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Maite Mateu-Lucena ,1 Marta Colleoni ,1 and Rafel Jaume1
1Departament de Física, Universitat de les Illes Balears,

IAC3—IEEC, Carretera Valldemossa km 7.5, E-07122 Palma, Spain
2School of Physics and Astronomy and Institute for Gravitational Wave Astronomy,
University of Birmingham, Edgbaston, Birmingham B15 9TT, United Kingdom

(Received 25 September 2019; revised manuscript received 23 February 2020; accepted 10 March 2020; published 10 April 2020)

We analyze a new numerical relativity dataset of spinning but nonprecessing binary black holes on
eccentric orbits, with eccentricities from approximately 0.1 to 0.5, with dimensionless spins up to 0.75
included at mass ratios q ¼ m1=m2 ¼ ð1; 2Þ, and further nonspinning binaries at mass ratios
q ¼ ð1.5; 3; 4Þ. A comparison of the final mass and spin of these simulations with noneccentric data
extends previous results in the literature on circularization of eccentric binaries to the spinning case. For the
ðl; mÞ ¼ ð2; 2Þ spin-weighted spherical harmonic mode, we construct eccentric hybrid waveforms that
connect the numerical relativity data to a post-Newtonian description for the inspiral, and we discuss the
limitations in the current knowledge about post-Newtonian theory which complicate the generation of
eccentric hybrid waveforms. We also perform a Bayesian parameter estimation study, quantifying the
parameter biases introduced when using three different quasicircular waveform models to estimate the
parameters of highly eccentric binary systems. We find that the used aligned-spin quasicircular model
including higher order modes produces lower bias in certain parameters than the nonprecessing
quasicircular model without higher order modes and the quasicircular precessing model.
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I. INTRODUCTION

The detections of gravitational wave signals [1–8] have
been found to be consistent with models of the waveform
emitted from the merger of compact objects under the
assumption of quasicircularity of the binary’s orbit prior to
the merger. The assumption of quasicircularity motivated
by the efficient circularization of binaries as a consequence
of the emission of gravitational waves [9,10] simplifies
significantly the complexity of the signal and has accel-
erated the development of inpiral-merger-ringdown (IMR)
waveform models: several mature IMR models for quasi-
circular coalescences, i.e., neglecting eccentricity, are now
publicly available [11–24] and are being used to search
and infer the parameters of observed binary black hole
systems [7].
Recently, population synthesis studies [25–28] have

shown that active galactic nuclei and globular clusters
can host a population of moderate and highly eccentric
binaries emitted in the frequency band of ground-based
detectors. Therefore, the increase in sensitivity of the
detectors will increase the likelihood of detecting binary
systems with non-negligible eccentricities. The modeling
of the gravitational waveforms from eccentric black hole
binaries is complicated by the addition of a new timescale

to the binary problem, the periastron precession [29]. This
new timescale induces oscillations in the waveforms due to
the asymmetric emission of gravitational radiation between
the apastron and periastron passages.
The orbits of eccentric black hole binaries are typically

described using the quasi-Keplerian (QK) parametrization
[30], which is currently known up to 3 post-Newtonian
(PN) order [31]. This parametrization has proved to be a
key element in developing inspiral PN waveforms [32–36].
The generation of IMR eccentric models relies on the
connection of an eccentric PN inspiral with a circular
merger [37,38]. Alternatively, one can substitute the PN
waveform with one produced within the effective one body
(EOB) formalism describing an eccentric inspiral [39–41].
Some eccentric IMR waveform models show good agree-
ment with numerical waveforms up to e ∼ 0.2 for non-
spinning configurations [37]. Recent work has shown
possible extensions of the eccentric PN and EOB inspiral
waveforms to include spin effects [41,42]. A key step in the
generation of IMR waveform models is the production of
hybrid waveforms [43–49] between PN/EOB inspiral and
numerical relativity (NR) waveforms. The hybridization
procedure consists of smoothly attaching a PN/EOB
inspiral waveform to a NR one to get the full description
of the gravitational radiation of the binary system.
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The generation of datasets of hybrid waveforms has been
used in the quasicircular case to calibrate and validate the
accuracy of IMR waveform models [16–18,22,23].
In this paper we present the input data and some key tools

required for the development of an IMR eccentric waveform
model calibrated to eccentric hybrid PN-NR waveforms. In
Sec. II we first present our NR catalog of nonspinning and
spinning eccentric binaries, computed with the private BAM

code [50] and the open-source EINSTEIN TOOLKIT (ET)
[51,52]. This includes a discussion of our procedure to
specify the initial parameters of the eccentric simulations in
Sec. II B, a study of the remnant quantities in Sec. II C, and a
new method for measuring the eccentricity of NR wave-
forms with arbitrarily high eccentricity in Sec. II D. We find
that the final spin and mass are consistent within the error
estimates with the quasicircular case, which extends the
study in [53] to the eccentric spinning case.We hybridize the
dominant gravitational waveform ðl ¼ 2; m ¼ 2Þ mode
between numerical relativity and post-Newtonian wave-
forms in Sec. III. This will provide the input data for future
work on constructing waveform models that contain the
inspiral, merger, and ringdown, and it allows us to perform
injections into detector noise which contain a long inspiral
phase. In Sec. IV we use such injections of hybrid wave-
forms, as well as those of pure numerical relativity wave-
forms, to study the parameter biases introduced when using
quasicircular waveform models to estimate the parameters
of highly eccentric spinning systems. Unless explicitly
noted, we are working in geometric units G ¼ c ¼ 1. To
simplify expressions, we will also set the total mass of the
system M ¼ 1 in Secs. II and III. We define the mass ratio
q ¼ m1=m2 with the choicem1 > m2 so that q > 1. We also
introduce the symmetric mass ratio η ¼ q=ð1þ qÞ2, and we
shall denote the black hole’s dimensionless spin vectors by
χ⃗i ¼ S⃗i=m2

i for i ¼ 1, 2.

II. NUMERICAL RELATIVITY DATASET

A. Overview

We present a catalog of 60 eccentric NR simulations
performed with the nonpublic BAM code [50] and the open-
source ET code [51,52] with the multipatch LLAMA infra-
structure [54]. The numerical setup of both codes is the
same as in [55]. Most of the simulations are run with the
ET code using the LLAMA module due to its ability to
extract the waves at larger extraction radii. The different
simulations and their initial conditions are described in
Table IV. In Fig. 1 we show our choices of mass ratio q,
initial eccentricity e0, and effective spin parameter,
χeff ¼ ðm1χ1;z þm2χ2;zÞ=ðm1 þm2Þ. We have also added
20 public eccentric SXS simulations presented in [38].

B. Initial parameters of eccentric NR simulations

We use conformally flat Bowen-York initial data [57] in
the center-of-mass frame, where the free parameters are the

spins and masses of the two black holes, the separation, and
the momentum of one of the two black holes (the
momentum of the second black hole is then equal in
magnitude but opposite in direction). We first choose the
masses and spins as displayed in Fig. 1. To be able to
construct hybrid waveforms, the minimal separation, i.e.,
the separation at periastron, has to be large enough that the
PN approximation is still roughly valid. We then use a
simple PN approximation as discussed below to compute
the apastron separation required to achieve a chosen value
of the eccentricity, and a further PN approximation to
compute the appropriate value of the momentum corre-
sponding to this value of the eccentricity. Owing to the
simplicity, i.e., the low order, of the PN approximations
used, neither the periastron separation nor the measured
eccentricity will exactly coincide with the specified values.
In this study we choose our initial choice for the approxi-
mate periastron separation to be rmin ∼ 9M, with slightly
different values to account for mass ratio and spin effects
which can significantly increase the computational cost of
the simulations. We start our simulations at the apastron,
where the PN approximation employed to specify the initial
momentum and the agreement with the PN data that we use
for hybridization will be more accurate than during other
points of the orbit.
Larger choices of eccentricity for the same configuration

of masses and spins thus lead to a larger merger time and
number of orbits, as one can see in Table IV. For instance,
focusing on simulations with identification numbers (IDs)
34, 35, and 36, one observes an increase in the merger time
when increasing the initial eccentricity. This increase in
merger time also implies an increase in the computational
cost of the simulation.
Using the QK parametrization at Newtonian order,

one can relate the initial minimum and maximum separa-
tions by

FIG. 1. Initial eccentricity e0, mass ratio q, and effective
spin parameter χeff ¼ ðm1χ1;z þm2χ2;zÞ=ðm1 þm2Þ for the
numerical relativity simulations generated with the BAM,
EINSTEIN TOOLKIT, and SpEC [56] codes. The thick black line
represents the cases with χeff ¼ 0.
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rmin ¼ rmax
1 − e
1þ e

: ð2:1Þ

As stated above, for our simulations we choose rmin ∼ 9M
such that the PN approximation is still roughly valid. Then
for e0 ¼ 0.1, 0.2, 0.5 Eq. (2.1) implies that rmax ¼ 11M,
13.5M, 27M, respectively. These values of rmax are rough
estimates based on a Newtonian order calculation; in
practice, we slightly modify those values of initial sepa-
rations to account for the increase of computational cost
depending on the mass ratio and the spins of the simu-
lations as observed in Table IV. For instance, in the case of
negative spin components the merger time is significantly
reduced [58]; thus, we increase rmax for e ¼ 0.1, 0.2 cases
to produce longer NR waveforms which are easier to
hybridize afterward.
To produce initial data for a desired eccentricity, we then

make use of Eq. (3.25) of [55] to perturb the initial
tangential momentum of the black holes by a factor λt
from its quasicircular value. The expression for λt in terms
of the eccentricity at 1PN order is

λtðr;e0;η;signÞ¼ 1þe0
2
×sign×

�
1−

1

r
ðηþ2Þ

�
; ð2:2Þ

where η is the symmetric mass ratio, r is the orbital
separation, and sign ¼ �1 depends on the initial phase
of the eccentricity estimator [55]. We refer the reader to
Sec. III D of [55] for an explicit derivation of Eq. (2.2).
Taking Eq. (2.2), we compute the correction factor applied
to the momentum as the mean between the inverse of the
expression with the plus sign plus the expression with the
minus sign,

λ̄0t ðr; e0; ηÞ ¼
1

2
½λtðr; e0; η;þ1Þ−1 þ λtðr; e0; η;−1Þ�

¼ 8r2 − e20ðη − rþ 2Þ2
4rðe0ð−ηþ r − 2Þ þ 2rÞ : ð2:3Þ

We use the combination of factors in Eq. (2.3) because we
have experimentally tested it to see that it works more
accurately than just specifying a value of λtðr; e; signÞ with
a given sign. In Table IV one can compare the value of the
desired initial eccentricity, e0, specified in Eq. (2.3), and the
actually measured initial eccentricity, eω, from the orbital
motion of the simulation. Both quantities are also displayed
in Fig. 10, where we have differentiated among nonspin-
ning and positive and negative spin simulations. The results
point out that the use of Eq. (2.3) produces differences of
less than 10% between eω and e0 in nonspinning cases at
low eccentricities of the order of 0.1. However, when spins
are present or the eccentricities are higher, the inaccuracy of
the formula becomes manifest, with differences of the order
of 20%–30%, this is due to the fact that Eq. (2.2) was
derived assuming a nonspinning binary in the low eccentric

limit. Additionally, one can check in Table IVand Fig. 10 to
see that the differences between eω and e0 are smaller for
the cases with positive spins than in cases with negative
spins because in Eq. (2.2) the radiation reaction effects,
which are more significant for negative spins, are also not
taken into account.

