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Axions are some of the best motivated particles beyond the Standard Model. We show how the attractive
self-interactions of dark matter (DM) axions over a broad range of masses, from 10−22 eV to 107 GeV, can
lead to nongravitational growth of density fluctuations and the formation of bound objects. This structure
formation enhancement is driven by parametric resonance when the initial field misalignment is large, and
it affects axion density perturbations on length scales of order the Hubble horizon when the axion field
starts oscillating, deep inside the radiation-dominated era. This effect can turn an otherwise nearly scale-
invariant spectrum of adiabatic perturbations into one that has a spike at the aforementioned scales,
producing objects ranging from dense DM halos to scalar-field configurations such as solitons and
oscillons. We call this class of cosmological scenarios for axion DM production “the large-misalignment
mechanism.” We explore observational consequences of this mechanism for axions with masses up to
10 eV. For axions heavier than 10−5 eV, the compact axion halos are numerous enough to significantly
impact Earth-bound direct detection experiments, yielding intermittent but coherent signals with repetition
rates exceeding one per decade and crossing times less than a day. These episodic increases in the axion
density and kinematic coherence suggest new approaches for axion DM searches, including for the QCD
axion. Dense structures made up of axions from 10−22 eV to 10−5 eV are detectable through gravitational
lensing searches, and their gravitational interactions can also perturb baryonic structures and alter star
formation. At very high misalignment amplitudes, the axion field can undergo self-interaction-induced
implosions long before matter-radiation equality, producing potentially-detectable low-frequency stochas-
tic gravitational waves.
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I. INTRODUCTION

The overwhelming majority of the energy density in the
Universe appears to interact only gravitationally, in all
available observational and experimental data so far. A
quarter of this energy density is in the form of dark matter
(DM), a matter component that does not emit or interact
strongly with light. Two of the main pieces of evidence for
DM are the fluctuations in the cosmic microwave back-
ground (CMB) and the formation of gravitational structures

over a large range of length scales, from the size of the
largest superclusters of galaxies down to the smallest
observable dwarf galaxies. These two bodies of evidence
are in mutual quantitative agreement with one another.
Among the best motivated particle physics candidates for

DM are axions, CP-odd scalar fields. The most famous one
is the QCD axion [1–3], responsible for addressing the
strong CP problem as it explains the smallness of the
neutron’s electric dipole moment. Axions are also ubiqui-
tous in extensions of the Standard Model such as string
theory, where they arise as the byproducts of complex
topology [4].
Axions have a natural production mechanism of near-

pressureless energy density, through what is known as the
misalignment production mechanism [5–7]. The dynamics
of the axion field ϕ are described by four-dimensional
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partial differential field equations which depend on the
potential of the axion. Inflation irons out all spatial
wrinkles, converting the axion into a spatially homo-
geneous but time-dependent field. Near the minimum of
its potential (here at ϕ ¼ 0), the potential of the axion is
well approximated by a quadratic function of ϕ, which then
behaves cosmologically as a damped harmonic oscillator:

ϕ̈þ 3H _ϕþm2ϕ ¼ 0; ð1Þ

where H is Hubble parameter and m the axion mass.
Initially, the axion field value is frozen due to Hubble
friction; the axion only starts oscillating once 3H ≲m. The
energy density associated with this oscillation redshifts
exactly like cold DM: ρϕ ∝ a−3. However, there is no
reason to expect that the axion will start close to the
minimum. If the axion misalignment is large, the quadratic
approximation to its potential is no longer adequate and
higher order terms must be included. The axion potential
generically contains quartic terms which convert its equa-
tion to that of a nonlinear damped anharmonic oscillator:

ϕ̈þ 3H _ϕþm2ϕ − λϕ3 þ… ¼ 0 ð2Þ

The all-important negative last term describes an attractive
self-interaction. When jϕ2j≳m2=λ, nonlinearities at all
orders in the axion field become relevant, and can cause a
delay in the onset of oscillations: Hosc ≪ m. In this
scenario, the lower Hubble friction and the attractive
quartic self-interaction conspire to usher in a qualitatively
new phenomenon: a parametric resonance amplification of
semirelativistic axion fluctuations around the spatially
constant ϕ background. In this work, we show that these
attractive self-interactions can cause DM structure to grow
at scales that are comparable with the axion Compton
wavelength when the field starts oscillating. This leads to
both denser and more numerous small halos than in
ΛCDM. We stress that such behavior is only possible
when the field amplitude of the axion is large enough for
the attractive nonlinearity to be significant, so we term this
the “large-misalignment” mechanism for axion DM.
For definiteness, we will mainly focus on a simple

periodic potential that is well motivated for several axion
models, namely the cosine potential:

V ¼ m2f2
�
1 − cos

�
ϕ

f

��
; ð3Þ

where f is the axion decay constant. Nonperturbative effects
generically generate periodic axion potentials; the form of
Eq. (3) arises from the one-instanton contribution, which is
typically dominant in weakly coupled theories. Periodic
potentials will in general have attractive (negative) self-
interactions because these tame the rapid growth of the
quadratic potential and foretell the presence of an upper

bound. As wewill discuss, the above potential is also nearly
that of the QCD axion at temperatures above the QCD phase
transition, albeit with a time-dependent mass. We stress that
the observable consequences of this work emerge solely
from this attractive self-interaction, and do not qualitatively
depend on the detailed form of the potential. In fact, some of
our signatures will be more naturally realized with non-
periodic potentials. The quartic interaction for the cosine is
given by V ⊃ λϕ4=4 with λ ¼ −m2=6f2.
If the axion’s initial misalignment amplitude ϕ0 is in the

“large-misalignment” range jϕ0j=f > π=2, we show that
there will be enhanced structure around a comoving
wavelength:

λ� ≡ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ma2eqHeq

q ≈ 0.69 Mpc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10−22 eV

m

r
; ð4Þ

generating numerous halos with scale mass of Ms ∼M�
s :

M�
s ≡ 4πρ0DM

3

�
λ�
2

�
3

≈ 5 × 109 M⊙

�
10−22 eV

m

�
3=2

: ð5Þ

The halo scale density ρs is an increasing function of
jϕ0j=f, and can be much larger than the scale density ρCDMs
of CDM halos of the same mass by a parametric factor:

B≡ ρs
ρCDMs

∼ exp

�
ξ

m
Hosc

�
: ð6Þ

The parametric form of this “density boost factor” B is
valid for generalized axion potentials as well; ξ is an Oð1Þ
model-dependent constant. The corresponding scale radius
is rs ¼ 87 pcð Ms

5×109 M⊙
Þ1=3ð105B Þ1=3.

