for computing
the GW polarizations associated with the GW memory
effect, the rotation is trivial and the two sets of polarizations
are equivalent.
Let us then write the integral in Eq. (A1) using the

quadrupole approximation that only h22 contributes to _hþ
in the integral in Eq. (A1). We will denote this further

approximation by hðQKÞmem;þðuÞ. A straightforward calculation
shows that the memory computed via the kludge method of
[24] relates to the plus polarization of the GW memory
effect in the quadrupole approximation in Eq. (2.11) as
follows:

hðQKÞmem;þðuÞ¼
24

17
jð−2ÞY22ð0;0Þj2hmemþ ðuÞ

þ r
136π

ΦðιÞ
Z

u

−∞
du0Ref½ _h22ð−2ÞY22ð0;ϕcÞ�2g

≈ 0.56hmemþ ðuÞ

þ r
136π

ΦðιÞ
Z

u

−∞
du0Ref½ _h22ð−2ÞY22ð0;ϕcÞ�2g:

ðA2Þ

The second term involving the integral of the square of the
real part of _h22 will generally be small (see, e.g., [15]), and
will oscillate at twice the frequency of the mode h22 (this is
likely the origin of the oscillations in the memory wave-
form model in [24]). Thus, the quadrupole approximation
to the procedure in [24] will typically produce a waveform
that is roughly half the amplitude of the two models that use
fewer approximations in Sec. II D, and it will contain an
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additional unexpected oscillatory part. As a result, we do
not include it in our comparison in Sec. II D.

APPENDIX B: ANALOGY BASED ON STACKING
MEMORY SIGNALS

There is a simple analogy one can make to describe why
it is important to know the sign of the GWmemory effect to
compute the total SNR in a population of BBHs. This is
illustrated in Fig. 5 for four memory signals. It shows in the
top panel that if the sign of the memory signals are known,
then when Ne memory signals are added together the net
signal will be roughly Ne times the individual signals,

assuming the signals are on roughly the same size. The
bottom panel shows that this does not occur when the GW
memory waveforms are added with different signs. When
Ne realizations of independent Gaussian noise are added
together, the variance grows like Ne. Thus, the SNR grows
like

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNeÞ2=Ne

p
¼ ffiffiffiffiffiffi

Ne
p

when the signals are added with
the same sign, but it exhibits much slower (if any growth)
with Ne if they are added with random signs.

APPENDIX C: A SECOND EXAMPLE
OF DETERMINING THE SIGN OF

THE MEMORY EFFECT

Here, we illustrate an example of a binary for
which the sign of the GW memory effect is more
challenging to measure than in the more typical example
in Sec. IVA. We perform Bayesian inference as described
in Sec. III C on a m1 ¼ 30M⊙, m2 ¼ 20M⊙ binary at a
fixed luminosity distance dL ¼ 500 Mpc. Here, we now
vary ρhomN by changing the inclination ι rather than the
luminosity distance dL. In Fig. 6 (going clockwise from
the top left) are the distributions of the inner product
hhmemðθ⃗trueÞjhmemðθ⃗sÞi for ι ¼ 3.0, 0.3, 0.48, and 2.4
(where the SNRs ρhomN are given by 1, 2, 3, and 4).
The oscillatory SNR for the three detector network is
above the threshold for detection for all four inclination
angles. The histograms for Advanced Virgo, LIGO
Hanford, and LIGO Livingston are shown in orange,
green, and blue, respectively.
When there is an SNR of 2 in the higher-order modes,

there is more support for the true sign of the memory effect
in the Virgo detector than in the two LIGO detectors.
This occurs for the following reasons: First, the LIGO
antenna patterns are not very sensitive to the plus polari-
zation for the sky location and polarization of the binary.
Furthermore, the source is located almost directly above the
plane formed by the three detectors, and there is an
approximate degeneracy between the true location of the
source and the source on the opposite side of the sky. Thus,
there is an additional degeneracy between the sky location
and polarization in addition to the degeneracy between
the polarization and phase ϕc. These facts combine to
require a slightly higher SNR of closer to 3 in the higher-
order modes before the sign of the memory is more
confidently measured by Virgo and LIGO Livingston
(LIGO Hanford is not sensitive to the plus polarization
of the binary). This case is somewhat unusual, because of
the very specific sky location and polarization leading to a
poor sensitivity to the GW memory in the LIGO detectors;
the results in Fig. 2 are more representative of most binaries
that we simulated.

FIG. 5. Schematic illustration of why it is necessary to know the
sign of the GW memory effect. The solid cyan, orange, purple,
and brown curves are four GW memory waveforms. The dashed
black curve is the sum of the waveforms. Top: We assume we
know the sign of the GW memory for all events, so that when we
add the individual events together, the combined signal is roughly
4 times larger than the average size of the individual signals.
Bottom: We assume we do not know the sign of the GWmemory,
so that when we add the different waveforms, the ones with
opposite sign cancel and the combined signal is on the same order
as the individual waveforms.
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