C. Final state of spinning eccentric systems

We compare the final state of the eccentric NR simu-
lations with the predicted final mass and final spin of the
quasicircular (QC) NR fits [59] as an indicator of circu-
larization of the coalescence process as the binary merges.
This is basically an extension of [53] to the eccentric
spinning case with more moderate values of the eccentricity
but longer NR evolutions.
The final mass and final spin of the simulations are

computed using the apparent horizon (AH) of the remnant
black hole and are shown in Table IV. The magnitude S of
the angular momentum of the final black hole can be
computed from the integral

S ¼ 1

8π

I
AH

KijniϕjdA; ð2:4Þ

see the discussion in [60,61]. Here for the BAM code [50]
the vector ϕj is a coordinate-based approximation to the
(approximate) axial Killing vector of the black hole horizon
as in [60], and for the EINSTEIN TOOLKIT code the
QuasiLocalMeasures module is used, which con-
structs an approximate Killing vector with rotational
symmetry around the spin axis as in [62,63]. The vector
ni is a spacelike unit normal to the horizon surface and Kij

is the extrinsic curvature. The final mass can be computed
from the Christodoulou formula in terms of the black hole
(BH) angular momentum and AH area A as

Mf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

irr þ
S2

4M2
irr

s
; Mirr ¼

ffiffiffiffiffiffiffiffi
A
16π

r
; ð2:5Þ

whereMirr is the irreducible mass. The dimensionless final
spin can then be computed as χf ¼ S=M2

f.
In Fig. 2 we have computed the absolute and relative

errors between the eccentric simulations and the quasicir-
cular NR final mass and final spin fitting formulas [59],

ΔX ¼
����X

NR

XQC − 1

���� × 100; X ¼ Mf or χf: ð2:6Þ

The results in Fig. 2 show that the differences in the final
spin are generally higher than in the final mass. However,
the differences with respect to the quasicircular fitting
values are as high as ∼1%, which is entirely consistent with
numerical errors and gauge artifacts on the apparent
horizon surfaces and inaccuracies in the fits. Hence, we can
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conclude that within the current knowledge of systematic
errors (compare with [59]), the final state of the eccentric
simulations, up to the values of eccentricity studied here, is
consistent with the quasicircular values. Identifying
small physical deviations between the quasicircular and
eccentric final states will require numerical simulations
with improved error estimates.

D. Measuring the eccentricity of highly
eccentric systems

This subsection aims to extend the discussion on the
measurement of the eccentricity in NR presented in [55] to
highly eccentric systems. An eccentricity parameter is
chosen to describe the noncircularity of orbits, such that
for bound orbits its value ranges between 0 and 1, corre-
sponding to circular and extremely elliptical configurations,
respectively. Such an eccentricity can be defined naturally
only in Newtonian gravity, whereas in general relativity the
eccentricity is a gauge dependent quantity. To measure the
eccentricity in NR data, one defines quantities known as
eccentricity estimators, which estimate the eccentricity from

the relative oscillations of a certain combination of dynami-
cal quantities such as the orbital separation or orbital
frequency, or wave quantities like the amplitude or fre-
quency of the ðl; mÞ ¼ ð2; 2Þ mode. All of these different
estimators are usually defined such that they agree in the
Newtonian limit and in the low eccentricity limit.
In [55], where we studied the reduction of residual

eccentricity in initial datasets, we chose our eccentricity
estimator based on the orbital frequency as

eωðtÞ ¼
ωðtÞ − ωðe ¼ 0Þ

2ωðe ¼ 0Þ ≡ ωðtÞ − ωfitðtÞ
2ωfitðtÞ ; ð2:7Þ

where ωðtÞ is the orbital frequency of the simulation and
ωðe ¼ 0Þ is the orbital frequency in the quasicircular limit.
We note that when dealing with numerical simulations, the
quasicircular frequency in Eq. (2.7) is typically replaced by
a fit, ωfitðtÞ, of the nonoscillatory part of the frequency [55].
This eccentricity estimator is used largely to measure the
residual eccentricity of NR simulations of quasicircular
black hole binaries. We remark that while in Eq. (2.7) we
decide to use the orbital frequency calculated from the BH
motion, one can also use the gravitational wave frequency
extracted from the waves as discussed below. Furthermore,
gauge effects can impact the eccentricity measurement from
the orbital frequency of NR codes as extensively discussed
in the small eccentricity limit in [64,65]. Here we follow the
practice used in the literature [55,64–66] to avoid contami-
nation of the eccentricity measurement through the gauge
quantities, like the choice of the value of the η-parameter in
the gamma driver condition [67], which can lead to residual
oscillations in the orbital frequency complicating the deter-
mination of the eccentricity.
In [55] we argued that the procedure shown there, based

on Eq. (2.7), to measure the eccentricity is limited to values
as high as e ∼ 0.1 due to the lack of an accurate ansatz
to fit the higher order contributions beyond the sinusoidal
contribution. While the lack of an ansatz for high eccen-
tricities is a clear limitation, the use of Eq. (2.7) biases the
eccentricity measurement due to its reliance on a non-
eccentric fit of the orbital frequency and due to the fact that
Eq. (2.7) for high eccentricities does not reduce to the
common definition of eccentricity in the Newtonian limit.
Therefore, we decide to change to another estimator [68],

constructed also from the orbital frequency,

eωðtÞ ¼
ω1=2
p − ω1=2

a

ω1=2
p þ ω1=2

a

; ð2:8Þ

where ωa, ωp are the orbital frequencies at apastron and
periastron, respectively. The eccentricity estimator in
Eq. (2.8) does not depend on any noneccentric fit of the
orbital frequency. Furthermore, as shown in Appendix B,
the eccentricity estimator from Eq. (2.7) in the Newtonian
limit at high eccentricities does not reduce to the

FIG. 2. (Top panel) The absolute difference between the final
mass and spin of the simulations and the QC NR fits as a function
of the ID of the simulations in Table IV. (Bottom panel) The
absolute relative error for the phase and amplitude, ΔX ¼
jXNR=XQC − 1j × 100 for X ¼ Mf; χf, relative error of the final
mass, and final spin of the simulations against the QC NR fits as a
function of the ID of the simulations in Table IV.
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eccentricity parameter and it is not normalized, while the
eccentricity estimator from Eq. (2.8) fulfills all these
conditions.
Wemeasure the eccentricity from themaxima andminima

of the orbital frequency corresponding to the periastron and
apastron passages, respectively. Additionally, we produce
an interpolated function from the maxima ωp and the
minima ωa and substitute them into Eq. (2.8) so that one
can estimate the evolution of the eccentricity from those
points. The interpolation is calculated using the Hermite
method implemented in the function Interpolation in
Mathematica [69]. The new procedure to measure the
eccentricity is shown in Fig. 3, where the time evolution
of the orbital frequency, the interpolated functions of the
maxima and minima of the orbital frequency, and the
eccentricity are shown for the configuration with ID 60
from Table IV. As expected, the eccentricity is a monoton-
ically decaying function whose value at t ¼ 200M, after the
burst of junk radiation, is eω ¼ 0.415� 0.005. The error in
the eccentricity, δeω, is computed using error propagation:
from Eq. (2.8) we obtain

δeω ¼ δω

ðω1=2
a þ ω1=2

p Þ2
�
ω1=2
a

ω1=2
p

þ ω1=2
p

ω1=2
a

�
; ð2:9Þ

wherewe have assumed δωa ¼ δωp ¼ δω.Motivated by the
results of the error in the convergence analysis of the orbital
frequency in [70], we have taken as a conservative estimate
δω ¼ 0.0001. The error estimate of Eq. (2.9) is the statistical
error associated with the eccentricity measurement taking
into account the error of the orbital frequency from different
resolutions of the NR simulations. We remark that this error
does not take into account systematics coming from the use
of a different eccentricity estimator, nor contributions from
the interpolation error when the number of minima and
maxima is small due to the short length of the simulations.

Because of the difficulties in quantifying the systematics
associated with the choice of eccentricity estimator and the
fact that the interpolation error is a subdominant effect for
most of the simulations here, we restrict for simplicity our
eccentricity error calculation to Eq. (2.9).
The main drawback of this method is that when the

simulations are so short that there is only one minimum and
one maximum, it becomes inefficient and inaccurate.
Furthermore, one could choose the frequency of the
ðl; mÞ ¼ ð2; 2Þ mode and compute the orbital frequency
as ωorb ≈ ω22=2, employing the same method discussed in
this section. Nevertheless, as pointed out in [64], the usage
of the orbital frequency from the (2,2) mode requires
additional postprocessing of the data due to the presence
of high frequency noise when taking a time derivative of the
phase of the (2,2) mode. As a conclusion, if one has long
enough highly eccentric simulations, the method intro-
duced in this section allows one to measure the eccentricity
as a monotonically decaying function for the whole
inspiral, which is a key tool to be used to construct a time
domain eccentric waveform model.

III. HYBRIDIZATION OF ECCENTRIC
WAVEFORMS

In the eccentric case the hybrization of the PN-NR
waveforms is a challenging problem. The higher the
eccentricity the stronger the interaction between the binary
components at each periastron passage, which can break
the post-Newtonian, weak-field, and low velocity approxi-
mation and generate a secular dephasing between both
waveforms. Moreover, the lack of a general description in
PN theory of eccentric black hole binary systems poses
the main difficulty. Therefore, we briefly review the status
of the PN theory for eccentric systems in Sec. III A. In
Sec. III B we show an example of our procedure to
hybridize eccentric PN-NR waveforms.