We present our analysis of the development and dynamics
of these enhanced structures in Sec. II. To fix ideas, we
mainly focus on a cosine potential and study the evolution
and signatures of axion DM structures when jϕ0j=f > π=2
as a function of the axionmass and decay constant.1 First, we
provide a fully relativistic treatment of the growth of density
fluctuations in linear perturbation theory. Starting from a
standard spectrum of primordial density perturbations, we
show that growth in density contrast can be understood as the
result of a parametric resonance instability at the level of the
equations of motion, which are valid in the early universe up
to axion masses ofOð107Þ GeV (Sec. II A). We also present
a perturbative Newtonian approximation, where the boost in
structure growth can be attributed to a negative pressure
resulting from the nonlinearities in the potential of Eq. (3). In
Sec. II B, we describe the nonlinear evolution of the axion
density fluctuations. For moderate enhancements in the

1Requiring that the present-day axion density accounts for all
the DM automatically fixes the initial value ϕ0 of the axion field
as a function of m and f.
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density contrast with respect to large scales, compact halos
will form after matter-radiation equality (Sec. II B 1).
Depending on their density, these compact halos may be
solitons—gravitationally bound scalar field configurations
of minimum energy (Appendix A)—and can even have a
gravothermal cusp (Sec. II B 2). At yet larger density
contrasts, we demonstrate in Sec. II B 3 that our mechanism
can produce oscillons—metastable configurations solely
supported by axion self-interactions (Appendix A)—during
radiation domination. Further, we show that these dense
structures are expected to survive tidal stripping in the
Milky Way (Sec. II B 4).
Armed with the understanding of the behavior of these

more numerous and higher-density halos, we focus in
Sec. III on several observable consequences that follow
in cosmological histories with a boost in structure on small

scales (cf. Eq. (5). These are summarized in Fig. 1 in the
parameter space of m and f as extracted from Figs. 11, 12,
14, and 15 of Sec. III, translated via the results of Fig. 2.2

Compact axion halos and other potentially long-lived
axion structures have irreducible gravitational couplings,
so one may look for their local gravitational perturba-
tions on stellar structures or their gravitational lensing
(Sec. III A). Extremely small minihalos—“femto-halos”,
their mass being ≲10−15 M⊙—can dramatically alter the
signatures and sensitivity of direct detection efforts to
search for nonminimal couplings of the axion (Sec. III B).

FIG. 1. Summary of signatures for axions with massm, decay constant f, cosine potential of Eq. (3), and an initial axion misalignment
chosen such that the axion accounts for all DM. The left axis shows f normalized relative to fπ=2, the value for which the initial axion
misalignment is jϕ0j=f ¼ π=2 [see Eq. (13)]. As f=fπ=2 decreases, the misalignment angle has to be closer to π to saturate the DM
abundance. Diagonal gray lines represent contours of constant f. The top axis displays the typical halo scale massM�

s whose density is
maximally enhanced by the effects of the attractive axion self-interactions [see Eq. (5)]. The right axis shows the time tm;0 in Compton
units for which the amplitude of the axion field oscillation is Θ̄≡ ϕ̄=f ¼ 1 [see Eq. (26)]. For axions lighter than 10−5 eV, the
enhanced-density halos can be detectable through their gravitational (lensing) interactions (blue). Axions heavier than 10−5 eV can
produce “femto-halos” lighter than 10−15 M⊙ that have important consequences for direct detection experiments (green). Axions lighter
than 10−18 eV can affect baryonic structures and accelerate star formation in the early Universe (brown). At low f, self-interaction-
induced collapse into oscillons happens prior to matter-radiation equality (red), a process that produces gravitational waves, which may
be detectable in the yellow region. Signature contours are extracted from Figs. 11, 12, 14, and 15 of Sec. III, and translated to f=fπ=2 via
the numerical results for B as a function of m in Fig. 2.

2For clarity, the oscillatory behavior in Fig. 2 is suppressed by
Gaussian smoothing over neighboring m bins, and we used
Eq. (5) for the Ms–m correspondence, not the Mmax

s results of
Fig. 2.
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Early-forming minihalos can also influence the formation
of the first stars and leave other imprints on baryonic
structure (Sec. III C). The implosion and subsequent
explosion of oscillons can lead to a low-frequency stochas-
tic gravitational wave background (Sec. III D).
We next focus on the QCD axion in Sec. IV, which is one

of the best-motivated particles beyond the Standard Model.
This axion, which has a temperature-dependent potential,
will collapse into halos of mass Ms ∼ 10−18 M⊙ for axion
decay constants fa ≲ 2 × 1010 GeV, with important conse-
quences for direct detection searches of high-mass, cosmic
QCD axions, potentially improving prospects for their
discovery in the laboratory. We stress that these femto-halos
are produced from a standard spectrum of small primordial
perturbations. In contrast, ultra dense QCD axion mini-
clusters [8–13] rely on large density fluctuations caused by a
late post-inflationary Peccei-Quinn (PQ) phase transition.
Their internal density is so high that they encounter Earth too
infrequently to positively impact direct darkmatter searches.
For the cosine potential of Eq. (3), significant enhance-

ment in structure growth via our mechanism requires the
axion field to start very close to jϕ0j=f ≈ π, with self-
interaction-induced collapse requiring apparent tunings
of 1 part in 1012. This apparent tuning is not, however,

necessarily an actual tuning. We discuss this in Sec. V, and
in this section we also discuss other forms of axion
potentials, such as those in some axion monodromy models
[14–17]. In this latter case, the structure growth can be even
more extreme and lead to long-lived oscillon configurations,
all without any tuning whatsoever (apparent or actual). We
offer concluding remarks and discussion in Sec. VI.
The appendices of this paper deal with further details that

are relevant for a complete understanding of our proposed
mechanism. In Appendix A we review the spectrum of
bound, metastable scalar field configurations (solitons and
oscillons) because in much of our parameter space they will
be formed inside the DM overdensities we predict. In
Appendix B we discuss the implementation and results of
various numerical simulations we utilized to help under-
stand the nonlinear behavior of the axion field in regimes
particularly relevant to this work. Appendix C discusses
possible constraints coming from the production of iso-
curvature fluctuations in the CMB, although these con-
straints are only present in some models. Finally, we
summarize in Appendix D, the projected sensitivities
and detection prospects for ultralow-frequency gravita-
tional waves, which can be produced particularly by very
light (m≲ 10−14 GeV) large-misalignment axions.

FIG. 2. Summary of properties of compact structures resulting from the linear and nonlinear evolution of axion density perturbations
in Sec. II. The maximum density boost factor Bmax is shown as a color map (legend on right) as a function of axion mass m and
misalignment angle Θ0 (right axis), or equivalently f=fπ=2 (left axis). For parameter space where Bmax > 2 (below the thick blue
contour), dark gray contours indicate the halo scale massMmax

s that exhibits the maximum density boost relative to the CDM prediction,
parametrically tracking the reference scale mass M�

s of Eq. (5) (top axis). Below the orange contour (f=fπ=2 ≲ 0.065), solitons are
produced; in the red region (f=fπ=2 < 0.055), early collapse into oscillons also occurs. We assumed the axion cosine potential of Eq. (3)
and a scale-invariant curvature power of PΦ ≈ 2.1 × 10−9.
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We note that some of the components of this paper have
been previously touched upon in the literature (see e.g.,
Refs. [17–25]). In particular, the linear perturbation effects
under consideration in this work were previously discussed
in Refs. [26–30]. These works however focused on the
regime ofm ∼ 10−22 eV and observables such as the matter
power spectrum and the Lyman-α forest. We here extend
their analyses and provide a comprehensive treatment of the
linear and nonlinear evolution for any axion mass m and
decay constant f. As we shall see, much larger non-
linearities are permitted (by current data) for larger axion
masses (and thus smaller structures). This leads to quali-
tative differences in phenomenology and observable con-
sequences. On the other hand, a large body of literature has
studied the effective theory and potential observables of
“axion stars” (i.e., solitons and oscillons) but has for the
most part disregarded their formation mechanism (see e.g.,
Refs. [17,31–43]). We provide such a mechanism here, and
calculate for the first time the enhanced contrast in
adiabatic fluctuations for the QCD axion. Reference [44]
studied a scenario wherein a late-time phase transition in an
arbitrary-mass axion potential sources large isocurvature
fluctuations and associated small-scale structures; such a
structure formation history has a qualitatively different
matter power spectrum and no tunable density contrast.
We also note that claimed constraints on ultralight DM

