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The ACE-CRIS Collaboration has recently released the measurement of radioactive 60Fe nuclei
abundance in Galactic cosmic rays, in the energy range ∼195–500 MeV per nucleon. We model cosmic
ray propagation and derive from this measurement the 60Fe=56Fe ratio that is expected in the sources of
Galactic cosmic rays. We describe cosmic ray origin and transport within the framework of the disk/halo
diffusion model, namely a scenario in which the matter and the cosmic ray sources in our Galaxy are
confined to a thin disk, while cosmic ray propagation occurs in a much larger halo with negligible matter
density. We solve the cosmic ray transport equation accounting for spallation reactions, decay and
ionization losses as well as advection. We find that the 60Fe=56Fe ratio at the source must be very close to the
value detected in the local cosmic ray spectrum at Earth, due to the fact that spallation reactions are more
effective for 56Fe than for 60Fe. Such a result could help identify the sources of Galactic cosmic rays.
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I. INTRODUCTION

The question of what the primary sources of Galactic
cosmic rays (CRs hereafter) are is a very active subject of
research. While particle acceleration certainly takes place
in supernova remnants (SNRs hereafter), there are some
important unsettled issues in the paradigm that associates
Galactic CRs to Supernova (SN) explosions. Among these
is the CR composition, which shows few but relevant
peculiarities, likely to hold precious clues both on the main
sources and on the acceleration process. Especially impor-
tant in this sense is the study of nuclear isotopes that are not
commonly found in the interstellar medium (ISM), like
22Ne and 60Fe. This work focuses on the latter, which is
believed to be produced primarily in core-collapse super-
novae (SNe) involving stars with mass ≳10 M⊙.

60Fe is a radioactive isotope, unstable to β− decay, with a
half-life of 2.62 × 106 years. While SN nucleosynthesis
calculations [1,2] predict it to be rare, its relatively long
half-life has however made it detectable in CRs: a thorough
analysis of ACE-CRIS data collected between 1997
and 2014 has revealed the presence of 60Fe nuclei in the
energy interval between 195 and 500 MeV=n (energy per
nucleon) [3]. In this range, the measured 60Fe=56Fe ratio
is ð4.6� 1.7Þ × 10−5.
In order to derive from this measurement the value of

60Fe in CR sources, one must first correctly describe two

fundamental processes: (i) the particle injection mecha-
nism, that must be able to promote elements from the
thermal pool to relativistic energies and (ii) the propagation
of CRs from the sources to Earth. In the framework of
“diffusive shock acceleration” theory (DSA), the injection
of elements can only depend on the A=Z ratio (where A is
the atomic number and Z the effective charge of each
species). Such a dependence has been invoked to explain
the difference between the Galactic CRs and solar compo-
sition: in particular, the increase of injection efficiency with
the ratio A=Z allows one to explain the enhancement of the
heavier elements with respect to the lighter ones (among the
volatile elements), as well as the mass-independent
enhancement of the refractory elements with respect to
the volatile ones [4,5]. Those findings are also in agreement
with results from hybrid simulations, where a dependence
of injection ∝ ðA=ZÞ2 has been found [6], implying that the
injection of 60Fe is expected to be enhanced, with respect to
that of 56Fe, by less than ∼15%.
As far as propagation is concerned, in the 60Fe discovery

paper by the ACE-CRIS Collaboration [3], a simplified
leaky-box model was used to infer a value of ð7.5� 2.9Þ ×
10−5 for the 60Fe=56Fe ratio in the CR sources. Such a high
value would clearly imply that the 60Fe observed in CRs
cannot originate from the acceleration of the average ISM,
where the relative abundance of 60Fe is much lower. In fact,
the 60Fe abundance has been measured in the ISM through
the detection of γ-ray lines produced by its decay. The best
available measurement comes from the spectrometer on

*giovanni.morlino@inaf.it
†amato@arcetri.astro.it

PHYSICAL REVIEW D 101, 083017 (2020)

2470-0010=2020=101(8)=083017(12) 083017-1 © 2020 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.083017&domain=pdf&date_stamp=2020-04-13
https://doi.org/10.1103/PhysRevD.101.083017
https://doi.org/10.1103/PhysRevD.101.083017
https://doi.org/10.1103/PhysRevD.101.083017
https://doi.org/10.1103/PhysRevD.101.083017


board the INTEGRAL mission [7] and returns a 60Fe=56Fe
ratio of ∼3 × 10−7 (see also [8]).1

In a time when several different aspects of the standard
scenario for the origin and propagation of CRs are being
questioned, pushed by both new data and theoretical
developments (see [9,10] for a review), gamma-ray obser-
vations [11] have recently revived the suggestion by [12]
that the winds of massive stars might be important (if not
the primary) CR sources. Such a scenario would imply a
paradigm shift, but what is interesting in the context of this
work is that one of the possible tests consists exactly in the
CR abundance of 60Fe: stellar wind material has essentially
the same composition as the Galactic average, and hence a
large 60Fe abundance in CR sources disfavors these winds
as the main CR contributors, at least at low energies (below
1 GeV=n), where these measurements are available.
However, before deriving any firm conclusion about the

60Fe=56Fe ratio at the sources, it is important to make sure
that CR propagation is correctly accounted for. In fact, the
leaky-box model adopted by [3] in the discovery paper is
not appropriate to describe the propagation of unstable
nuclei whose decay time is smaller than the escape time
from the Galaxy [see, e.g., [13,14]]. To overcome this
difficulty and provide a more reliable estimate of the 60Fe
abundance in CR sources, here we model the iron propa-
gation using the disk/halo model [15], where the Galaxy
geometry is taken into account in a more realistic way. Such
a model has been successfully applied to explain the
spectrum of several CR species [see, e.g., [15]] also in
the context of self-generated turbulence [16–18]. In gen-
eral, for stable nuclei, the disk is treated as infinitely thin:
this approximation allows one to derive an analytical
solution by means of the weighted slab technique, which,
compared to numerical techniques often used to solve the
CR transport equation [19,20], has the advantage of
providing a more immediate picture of the underlying
physics. However, the thin disk approximation becomes, in
principle, inappropriate for unstable nuclei, when the
propagation length scale becomes of the order of the disk
thickness. For this reason here we also check its results
against the solution obtained for a finite disk size, quanti-
fying the difference between the two approaches.
The paper is organized as follows. In Secs. II A and II B

we present the solution for the CR spectrum of stable and
unstable nuclei for a thin and a thick Galactic disk,
respectively. In Sec. III we introduce the grammage and
in Sec. IV we discuss the two different transport models we
assume for our calculations. In Sec. V we present quanti-
tative results for the 60Fe=56Fe ratio in CR sources, in both
propagation scenarios we consider. Finally, we discuss the

differences between our approach and the leaky-box model
in Sec. VI and our conclusions in Sec. VII.