A. Review of eccentric post-Newtonian theory

As far as the authors know, the orbital averaged
gravitational wave energy flux for eccentric binaries is
known up to 3PN order [71] using the 3PN QK para-
metrization [31]. Our strategy consists of evolving the
3.5PN Hamilton’s equations of motion in Arnowitt, Deser,
and Misner transverse-traceless (ADMTT) gauge [72–74]
for a point particle binary,

dX
dt

¼ ∂H
∂P ;

dP
dt

¼ −
∂H
∂X þ F;

dSi
dt

¼ ∂H
∂Si × Si; i ¼ 1; 2; ð3:1Þ

with X, P, and Si being the position, momentum, and spin
vectors in the center-of-mass frame, H the Hamiltonian
described in Sec. II of [55], and F the radiation reaction

FIG. 3. Time evolution of the orbital frequency Mωorb, the
orbital frequency at apastron Mωa, the orbital frequency at
periastron Mωp, and the eccentricity estimator eω defined in
Eq. (2.8).
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force described in [75] enhanced with the eccentric con-
tribution to the energy flux from [71]. The eccentric term in
the flux is expressed in the QK parametrization and
depends only on the orbital frequency ω, which is com-
puted while evolving the system, and the eccentricity et, for
which we use its 3PN expression in terms of the orbital
energy and the angular momentum of the system, which are
variables computed at each time step.
The solution of the PN point particle equations,

Eq. (3.1), can be used to compute the gravitational radiation
emitted by the system. Here the lack of general PN
expressions for the waveforms of point particles evolving
on quasielliptical orbits sets a strong limitation. The
instantaneous terms of the waveform multipoles are known
up to 3PN order for general nonspinning systems with
arbitrary eccentricity [76]. Recently, the complete descrip-
tion of the 3PN nonspinning multipoles was computed
including tail, tail-of-tail, and memory terms within the QK
parametrization for low eccentricities [77,78]. At this point
using the 3PN instantaneous terms only [76] introduces
more errors than the quadrupole order due to the missing
tail and tail-of-tail terms that enter at 1.5PN, 2.5PN, and
3PN orders, respectively. Additionally, the translation of
the generic solution we obtain from solving Eq. (3.1) to the
QK form of the waveform modes in [77,78] is more
involved due to the fact that they split the dynamical
variables into adiabatic and postadiabatic contributions.
Therefore, we will restrict here to the quadrupole formula to
generate the ðl; mÞ ¼ ð2; 2Þmode and leave for future work
the generation of full 3PN waveforms, which will addi-
tionally allow us to construct multimode eccentric hybrids.

B. Hybridization example

The hybridization of PN and NR waveforms consists of
determining the time shift and phase offset, which mini-
mizes the difference between both waveforms in a certain
time window. This hybridization procedure is well estab-
lished in the quasicircular case [43,48,49,79,80]. The time
shift is usually computed by minimizing a suitable quantity
that measures disagreement of the two waveforms, such as
an overlap integral [48,80], or the deviation between phase
or frequency of the (2,2) mode [49]. However, in the
eccentric case the calculation of the time shift requires
alignment of the peaks due to eccentricity of both wave-
forms in the hybridization window. This alignment is
complicated to obtain with the phase because the peaks
corresponding to each periastron passage are not very
pronounced, and they are difficult to estimate. One could
use the frequency of the (2,2) mode. However, it is a
quantity obtained from a time derivative of the phase,
which for NR waveforms tends to be noisy. As a conse-
quence, for simplicity we use the amplitude of the (2,2)
mode to determine the time shift of the waveform because it
is a clean quantity with clearly defined peaks. We remark
that aligning the oscillations of the amplitude of PN and NR

waveforms in a certain hybridization window is equivalent
to minimizing their difference, as the maximum agreement
between both quantities is obtained when they are aligned
at the eccentric peaks.
As an example, we take the NR simulation with ID 60

of Table IV, which is a mass ratio q ¼ 4 nonspinning
configuration with an initial eccentricity of e0ω¼0.415�
0.005 and initial orbital separation at apastronD0 ¼ 27.5M.
We take the initial conditions of the NR simulation defined
by the initial position vector, momenta (velocities in the
case of SpEC waveforms), and dimensionless spin vectors:
fX;P=V; S1; S2gt¼0. The fact that PN and NR coordinates
for the initial data agree up to 1.5PN order [81–83] makes
this identification a good approximation. However, we have
checked to see that the differences between the PN and NR
initial conditions can produce discrepancies between the
NR and PN waveforms of the order of 10%.
To leverage these differences, we decide to modify the

initial condition vector of the PN evolution by modifying
the initial separation by a δr such that the difference in the
amplitude of the Newman-Penrose scalar, ψ4, for the (2,2)
mode between PN and NR is minimal. In our example we
obtained δr ¼ 0.08. The outcome of such a calculation can
be observed in the top panel of Fig. 4, where the time
domain amplitudes of the PN and NR waveforms are
shown. We do not show the full time domain range of the
hybrid waveform in the top panel of Fig. 4 to better display
the matching PN/NR region. The procedure is also applied
to eccentric aligned-spin configurations. We find that initial
highly eccentric configurations require larger δr than low
eccentric ones, and that the hybridization errors for high
negative spins, where radiation reaction plays a dominant
role, are 1 order of magnitude higher than for nonspinning
or low spins due to the lack of expressions for PN spinning
eccentric waveforms.
The procedure to construct the hybrid waveform is

similar to the one presented in [49]. We first choose the
matching region to be after the junk radiation burst; in our
particular case we take t=M ∈ ð275; 375Þ, which corre-
sponds to less than one gravitational wave cycle, as shown
in the top panel of Fig. 4. To understand the choice of this
short hybridization window for eccentric waveforms, we
first explain the criteria for hybridizing quasicircular ones,
following [84]. Quasicircular waveforms are hybridized
over several cycles, as the low frequency approximant,
typically EOB, is very accurate and resembles faithfully the
NR behavior during the late inspiral. Furthermore, hybridi-
zation over several cycles is required to accurately compute
the time alignment between waveforms by averaging out
residual oscillations due to eccentricity and high frequency
numerical noise coming from NR. In the eccentric case, the
time alignment is much easier to compute, as the peaks in
the gravitational wave (GW) frequency ease such an
alignment, so there is no need to use several cycles.
Moreover, the inaccuracy of the current low frequency
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eccentric approximants also sets a clear limitation to
faithfully reproduce the NR waveforms along several
cycles. Hence, we have chosen a small hybridization
window to ensure small errors in the GW amplitude and
frequency between PN and NR. Choices of hybridization
window including several cycles make that error increase to
10% or larger depending on the case, due to the inaccuracy
of the PN approximant. We have also checked to see that
the election of different peaks for hybridization in the GW
amplitude (in the inspiral regime) does not significantly
change the errors, maintaining them below 1% as quoted in
the lower panel of Fig. 4.
After choosing the hybridization region, we have to

compute the time shift τ and phase offset φ0, which reduce
the difference between the PN and NR waveforms in the
matching window,

hPNðtÞ ¼ eiφ0hNRðtþ τÞ: ð3:2Þ
To align the waveforms in time, we choose τ such that it
minimizes the amplitude difference along the matching

window. For the phase offset we decide to align the phases
at the beginning of the window, φ0¼ϕNRðt0− τÞ−ϕPNðt0Þ,
where t0 is the initial time of the window. Once τ and φ0 are
calculated, the hybrid waveform is constructed as a piece-
wise function

hhybðtÞ¼

8>><
>>:
eiφ0hPNðtþτÞ if t<t1;

w−ðtÞeiφ0hPNðtþτÞþwþðtÞhNRðtÞ if t1<t<t2;

hNRðtÞ if t>t2;

ð3:3Þ

where t1 ¼ 275M and t2 ¼ 375M. The functions w�ðtÞ
denote the blending functions defined in the interval ½t1; t2�
that monotonically go from 0 to 1 and 1 to 0, respectively,

wþðtÞ½t1;t2� ¼
t − t1
t2 − t1

; w−ðtÞ½t1;t2� ¼ 1 − wþðtÞ: ð3:4Þ

The result of the application of such a hybridization
procedure can be observed in the bottom panel of Fig. 4,
where the absolute value of the relative errors between the
hybrid and NR amplitudes and frequencies are shown. The
quantity ΔX is defined as ΔX ¼ jXhyb=XNR − 1j × 100 for
X ¼ A22;ω22. The errors in the gravitational wave fre-
quency and amplitude are both below 1%, with those for
the amplitude being slightly smaller due to the choice of
the amplitude as the quantity with which to minimize the
agreement between PN and NR waveforms.
Finally, note that the PN waveform used to produce the

hybrid is evolved backward in time from D0=M ¼ 27.5 to
Df=M ¼ 60. This makes the initial eccentricity increase
with respect to the NR waveform. Next, we explicitly show
the systematics affecting the measurement of the initial
eccentricity of the hybrid. We display in Fig. 5 the time
evolution of the orbital frequency for the same hybrid

FIG. 4. (Top panel) The time domain amplitude of the jrψ2;2
4 j

mode. The blue thick and the red dashed curves represent the PN
and NR waveforms, respectively, and the vertical black lines
highlight the hybridization window. (Bottom panel) The absolute
value of the relative error for the gravitational wave frequency
and amplitude, ΔX ¼ jXhyb=XNR − 1j × 100 for X ¼ ω22; A22, of
the hybrid against the NR waveform in the matching region is
displayed.