due to Lyman-α forests [45,46] or the DM distribution of
present-day dwarf galaxies [47,48] do not necessarily
apply. The attractive self-interactions and gravitational
thermalization both have significant effects which must
be taken into account, and reanalyses are required to
understand the true constraints. We expand upon these
effects and discuss more realistic constraints in Sec. III C
(Lyman-α) and Sec. II B 2 (dwarf galaxies).
Throughout this paper, we take the dark matter energy

density fraction in the Universe to be ΩDM ¼ 0.23, the
scale factor at matter-radiation equality aeq ¼ 1=3250,
the present-day Hubble constant H0¼67.8kms−1Mpc−1,
and therefore present-day Universe-average DM density
ρ0DM ¼ 2.9 × 10−8 M⊙ pc−3 and the Hubble parameter at
matter-radiation equality Heq¼1.8×10−28 eV. We assume
a local DM energy density in the Galaxy of ρ⊙DM ¼
0.4 GeVcm−3 ¼ 1.1 × 10−2 M⊙ pc−3. We use the reduced
Planck mass MPl ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
, and set the reduced Planck

constant and the speed of light to unity ℏ ¼ c ¼ 1.

II. EVOLUTION OF DENSITY FLUCTUATIONS

In this section, we analyze the growth of adiabatic axion
density perturbations in the early Universe and demonstrate
how self-interactions can lead to substantial deviations
from the CDM prediction. The relevant observable
throughout is the gauge-covariant axion energy perturba-
tion δ [we work in Newtonian gauge, cf. Eq. (8)]. In the
CDM framework, after the physical wavelength of a

density perturbation with amplitude δ becomes smaller
than the Hubble horizon, δ grows logarithmically with the
scale factor during radiation domination, and linearly with
the scale factor during matter domination. We will find that
density perturbations of size around the axion’s Compton
wavelength at horizon crossing, i.e., modes with comoving
wave numbers k that satisfy

k
a
∼m ∼H; ð7Þ

are unstable to rapid growth fueled by the axion’s self-
interaction at the time Eq. (7) is satisfied. The growth
instability is present if the axion starts oscillating after its
natural time scale: i.e., tosc ≳ 1=m. Density perturbations
much smaller than this will have their growth suppressed,
and those on much larger scales will resemble those
of CDM.
Figure 2 summarizes the results of both the linear and

nonlinear evolution of density perturbations as presented in
this section. We show the maximum boost Bmax ≡
maxMs

fBg in halo scale density relative to the CDM
prediction [cf. Eq. (6)] as a function of m and f=fπ=2
for the cosine potential of Eq. (3). We also show the
corresponding halo scale mass Mmax

s ≡ argmaxMs
fBg for

which this maximum density boost factor is achieved,
which can be seen to closely track the valueMs� of Eq. (5)
(top horizontal axis). Finally, we also indicate parameter
space where production of solitons and oscillons occurs.
In Sec. II A, we discuss the linear regime, where all

fractional density perturbations are small: jδj ≪ 1. This is
appropriate for all adiabatic perturbations early enough in
their history (given a standard primordial curvature power
spectrum). In Sec. II A 1, we present a full general-
relativistic treatment of the density perturbations from
the time the axion field starts oscillating and show that
the growth of structure is due to a parametric reso-
nance instability well before matter-radiation equality.
We calculate analytically [cf. Eq. (28) and Eq. (29)] the
G≡ jδk=δCDMk j2 in the power spectrum (the boost B in
density is proportional to G3=2). Figure 3 compares the
time evolution of adiabatic density perturbations for a
large- and small-misalignment axion. The results of our
linear analysis for any misalignment are summarized in
Figs. 4 and 5. In Sec. II A 2, we evolve these parametric-
resonance-boosted perturbations past matter-radiation
equality (see Fig. 6).
When jδj becomes Oð1Þ, axion DM structures can form

(Sec. II B). The properties of the collapsed structures depend
on the amount of growth they receive through axion self-
interactions. If the growth is small enough that the pertur-
bations are still linear after matter-radiation equality,
their collapse is fueled by gravitational self-interactions.
In Sec. II B 1, we study the halo spectrum (see Figs. 7 and 8)
and show that, for moderate structure growth, the collapsing
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structures can be solitons. Gravitational cooling effects can
further change the internal structure of these compact halos
and ultimately lead to gravothermal collapse and a central
soliton (Sec. II B 2). In the extreme case where the axion
self-interaction induced structure growth is large enough,
structures can grow nonlinear well before matter-radiation
equality; their dynamics are dominated by self-interactions,
and oscillons are formed (Sec. II B 3). Finally, we show that
these compact halos can easily survive tidal stripping within
the local galaxy (Sec. II B 4).
The range of axion masses for which this section’s

analysis is relevant is from 10−22 eV to 107 GeV. The
lower end is an observational limit from structure formation
(Sec. III C). The upper limit comes from two requirements:
one is that m ≪ f which is necessary to ensure that during
parametric resonance the axion occupation number is large
enough to justify the use of classical wave equations; the
second is the condition that the axion is the DM [see
discussion around Eq. (12)]. The requirement that the axion
lifetime is longer than the age of the Universe is automatic
if the only interactions of the axion are gravity and its self-
couplings [Eq. (3)], as these are both axion number
conserving in the nonrelativistic limit. To have an axion
detectable in laboratory experiments we need further
interactions that directly couple the axion to photons,
electrons, or nuclei. An example is the coupling to the
photon given by α

ð2πÞ
ϕ
f FF̃. In the presence of such a

coupling, the longevity of the axion constrains the axion
mass to be at most 10 keV corresponding to f ¼ 1011 GeV.

FIG. 3. Transfer function jδk=Φk;0j2 of the axion density fluctuation δk relative to the primordial curvature fluctuationΦk;0, as function of
rescaled time tm ¼ mt and dimensionless wave number constant k̃ ¼ k=a

m

ffiffiffiffiffi
tm

p
. The left panel has an initial condition of π − jΘ0j ¼ 10−10,

while the right panel shows the reference caseof anearly free scalar fieldwithΘ0 ¼ 0.1.Whenπ − jΘ0j ¼ 10−10, one can see thatmodeswith
k̃ ∼ 1 get enhanced by up to 10 orders of magnitude soon after the axion enters the parametric resonance regime (see main text for details).
When k̃ ≪ 1 or k̃ ≫ 1, for both values of the initial axion field, the behavior of the density perturbations is similar; δk is suppressed when
k̃ ≫ 1, while for k̃ ≪ 1 modes experience logarithmic growth after they enter the horizon in the radiation dominated era.