II. THE CR DISTRIBUTION FUNCTION

In this section we solve the CR transport equation within
a disk/halo model of the Galaxy, considering both a thin
(Sec. II A) and a thick (Sec. II B) disk. While the latter
allows a more appropriate treatment of the case of unstable
nuclei, the former, being simpler, serves the purpose of
illustrating the role of the different physical processes
determining the CR spectra. In addition, it also allows
one to introduce and directly quantify the accumulated
grammage, as we discuss in Secs. III and V.

A. The thin disk solution

The transport equation for iron nuclei that undergo
spallation, decay and also ionization losses is written as

−
∂
∂z

�
D
∂f
∂z

�
þ u

∂f
∂z −

du
dz

p
3

∂f
∂pþ f

τsp
þ f
τd

þ 1

p2

∂
∂p ½ _pionp2f� ¼ qðp; zÞ; ð1Þ

where z is the height above or below the disk, located at
z ¼ 0, Dðp; zÞ is the diffusion coefficient, uðzÞ is the
advection velocity, directed along z, and q is the injection
rate CR sources provide per unit volume. Finally, _pion
describes ionization losses, while τsp and τd are the
spallation and decay timescales, respectively. Notice that
we are not including a source term coming from the
spallation of heavier elements, because for iron this is
completely negligible. Moreover we are neglecting the
diffusion in momentum space because second order accel-
eration is found, a posteriori, to be irrelevant, in the
propagation model we consider (see the end of Sec. IV).
We simplify Eq. (1) adopting a 1D slab model as

described in [15]: the CR sources are located only inside
a thin disk of half-thickness h, while the confining volume
is a thicker halo, with half-thickness H ≫ h. The majority
of matter is concentrated inside the disk, where the gas
density is nd. The gas density in the halo nh is assumed to
be negligible, so that spallation and ionization losses only
occur inside the thin disk.2 We further assume that D and u
are constant in the halo with u ¼ u0ð2ΘðzÞ − 1Þ. In such a
simplified model, the 1D transport equation reduces to

−
∂
∂z

�
D
∂f
∂z

�
þ u0

∂f
∂z −

2

3
u0p

∂f
∂p δðzÞ þ 2hδðzÞ

τsp
f þ f

τd

−
1

p2

∂
∂p

�
p3

τion
f

�
2hδðzÞ ¼ 2hq0ðpÞδðzÞ; ð2Þ

1It is interesting to note that the estimated value of the
60Fe=56Fe ratio at the time of formation of the Solar System is
even lower, being ∼ð3.8� 6.0Þ × 10−8 [8].

2Notice that this assumption is violated when nhH ≳ ndh.
When this happens, spallation in the halo cannot be neglected
anymore.
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where we introduced τion ¼ −p= _pion. Notice that often the
collisional terms are written as a function of the disk
column density which is a measured quantity, μ ¼
2hndm ¼ 2.4 mg cm−2 [21]. Hence, for both spallation
and ionization losses, we can write 2h=τ ¼ μvσ=m, with
m ¼ 1.4mp, the average mass of gas particles. The spalla-
tion and ionization cross sections we use are reported in
Appendix.
In order to solve Eq. (2), we proceed using a standard

technique: we first solve the equation for z > 0, where
injection, spallation and ionization processes are absent;
then we look for the solution at z ¼ 0, integrating Eq. (2)
around the disk discontinuity. Above and below the disk,
the transport equation reads

DðpÞ ∂
2f

∂z2 − u0
∂f
∂z −

f
τd

¼ 0; ð3Þ

which is a linear second order differential equation whose
general solution is

f ¼ Aeαþz þ Beα−z; ð4Þ

where α� are the solutions of the second order algebraic
equation Dα2� − u0α� − 1=τd ¼ 0. The coefficients α� are
then

α� ¼ u0
2D

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4D

u20τd

s �
≡ u0

2D
½1� Δ�; ð5Þ

where we have introduced the dimensionless quantity Δ
that can also be written as a function of the timescales
involved in the propagation process, namely

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4τ2adv=ðτdiffτdÞ

q
ð6Þ

with τdiff ¼ H2=D and τadv ¼ H=u0. Clearly Δ → 1 for
τd ≫ τadv; τdiff . Now, the constants A and B in Eq. (4) are
determined by imposing the boundary conditions at the
Galactic disk and at the edge of the halo: fðp; z ¼ 0Þ ¼
f0ðpÞ and fðp; z ¼ �HÞ ¼ 0. The final solution, for z > 0,
reads

fðz; pÞ ¼ f0ðpÞ
1 − eu0Δðz−HÞ=D

1 − e−u0ΔH=D eu0ð1−ΔÞz=2D; ð7Þ

which in the case of stable elements (Δ ¼ 1Þ reduces to the
well-known solution

fstableðz; pÞ ¼ f0ðpÞ
1 − eu0ðz−HÞ=D

1 − e−u0H=D : ð8Þ

The distribution function inside the disk f0ðpÞ can be
obtained by integrating Eq. (2) between 0− and 0þ

− 2

�
D
∂f
∂z

�
z¼0þ

−
2u0
3

p
∂f0ðpÞ
∂p þ 2h

τsp
f0ðpÞ

−
2h
p2

∂
∂p

�
p3

τion
f0

�
¼ Q0; ð9Þ

with Q0ðpÞ ¼ 2hq0ðpÞ. The quantity D∂f=∂zj0þ repre-
sents the diffusive flux at the disk position and can be
obtained deriving Eq. (7) with respect to z, namely