FIG. 5. Time evolution of the orbital frequency Mωorb com-
puted from the phase of rψ2;2

4 , the orbital frequency computed
from the dynamics, ω ¼ j v×rr2 j, and from the phase of the
strain h2;2.
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waveform of Fig. 4, ωorb ≈ _ϕ22=2, computed from the
phase of the (2,2) mode of the Newman-Penrose scalar and
the strain computed using the fixed-frequency integration
algorithm [85]. We also compute the orbital frequency from
the PN dynamics as

ω ¼
���� v × r

r2

����; ð3:5Þ

where r ¼ jrj, and v, r are the velocity and the position
vectors in the center-of-mass frame. The curves from Fig. 5
indicate that the orbital frequencies computed from ψ4 and
h overestimate and underestimate, respectively, the values
of eccentricity with respect to the ones from the dynamics.
This is confirmed from the values for the initial eccentricity
one obtains from the orbital frequency of the strain ψ4 and
the dynamics eh0 ¼ 0.55� 0.01, eψ4

0 ¼ 0.84� 0.03, and
edyn0 ¼ 0.65� 0.01, respectively. These three values of
eccentricity are measured at the same initial time,
t ¼ 600M. These results lead to the conclusion that the
eccentricity measured from the frequency of the (2,2) mode
is higher for ψ4 than for h. This can be understood using the
fact that h ≈

R R
ψ4dt0dt; therefore, h is a smoother

function than ψ4. As shown in Fig. 5, this is not a particular
result of our procedure to measure the eccentricity but a
general fact which can be reproduced by any method to
measure the eccentricity based on the oscillations of the
frequency of the (2,2) mode. We have decided to show the
orbital frequency from the PN dynamics, as it contains
more cycles and eases the visualization of the effect, but the
same effect can be obtained with the orbital frequency from
the BH motion of a NR simulation. Moreover, we remark
that these differences were also noted in [64], where Puerrer
et al. explicitly computed the factor between the eccen-
tricity estimator calculated from the gravitational wave
frequency of h and ψ4 in the low eccentric limit. Thus, one
expects to see these discrepancies even augmented as the
eccentricity increases, as is the case for the waveforms
studied in this article. We also note that we choose not to
integrate backward too long in the past of the binary due to
the inaccuracy of the eccentric PN fluxes, which makes the
solutions inaccurate for extremely high eccentricities, and
the inaccuracy of the PN expressions for the waveform,
which also become more and more inaccurate for high
eccentricities.

IV. PARAMETER ESTIMATION WITH
ECCENTRIC SIGNALS

In this section we employ the waveforms introduced in
Secs. II and III for data analysis studies. First, we analyze
the impact of the eccentricity when computing overlaps
against quasicircular models. Second, we perform param-
eter estimation studies injecting eccentric NR and hybrid
waveforms into detector noise and compute parameter

biases using three different IMR quasicircular models
available in the LIGO libraries, LALSuite [86].

A. Match calculation

A generic black hole binary evolving in a quasielliptical
orbit is described by 17 parameters. The intrinsic param-
eters are the individual masses of the binarym1, m2, the six
components of the two spin vectors S⃗1 and S⃗2, the orbital
eccentricity e, and the argument of the periapsis Ω. The
extrinsic parameters describing the sky position of the
binary with respect to the detector are the distance from
the detector to the source r, the coalescence time tc, the
inclination ι, the azimuthal angle φ, the right ascension (ϕ),
the declination (θ), and the polarization angle (ψ ). These
parameters together describe the strain induced in a
detector from a passing gravitational wave [87]:

hðt; ζ;ΘÞ ¼ ½Fþðθ;ϕ;ψÞhþðt − tc; ι;φ; ζÞ
þ F×ðθ;ϕ;ψÞh×ðt − tc; ι;φ; ζÞ�: ð4:1Þ

Where Θ ¼ ftc; r; θ;ϕ; ι;φ;ψg is the set of extrinsic
parameters, ζ ¼ fm1; m2; S⃗1; S⃗2; e;Ωg are the intrinsic
parameters, and Fþ, F× are the antenna patterns functions
defined in [87]. The detector response is written in terms of
the waveform polarizations ðhþ; h×Þ, which combine to
define the complex waveform strain

hðtÞ ¼ hþ − ih× ¼
X∞
l¼2

Xl

m¼−l
Y−2
lmðι;φÞhlmðt − tc; ζÞ; ð4:2Þ

where Y−2
lmðι;φÞ are spin-weighted −2 spherical harmonics,

and where hlm refers to the ðl; mÞ waveform mode. The
comparison between two waveforms is usually quantified
by an overlap integral, which is a noise-weighted inner
product between signals [88], and which can be maximized
over subsets or all of the parameters of the signal. Given a
real-valued detector response, the inner product between
the signal hSrespðtÞ and the model hMrespðtÞ is defined as

hhSrespjhMrespi ¼ 4Re
Z þ∞

0

h̃SrespðfÞh̃M�
respðfÞ

SnðjfjÞ
df; ð4:3Þ

where h̃ denotes the Fourier transform of h, h� denotes the
complex conjugate of h, and SnðjfjÞ is the one sided noise
power spectral density (PSD) of the detector.
The normalized match optimized over a relative time

shift and the initial orbital phase can be written as

MðιS;φ0S
Þ ¼ max

tc;φ0S

2
64 hhSrespjhMrespiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hhSrespjhSrespihhMrespjhMrespi
q

3
75: ð4:4Þ

The match is close to 1 when the model is able to faithfully
reproduce the signal, while values of the match close to 0
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indicate large disagreement between the two waveforms. In
Eq. (4.4) the match is computed for given values of the
angles ðιS;φ0S

Þ of the signal and maximizing over phase
and time shifts. We will take only the h22 mode of the
eccentric hybrids and a QC waveform model and compute
single mode mismatches maximized over a time shift t0 and
a phase offset ϕ0 as

MM ¼ max
t0;ϕ0

2
64 hhyb22 jhQC22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hhhyb22 jhhyb22 ihhQC22 jhQC22 i
q

3
75: ð4:5Þ

To simplify the comparisons, we introduce the mismatch,
1 −MM. Values of the mismatch close to zero indicate
good agreement between the signal and the model, while
the higher the mismatch the larger the difference between
both waveforms, indicating that the model is not able to
accurately represent the signal.
Having set the notation for the calculation of the

mismatch, we compute the mismatch between the eccentric
(2,2) mode hybrids computed in Sec. III and the quasicir-
cular model PhenomX [22,23], which is an upgrade of the
aligned-spin PhenomD model [11,12], with calibration to a
larger NR dataset and also to extreme-mass ratio wave-
forms. We employ the Advanced LIGO “zero detuned high
power” PSD [89] to compute the overlap in Eq. (4.3). The
integral of Eq. (4.3) is evaluated within a frequency range
of 20–2000 Hz. The nonmonotonic behavior of the GW
frequency of eccentric systems complicates the determi-
nation of the frequency range of a signal in the detector
band. The ideal case would be one in which the initial
apastron and periastron frequencies are below 20 Hz. This
would mean that the whole waveform starts before the
cutoff frequencies of the detectors, and one observes the
complete eccentric inspiral of the binary. Another possibil-
ity is that both frequencies are above 20 Hz; then the signal
is very short and much of the inspiral waveform is lost.
Finally, it is also possible that during some part of the
waveform the periastron frequencies are above 20 Hz and
apastron frequencies are below 20 Hz. The latter is
typically the case for our hybrid waveforms.
In Fig. 6 we show the single mode mismatches between

the eccentric hybrids and PhenomX for a range of total
mass for a system whereMT ∈ f20; 200gM⊙. As expected,
for larger total masses of the system most of the waveform
in the frequency band of the detector is in the merger and
ringdown parts and the mismatches are even below the 3%
threshold. This is consistent with the results obtained in
Sec. II C, which show the agreement in the final state
between the eccentric simulations and the quasicircular fits.
However, the lower the total mass the higher the mismatch,
this is due to the fact that at low frequencies there is a more
inspiral part of the waveform in the frequency band, and
therefore the inability of the quasicircular model to resem-
ble the eccentric inspiral becomes notorious. One can also

appreciate in Fig. 6 that, generally, the higher the initial
eccentricity the higher the mismatch for the whole
mass range.

B. Eccentric injections into detector noise

In this section we show some applications of the
eccentric waveform dataset to parameter estimation. We
inject eccentric hybrids into Gaussian noise realization
recolored to match the spectral density of the Advanced
LIGO and Virgo detectors at design sensitivity. All sim-
ulations with the same injected signal are performed
with the same noise realization. We do not address the
challenge of detecting eccentric signals and instead assume
that the signal has been detected by standard compact
binary coalescence search pipelines [90]. We perform
parameter estimation using the PYTHON-based BILBY code
[91]. Of the numerous stochastic samplers implemented in
BILBY, we employ the nested sampler CPNest [92] and use
waveform approximants implemented in LALSuite [86] as
the model templates. The eccentric hybrids make use of the
numerical relativity injection infrastructure [93,94].
State-of-the-art nonspinning eccentric IMR models

[37–40] have not yet been implemented in LALSuite. The
only eccentric waveform models in LALSuite are inspiral
nonspinning frequency domain approximants [32,95,96].
We have decided not to use such inspiral waveform models
to avoid bias induced by the sharp cutoff at the end of the
waveform [97]. For a study of the eccentricity measurement
using such inspiral approximants, see [98,99]. We restrict
to IMR quasicircular approximants and perform parameter
estimation analysis on the injected eccentric signals by
sampling in the 15 parameters of a quasicircular black
hole binary.

FIG. 6. Mismatches for the ðl; mÞ ¼ ð2; 2Þ mode between the
eccentric hybrid waveforms corresponding to the cases presented
in Table IV and the quasicircular PhenomX waveform model
as a function of the total mass of the system. The green, blue,
black, and red lines correspond to eccentric PN-NR hybrid
waveforms with initial eccentricities e ≤ 0.3, 0.3 ≤ e ≤ 0.5,
and 0.5 ≤ e ≤ 0.84, respectively.
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We inject three NR equal mass nonspinning simula-
tions described in Table I into a network of gravitational
wave detectors composed of the LIGO-Hanford, LIGO-
Livingston [100], and Virgo interferometers [101], each
operating at design sensitivity. We set a reference frequency
of fref ¼ 20 Hz, where the waveforms start. Some injected
parameters are displayed in Table II, while the declination
is δ ¼ −1.21 rad, the right ascension α ¼ 1.37 rad, and the
coalescence phase ϕ ¼ 0 rad. From these simulations,
the fðl;mg¼fð2;�2Þ;ð3;�2Þ;ð4;�4Þ;ð5;�4Þ;ð6;�6Þg
modes are used. We do not inject odd m modes because
they are zero by symmetry. For the injected signal we

choose the luminosity distance DL ¼ 430 Mpc, which is
similar to the first detection of a gravitational wave signal,
GW150914 [7], which produces a high network signal-to-
noise ratio (SNR), as shown in Tables II and III.
We employ a uniform-in-volume prior on the luminosity

distance, pðDLjHÞ ∝ D2
L, between 50 and 1500 Mpc. The

inclination and polarization angles both have uniform
priors between ð0; πÞ. We use the standard priors for the
extrinsic variables, as in Table I of [91]. Instead of sampling
in the component masses, we sample in mass ratio q and
chirp mass Mc, with ranges ð0.05; 1ÞM⊙ and ð15; 60ÞM⊙,
respectively. The spin priors are set differently according to

TABLE I. Summary of the injected NR simulations. The first column denotes the identifier of the simulation, and the second column
indicates the name of the simulation as presented in [38]. The next columns show the mass ratio, the z component of the dimensionless
spin vectors, the initial orbital separation, and the initial orbital eccentricity measured using the procedure detailed in Sec. II D.