FIG. 4. Transfer function jδk=Φk;0j2 of the axion density fluc-
tuation δk relative to the primordial curvature fluctuationΦk;0, at a
fixed dimensionless time tm ¼ mt ¼ 103, as function of rescaled
comovingwave number k̃ ¼ k=a

m

ffiffiffiffiffi
tm

p
and initialmisalignment angle

π − jΘ0j (right axis), or equivalently the axion decay constantf (left
axis) relative to the reference value fπ=2 of Eq. (13). This plot
assumes the axion comprises all of DM and has the cosine potential
of Eq. (3), for which large enhancements manifest only for initial
misalignments very close to the top of the potential jΘ0j ≃ π. This
apparent tuning of initial conditions only serves to delay the onset of
oscillation (see Fig. 5); it can be explained by natural dynamics, and
is not present for generalized potentials (Sec. V).
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Note that axions as heavy as 107 GeV or even 10 keV are
not well described by classical field equations today
because the occupation number in a de Broglie wavelength

is much smaller than unity. Nevertheless, the classical field
description is valid during the crucial era of parametric
resonance, when the axion occupation number is large and
the initial overdensities are generated. Subsequently, these
overdensities grow under the influence of gravity which, by
virtue of the equivalence principle, just couples to energy
regardless of occupation number or the applicability of the
classical approximation.
For simplicity, wewill first consider the case of the cosine

potential in Eq. (3). We will study entirely analogous
phenomena for the temperature-dependent QCD axion
potential in Sec. IV, and present case studies of generalized
(but time-independent) axion potentials in Sec. V. Finally,
for those interested in the signatures of compact axion halos,
they can directly skip to Sec. III, where the observational
effects of these halos are described as a function of their scale
mass Ms and density ρs.

A. Linear regime

In the linear regime (i.e., jδj ≪ 1), most of the self-
interaction-induced growth occurs at very early times,
when semi-relativistic modes enter the horizon and the
axion potential is poorly approximated by a quadratic. This
means that a full general-relativistic treatment of the
perturbations is necessary, which we give in Sec. II A 1.
At later times, when nonlinearities in the background
axion field are small and the modes of interest are non-
relativistic and well within the horizon, we can patch the

FIG. 5. Top panel: Transfer function ratio of axion perturbations
δk versus CDM perturbations δCDMk as a function of dimensionless
wavenumber k̃ and normalized axion decay constant f=fπ=2, at a
dimensionless time tm ¼ 103 shortly after the modes shown have
crossed the horizon, as in Fig. 4. On the right vertical axis, we
indicate tm;0, defined as the dimensionless time at which the axion
amplitude equals unity; tm;0 has a one-to-one mapwith f=fπ=2 and
jΘ0j discussed around Eqs. (12), (13), (14), (15), and (26). Bottom
panel: Boost function Gðk̃; tmÞ that captures all perturbative
parametric resonance growth until tm ¼ 103, and parametrizes
the curvature forcing suppression for high-k̃ modes. The analytic
function G is seen to be a reasonably good parametric estimate of
the enhancement (and suppression) of the relative matter power
spectra jδk=δCDMk j2 calculated numerically.

FIG. 6. Evolution of fractional axion energy density fluctua-
tions δk as a function of the scale factor for four rescaled wave
numbers k̃ ¼ f0.1; 1; 3; 5g, corresponding to comoving wave
numbers of k ¼ f9; 29; 50; 65g Mpc−1 for m ¼ 10−21 eV. The
general-relativistic evolution is patched onto the Newtonian one
at tm ¼ 4 × 104, at the black vertical line. The k̃ ¼ 5 mode is
suppressed and oscillates due to kinetic pressure, while long-
wavelength fluctuations (e.g., k̃ ¼ 0.1) match onto the CDM
predictions (dashed lines). For an axion misalignment angle of
jΘ0j ¼ π − 10−12, the k̃ ¼ 1 mode receives a boost in structure,
causing it to collapse gravitationally earlier during matter
domination, while modes around k̃ ¼ 3 collapse due to self-
interactions and will lead to oscillon production.
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general-relativistic solutions onto Newtonian fluid equa-
tions, which we describe in Sec. II A 2.

1. General relativistic treatment

We consider adiabatic perturbations in the axion field
and adopt the method of Ref. [29], the only substantive
difference being our focus on the potential of Eq. (3) and
slight changes in notation. The dynamics of interest occur
in the radiation-dominated era, where we can study the
evolution of the axion field in the background metric

ds2 ¼ ½1þ 2Φðt;xÞ�dt2 − a2ðtÞ½1 − 2Φðt;xÞ�dx2 ð8Þ

where aðtÞ ∝ t1=2 is the scale factor and Φðt;xÞ are the
curvature fluctuations. We also define the Hubble param-
eter H ≡ _aðtÞ=aðtÞ ¼ 1=2t where the second equality is
true only during radiation domination. During this era, the
energy density in the axion field is a tiny perturbation to the
overall energy density in the radiation bath, so we will
neglect its backreaction on the metric. We expand the axion
field into modes of comoving wave number k as:

ϕðt;xÞ
f

¼ ΘðtÞ þ
X
k

θkðtÞe−ik·x ð9Þ

where Θ is the zero mode (spatially averaged axion field)
and θk are Fourier modes of its perturbations.

Zero mode.—Before studying the growth of the perturba-
tions, we describe the evolution of the zero mode. A field of
mass m is frozen by Hubble friction at least until H ∼m,
which motivates the definition of a dimensionless time tm
given by:

tm ≡ m
2H

≃mt ð10Þ

the latter equality approximately true deep into the radi-
ation-dominated era. The equation of motion for Θ in the
metric of Eq. (8) is given by:

FIG. 7. Standard deviation of the smoothed axion density field
(top panel) and the resulting differential energy density fraction in
collapsed halos per logarithmic mass bin (bottom panel), as a
function of the smoothing mass scale MS ¼ 4π

3
ρ0DMR

3
S of the

spherical top hat window function with radius RS. Our results are
plotted for the benchmark case of m ¼ 10−18 eV and π − jΘ0j ¼
10−10 also plotted in Fig. 8, at different redshifts z. Despite our
input of a standard scale-invariant spectrum of curvature fluctua-
tions, Oð1Þ density perturbations at small scales are already
common by matter-radiation equality. Further growth at these
scales occurs during matter domination, albeit slightly delayed
relative to large scales due to effects of kinetic pressure, leading to
a collapsed halo fraction of 56% (82%) by redshift z ¼ 100

(z ¼ 30) entirely in dense halos lighter than 105 M⊙. After
z ∼ 30, these halos are assimilated into larger CDM-like halos.

FIG. 8. Halo spectra in terms of scale mass Ms and scale
density ρs [as in Eqs. (40) and (41)] for several different axion
masses m and misalignment angles Θ0, as well as the reference
CDM halo spectrum. The thick solid lines are computed with a
dimensionless smoothing kernel of σ̃ ¼ 1=2. For m ¼ 10−15 eV
and π − jΘ0j ¼ 10−8, we also display the halo spectrum with a
narrower kernel of σ̃ ¼ 1=10 (thin red line), revealing the
oscillatory behavior of the power spectrum at high wave number.
The dashed lines depict the dilute soliton branch of Eq. (42), the
densest possible stable axion configuration, for the same three
axion masses, and the dotted vertical lines indicate the maximum
(critical) soliton mass. The dot-dashed lines delineate the density
above which gravothermal catastrophe occurs inside the halo,
resulting in a steep internal density profile (a cusp cut off by a
central soliton).
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Θ00 þ 3