�
D
∂f
∂z

�
z¼0

¼ f0
u0
2

ð1 − ΔÞ − ð1þ ΔÞe−u0ΔH=D

1 − e−u0ΔH=D

≡ −f0ðpÞ
u0
2
ξðpÞ: ð10Þ

The quantity ξðpÞ is a measure of the gradient of the
distribution function in units of D=u0. Its meaning is easily
appreciated in a few limiting cases. Let us introduce the
scale-length L such that

�
D
∂f
∂z

�
z¼0

≃ −f0
D
L
: ð11Þ

In the case of stable nuclei, Δ ¼ 1 and ξ ¼ 2=ðeu0H=D − 1Þ.
If we now consider the diffusion dominated case, i.e.,
D ≫ u0H, we find ξ → 2D=ðu0HÞ, which shows that the
gradient of the distribution function is on a scale L ¼ H.
On the other hand, in the advection dominated case ξ → 0,
and the scale length is L → ∞. Finally, in the case of
unstable elements, if τd ≪ 4D=u20 and τd ≪ tdiff are both
satisfied, one finds ξ → Δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D=ðu20τd

p
Þ and L ¼ ffiffiffiffiffiffiffiffi

Dτd
p

.
Using Eq. (10), we can recast Eq. (9) as follows:

p
∂f0ðpÞ
∂p ¼ λ1ðpÞf0ðpÞ −Q0ðpÞ

λ2ðpÞ
ð12Þ

where

λ1ðpÞ≡ ξðpÞu0 þ
2h
τc1

ð13Þ

λ2ðpÞ≡ 2

3
u0 þ

2h
τion

ð14Þ

and

τ−1c1 ¼ τ−1sp þ ðαion − 3Þτ−1ion ð15Þ

αion ¼
d lnðτionÞ
d lnðpÞ : ð16Þ

Equation (12) is a first order differential equation in p
whose solution can be found as
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f0ðpÞ ¼
Z

∞

p

dp0

p0
Q0ðp0Þ
λ2ðp0Þ exp

�
−
Z

p0

p

λ1ðp00Þ
λ2ðp00Þ

dp00

p00

�
: ð17Þ

Equation (17) shows that f0ðpÞ is formed by particles
injected with momentum p0 ≥ p that lose energy down to p
during propagation. The energy decrease is due to both
adiabatic and ionization losses: particles lose energy each
time they cross the disk because of adiabatic expansion and
ionizing collisions. Clearly energy losses are important
only at low energies, i.e., whenD≲ L=u0, which generally
occurs for E≲ fewGeV for standard propagation param-
eters. In the opposite limit, for energies such that
D ≫ L=u0, we have λ1=λ2 ≫ 1 and the exponential func-
tion reduces to a Dirac-δ

exp

�
−
Z

p0

p

λ1ðp00Þ
λ2ðp00Þ

dp00

p00

�
→

p0λ2ðp0Þ
λ1ðp0Þ δðp − p0Þ: ð18Þ

In this limit Eq. (9) reduces to f0ðpÞ ≈Q0ðpÞ=λ1ðpÞ,
which reproduces the standard result for stable nuclei
when spallation and ionization are neglected: this is simply
f0ðpÞ ¼ Q0H=ð2DÞ.

B. The thick disk solution

As mentioned above, unstable elements whose propa-
gation length Ldiff ¼

ffiffiffiffiffiffiffiffi
Dτd

p
is of the order of, or smaller

than, the disk size, are not accurately described by the
infinitely thin disk solution. For 60Fe, the diffusion length isffiffiffiffiffiffiffiffi
Dτd

p
≃ 140D1=2

27 pc at E ≃ 500 MeV=n, where D27 is the
diffusion coefficient in units of 1027 cm2 s−1. Therefore, in
the energy range of CRIS measurements, the diffusion
length of 60Fe is comparable with the disk size.
In order to compare our model results with CRIS data,

we are then forced to take into account the finite size of the
disk. The solution of this problem has long been known for
cases when ionization losses can be neglected (see, e.g.,
[22,23]). However ionization plays an important role in the
energy range we are interested in, so in the following we
present our own solution of Eq. (1), for the case of a thick
disk (of half-thickness h) with a uniform distribution of gas
and CR sources.
The steps toward solving Eq. (1) are similar to the ones

in the previous section. We first find a solution for the halo
(h < z < H), where losses are absent and only the decay
term is important. Then we obtain a solution valid inside the
disk (jzj < h), including spallation and ionization. Finally,
we find the CR spectrum at the Earth location (z ¼ 0), by
integrating Eq. (1) between 0− and 0þ. The transport
equation in the halo is the same as in Eq. (3), hence the
solution for h < z < hþH is the same as Eq. (7), except
that z has to be replaced with z − h and f0 with
fh ¼ fðh; pÞ. We then find the solution for the distribution
function in the halo as

foutðz;pÞ¼ fhðpÞ
1−eu0Δðz−h−HÞ=D

1−e−u0ΔH=D eu0ð1−ΔÞðz−hÞ=2D: ð19Þ

Concerning the solution inside the disk, we need to
include the spallation and ionization terms. The latter term
is, in principle, more delicate to handle because it contains
the momentum derivative of f. We write this term as

1

p2

∂
∂p ½p2 _pionf� ¼

f
τion

�∂ ln τion
∂ lnp −

∂ ln f
∂ lnp − 3

�

¼ f
τion

½αion þ α − 3�: ð20Þ

The latter expression is linear in f apart from the spectral
slope α which, however, can be approximated as constant
for the purposes of the present work. We can then define a
compound timescale [analogous to that in Eq. (16)],