ID Simulation q χ1;z χ2;z D=M eω � δeω

61 SXS:BBH:1355 1 0 0 12.97 0.090� 0.003
62 SXS:BBH:1359 1 0 0 15.73 0.146� 0.003
63 SXS:BBH:1361 1 0 0 16.69 0.209� 0.003

TABLE II. Black hole binary recovered parameters for the three NR simulations from Table I. The last row corresponds to the injected
parameters. In the penultimate row we show the recovered parameters of the zero-eccentricity injection performed with the
NRHybSur3dq8 model. The first column describes the initial eccentricity of the injected signal. Then we specify the approximant,
the component masses, the chirp mass, the mass ratio, the luminosity distance, the effective spin parameter, the polarization angle, the
inclination, the recovered matched-filter SNR for the detector network, and the log of the Bayes factor.

e0 Model m1=M⊙ m2=M⊙ Mc=M⊙ q DL=Mpc χeff ψ (rad) ι (rad) ρMatch logB

0.09 PhenomD 35.06þ2.55
−1.92 31.29þ1.10

−1.33 28.40þ0.17
−0.17 0.87þ0.10

−0.12 384þ49
−82 0.00þ0.02

−0.02 1.60þ1.28
−1.34 0.54þ0.32

−0.32 89.40 3463.79
PhenomHM 34.05þ2.14

−1.16 31.79þ0.69
−1.17 28.38þ0.16

−0.16 0.92þ0.07
−0.11 429þ16

−33 −0.01þ0.02
−0.02 2.01þ0.97

−1.82 0.28þ0.21
−0.17 89.28 3463.78

PhenomPv2 35.26þ2.97
−2.06 31.28þ1.18

−1.53 28.44þ0.21
−0.18 0.86þ0.11

−0.13 412þ24
−66 0.00þ0.02

−0.02 1.65þ1.22
−1.32 0.39þ0.32

−0.22 89.19 3459.54

0.14 PhenomD 34.03þ1.34
−0.72 32.63þ0.44

−0.73 28.86þ0.15
−0.15 0.95þ0.04

−0.07 407þ53
−84 0.02þ0.02

−0.02 1.58þ1.21
−1.23 0.54þ0.32

−0.32 84.87 3288.25
PhenomHM 33.76þ0.96

−0.54 32.73þ0.35
−0.56 28.82þ0.16

−0.14 0.96þ0.03
−0.05 408þ46

−52 0.02þ0.02
−0.02 1.91þ0.46

−0.58 0.54þ0.19
−0.25 84.74 3283.61

PhenomPv2 34.22þ1.48
−0.89 32.54þ0.54

−0.82 28.87þ0.19
−0.21 0.94þ0.05

−0.08 389þ33
−60 0.01þ0.02

−0.03 1.70þ1.09
−1.07 0.64þ0.25

−0.18 85.08 3302.37

0.2 PhenomD 35.65þ1.52
−0.85 34.01þ0.51

−0.82 30.13þ0.16
−0.16 0.94þ0.05

−0.07 420þ72
−109 0.07þ0.02

−0.02 1.57þ1.36
−1.18 0.61þ0.41

−0.37 81.88 3102.70
PhenomHM 35.47þ1.36

−0.78 33.97þ0.46
−0.72 30.06þ0.16

−0.15 0.95þ0.04
−0.07 438þ43

−47 0.06þ0.02
−0.02 0.42þ0.90

−0.29 0.54þ0.16
−0.20 81.97 3101.79

PhenomPv2 37.13þ2.11
−1.76 33.20þ1.00

−1.12 30.12þ0.21
−0.22 0.870.09−0.09 414þ41

−69 0.06þ0.02
−0.02 1.62þ0.98

−1.29 0.66þ0.25
−0.18 82.05 3112.97

0 PhenomD 34.07þ2.05
−1.29 30.91þ1.24

−1.77 28.24þ0.16
−0.16 0.91þ0.07

−0.10 375þ48
−75 0.0þ0.02

−0.02 1.58þ1.28
−1.24 0.53þ0.33

−0.32 173.16 3632.19

Injected 32.5 32.5 28.29 1 430 0 0.33 0.3

TABLE III. Black hole binary recovered parameters for the spinning hybrid waveform from Fig. 9. The last row corresponds to the
injected parameters. The first column describes the initial eccentricity of the injected signal. Then we specify the approximant, the
component masses, the chirp mass, the mass ratio, the luminosity distance, the effective spin parameter, the polarization angle,
the inclination, the recovered matched-filter SNR for the detector network, and the log of the Bayes factor.

e0 Model m1=M⊙ m2=M⊙ Mc=M⊙ q DL=Mpc χeff ψ (rad) ι (rad) ρMatch logB

0.42 PhenomD 37.52þ1.30
−0.76 36.04þ0.49

−0.73 31.86þ0.19
−0.2 0.95þ0.04

−0.06 474þ62
−101 0.06þ0.02

−0.02 2.60þ0.31
−0.33 1.54þ1.22

−1.19 82.68 2895.91
PhenomHM 37.23þ0.95

−0.37 36.62þ0.30
−0.81 32.07þ0.18

−0.23 0.98þ0.02
−0.06 384þ54

−45 0.08þ0.02
−0.02 2.28þ0.18

−0.16 1.04þ1.12
−0.26 82.54 2894.17

PhenomPv2 39.15þ2.08
−1.62 35.20þ0.84

−1.06 31.87þ0.23
−0.26 0.88þ0.07

−0.08 413þ77
−110 0.05þ0.03

−0.03 2.33þ0.33
−0.44 1.46þ1.36

−0.45 82.62 2910.28

Injected 32.5 32.5 28.29 1 430 −0.25 0.33 0.3
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the approximant. If the approximant is nonprecessing,
we set the option of aligned_spin=True in the
BBHPriorDict function of BILBY, which samples in
the dimensionless spin z components between −0.8 and
þ0.8. For precessing approximants we sample in the tilt
angles ðθ1; θ2Þ, the angle between the spin vectors ϕ12, the
angle between J and L ϕJL, and the dimensionless spin
magnitudes ða1; a2Þ. The priors for a1; a2; θ1; θ2;ϕJL, and
ϕ12 are the same as in Table I of [91]. We also define a
uniform prior for the coalescence time of 2 s centered at the
injection time.
We take three quasicircular models as approximants:

(1) IMRPhenomD [11,12], a nonprecessing model with
only the ð2;�2Þ modes, (2) IMRPhenomHM [15], a non-
precessing model including higher order modes, and
(3) IMRPhenomPv2 [13], an effective precessing model.
We plot the posterior probability distribution for the

chirp mass, mass ratio, effective spin parameter, and
luminosity distance for the PhenomD approximant in
Fig. 7 with 90% credible intervals specified by the dashed
vertical lines and the injected values by the thick vertical
magenta lines. As a control case, we also show in Fig. 7 the
posterior distribution of an equal mass nonspinning zero-
eccentricity injection performed using the hybridized sur-
rogate model NRHybSur3dq8 [19] with the same injected

parameters as in Table II and recovered with the PhenomD
model. The NRHybSur3dq8 injected waveform contains all
higher order modes up to l ¼ 4, which in this case seems to
cause the small bias one observes in the luminosity distance
when recovering with the PhenomD model, which contains
only the ð2; j2jÞ modes. For the rest of the parameters, like
the mass ratio, the chirp mass, and the effective spin
parameter, we obtain results consistent with the accuracy
of the PhenomDmodel for parameter estimation of injected
signals as shown in [22].
The posterior distributions for the rest of the approx-

imants are shown in Fig. 13. The same information is
summarized in Fig. 8, where the median and the error bars
corresponding to the 90% credible intervals of the pos-
terior distribution are shown as a function of the initial
eccentricity. Note that the bars corresponding to the same
initial eccentricity but different approximants have been
separated by a small amount to ease the visualization
of the results. For the lowest initial eccentricity, e0 ¼ 0.09,
the results for the four quantities are pretty different.
The chirp mass and the effective spin parameter produce
similar distributions for the three approximants, while for
the mass ratio and the luminosity distance, PhenomHM
distributions are closer to the injected values than
PhenomD and PhenomPv2.

FIG. 7. Posterior probability distributions for the injected NR simulations of Table I and a zero-eccentricity injection using the
NRHybSur3dq8 model. The vertical dashed lines correspond to 90% credible regions. The magenta thick vertical line represents the
injected value. The green, black, blue, and red curves represent distributions sampled using the IMRPhenomD approximant with
injected initial eccentricities e0 ¼ 0.0, 0.09, 0.14, 0.2, respectively.
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Furthermore, for e0 ¼ 0.14 and e0 ¼ 0.2 we observe
increasingly poor agreement with the injected values,
except for the mass ratio, where the lowest initial eccen-
tricity signal produces wider distributions than those with
higher initial eccentricities. This can also be checked in
Table II, where the recovered parameters, median values,
and 90% credible intervals are compared with the injected
values. Regarding the effective spin parameter and the chirp
mass, the increase of initial eccentricity in the injected
signal shifts the posteriors for the three quasicircular
models, while for the mass ratio the increase of initial
eccentricity reduces the bias on the measurement of the
mass ratio, probably as a consequence of the shift in the
chirp mass distribution, as displayed in Fig. 11 for all
injections recovered with the PhenomD model.
One observes also that PhenomHM recovers the

injected parameters more effectively than PhenomD and
PhenomPv2. For the luminosity distance the probability
densities tend to flatten and be closer to the prior distri-
butions for high initial eccentricities. One notes again that
PhenomHM has less parameter bias than PhenomD
and PhenomPv2. Injected values of the sky position like
the right ascension α ¼ 1.375 rad and δ ¼ −1.21 rad are
well recovered for all nine runs, probably due to the

expensive parameter estimation (PE) settings described
in Appendix C: α ¼ 1.37þ0.01

−0.01 rad and δ ¼ −1.21þ0.01
−0.01 rad.