2tm
Θ0 þ sinðΘÞ ¼ 0 ð11Þ

where from hereon primes denote derivatives with respect
to tm. The initial conditions sourced by inflation are a fixed
initial misalignment angle Θðtm ¼ 0Þ ¼ Θ0 and zero
kinetic energyΘ0ðtm ¼ 0Þ ¼ 0. We can then see that indeed
for tm ≪ 1 the field is frozen and for tm ≫ 1 the field will
roll to and oscillate around the bottom of the potential.
The energy density contained in the axion field is given

by ρ ¼ m2f2½ðΘ0Þ2=2þ 1 − cosðΘÞ�. For tm ≫ 1, an
approximate solution to Eq. (11) can be found to show
that this energy density redshifts as ρ ∝ t−3=2m . We define
ρπ=2ðtmÞ as the energy density at late times given an initial
misalignment angle jΘ0j ¼ π=2. By the above, we have that

ρπ=2 ¼ Cπ=2m2f2t−3=2m ð12Þ

for some constant of proportionality Cπ=2, and a numerical
evolution of Eq. (11) then gives Cπ=2 ≈ 1.15. Requiring that
the axion field is the totality of dark matter then implies that
an axion with initial misalignment π=2 and mass m must
have a decay constant fπ=2 given by:

fπ=2
MPl

≃
31=2

25=4C1=2
π=2

�
Heq

m

�
1=4

: ð13Þ

At fixed m, larger values of f > fπ=2 require the initial
misalignment angle to be closer to the bottomof the potential
(i.e., jΘ0j < π=2). Asymptotically for small initial Θ0 ≪ 1

we have ρ=ρπ=2 ≈ 0.33Θ2
0, which implies for f ≫ fπ=2 a

required initial misalignment angle Θ0 ≈ fπ=2=0.33f.
Similarly, f < fπ=2 requires jΘ0j > π=2, our case of

interest. As jΘ0j approaches π, the onset of the field’s
oscillation is delayed from its typical time of tm ∼Oð1Þ to a
logarithmically larger value, due to the much smaller
gradient near the top of the potential. The delay results
in an enhanced final density ρ, and an empirical approxi-
mation to the true numeric solution of Eq. (11) yields:

ρ

ρπ=2
≃ 0.2½toscm þ 4 ln toscm �2 ð14Þ

toscm ≡ ln

�
1

π − jΘ0j
21=4π1=2

Γð5
4
Þ

�
ð15Þ

where Γ is the Euler Gamma function and toscm corresponds
roughly to an effective “delayed oscillation time.” For
10−15 ≲ π − jΘ0j≲ 10−2, this approximation is accurate to
within a fractional error of 5%.

Finite-wavenumber modes.—Now that we understand
the evolution of the zero-mode Θ, we turn our attention
to the perturbations θk. We begin by also expanding the

curvature perturbations into Fourier modes: Φðt;xÞ ¼P
k ΦkðtÞe−ik·x. To leading order in perturbative quantities

θk and Φk, modes with different k do not interact, and so
we may consider each independently. It is then helpful to
introduce another dimensionless time coordinate tk as well
as a dimensionless measure k̃ of the comoving wave
number k:

tk ≡ k=affiffiffi
3

p
H

k̃2 ≡ k2=a2

2mH
¼ 3t2k

4tm
ð16Þ

Note that in a radiation-dominated universe, k̃ is constant
and parametrizes how relativistic a perturbation mode is at
tm ∼ 1, i.e., roughly when the axion zero mode starts
oscillating.
Adiabatic fluctuations in the axion field are sourced by

curvature fluctuations Φk, and an exact solution for these
may be found in the linear theory [29,49]:

ΦkðtkÞ ¼ 3Φk;0

�
−
cosðtkÞ

t2k
þ sinðtkÞ

t3k

�
ð17Þ

where Φk;0 is the primordial value imprinted by infla-
tion. Planck measurements over scales k < 1 Mpc−1 are
consistent with a Gaussian-distributed curvature with
dimensionless power spectrum PΦðkÞ ¼ hΦk;0Φk;0i≃
ð2.1 × 10−9Þðk=ð0.05 Mpc−1ÞÞns−1 and a slight spectral tilt
ns − 1 ≈ −0.03 [50].3 For specificity and to elucidate the
scale dependence of our mechanism, we will ignore the
spectral tilt and take jΦk;0j ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2.1 × 10−9

p
as a fiducial

amplitude. Note that for tk ≲ 1 the curvature perturbations
are frozen, but for tk ≳ 1 they begin oscillating and decay
as Φk ∝ t−2k ∝ a−2.
Now we can finally write the relativistic equation of

motion for axion perturbations θk in the background of the
zero-mode solution Θ to Eq. (11) and the curvature
perturbations of Eq. (17):

θ00k þ 3

2tm
θ0k þ

�
cosðΘÞ þ k̃2

tm

�
θk ¼ Sðk̃; tmÞ; ð18Þ

Sðk̃; tmÞ≡ 2

�
tk
tm

dΦk

dtk
Θ0 −Φk sinðΘÞ

�
: ð19Þ

Here the forcing term S is such that even with initial
conditions θ0kð0Þ ¼ θkð0Þ ¼ 0, a nonzero θk will be
generated by the curvature fluctuations. Nonzero initial
θkð0Þ will be sourced by inflation and manifest as

3The dimensionless power spectrum of a scalar sðrÞ is
PsðkÞ ¼ PsðkÞk3=2π2, where the power spectrum is PsðkÞ ¼
V−1hsðkÞ2i and the Fourier transform is sðkÞ ¼ R

V d
3rsðrÞe−ik·r.

PsðkÞ is independent over the averaging volume V as long as
k3V ≫ 1.
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isocurvature fluctuations in the CMB. Their absence in
Planck measurements of the CMB [51] provides a joint
constraint on f and the inflationary Hubble scale Hinf ,
derived later in Appendix C and shown in Fig. 28.

Axion density perturbation results.—The gauge-covariant
axion energy perturbation at wave numberk is the fractional
energy density perturbation minus the velocity potential for
the axion species [29], which can be written as:

δk ≡ Θ0θ0k þ sinðΘÞθk − ðΘ0Þ2Φk
1
2
ðΘ0Þ2 þ ð1 − cosðΘÞÞ : ð20Þ

At late times, when jΦk=Φk;0j ≪ 1, jΘj ≪ 1, and tm ≫ 1,
δk tends to a Newtonian fractional energy density fluc-
tuation δρk=ρ:

δk ≃
Θ0θ0k þ Θθk
1
2
ðΘ0Þ2 þ 1

2
Θ2

: ð21Þ

Note that nearly all of the forcing effects from S occur early,
as Φk redshifts as t−2k ∝ t−1m .
At this point, we can numerically solve the full set of

equations to obtain δkðtmÞ for any value of k and initial
misalignment angle Θ0. In Fig. 3, we show the evolution of
δk (by means of the transfer function jδk=Φk;0j2) as a
function of time tm at different rescaled wave numbers k̃,
for a large-amplitude axion with jΘ0j ¼ π − 10−10 (left
panel) and an axion with a small misalignment amplitude
jΘ0j ¼ 0.1. In Fig. 4, we fix the time at tm ¼ 103, to
highlight the dependence of the transfer function on both
the wave number k̃ and the misalignment angle Θ0, which
has a one-to-one map with f=fπ=2 from the discussion
around Eq. (13). We can classify the qualitative behavior
into three wave number regimes:

k̃ ≪ 1: In this regime, the curvature perturbation Φk

enters the horizon at a time tm ∼ 1=k̃2, long after the
axion has started oscillating (regardless of initial
amplitude) at tm ∼ 1. The zero-mode Θ has already
been damped down to the harmonic regime jΘj ≪ 1.
In this regime, an axion behaves as a noninteracting,
pressureless fluid, whose density perturbations thus
grow like those of CDM—logarithmically with time
during radiation domination.