τ−1c ≡ τ−1d þ τ−1sp þ ðαion þ α − 3Þτ−1ion; ð21Þ

such that the transport equation in the disk can be
rewritten as

−DðpÞ ∂
2fin
∂z2 þ u0

∂fin
∂z þ fin

τc
¼ qðpÞ: ð22Þ

The latter equation is completely analogous to Eq. (3). The
two coefficients that appear in its solution, together with
fhðpÞ appearing in Eq. (19), can all be determined imposing
the following boundary conditions: finð0; pÞ ¼ f0ðpÞ,
finðh; pÞ ¼ foutðh; pÞ and ∂zfinðh;pÞ¼∂zfoutðh;pÞ, where
the last two conditions entail the continuity of the particle
distribution function and its flux at the boundary between the
disk and the halo, under the assumption that the diffusion
coefficient is the same in the two regions.
The distribution function at the center of the disk f0ðpÞ

is obtained again integrating Eq. (1) between 0− and 0þ,
which gives

−2
�
D
∂fin
∂z

�
z¼0þ

−
2u0
3

p
∂f0
∂p ¼ 0; ð23Þ

where the term in the square brackets can be obtained
deriving the solution of Eq. (22) with respect to z. The final
differential equation for f0 has the same form as Eq. (12),
namely p∂pf0ðpÞ ¼ Ω1f0 −Ω2, and the solution reads

f0ðpÞ ¼
Z

∞

p

dp0

p0 Ω2ðp0Þ exp
�
−
Z

p0

p
Ω1ðp00Þ dp

00

p00

�
ð24Þ

where

Ω1 ¼
3

2

X
þ;−

−1 ∓ Δin

1 − 1�Δinþξ
1∓Δinþξ e

�ðαþþα−Þh ; ð25Þ
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Ω2 ¼
3Dq
u20Δin

�
2

3
Ω1

�
e−αþh − 1

1þ Δout
−
e−α−h − 1

1 − Δout

�

þ e−αþh − e−α−h
�
; ð26Þ

and

ξ ¼ Δout − 1þ ð1þ ΔoutÞe−
u0ΔoutH

D

1 − e−
u0ΔoutH

D

; ð27Þ

α� ¼ u0
2D

½1� Δin�; ð28Þ

Δin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4D

u0τc

s
; Δout ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4D

u0τd

s
: ð29Þ

The integral in Eq. (24) is performed using the numerical
technique presented in [24]. We verified that the solution
(24) gives the same result as Eq. (17) when h=H → 0.

III. GRAMMAGE

While the thick disk solution provides a more accurate
description of CR propagation in the situation we are
considering, the thin disk approximation is more useful if
one wants to discuss propagation in terms of the grammage
that particles accumulate. Following [15,16], the grammage
can be derived rewriting Eq. (9) in terms of IðEÞ, namely
the particle flux as a function of kinetic energy per nucleon
E. The equality IðEÞdE ¼ vp2f0ðpÞdp implies that
IðEÞ ¼ Ap2f0ðpÞ, A being the atomic mass number of
the nucleus. With such a substitution, Eq. (9) can be
rewritten as

ðξþ 2Þu0IðEÞ −
v
Ac

d
dE

��
p

�
2

3
u0 þ

2h
τion

��
IðEÞ

�

þ 2h
τsp

IðEÞ ¼ 2hq0Ap2 ð30Þ

where we have used the definition of ξ from Eq. (10) and

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðEþ 2mpc2Þ

q
=c. Rather than solving Eq. (30)

explicitly, we want to focus on the differences between
stable and unstable nuclei in terms of accumulated gram-
mage, which provides immediate insight on how the
different isotopes are affected by propagation.
To this purpose, we recast Eq. (30) in a more useful form

by introducing the disk column density μ mentioned in
Sec. II A and write

IðEÞ
XðEÞ þ

d
dE

���
dE
dx

�
ad
þ
�
dE
dx

�
ion

�
IðEÞ

�

þ σspI

mp
¼ QðEÞ; ð31Þ

where

XðEÞ ¼ μv
u0

1 − e−u0ΔH=D

ð1þ ΔÞ − ð1 − ΔÞe−u0ΔH=D ð32Þ

is the grammage for nuclei with kinetic energy per
nucleon E,

�
dE
dx

�
ad
¼ −

2u0
3 μc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðEþ 2mpc2Þ

q
ð33Þ

is the rate of adiabatic energy losses,

�
dE
dx

�
ion

¼ −
2hp
μτion

¼ −
σionv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðEþ 2mpc2Þ

q
cmp

ð34Þ

is the rate of energy losses due to ionization, and

QðEÞ ¼ 2h
μv

Ap2q0ðpÞ ð35Þ

is the source term.
Notice that with respect to the result presented by

[15,16], here the grammage XðEÞ has a more complicated
expression because it also accounts for decay. However,
Eq. (32) immediately shows the asymptotic behavior of the
grammage in three different cases: advection-, diffusion-
and decay-dominated regimes. The corresponding approxi-
mate expressions are

X ¼ μv
2u0

when τadv ≪ τdiff ; τd; ð36Þ

X ¼ μvH
2D

when τdiff ≪ τadv; τd; ð37Þ

X ¼ μvτd
2

ffiffiffiffiffiffiffiffi
Dτd

p when τd ≪ τdiff ; τadv: ð38Þ

These expressions will be useful for the interpretation of the
ratio between the isotopes that we discuss in Sec. V.

IV. TRANSPORT MODEL

We now go back to the CR transport equation for a thick
disk and discuss its full solution, Eq. (24). Since exper-
imental results are usually presented in terms of the particle
flux as a function of kinetic energy per nucleon IðEÞ, we
will present our result in this form.
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The model has several parameters that need to be fixed in
order to provide a meaningful estimate for the 60Fe=56Fe
ratio at the source. The parameters to be fixed are H, h, u0,
the diffusion coefficient D and the injection spectrum
q0ðpÞ. Their combination can be constrained by fitting
the observed spectra of primary and secondary nuclei and
their ratios. As fiducial values we decided to use those
estimated by [25,26], where the authors used a 1D model in
the thin disk approximation identical to the one described in
Sec. II A. Table I summarizes the best fit values of the
model free parameters. We discuss them below.
In order to account for the spectral break observed in all

CR spectra at a rigidity ∼300 GV, in [25] the diffusion
coefficient is described by the following functional form:

DðRÞ ¼ 2u0H þ βD0

ðR=GVÞδ
½1þ ðR=RbÞΔδ=s�s

; ð39Þ

where β ¼ v=c with v as the velocity of the particle of
rigidity R, D0 is the value of the diffusion coefficient at
R ¼ 1 GV and the break is described in terms of s, Δδ and
Rb, which are, respectively, a smoothing parameter, the
magnitude and the characteristic rigidity of the break. Even
if Eq. (39) reflects a phenomenological approach, its form
has been inspired by previous works [16,17,27], where the
diffusion is described using two different sources of
scattering: the externally generated turbulence, which
dominates the transport at high rigidities, and the CR
self-generated turbulence, which dominates, instead, at
lower rigidities. In other words, the spectral break of D
reflects the transition between these two regimes. At small
rigidities, namely for R≲ 1 GV, where advection becomes
important, the diffusion flattens to D → 2u0H. The pres-
ence of such a plateau is also a consequence of the self-
generated turbulence as found in Ref. [28] and reflects the
fact that advection and diffusion are equally important (or,
in other words, pure advection never dominates). It is worth
noticing that in pure diffusion models (where advection and
reacceleration are neglected) the existence of such a plateau
is in any case required by the data [15].
In [26] all parameters are fixed by performing a global fit

over the AMS-02 data, in particular using the spectrum of
p, He, C, N, O plus the ratios Be/C, B/C, Be/O and B/O.
Notice that D0 and H cannot be determined separately
based on the flux of stable secondary and primary CRs
alone, because this only constrains the ratioD0=H. In order
to disentangle the two quantities, it is necessary to use
unstable elements. Unfortunately, measurements of unsta-
ble isotopes are available only at very low energies and

AMS-02 is not able to distinguish between isotopes of the
same element. However, the CR beryllium is composed by
a non-negligible fraction of 10Be, whose half-life is
1.51 Myr, so that the decay signature is clearly visible
in the total Be flux. Reference [26] used the beryllium flux
measured by AMS-02 to fix the halo thickness, providing a
best fit of H ¼ 7 kpc. In our analysis we will adopt such a
value, which is, however, slightly larger than the one
usually adopted in the literature (closer to ∼4–5 kpc
[15]). In the next section we will comment on how our
results are affected by the halo thickness. The remaining
parameter values are the ones reported in Table I.
The CR spectrum injected by the sources is assumed to

be a simple power law q0;iðpÞ ∝ p−γi where the spectral
index γi can differ for different species. The best fit gives
γp ¼ 4.35, γHe ¼ 4.25 while all heavier elements have the
same slope γCNO ¼ 4.3. In [26] the Fe spectrum is not taken
into account, because no such data have been released by
the AMS-02 Collaboration so far, hence we adopt here
γFe ¼ 4.3 for CNO elements. A comparison between the
predicted spectrum and existing data is shown in Fig. 1.
Considering that the error bars above ∼10 GeV=n are quite
large, the agreement between our solution and the data is
rather good. Below ∼10 GeV=n the error bars are much
smaller and the scatter between data from different experi-
ments is mainly due to solar modulation. Notice that the
spectrum has been corrected for the solar modulation using
the widely used force-free approximation as in [29]. During

TABLE I. Values of the parameters used in the model.

u0 (km/s) h (pc) H (kpc) np;disk (cm−3) D0 (cm2 s−1) δ Δδ s Rb (MV) γ

5.0 150 7 1.5 3.08 × 1028 0.54 0.2 0.1 312 4.3

FIG. 1. Model predicted spectrum of iron compared with data
from different experiments. The solid black line is calculated
using a solar modulation potential equal to Φ ¼ 453 MV, as
estimated by [3] while the upper and lower thin red lines have
Φ ¼ 250 and 1000 MV, respectively. Data are taken from the
cosmic ray database ([30], http://lpsc.in2p3.fr/crdb/) and include
all experiments performed after 1980.
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the ACE-CRIS data taking period, the solar wind potential
Φ varied between 250 and 1000 MV, with an average value
of Φ ¼ 453 MV [3]. We use this value for our calculation
but, in order to quantify the impact of the solar modulation,
in the same Fig. 1 we report the Fe flux calculated with the
maximum and minimum values of Φ during the relevant
period: the variation is consistent with the observed scatter
of the data.
Once the parameters of the model have been established,

we can evaluate all the relevant timescales of the problem
for both Fe isotopes. We plot the ones relevant for 60Fe in
Fig. 2. Notice that the average timescales for spallation and
ionization are calculated using the average target density,
i.e., hτi ¼ ðσvndiskh=HÞ−1. Figure 2 makes it clear that,
below ∼10 GeV=n, the 60Fe propagation is largely deter-
mined by radioactive decay. An analogous plot for 56Fe
would show slightly different curves describing spallation,
diffusion and ionization, due to the 7% difference in atomic
mass between the two isotopes. However, in the energy
interval in which we are interested, diffusion is definitely
more effective than advection, while spallation losses are
more relevant than ionization above ∼100 MeV=n.
In deriving our solution for the particle propagation in

Sec. II we neglected the effect of reacceleration. Such an
assumption can be justified a posteriori estimating the
reacceleration time as τreacc ¼ p2=Dpp where the momen-
tum diffusion is related to the spatial diffusion as Dpp ¼
p2v2A=ðηpDÞ and ηp ≃ 0.1 [31]. In our model the reaccel-
eration time at 100 MeV=n is ∼4.5 Gyr and increases ∝ Rδ

for larger rigidities, hence it is much larger than any other
relevant timescale. This result reflects the low level of
magnetic turbulence at scales that resonate with particles in
this energy range, and it is in line with the idea that, in order
to be effective, diffusive reacceleration scenarios generally
require an uncomfortably large energy density in turbu-
lence throughout the Galaxy [31].

V. RESULTS FOR THE ISOTOPE RATIO

As already anticipated, the key parameter that allows us
to understand the behavior of the 60Fe=56Fe ratio is the
different grammage experienced by the two isotopes.
However, the grammage is a quantity that can be easily
defined only in the thin disk model. Before discussing it,
then, it is worth considering the difference between the
thick and the thin disk solutions. In Fig. 3 we show the ratio
between the fluxes calculated with the thick and the thin
solutions, Ithick=Ithin, for both 56Fe and 60Fe. All curves are
computed within the transport model described in the
previous section. Notice that, for the thick disk solution,
we are assuming that the diffusion coefficient in the disk is
the same as the one in the halo. One can see that when the
disk size is taken into account, the flux below ∼10 GeV=n
is suppressed by the fact that spallation reactions and
ionization losses are more effective. The suppression
reaches 30%–40% at E ≃ 100 MeV=n when all loss
processes are included, while it is reduced to ≲10% when
ionization is not accounted for. This clearly highlights the
importance of taking ionization losses into account and also
shows that, at energies below ∼10 GeV=n, the finite
thickness of the disk cannot be neglected if one aims at
computing CR fluxes with an accuracy better than a few
percent.
While the thin disk approximation leads to a non-

negligible underestimate of absolute fluxes, it impacts
the two iron isotopes in a similar way, so that the error
on the I60ðEÞ=I56ðEÞ ratio is ∼15% at ∼100 MeV=n and
decreases at larger energies. As a consequence, the thin disk
approximation still provides a reasonably good estimate as
far as the ratio of the two isotopes is concerned.
We then proceed to compute the grammage accumulated

by 60Fe and 56Fe [Eq. (32)] within the thin disk approxi-
mation. In Fig. 4, we show X60Fe, X56Fe, as well as the ratio of