Furthermore, we have computed the recovered matched-
filter SNR for the detector network, ρMatch, for each
simulation. This quantity, ρMatch, is computed calculating
the matched filter between the detector data with the
eccentric signal injected and the waveform of the approx-
imant waveform model with the parameters corresponding
to the highest log-likelihood value of the posterior distri-
bution. The results of such a calculation are shown in
Table I. As expected, we observe that the zero-eccentricity
injection recovers much more SNR than the eccentric
injections, with decreasing values of the recovered SNR
with increasing eccentricity.
Additionally, we display the values of the log Bayes

factor for each simulation. The Bayes factor is computed
here as the ratio between the signal and null evidence [see
Eq. (13) of [102] ]. One can observe that both the recovered
matched-filter SNR and the log Bayes factor decrease more
the higher the initial eccentricity of the injected signal is.
The matched-filter SNR produces similar values between
models for simulations with the same initial eccentricity.
However, the log Bayes factor tends to be slightly higher
for the aligned-spin waveform models, PhenomD and

FIG. 8. Median values and error bars corresponding to 90% credible regions of the posterior probability distributions for the injected
NR simulations of Table I. The vertical magenta line represents the injected value. The black, blue, and red segments represent the
median values and errors bars of the distributions sampled using the IMRPhenomD, IMRPhenomHM, and IMRPhenomPv2
approximants, respectively. The cases are represented for three initial eccentricities of the injected signal, e0 ¼ 0.09, 0.14, 0.2. To
ease the visualization of the horizontal bars, cases with the same initial eccentricity and run with different approximants have been
separated at Δe ¼ 0.003.
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PhenomHM, for the lowest initial eccentric injected signal,
while for higher initial eccentricities the precessing model
IMRPhenomPv2 shows slightly greater log Bayes factors
than the aligned-spin ones. The highest log Bayes factor is
obtained for the zero-eccentricity injection.
We repeat the same procedure while injecting a hybrid

waveform, including only the ðl; mÞ ¼ ð2;�2Þ modes, of
an eccentric spinning waveform with ID 8 of Table IV. This
is an equal mass with the z component of the dimensionless
spin vectors χ1z ¼ χ2z ¼ −0.25 and initial eccentricity
e0 ¼ 0.420� 0.006. The posterior distribution for the chirp

mass, mass ratio, luminosity distance, and χeff are
shown in Fig. 9 for IMRPhenomD, IMRPhenomHM,
and IMRPhenomPv2 as waveform models. In this case,
the parameter biases are much higher than in the previous
injection study mainly due to the fact that the injected
signal has a much higher initial eccentricity.
The values of the recovered parameters as well as the

injected values are shown in Table III. The injected values
of the sky position like the right ascension α ¼ 1.375 rad
and δ ¼ −1.21 rad are again well recovered parameters for
the three runs α ¼ 1.37þ0.01

−0.01 rad and δ ¼ −1.21þ0.01
−0.01 rad.

TABLE IV. Summary of the eccentric NR simulations used in this work. In the first column we indicate the identifier of the simulation.
Additionally, each simulation is specified by its mass ratio q ¼ m1=m2 ≥ 1, the code with it was produced, the z component of the
dimensionless spin vectors χ1;z, χ2;z, the orbital separation D=M, the desired initial eccentricity e0 used in Eq. (2.4) and the actual
measured initial orbital eccentricity eω and its error δeω, the time to merger Tmerger=M, the number of orbits Norbits, the final mass Mf,
and the magnitude of the dimensionless final spin χf .

ID Simulation Code q χ1;z χ2;z χeff D=M e0 eω � δeω Tmerger=M Norbits Mf χf

1 q1._0._0._et0.1_D12.23 BAM 1 0 0 0 12.23 0.1 0.114� 0.002 1256.42 4.5 0.9527 0.6871
2 q1._0._0._et0.2_D15 BAM 1 0 0 0 15.0 0.2 0.210� 0.002 1682.01 5.2 0.9533 0.6895
3 q1._0._0._et0.1_D15 BAM 1 0 0 0 15.0 0.1 0.095� 0.002 2961.01 8.3 0.9525 0.6869
4 q1._0._0._et0.2_D17 BAM 1 0 0 0 17.0 0.2 0.195� 0.003 2917.42 8.2 0.9535 0.6889
5 q1._0._0._et0.3_D20 BAM 1 0 0 0 20.0 0.3 0.301� 0.001 497.48 1.5 0.9548 0.6950
6 Eccq1._0._0.25_et0.1_D14 ET 1 0 0.25 0.125 14.0 0.1 0.100� 0.002 2319.85 6.4 0.9480 0.7249
7 Eccq1._0._0.25_et0.2_D16 ET 1 0 0.25 0.125 16.0 0.2 0.217� 0.003 2449.84 5.8 0.9474 0.7243
8 Eccq1._-0.25_-0.25_et0.1_D12 ET 1 −0.25 −0.25 −0.25 12.0 0.1 0.148� 0.002 939.87 2.8 0.9579 0.6080
9 Eccq1._0.25_0.25_et0.1_D12 ET 1 0.25 0.25 0.25 12.0 0.1 0.131� 0.002 1347.59 4.8 0.9440 0.7605
10 Eccq1._-0.25_-0.25_et0.1_D14 ET 1 −0.25 −0.25 −0.25 14.0 0.1 0.134� 0.002 1897.26 5.3 0.9573 0.6091
11 Eccq1._0.25_0.25_et0.1_D14 ET 1 0.25 0.25 0.25 14.0 0.1 0.112� 0.003 2464.75 7.6 0.9440 0.7607
12 Eccq1._-0.25_-0.25_et0.2_D14 ET 1 −0.25 −0.25 −0.25 14.0 0.2 0.249� 0.002 1067.25 3.8 0.9578 0.6109
13 Eccq1._0.25_0.25_et0.2_D14 ET 1 0.25 0.25 0.25 14.0 0.2 0.194� 0.002 1499.92 5.0 0.9432 0.7620
14 Eccq1._0.25_0.25_et0.2_D16 ET 1 0.25 0.25 0.25 16.0 0.2 0.199� 0.003 2599.90 8.9 0.9437 0.7624
15 Eccq1._-0.25_-0.25_et0.5_D26 ET 1 −0.25 −0.25 −0.25 26.0 0.5 0.38� 0.004 3287.31 7.7 0.9566 0.6080
16 Eccq1._0.25_0.25_et0.5_D26 ET 1 0.25 0.25 0.25 26.0 0.5 0.418� 0.004 4613.02 11.3 0.9428 0.7604
17 Eccq1._0.25_0._et0.1_D14 ET 1 0.25 0. 0.125 14.0 0.1 0.128� 0.003 2302.69 7.2 0.9480 0.7249
18 Eccq1._0.25_0._et0.2_D16 ET 1 0.25 0. 0.125 16.0 0.2 0.161� 0.002 2411.27 7.4 0.9474 0.7242
19 Eccq1._-0.5_-0.5_et0.1_D13 ET 1 −0.5 −0.5 −0.5 13.0 0.1 0.143� 0.002 1131.58 3.2 0.9623 0.5286
20 Eccq1._0.5_0.5_et0.1_D13 ET 1 0.5 0.5 0.5 13.0 0.1 0.116� 0.002 2071.02 7.3 0.9323 0.8309
21 Eccq1._-0.5_-0.5_et0.2_D15 ET 1 −0.5 −0.5 −0.5 15.0 0.2 0.104� 0.001 1170.51 3.3 0.9624 0.5298
22 Eccq1._0.5_0.5_et0.2_D15 ET 1 0.5 0.5 0.5 15.0 0.2 0.194� 0.002 2290.43 7.7 0.9329 0.8323
23 Eccq1._-0.5_-0.5_et0.5_D26 ET 1 0.5 0.5 0.5 26.0 0.5 0.505� 0.005 2675.44 6.1 0.9622 0.5230
24 Eccq1._0.5_0.5_et0.5_D26 ET 1 0.5 0.5 0.5 26.0 0.5 0.400� 0.004 5307.53 13.4 0.9322 0.8294
25 Eccq1._-0.75_-0.75_et0.1_D13 ET 1 −0.75 −0.75 −0.75 13.0 0.1 0.144� 0.002 907.44 2.5 0.9654 0.4458
26 Eccq1._0.75_0.75_et0.1_D13 ET 1 0.75 0.75 0.75 13.0 0.1 0.089� 0.002 2307.95 8.3 0.9156 0.8934
27 Eccq1._-0.75_-0.75_et0.2_D15 ET 1 −0.75 −0.75 −0.75 15.0 0.2 0.249� 0.002 902.561 2.6 0.9657 0.4475
28 Eccq1._0.75_0.75_et0.2_D15 ET 1 0.75 0.75 0.75 15.0 0.2 0.181� 0.002 2629.47 9.5 0.9149 0.8904
29 Eccq1._-0.75_-0.75_et0.5_D26 ET 1 −0.75 −0.75 −0.75 26.0 0.5 0.339� 0.003 2079.87 4.1 0.9655 0.4506
30 Eccq1._0.75_0.75_et0.5_D26 ET 1 0.75 0.75 0.75 26.0 0.5 0.373� 0.004 5907.6 15.1 0.9158 0.8843
31 Eccq1.5_0._0._et0.1_D13 ET 1.5 0 0 0 13.0 0.1 0.108� 0.002 1606.33 5.2 0.9552 0.6651
32 Eccq1.5_0._0._et0.2_D13.5 ET 1.5 0 0 0 13.5 0.2 0.126� 0.001 1142.56 3.8 0.9553 0.6619
33 Eccq1.5_0._0._et0.2_D15 ET 1.5 0 0 0 15.0 0.2 0.245� 0.002 1809.34 5.4 0.9548 0.6636
34 Eccq2._0._0._et0.1_D13 ET 2 0 0 0 13.0 0.1 0.106� 0.002 1738.71 5.3 0.9610 0.6232
35 Eccq2._0._0._et0.2_D16 ET 2 0 0 0 16.0 0.2 0.167� 0.002 2499.02 7.5 0.9610 0.6249
36 Eccq2._0._0._et0.5_D26 ET 2 0 0 0 26.0 0.5 0.422� 0.004 4380.33 10.4 0.9609 0.6262
37 Eccq2._-0.25_-0.25_et0.1_D12 ET 2 −0.25 −0.25 −0.25 12.0 0.1 0.138� 0.002 1026.39 3.2 0.9664 0.5283