k̃ ≫ 1: Curvature perturbations with high enough wave
numbers enter the horizon long before the axion stars
oscillating. By the time Hubble friction is reduced to a
point where both Θ and θk can start oscillating
(tm ≳ 1), the curvature perturbation Φk and thus the
forcing term S have been damped away significantly
by the radiation bath, such that δk is suppressed. In
addition, δk oscillates in time (as opposed to the
logarithmic growth for k̃ ≪ 1), since the behavior of
the modes is dominated by a large positive kinetic

energy pressure, further suppressing the structure
relative to the CDM prediction.

k̃ ∼ 1: The qualitative behavior of very high-k̃ and low-k̃
modes is not strongly dependent on the misalignment
amplitude. At large misalignment angles jΘ0j ≃ π, an
intermediate regime with new phenomenology ap-
pears. Unlike the free scalar case, where the k̃ ∼ 1 case
is a smooth interpolation between the high- and low-k̃
regimes, a dramatic enhancement in density fluctua-
tions is possible. As Fig. 4 shows, both the maximum
boost in structure and the wave number at which this
boost occurs, are monotonically increasing with de-
creasing π − jΘ0j and thus f=fπ=2.

Parametric resonance.—The dramatic growth of θk—and
thus δk—perturbations for k̃ ∼ 1 modes can be understood
in terms of a parametric resonance instability. After the
onset of oscillation, we can expand to subleading order in
the amplitude of the zeromode, Θ̄, which itself is decreasing
slowly, but on a time scale much slower than the oscillatory
timescale. This turns the zero mode cosmological evolution
equation into one for a damped nonlinear harmonic oscil-
lator. Using the Poincaré-Lindstedt method [52], the zero
mode itself can be found to behave according to:

Θ ¼ Θ̄ cosðω̄tmÞ þ
Θ̄3

192
½cosðω̄tmÞ − cosð3ω̄tmÞ�; ð22Þ

where ω̄ ¼ 1 − Θ̄2=16.
We can recast Eq. (18) in terms of a damped Mathieu

equation, i.e., a damped harmonic oscillator with a peri-
odically modulated fundamental frequency:

d2θk
dτ2

þ c
dθk
dτ

þ ½δþ ϵ cosðτÞ�θk ¼ 0; ð23Þ

where we have defined τ≡ 2ω̄tm. Above, we have ignored
the forcing term from Eq. (19), and identified the pertur-
batively small quantities:

c ¼ 3

2τ
; δ −

1

4
¼

�
−
Θ̄2

32
þ k̃2

2τ

�
; ϵ ¼ −

Θ̄2

16
: ð24Þ

Equation (23) has several instability regions; the primary
one at small jϵj, and the one of interest to us, is the region
jϵj > cþ 4ðδ − 1=4Þ2 corresponding to a parametric varia-
tion of the natural frequency at approximately twice the
natural frequency. The parametric resonance instability can
be understood as a process where the quartic interaction
converts two zero-mode particles into two finite-momen-
tum particles with k̃ ≠ 0.
The two exponential growth rate eigenvalues for the

amplitudes of θk, expressed in the original tm coordinates,
are
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Γ�
PRðk̃; tmÞ ¼ −

3

4tm
� Θ̄2

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1 −

8k̃2

tmΘ̄2

�
2

s
: ð25Þ

We see that in the limit Θ̄ → 0 or k̃ → 0, the θk amplitude
decays as t−3=4m , commensurate with the redshifting of the
zero mode’s energy density redshifting as Θ̄2 ∝ t−3=2m . For
k̃ ≫ 1, the second term becomes purely imaginary and
produces an additional oscillatory behavior with frequency
k̃2=2tm that redshifts with time; there is no parametric
resonance growth, just as expected for relativistic modes.
Axion density perturbations will exhibit exponential

growth when k̃2 ≃ tmΘ̄2=8, i.e., when the root in Eq. (25)
is real. At least one mode will undergo a substantial growth
phase as long as the inequality Θ̄2 ≳ 8=tm is satisfied at
some point. Because the amplitude growth is exponential in
time [with a rate given in Eq. (25)], much of the parametric
resonance amplification is dominated by the period in which
Θ̄ < 1.4 For simplicity, we integrate the growth term of
Eq. (25) starting from tm;0, defined as the time at which
Θ̄ ¼ 1 (or the energy density is ρ ≃m2f2=2), and take
Θ̄2 ¼ ðtm=tm;0Þ−3=2. For axions starting near the top of the
cosine potential, a good approximation is

tm;0 ≈ 0.596½toscm þ 4 ln toscm �4=3 ð26Þ

with toscm as in Eq. (15). The boost in axion power from
parametric resonance is

Gðk̃; tmÞ ≃ ζ exp

�
2

Z
tm

tm;0

dt0mRe
�
Γþ
PRðk̃; t0mÞ þ

3

4t0m

��
: ð27Þ

Curvature fluctuations at high k̃ have already partially
decayed away to a value that is Oð1=k̃2tm;0Þ smaller than
their maximum by the time the axion starts oscillating at tm;0

[see Eq. (17)], leading to a suppression of the initial
curvature forcing in Eq. (19). We account for this effect
(that is unrelated to parametric resonance) by the multipli-
cative suppression factor ζ ¼ ½1þ k̃2tm;0=π2�−2.
In the top panel of Fig. 5, we plot the exact numerical

results for the relative matter power spectra of axions vs
CDM, at a time tm ¼ 103.5 The bottom panel shows the
function Gðk̃; tmÞ evaluated at tm ¼ 103, displaying quali-
tative agreement with jδk=δCDMk j2 of the top panel, and
justifying the identification of structure growth as due to a
parametric resonance effect. We note that the G function

gives an overestimate to the boost in power at low k̃; this
difference is due to the forcing of long-wavelength modes
after tm;0, an effect that is also responsible for the nodes and
oscillatory behavior which are present in the top panel (but
not the bottom panel) of Fig. 5.
With the above assumptions and simplifications, the

asymptotic boost in power relative to that in a CDM
scenario, namely Gðk̃Þ≡ Gðk̃; tm → ∞Þ, can be expressed
in closed form:

Gðk̃Þ ¼
expf2k̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tm;0 − 4k̃2

q
−4k̃2 arccos½ 2k̃ffiffiffiffiffiffi

tm;0
p �g

ð1þ k̃2tm;0

π2
Þ2

: ð28Þ

The parametric resonance shuts off entirely at a time
tm ¼ t3m;0=ð16k̃4Þ or when the perturbation becomes non-
linear; in practice, this asymptotic form is thus reached
rather quickly.
The numerator of Eq. (28) is maximized at k�, with:

k̃� ¼ Ck
ffiffiffiffiffiffiffi
tm;0

p
≈ 0.2

ffiffiffiffiffiffiffi
tm;0

p
Gðk̃�Þ ¼ ζ� exp fξ0tm;0g ≈

e0.18tm0

1þ 0.2t2m;0=π
2
; ð29Þ

As we will discuss below, the parametric form of the
expressions in Eq. (29) holds for other (time-independent)
potentials as well, with different values for the constants Ck
and ξ0.6 Finally, we note that the boost in halo scale density
B is proportional to the boost in jδkj3 ∝ G3=2, justifying our
claim from Eq. (6) up to polynomial correction factors.
We have so far focused on the case of a cosine potential.