FIG. 2. Timescales in millions of years for all processes
involved in the transport of 60Fe for unmodulated energies.
The curves refer to the values of the model parameters reported
in Table I.

FIG. 3. Ratio between the Fe flux calculated in the thick disk
model and that computed in the thin disk approximation. Both
isotopes are shown: solid curves refer to 56Fe and dashed to 60Fe,
while thick (blue) curves include ionization losses and thin
(orange) do not. The solar modulation is applied with a potential
Φ ¼ 453 MV, as estimated by [3].
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these two grammages. The plot shows the results for both
unmodulated (thick lines) and modulated (thin lines)
energies (with Φ ¼ 453 MV).
It is clear that, at low energies, 56Fe suffers more

spallation than 60Fe. Only at energies ≳10 GeV=n the
grammage accumulated by the two isotopes becomes
equal, which corresponds to the energy region where the
decay time is larger than the diffusion time. The results
shown in Fig. 4 can be interpreted in terms of propagation
lengths by means of Eqs. (36)–(38). As can be seen from
Fig. 2, at the low rigidities of the ACE-CRIS data, the decay
time is much shorter than both τdiff and τadv. As a result, for
60Fe, Eq. (38) applies, while 56Fe falls in the case of
Eq. (37), being τdiff < τadv. Therefore we expect

X56Fe

X60Fe
¼ Hffiffiffiffiffiffiffiffi

Dτd
p ≃ 6.4; ð40Þ

which has been evaluated at the average (modulated)
energy measured by CRIS, i.e., 327 MeV=n. It is interest-
ing to notice that the above ratio could reduce to unity even
at low energies only in the advection dominated regime
with very large advection speed. In fact in such a case
Eq. (36) should be used for 56Fe and we would have
X56Fe=X60Fe ¼

ffiffiffiffiffiffiffiffi
Dτd

p
=ðu0τdÞ, which gives a result close to

unity when diffusion and advection become of comparable
importance. In our case X56Fe=X60Fe ≈ 1 at all energies
requires u0 ≳ 500 km s−1. This important fact implies that
below such advection speed, at low energies transport is not
fast enough to compete with decay: 56Fe nuclei live longer
and always suffer more spallation and ionization losses
than 60Fe. The fluxes of the two are affected accordingly,
with 56Fe undergoing stronger suppression.

What we just discussed helps us to understand the results
shown in Fig. 5, where we plot the propagated ratio between
60Fe and 56Fe, namely I60ðEÞ=I56ðEÞ, under the assumption
of an identical injection spectrum for the two (q60 ¼ q56).
The solid curve shows the result obtained from Eq. (24),
while the shadowed band shows the energy range of CRIS
data. In order to illustrate the role of the different processes
involved in propagation, in the same figure we show the
results that are obtained by including only part of the relevant
processes: diffusion alone (dashed line—here the advection
speed has been reduced by a factor 10), diffusionþ
advection (dotted line), diffusionþ advectionþ spallation
(dot-dashed line), and diffusionþ advectionþ spallationþ
ionization (solid line). It is clear that if propagation were

FIG. 4. Grammage accumulated by 60Fe and 56Fe and ratio of
the two grammages as a function of kinetic energy per nucleon.
All lines assume the transport model described in Sec. IV. The
solid (blue) curve is for X56Fe, the dashed (orange) curve for X60Fe

and the dot-dashed (green) curve for X56Fe=X60Fe. The latter
quantity is clearly adimensional, but the numerical values on
the y axis still provide the right scale. Thin and thick lines refer to
modulated and unmodulated energies, respectively.

FIG. 5. Ratio between the fluxes of 60Fe and 56Fe at the same
energy per nucleon. (Top) Different lines show the role of each
process during transport. From bottom to top, the different curves
are computed accounting for diffusion only (dashed), diffusion
plus advection (dotted), spallation (dot-dashed) and ionization
(solid—full model). The shaded vertical area shows the energy
region of CRIS data. Solar modulation is taken into account with
a potential Φ ¼ 453 MV. (Bottom) As in the top panel, the solid
line shows the flux ratio 60Fe=56Fe computed within our baseline
model. The shaded bands represent how the result varies when
the solar modulation changes between Φ ¼ 250 and 1000 MV
(green band) and when the halo half-thickness varies between 4
and 9 kpc (orange band). Notice that top and bottom panels have
different vertical scales.

GIOVANNI MORLINO and ELENA AMATO PHYS. REV. D 101, 083017 (2020)

083017-8



purely diffusive, the ratio between 60Fe and 56Fe would be
lower, the reason being that the escape time from the Galaxy
would be longer and the 60Fe would suffer more radioactive
decays. Including advection decreases the residence time in
the Galaxy and makes the fluxes of the two isotopes more
similar. However, this is a minor correction in our model
because the advection speed is only 5 km s−1 (see Table I).
On the other hand, when spallation and ionization losses are
included, the 60Fe=56Fe ratio increases much more for the
reason we discussed above: 56Fe experiences a larger
grammage, hence suffering more losses than 60Fe. As a
consequence I60=I56 increases because I56 is decreased. In
conclusion the role of advection, and much more the role of
losses, cannot be neglected in this calculation.
After clarifying the role of the different processes,

we now turn to the task of using CRIS measurement to
deduce the ratio between 60Fe and 56Fe in CR sources. CRIS
measures the intensity ratio between 60Fe and 56Fe at
two slightly different energies RI ¼ N60ð327 MeV=nÞ=
N56ð340 MeV=nÞ ¼ ð4.6� 1.7Þ × 10−5. We write the
injection spectrum of CRs of species s as qsðpÞ ¼
n0χsKsp−γ , where n0 is the gas density, χs is the relative
abundance of each element and Ks accounts for the
efficiency of the injection process into the acceleration
mechanism. In this notation, we define Rsource ¼ χ60=χ56,
so that the measured ratio RI between the two isotopes is
connected to the source ratio as