(Table continued)
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TABLE IV. (Continued)

ID Simulation Code q χ1;z χ2;z χeff D=M e0 eω � δeω Tmerger=M Norbits Mf χf

38 Eccq2._0.25_0.25_et0.1_D12 ET 2 0.25 0.25 0.25 12.0 0.1 0.103� 0.002 1435.07 5.1 0.9544 0.7170
39 Eccq2._-0.25_-0.25_et0.1_D14 ET 2 −0.25 −0.25 −0.25 14.0 0.1 0.130� 0.002 2001.7 5.6 0.9663 0.5261
40 Eccq2._0.25_0.25_et0.1_D14 ET 2 0.25 0.25 0.25 14.0 0.1 0.103� 0.002 2707.25 8.3 0.9544 0.7155
41 Eccq2._-0.25_-0.25_et0.2_D14 ET 2 −0.25 −0.25 −0.25 14.0 0.2 0.072� 0.001 1123.58 3.5 0.9660 0.5300
42 Eccq2._0.25_0.25_et0.2_D14 ET 2 0.25 0.25 0.25 14.0 0.2 0.219� 0.002 1708.92 5.6 0.9548 0.7151
43 Eccq2._-0.25_-0.25_et0.2_D16 ET 2 −0.25 −0.25 −0.25 16.0 0.2 0.225� 0.003 2085.67 5.8 0.9663 0.5253
44 Eccq2._0.25_0.25_et0.2_D16 ET 2 0.25 0.25 0.25 16.0 0.2 0.188� 0.003 2847.34 8.3 0.9549 0.7165
45 Eccq2._-0.25_-0.25_et0.5_D26 ET 2 −0.25 −0.25 −0.25 26.0 0.5 0.392� 0.003 3628.05 8.4 0.9665 0.5308
46 Eccq2._0.25_0.25_et0.5_D26 ET 2 0.25 0.25 0.25 26.0 0.5 0.411� 0.004 5203.86 12.5 0.9542 0.7140
47 Eccq2._0.5_0.5_et0.1_D14 ET 2 0.5 0.5 0.5 14.0 0.1 0.095� 0.002 2985.28 9.1 0.9448 0.8052
48 Eccq2._-0.5_-0.5_et0.1_D14 ET 2 −0.5 −0.5 −0.5 14.0 0.1 0.158� 0.003 1714.88 4.2 0.9698 0.4279
49 Eccq2._-0.5_-0.5_et0.2_D16 ET 2 −0.5 −0.5 −0.5 16.0 0.2 0.277� 0.003 1712.98 4.2 0.9696 0.4300
50 Eccq2._0.5_0.5_et0.2_D16 ET 2 0.5 0.5 0.5 16.0 0.2 0.180� 0.003 3294.21 10.5 0.9451 0.8035
51 Eccq2._-0.5_-0.5_et0.5_D27 ET 2 −0.5 −0.5 −0.5 27.0 0.5 0.393� 0.004 3522.66 7.2 0.9696 0.4328
52 Eccq2._-0.75_-0.75_et0.1_D14 ET 2 −0.75 −0.75 −0.75 14.0 0.1 0.137� 0.002 1386.95 3.2 0.9725 0.3273
53 Eccq2._-0.75_-0.75_et0.2_D16 ET 2 −0.75 −0.75 −0.75 16.0 0.2 0.125� 0.002 1353.72 3.4 0.9728 0.3297
54 Eccq3._0._0._et0.1_D13 ET 3 0 0 0 13.0 0.1 0.104� 0.002 1978.55 6.1 0.9713 0.5414
55 Eccq3._0._0._et0.2_D15 ET 3 0 0 0 15.0 0.2 0.166� 0.002 2156.21 6.2 0.9710 0.5401
56 Eccq3._0._0._et0.5_D26 ET 3 0 0 0 26.0 0.5 0.416� 0.004 5029.06 11.5 0.9710 0.5385
57 Eccq4._0._0._et0.1_D12 ET 4 0 0 0 12.0 0.1 0.134� 0.002 1609.06 5.3 0.9780 0.4725
58 Eccq4._0._0._et0.2_D15 ET 4 0 0 0 15.0 0.2 0.176� 0.002 2412.73 7.4 0.9779 0.4731
59 Eccq4._0._0._et0.5_D27 ET 4 0 0 0 27.0 0.5 0.412� 0.004 6698.64 15.2 0.9779 0.4739
60 Eccq4._0._0._et0.5_D27.5 ET 4 0 0 0 27.5 0.5 0.415� 0.005 7422.59 16.4 0.9784 0.4717

FIG. 9. Posterior probability distributions for the injected spinning eccentric hybrid waveform with initial eccentricity
e0 ¼ 0.420� 0.006. The vertical dashed lines correspond to 90% credible regions. The thick vertical magenta line represents the
injected value. The black, blue, and red curves represent distributions sampled using the IMRPhenomD, IMRPhenomHM, and
IMRPhenomPv2 approximants, respectively.
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The bias in the chirp mass is ∼4 M⊙ for the three models.
Here one again observes the correlation between chirp mass
and mass ratio. The shift in chirp mass posteriors with
respect to the injected value translates into a better
determined mass ratio distribution, which is clearly the
case for PhenomHM, which performs unexpectedly well in
recovering the mass ratio parameter, while PhenomD and
PhenomPv2 show much wider distributions and much
larger credible intervals.
The posteriors of the luminosity distance show also large

error bars for the three models, where PhenomHM again
reduces the bias with respect to PhenomD and PhenomPv2.
The recovered effective spin parameter is completely off
with respect to the injected value for the three approx-
imants. The recovered χeff is positive, while the injected
one is negative. The bias in the effective spin parameter is
approximately −0.3 for the three models, indicating the
inability of the quasicircular models to estimate the spin
parameter of highly eccentric spinning binaries with
quasicircular models. Regarding the recovered matched-
filter SNR and the log Bayes factor displayed in Table III,
one can observe that while the SNR provides comparable
values among models, the values of the log Bayes factor
indicate that PhenomPv2 fits the data scarcely better than
PhenomHM and PhenomD.
This section shows examples of the kind of study that

one is able to perform with the current eccentric waveform
dataset. We have shown the limitations of the current IMR
quasicircular models to estimate the parameters of moder-
ately eccentric waveforms, including a moderately spinning
case. For the cases studied in this section, we have found
that although the use of quasicircular models to estimate
parameters of eccentric signals leads to inevitable biases,
aligned-spin quasicircular models with higher order modes
leverage the impact of these biases for the mass ratio and
the luminosity distance when compared to aligned-spin
models with only the ð2;�2Þ modes or precessing models.
Because of the computational cost of the PE runs and the
amount of eccentric waveforms available, we leave for
future work a detailed study of the whole dataset using not
only quasicircular models but also eccentric waveform
approximants.

V. SUMMARY AND CONCLUSIONS

In this paper we have presented the first parameter study
of numerical relativity simulations of eccentric spinning
black hole binaries. We have presented a simple procedure
to set up the initial parameters of eccentric simulations. The
higher the initial eccentricity of the simulation, the longer
the initial separation has to be to avoid the immediate
plunge of the binary due to the strong interactions at the
periastron. This increases the computational cost of the
simulations of Table IV with e0 ∼ 0.4, which is roughly
double the one with e0 ∼ 0.2, as can be observed in their
merger times. Additionally, longer initial separations

produce long enough waveforms, which allows one to
avoid the breakdown of the post-Newtonian approximation
and ease the posterior construction of PN-NR hybrid
waveforms. As part of the postprocessing step, we have
computed the final mass and final spin of the 60 new
simulations presented in Table IV. We have compared the
final mass and final spin of those simulations with quasi-
circular NR fits [59] and found that relative differences
are as high as 1%, which is completely consistent with the
inaccuracies of the fitting formulas and gauge transient in the
apparent horizon quantities. Therefore, we have extended
previous work [53] on the circularization of eccentric
nonspinning numerical relativity simulations to the eccen-
tric spinning case. Note that the eccentricities of the
simulations presented in this communication have more
moderate values than the ones presented in [53], although
ours are much longer and include spins.
A crucial part of this work has been to extend the low

eccentric procedure to measure the eccentricity in NR [55]
to the arbitrary high eccentric limit. We have shown that the
eccentricity estimator used in [55] cannot be used for high
eccentricities because it does not reduce to the Newtonian
definition of the eccentricity. Additionally, its reliance on a
noneccentric fit makes it numerically inaccurate, and it can
produce eccentricity values higher than 1. As a conse-
quence, we have decided to use another eccentricity
estimator [68] that is also constructed upon the orbital
frequency and which does not rely on any noneccentric fit.
This eccentricity estimator reduces to the Newtonian
definition of eccentricity for arbitrarily high eccentricities.
We have shown that with this eccentricity estimator we are
able to robustly measure the eccentricity for the whole
evolution, which will be a key result for generating a future
eccentric waveform model.
We have then taken the NR waveforms and hybridized

the (2,2) mode with PN waveforms. The production of the
eccentric PN waveforms has required to solve the point
particle 3.5PN equations of motion in ADMTT coordinates
[55] enhanced with the eccentric contribution to the energy
flux from [71]. The absence of complete generic PN
expressions for the waveform modes has caused the
inaccuracy of the PN waveforms to dominate the error
in the hybridization procedure. The use of the instantaneous
terms at 3PN order [76] produces inaccurate waveforms
due to the lack of low order tail terms, while the full 3PN
expressions in [77] are restricted to the QK parametrization
and rely on a certain decomposition of the dynamical
variables, which complicates their combination with the
generic numerical solution of the equations of motion (3.1).
Therefore, we have restricted to the use of the quadrupole
formula with a correction procedure for the initial orbital
separation. We have developed a procedure which corrects
the initial orbital separation of the PN evolution code for a
certain δr such that it minimizes the difference in amplitude
between the PN and NR (2,2) waveform modes. We have
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shown thatwith that procedurewe are leftwith relative errors
in the amplitude and phase below 1% in the hybridization
region. These errors in amplitude and phase are high
compared to the quasicircular ones [84], where the PN
knowledge is wider. Therefore, we expect that in the future
an improvement in knowledge about post-Newtonian wave-
forms will allow us to construct more accurate hybrid
waveforms, not only for the (2,2) mode but also for the
higher order modes.
We have also compared the hybrid waveforms with

quasicircular IMR waveform models. This has been done
by first computing the mismatch of the eccentric hybrid
dataset against the quasicircular nonprecessing PhenomX
model [22,23]. We find that the mismatches become much
higher than 3% for binaries with a total mass lower than
100 M⊙, while for total masses higher than 150 M⊙ the
mismatch lowers below 3% due to the fact that most of the
eccentricwaveforms in the frequency bandof the detector are
in the merger-ringdown parts, which, as shown in Sec. II C,
due to circularization agrees really well with the quasicir-
cular model.
Additionally, we have made a set of injections into