However, the parametric resonance instability is quite
generic: there is always an unstable wave number k̃, as
long as the nonlinearities in the potential are large enough
to overcome Hubble friction. For a Lagrangian parame-
trized as L ¼ f2ð∂θÞ2=2 −m2f2ðθ2=2 − λ̃θ4=4!þ…Þ, the
condition for parametric resonance is

λ̃Θ̄2 ≳ 8

tm
: ð30Þ

For the cosine potential of Eq. (3), λ̃ ¼ 1, so given the
scaling of Θ̄2 ≃ ðtm=tm;0Þ−3=2, all that is required is a delay
in the onset of axion oscillations from its natural time scale
of tm;0 ∼ 1. For a cosine potential—including for the QCD
axion potential in Sec. IV—this is achieved by having the
initial misalignment angle close to the top of the potential,
cf. Eqs. (26) and (15). We postpone a discussion of these
peculiar initial conditions to Sec. V.

4As we will show later in the top panel of Fig. 10, some ampli-
fication also occurs in the nonperturbative regime of Θ̄ > 1.

5The axion transfer function jδk=Φ0;kj2 is as calculated in
Fig. 4, while the CDM perturbation obeys δk=Φ0;k ¼
−9½t−1k sin tk þ t−2k cos tk − t−3k sin tk þ ln tk − CiðtkÞ þ γE − 1=2�
in this notation, where Ci is the cosine integral function and γE is
the Euler-Mascheroni constant [29].

6The constant Ck ≈ 0.2 is a solution to the transcendental
equation 2Ck ¼ cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð16C2

kÞ − 1=4
p

, and the constant
ξ0 ¼ Ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4C2

k

p
≈ 0.18.

LARGE-MISALIGNMENT MECHANISM FOR THE … PHYS. REV. D 101, 083014 (2020)

083014-11



Parametric-resonance-fueled growth of density pertur-
bations happens more naturally for “flatter” potentials,
those for which tm;0 can be much larger than unity even for
generic initial conditions. We work out two such cases in
Sec. V for two axion potentials given by Eqs. (94) and (96),
which have λ̃ ¼ 6 and λ̃ ¼ 3, respectively. For general
potentials, all appearances of Θ̄2 in Eqs. (22), (24), and (25)
need to be substituted by λ̃Θ̄2. The asymptotic boost factor
in the power spectrum, analogous to Eq. (28), can then be
found by performing the integral of Eq. (27). The results in
Eq. (29) remain valid, provided one makes the replace-

ments Ck →
ffiffiffĩ
λ

p
Ck and ξ0 → λ̃ξ0. Note that the temporal

scaling of Θ̄2 is in general different for time-dependent
potentials, such as that of the QCD axion in Sec. IV, in
which case the integral of Eq. (27) does not yield Eq. (28).
If one extrapolates the nearly scale-invariant primordial

curvature perturbation spectrum measured by Planck [50]
all the way to small scales, one can expect fluctuations on
the order of Φk;0 ∼Oð10−4.5Þ. The extreme growth of
density perturbations, illustrated by transfer functions
jδk=Φk;0j2 as large as ≳1010 in the top right of Fig. 4,
can thus lead to early nonlinearities in the axion perturba-
tions and the subsequent possibility of collapsed structures,
which we discuss in Sec. II B. In Sec. II A 2, we will first
work out the evolution of perturbations that remain linear
long after parametric resonance effects cease. In this case,
Newtonian linear perturbation theory is a good approxi-
mation at late times, when numerical integration of the
equations of motion [Eqs. (11) and (18)] is computationally
expensive.

2. Newtonian treatment

In the subhorizon, nonrelativistic limit, we can study the
evolution of density perturbations using a Newtonian fluid
approach.7 This approximation amounts to integrating out
the harmonic oscillations of the axion, and makes it feasible
to study the evolution over many e-folds of the Universe’s
expansion. We can then stitch our early-time solution from
Sec. II A 1 onto the Newtonian equations to get the late-
time behavior.
At sufficiently late times, namely

tm ≫ max

�
tm;0;

1

k̃2

�
; ð31Þ

a Newtonian fluid approximation becomes appropriate.
Well beyond the onset of axion oscillations tm ≫ tm;0, we
can average over the effects during one period of the axion
oscillation, as the natural axion frequency is much larger
than the Hubble rate, and we can also treat the non-
linearities in the axion potential perturbatively (i.e., only

include effects from the quartic). The inequality tm ≫ 1=k̃2

ensures that the perturbation is well within the horizon, as
well as nonrelativistic (k=ma ≪ 1). Both the axion back-
ground density ρ and its fractional perturbations δk should
then obey standard Newtonian fluid equations.
The zero mode energy density will redshift as ρ ∝

a−3ð1þwÞ where w ¼ P=ρ is the equation of state. For an
axion with a cosine potential, the pressure equals P ¼
−ρ2=16m2f2 [54]. The fractional density perturbation
obeys the differential equation [55–57]:

δ̈k þ 2H_δk −
�
4πGρ −

c2sk2

a2

�
δk ¼ 0 ð32Þ

where cs ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
δP=δρ

p
is the sound speed of perturbations. It

receives a k-dependent kinetic pressure contribution
[58,59] as well as an adiabatic contribution dP=dρ from
the quartic nonlinearity:

c2s ≃
k2=a2

4m2
−

ρ

8m2f2
¼ k̃2

4tm
−
hΘ̄2i
16

: ð33Þ

For generalized axion potentials with a different quartic
interaction λ̃ (cf. the discussion around Eq. (30) and in
Sec. V), the quartic contribution to the sound speed is to
multiplied by λ̃.
It is convenient to rewrite Eq. (33) as a differential

equation in the variable y≡ a=aeq ¼ 21=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tmHeq=m

p
:

ð1þ yÞ d
2δk
dy2

þ
�
1

y
þ 3

2

�
dδk
dy

¼
�
3

2y
−
k̃4

y2
þ 3

4
ffiffiffi
2

p k̃2
M2

Pl

f2
Heq

m
1

y3

�
δk ð34Þ

which also takes into account the transition of the Universe
from radiation-domination (y < 1) into matter-domination
(y > 1). The initial conditions for this equation must be
found by patching to the solutions from Sec. II A 1 at some
intermediate time tpm which satisfies both Eq. (31) and
ðypÞ2 ¼ 2tpmHeq=m ≪ 1. In other words, we choose a patch
time long after the field has started oscillating nonrelativ-
istically but long before matter-radiation equality. The
matching conditions for the perturbations are then:

δkjyp ¼ δkjtpm ;
dδk
dy

				
yp

¼ 2tpmδ0kjtpm : ð35Þ

Patching our solutions from Sec. II A 1 allows us to evolve
them out of radiation-domination to the present day, which
we use for many of the observables discussed in Sec. III.

7See Ref. [53] for an equation-of-motion treatment of the
gravitational instability of a self-interacting scalar field.
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We demonstrate this full, patched evolution of a few
representative k̃-modes in Fig. 6. As long as the patching
procedure satisfies Eq. (31), there is no dependence of jδkj
on the patching time. Indeed, the qualitative behavior of the
modes is the same in the Newtonian regime of Fig. 6: the
k̃ ¼ 5 density perturbation keeps oscillating with the same
amplitude and a period that steadily increases (stays
constant in log a time), while the k̃ ¼ 1 mode continues
to grow in amplitude [with non-negligible contributions
from the third term in Eq. (34)]. Modes with k̃≳ 1 have too
much kinetic pressure at matter-radiation equality to
experience this gravitational Jeans instability, and com-
mence linear growth δk ∝ a only after a ∼ aeqk̃

4. After
matter-radiation equality, all modes with k̃≲ 1 exhibit a
gravitational instability, and will undergo linear growth
δk ∝ a. These modes will eventually become nonlinear—
the topic of discussion in Sec. II B.