RI ¼ Rsource
K60

K56

G60ðE60Þ
G56ðE56Þ

ð41Þ

where Gi accounts for propagation effects [i.e., GsðEÞ ¼
IsðEÞ=qsðpÞpγ]. The ratio G60=G56 is calculated using
Eq. (24) corrected for the solar modulation and using E60 ¼
327 and E56 ¼ 340 MeV=n. Now, if one assumes that the
injection efficiency is the same for both isotopes, namely
that K60 ¼ K56, then the CRIS measurement translates into
an abundance ratio Rsource ¼ ð8.0� 3.0Þ × 10−5.
We notice, however, that the injection efficiency into the

DSA mechanism may vary between different ions, being
related to the mass to charge ratio [4,5]. The matter is very
far from settled and we will not discuss it in detail. We only
notice that if one assumes, following the results from
hybrid simulations by [6], that injection efficiency is
proportional to ∝ ðA=ZÞ2, then 60Fe is injected more
efficiently than 56Fe by 15%, so that the final result in
terms of abundances is Rsource ¼ ð6.9� 2.6Þ × 10−5.
Before concluding this section, it seems appropriate to

discuss the impact on our results of two sources of
uncertainties in our model: the size of the halo and solar
modulation. We already mentioned that the halo size is
estimated to be ≃7 kpc based on constraints from the
beryllium flux. Such a result can be affected not only by
systematic errors in the beryllium data, but also by
uncertainties in the spallation cross sections [26]. In the

bottom panel of Fig. 5 we report how the estimated
60Fe=56Fe ratio changes varying the halo size between 4
and 9 kpc, while keeping the ratio H=D0 constant. One can
see that in the ACE-CRIS energy interval the uncertainty is
∼10%. The same plot also shows the impact of changing
the solar modulation, allowing the potential to vary
between the maximum and minimum values experienced
during the data acquisition by ACE-CRIS. In this case the
uncertainty is less than 6%.

VI. COMPARISON WITH
THE LEAKY-BOX MODEL

We think it is mandatory to compare the results presented
in the previous section with those found in [3], where the
leaky-box model (LBM) was used to describe the transport.
It is well known that such a model should be used with
caution when dealing with unstable nuclei: the LBM is
perfectly equivalent to the slab-diffusion model in describ-
ing stable particles, as shown by [32], but it fails to describe
unstable nuclei for the simple reason that particles can
disappear from the system before reaching the boundary of
the Galactic halo [14].
In spite of this important limitation the result presented in

[3] is close to our finding within ∼8%. In the following we
discuss the reasons for this.
In the LBM the general solution for the CR spectrum in

the disk depends only on the characteristic timescales of
escape, decay and spallation, and is written as

N ¼ Q
τ−1esc þ τ−1decay þ τ−1sp

: ð42Þ

Hence the Fe isotope ratio at the sources is

Q60=Q56 ¼ ðN60=N56Þ × ðτ56=τ60Þ ð43Þ

where τ−156 ¼ τ−1esc þ τ−1sp56 and τ−160 ¼ τ−1esc þ τ−1sp 60 þ τ−1decay 60.
The value of the escape time used by [3] was estimated, still
in the framework of the LBM, based on the measurements
of other radioactive nuclei [33] and is τesc ¼ 15� 1.6 Myr.
Within the same model, the average gas density is
nHþHe ¼ 0.38� 0.04, and this is used to calculate the
spallation timescales leading to the values τsp56 ¼ 4.45�
0.47 and τsp60 ¼ 4.27� 0.45 Myr.
According to the analysis by [3], CRIS measurements of

56Fe and 60Fe refer to an average energy in interstellar space
of 550 MeV=nu and 523 MeV=n, respectively. At those
energies, our model gives hτsp56i ¼ 56.1 and hτsp 60i ¼
54.5 Myr (see Fig. 2).
The difference between the timescale estimated within

our model and the LBM is a factor ∼12 and is mainly due to
the fact that our average density is ndiskh=H ¼ 0.034 cm−3.
Once the difference in average gas density is taken into
account, the two estimates of the spallation timescales are
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still different by ∼12%, presumably due to differences in
the adopted spallation cross section between the present
work (see Appendix) and that by [3].
Aside from differences in the spallation and escape

timescales, another difference between this work and that
by [3] is that the latter neglects ionization losses, which in
our calculation turn out to be non-negligible, being the
ionization loss time of the same order of τsp for energies
∼100 MeV=n, which translates into a correction of ∼20%
to the final 60Fe=56Fe ratio in the CRIS energy band as
shown in Fig. 5.
Using our estimated timescales in the leaky-box expres-

sion connecting the measured and source ratio between the
isotopes [Eq. (43)], one would estimate Rsource;LBM≈
4 × 10−4, a factor of 5 larger than the estimate by [3].
In summary, while our estimate and the estimate by [3]

of the 60Fe=56Fe ratio at the sources turn out to be very
close, they correspond to very different physical conditions
for CR propagation. In particular, in our model CR particles
have much longer residence times in the Galaxy and lose a
non-negligible fraction of their energy while propagating
through the low-density halo. The similarity between the
two estimates of Rsource seems at present only a puzzling
coincidence. What actually enters the relation between the
source ratio and the measured ratio between isotopes is a
survival probability [34]. This is coincident with a ratio
between timescales, as adopted in the LBM, only when the
confinement volume is coincident with the volume occu-
pied by the sources. When the former is much larger than
the latter, instead, one finds in general that a fraction of the
actual escape time (determined by the ratio between source
and confinement volume [34]) enters into Eq. (43).
In fact, our estimate of the diffusion time is the same that

allows one to reproduce the total beryllium flux [26]. Our
conclusion, in agreement with past works (e.g., [15]), is
that the confinement times estimated by [33] are all
underestimated by a factor of order 10.