Gaussian detector noise colored to match the LIGO and
Virgo design detector sensitivities. We have studied the
parameter biases on recovered parameters when using
quasicircular models as approximants. We have used three
different quasicircular models to recover the parameters and
have shown that, although the use of quasicircular models
leads to inevitable biases in parameters like the effective spin
parameter or the chirp mass, where the biases are similar
among the three models, others like the mass ratio and the
luminosity distance present lower biases when using qua-
sicircular aligned-spin models including higher order modes.
Another important feature is the correlation between chirp
mass and mass ratio, the better the measurement of the chirp
mass, the worse the determination of the mass ratio, and vice
versa. This can be clearly observed in Figs. 9 and 13, where
for initial eccentricities 0.09 the chirp mass is well measured
for the three models but the mass ratio distributions are not.
As the initial eccentricity increases, so does the shift in the
chirp mass distribution, and the mass ratio is generally better
determined. In the case of the spinning eccentric hybrid, the
high initial eccentricity produces clear biases in all quantities
and, unexpectedly, PhenomHM recovers the injected value
of the mass ratio well and performs the best for the
luminosity distance. The study of this phenomenology for
the different cases that we have available is ongoing and we
leave for a future communication the extension of these
results to the whole parameter space.
The work presented in this communication is a natural

extension of [55]. We have set up the current infrastructure
of our group for quasicircular waveform modeling of the
eccentric case. As shown in this paper, we have developed
new methods to produce a set of spinning eccentric hybrid
waveforms which can actually be used for data analysis
purposes. The next natural step is to use this hybrid dataset

to produce a calibrated eccentric IMRwaveform, which can
be used for the detection and parameter estimation of
eccentric black hole binaries.
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APPENDIX A: NUMERICAL RELATIVITY
SIMULATIONS

The numerical setup for the BAM and EINSTEIN TOOLKIT

codes is the same as that described in Appendix C of [55].
We present in Table IV the NR simulations we have
produced for this publication. In Table IV we show the
main properties of the NR simulations: from left to right we
start providing an identifier to the simulations, the simu-
lation name, themass ratioq ¼ m1=m2 ≥ 1, the code used to
produce it, the z component of the dimensionless spin
vectors χ1;z, χ2;z of each black hole, the initial orbital
separation D=M, where M is the total mass of the system,
the initial eccentricity e0 corresponding to the eccentricity
value used in Eq. (2.4) to compute the perturbation factors of
the initial linear momenta of the simulations, the initial
orbital eccentricity eω measured with Eq. (2.8) from the
orbital frequency computed from the motion of the black
holes, an eccentricity error estimate, δeω, computed using
Eq. (2.9), the time to merger Tmerger=M, calculated as the
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time elapsed from the start of the simulation until the peak of
the amplitude of the ðl; mÞ ¼ ð2; 2Þ mode, the number of
orbits, Norbits ¼ ϕM

22=ð4πÞ, where ϕM
22 is the value of the

phase of the (2,2) mode at merger, the final mass Mf as
defined in Eq. (2.5), and the magnitude of the dimensionless
final spin, χf ¼ S=Mf, where S is specified in Eq. (2.4).
In Fig. 10 we display the values of the eccentricity

measured from the orbital frequency eω defined in
Eq. (2.8), and the value of the eccentricity e0 used in
Eq. (2.4) to compute the perturbation factors of the initial
linearmomenta of the simulations in Table IV.Moreover, we
distinguish for eω with blue, red, and green symbols
indicating nonspinning and positive and negative spin
simulations, respectively. As expected, we observe an
increase in the differences between eω and e0 with higher
initial eccentricities and with high spins as the formula for
λtðr; e0; η; signÞ where e0 is used. Equation (2.2) is a 1PN
expression derived for nonspinning binaries in the low
eccentricity limit. To obtain better control on the initial
eccentricity of the NR simulations for high eccentricities,
higher order corrections, including spin effects, should be
taken into account in the derivation of the correction factors
for the initial linearmomenta of the black holes.We leave for
future work an extension of the current PN formulas to the
high eccentricity limit.

APPENDIX B: ECCENTRICITY ESTIMATORS
IN HIGHLY ECCENTRIC SYSTEMS

In this section we briefly show the form of the eccen-
tricity estimators of Eqs. (2.7) and (2.8) in the Newtonian
limit. We start analyzing the eccentricity estimator

eωðtÞ ¼
ωðtÞ − ωðe ¼ 0Þ

2ωðe ¼ 0Þ : ðB1Þ

In the Keplerian parametrization the orbital frequency can
be written as

ωðtÞ ¼ nt
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

ð1 − e cos uÞ2 ; ðB2Þ

where nt ¼ 2π=Torb is the mean motion, Torb is the orbital
period, e is the eccentricity, and u is the eccentric anomaly.
In the low eccentric limit, Eq. (B1) reduces to

ωðtÞ ≈ nt½1þ 2e cos u� þOðe2Þ: ðB3Þ

Replacing Eq. (B3) in Eq. (B1), one obtains eω ¼ e.
However, if one substitutes Eq. (B2) into Eq. (B1) one gets

eωðtÞ ¼
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

½e cosðuÞ − 1�2 − 1

�
; ðB4Þ

which does not reduce to the Newtonian definition of
eccentricity. Moreover, one can show that the estimator of
Eq. (B4) is not normalized for a certain combination of
values of u and e. For example, if u vanishes, then

eω ≥ 1 for e ≥ 0.455212: ðB5Þ

FIG. 10. Eccentricity measured from the orbital frequency eXω,
with X ¼ NS;−S;þS corresponding to nonspinning and positive
and negative spin simulations, for all of the simulations in
Table IV compared to the PN eccentricity e0 specified in
Eq. (2.4) to compute the perturbation factors for the initial linear
momentum of the simulations. The black dots represent e0, the
eccentricity value prescribed in Eq. (2.4), while the diamonds
represent the actual measured eccentricity eXω. For eXω we
distinguish nonspinning (X ¼ NS), positive spin (X ¼ þS),
and negative spin (X ¼ −S) simulations with blue, red, and
green symbols, respectively.

FIG. 11. Posterior probability distributions of the mass ratio
and the chirp mass for the injected eccentric NR simulations in
Table I and the zero-eccentricity injection with the NRHyb-
Sur3dq8 model, using IMRPhenomD as the approximant.
The vertical dashed lines correspond to 90% credible regions.
The dark blue thick vertical line represents the injected value. The
black, red, blue, and green curves represent injections with initial
eccentricities e0 ¼ 0, 0.09, 0.14, 0.2, respectively.
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This shows that the eccentricity estimator given by
Eq. (B1) has to be taken with caution in the high eccentric
limit because it can go above 1. On the other hand, the
eccentricity estimator

eΩa;p
ðtÞ ¼ ω1=2

p − ω1=2
a

ω1=2
p þ ω1=2

a

; ðB6Þ

where ωa, ωp are the orbital frequencies at the apastron and
periastron, respectively. This eccentricity estimator has the
property such that, even for high eccentricities, it reduces to
the Newtonian definition of eccentricity, i.e., eΩa;p

¼ e.

APPENDIX C: POSTERIOR DISTRIBUTIONS

In thisAppendixwe provide further information about the
parameter estimation methods used and posterior distribu-
tions of several relevant quantities. The settings of the CPNest
sampler [92] are a number of live pointsNlive ¼ 16824 and a
maximum number of Markov-chain Monte Carlo (MCMC)
steps to take max -mcmc ¼ 5000. We refer the reader to
[103] for details on the meaning of those parameters in the
context of nested sampling. This is a computationally
expensive setup aiming to ensure an accurate sampling of
the likelihood given the complexity of the signal.
We show in Fig. 11 a contour plot of the mass ratio and

chirp mass posterior distributions for the injected eccentric
NR simulations in Table I and the zero-eccentricity
injection with the NRHybSur3dq8 model recovered with

FIG. 12. Posterior probability distributions of χp for the
injected NR simulations in Table I. The vertical dashed lines
correspond to 90% credible regions. The magenta thick vertical
line represents the injected value. The black, blue, and red
curves represent injections with initial eccentricities e0 ¼ 0.09,
0.14, 0.2. All cases are sampled using as the approximant
IMRPhenomPv2.

FIG. 13. Posterior probability distributions for the eccentric injected NR simulations in Table I. The vertical dashed lines correspond to
90% credible regions. The magenta thick vertical line represents the injected value. The black, blue, and red curves represent
distributions sampled using the IMRPhenomD, IMRPhenomHM, and IMRPhenomPv2 approximants, respectively. With increasingly
high opacity injections are represented with initial eccentricities e0 ¼ 0.09, 0.14, 0.2.
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PhenomD. This plot explicitly exhibits the correlation
between the bias in the measurement of the chirp mass
and the narrowing of the posterior for the mass ratio with
increasing initial eccentricity.
For completion we also show in Fig. 12 the posterior

distribution of the χp parameter for the NR simulations in
Fig. 1 run with IMRPhenomPv2. This parameter, defined in
[104], accounts for the spin components orthogonal to the
direction of the orbital angular momentum vector of
the system. Therefore, for nonprecessing configurations
χp ¼ 0, and for precessing configurations χp ranges
between 0 and 1. In Fig. 12 one can observe an increase
in χp with increasing initial eccentricity of the injected

signal. This result means that the precessing waveform
IMRPhenomPv2 is trying to compensate for the inability to
reproduce the eccentric signal incrementing the value of the
χp parameter, i.e., increasing the precession.
In Fig. 13 we display the posterior probability distribu-

tions of the chirp mass, mass ratio, effective spin parameter,
and luminosity distance for the eccentric injected NR
simulations in Table I recovered with the IMRPhenomD,
IMRPhenomHM, and IMRPhenomPv2 approximants with
90% credible intervals specified by the dashed lines and
the injected values by the magenta thick vertical lines. The
fainter the color of the posterior distributions, the lower the
initial eccentricity (e0 ¼ 0.09, 0.14, 0.20).
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