VII. SUMMARY AND CONCLUSIONS

In this work we modeled the propagation of iron nuclei
through the Galaxy within the disk/halo diffusion model in
order to translate the 60Fe=56Fe ratio measured by ACE-
CRIS in CRs into an estimate of the relative abundance of
the two isotopes in CR sources. Following [26], the
parameters of the transport model have been fixed in such
a way as to reproduce the fluxes of CR p, He, C, N, O plus
the ratios Be/C, B/C, Be/O and B/O as measured by AMS-
02. In addition, we adopted a halo size of ∼7 kpc as
estimated from the CR beryllium flux [26].
At energies ≲1 GeV=n, where the ACE-CRIS measure-

ments have been performed, the CR transport is determined
by several processes: diffusion, advection, spallation,
ionization losses and solar modulation. We accounted for
all these processes, quantifying the role of each one in
determining the 60Fe=56Fe ratio.

We showed that at energies ≲1 GeV=n GeV/n also the
size of the Galactic disk becomes important, being com-
parable with the energy loss length of heavy nuclei. Hence,
we have explicitly accounted for the disk size in our
analytical description of the CR transport showing that,
under the assumption that the diffusion coefficient is the
same as in the Galactic halo, the Fe flux is suppressed by
∼30% with respect to the infinitely thin disk approxima-
tion. On the other hand, the final 60Fe=56Fe is affected only
by ∼10% because the two isotopes are affected in a similar
way. Finally, we also accounted for the preferential
injection of heavier nuclei in the shock acceleration
mechanism.
Within the above scenario we found for the 60Fe=56Fe

ratio at the CR sources 60Fe=56Fe ¼ ð6=11Þ × 10−5

(accounting for both measurement errors and model
uncertainties). Such a value is especially interesting when
compared with the average abundance in the ISM, which is
∼3 × 10−7, implying that the CRs detected at Earth cannot
be produced by accelerating only the average ISM com-
position. As a consequence, and not surprisingly, we can
exclude the blast waves of type Ia SNe as the main source
of Galactic CRs, in that they mainly accelerate material
from the average ISM. Our result requires, instead, that
some fraction of the accelerated material should come from
fresh SN ejecta (where “fresh” means much younger than
the 60Fe decay time). The exact amount of accelerated fresh
ejecta is nontrivial to estimate, because the 60Fe yield from
SN explosions depends on the progenitor initial mass [35]
as well as the star rotational speed [2]. The value of the ratio
60Fe=56Fe ranges between 2 × 10−4 and 8 × 10−3 [35],
hence one can infer that the amount of fresh ejecta that
needs to be accelerated should be a fraction between a few
percent and a few tens of percent of the total accelerated
material.
The two main scenarios in which this can be realized are

one in which acceleration occurs at the reverse shock of the
SN explosion and one in which the fresh ejecta of an
explosion are accelerated by the forward shock of a second
nearby event. A possible way to disentangle between these
two possibilities is by looking at the abundances of other
nuclei, especially the 22Ne, whose overabundance with
respect to the solar one is still not completely understood
(see [36] for a critical discussion).
A major surprise is that our results are in agreement with

the estimate obtained by [3]. The latter work adopted a
leaky-box description of particle transport, which is in
principle not appropriate to describe the propagation of
unstable nuclei, and in addition neglected advection and
ionization losses, while we find the latter to be very
relevant. Our scenario predicts a confinement time ∼10
times larger than the LBM. As we discussed in Sec. VII,
this is likely the key to understand the incidental agreement.
When the volume of the sources is only a fraction of
the total confinement volume, a LBM description of the
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survival probability becomes appropriate for a confinement
time which is a fraction of the actual one. We have shown
that using the correct escape time, the LBM provides a
result for the Fe isotope ratio at the sources ∼5 times larger
than our estimate.
It is worth stressing that while in the present study we use

the propagation model to constrain the 60Fe abundance at
the sources, analogous measurements performed for other
radioactive secondaries produced during the spallation
process, like 10Be or 14C, could be used in the opposite
direction, namely to provide a valuable test of the CR
propagation regime at low energies.
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APPENDIX: ENERGY LOSSES

For the total spallation cross section we use the following
expression from [37]:

σspðEkÞ
¼ 45 A0.7 10−27 cm2

× ½1þ 0.016 sin ð5.3–2.63 lnðAÞÞ�

×

�
1 − 0.62 exp

�
− Ek

2 × 108

�
sin

�
10.9

�
Ek

106

�−0.28��
;

ðA1Þ

where Ek is the kinetic energy per nucleon and A is the
bullet’s atomic masses (the target is assumed to be purely
protons). According to [37], the mean error of Eq. (A1) is
less than 5% for energies above 100 MeV=n. Notice that
the spallation cross section use in [3] is the one measured
by [38]: we notice that at the energy where such measure-
ments were performed, namely 1.88 GeV=nucleon, their
result for the total inelastic cross section of Fe onto H target
is ∼9% smaller than the value given by Eq. (A1). The
extrapolation at lower energies could be responsible for the
∼20% difference in the calculated spallation timescale as
discussed in Sec. VI.
For the energy losses due to ionization we use an

interpolation formula provided by [39] [see their
Eqs. (4.32)–(4.34)], which is proportional to the energy
losses of protons and is valid when the energy per nucleon
is Ek ≲ 1 TeV,

�
dE
dt

�
ion;Z

¼ Z2
eff

�
dE
dt

�
ion;p

ðA2Þ

where the effective charge of the nucleus is given by Zeff ¼
Zð1 − 1.034 exp½−137βZ−0.688�Þ and the energy losses of
protons are

�
dE
dt

�
ion;p

¼ 1.82×10−7ð½nHIþnH2
�=cm−3Þ

× ½1þ0.0185 lnðβÞΘðβ−β0Þ�
2β2

β30þ2β3
eVs−1:

ðA3Þ

β0 ¼ 0.01 is the minimum Lorentz factor such that Eq. (A3)
is valid. The momentum loss function used in Eq. (1)
is _pion¼dp=dt¼dp=dE×ðdE=dtÞion¼A=v×ðdE=dtÞion.
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