B. Nonlinear regime

In the linear regime of Sec. II A, we have seen that the
amplitude δk of density perturbations with k̃ ∼ 1 can
experience a rapid burst of growth during radiation domi-
nation, shortly after the field starts oscillating. Provided the
transfer function jδk=Φk;0j2 is less than the inverse of
dimensionless primordial power PΦðkÞ at the relevant wave
number, the perturbations remain linear during radiation
domination but have much larger values of jδkj at matter-
radiation equality than predicted in a ΛCDM universe.
They will thus undergo gravitational collapse—with slight
modifications due to kinetic pressure of the scalar field—
much earlier than they would have inΛCDM, and will form
correspondingly denser halos (Sec. II B 1). If the halos
exceed a threshold density, they will undergo gravothermal
collapse, resulting in a central profile consisting of a steep
density cusp cut off by a soliton in the core (Sec. II B 2). In
even more extreme cases (e.g., the top-right portion of
Fig. 4), a density perturbation may even go nonlinear and
collapse during radiation domination due to the attractive
axion self-interactions. We devote Sec. II B 3 to the con-
ditions for such “quartic collapse.” Finally, in Sec. II B 4,
we discuss tidal stripping of halos, relevant for late-time
observables discussed in Sec. III.

1. Gravitational collapse; halos and solitons

During matter domination, linear axion density pertur-
bations grow with the scale factor, δk ∝ a as long as
a≳ aeq maxf1; k̃4g. Thus for standard primordial power
spectra, subhorizon fluctuations will become non-
linear before the present day (a ¼ 1) unless k̃≳ 5. For
axions with large misalignment angles, fluctuations with
k̃ ∼ 1 will go nonlinear earlier than in a ΛCDM universe.
ΛCDM simulations show that overdensities with solely
gravitational interactions form gravitationally self-bound
objects—halos—with a density profile well-fitted by a

Navarro-Frenk-White (NFW) profile ρðrÞ ¼ 4ρs=½ðr=rsÞ×
ð1þ r=rsÞ2� [60]8. The scale radius rs, scale density
ρs ¼ ρðrsÞ, and scale mass Ms ¼ 4π

R rs
0 dr r2ρðrÞ ¼

8πρsr3sðln 4 − 1Þ remain approximately constant for times
subsequent to the formation of the halo [62,63], and are
relatively robust against moderate tidal stripping (see
Sec. II B 4).9 We will therefore describe axion compact
halos, the nonlinear structures resulting from axion over-
densities, in terms of their scale quantities Ms and ρs, the
latter enhanced relative to a typical CDM halo due to the
boost in δk over a small range in k and thus scale massMs.
We define the scale potential as the gravitational potential at
the scale radius, namely Φs ≡ΦðrsÞ ¼ −16π lnð2ÞGNρsr2s,
and use the scale velocity vs ≡ ffiffiffiffiffiffiffiffiffi

−Φs
p

as a measure of
internal velocity dispersion.
Gravitational collapse dynamics can be understood

analytically within the Press-Schechter formalism [64],
where a spherical tophat perturbation decouples from the
ambient Hubble flow to form a virialized object at acoll, the
scale factor at which linear perturbation theory would have
predicted the fractional overdensity to have equaled δc ≈
1.686 in a matter-dominated Universe. The virial density of
the resulting halo is approximately 178 times the mean
density of the Universe at acoll. A question still remains
about the precise conditions for collapse, because axion
density fluctuations δðrÞ ¼ ð2πÞ−3 R d3kδ̃ðkÞeik·r are a
(initially Gaussian) random field, with overdensities that
are neither spherically symmetric nor even of similar shape
and amplitude. In practical terms, to explore fluctuations at
different scales, δðrÞ is smoothed to a density field δðr; RSÞ
over a size RS using an appropriate window function
Wðr − r0; RSÞ:

δðr; RSÞ ¼
Z

d3r0Wðr − r0; RSÞδðr0Þ: ð36Þ

Inspired by the spherical collapse model, the window
function is commonly taken to be a spherical top hat
Wðr; RSÞ ¼ ΘðRS − rÞð3=4πR3

SÞ. One then posits that a
point r is part of a halo of massMs ≥ MS ≡ ð4π=3Þρ0DMR3

S
when δðr; RSÞ ≳ δc.
The variance σ2ðMSÞ≡ hδðr; RSÞ2i of the density field at

the mass scale of MS can be written as

8We note that the NFW fit has been thoroughly verified only
for nearly scale-invariant power spectra within ΛCDM contexts,
where one expects many mergers. In light of Sec. II B 2, it should
definitely not be trusted at radii r ≲ 1=mvs for axion DM. A spike
in the power spectrum—a shape more similar to what is generated
by the large-misalignment mechanism—produces cuspier halos,
with an inner density profile ρðrÞ ∝ r−3=2 [61].

9This is in contrast to the oft-used quantities r200, the radius
within which the mean halo density is 200 times the Universe’s,
and M200 ¼

R r200
0 d3rρðrÞ, the mass inside that radius. Both these

quantities increase with scale factor, but can drastically decrease
with tidal stripping (even if the halo is not completely disrupted).
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σ2ðMSÞ ¼
Z

d lnðkÞPΦðkÞ
				 δk
Φk;0

				2jWðk; RSÞj2 ð37Þ

where Wðk; RSÞ ¼
R
d3rWðr; RSÞe−ik·r is the Fourier

transform of the window function. In the top panel of
Fig. 7, we show the standard deviation σðMSÞ as a function
of the smoothing mass scale MS for an axion mass m ¼
10−18 eV and misalignment π − jΘ0j ¼ 10−10. Assuming
the fluctuations are Gaussian-distributed, the collapsed
fraction of structures with a smoothing mass larger than
MS is FðMSÞ ¼ erfc½δc=

ffiffiffi
2

p
σðMSÞ� in the extended Press-

Schechter formalism. We can then construct a differential
collapsed energy density per logarithmic smoothing mass
dρcoll

d lnMS
≡ ρ0DM

dFðMSÞ
d lnMS

, and a differential collapsed fraction
that evaluates to:

1

ρ0DM

dρcoll
d lnMS

¼
ffiffiffi
2

π

r
δc

σðMSÞ
				 d ln σðMSÞ

d lnMS

				e −δ2c
2σ2ðMSÞ: ð38Þ

We plot this function in the bottom panel of Fig. 7 for the
same axion parameters as in the top panel. Already at
z ¼ 3000, FðMSÞ ≈ 1% of perturbations exceed the critical
threshold of δc. The majority of points in space are in a
dense, gravitationally-collapsed halos before redshift
z ¼ 100. Over time, the differential collapsed fraction at
small smoothing masses MS decreases as halos at these
mass scales become part (i.e., subhalos) of larger halos.
One drawback of the Press-Schechter procedure with a

spherical top hat window function is that it largely fails to
account for halo substructure. For example, δðr; RSÞ can be
large even when there is no structure at scales of order RS,
as long as there is structure on scales bigger than RS.
Likewise, the differential collapsed fraction of Eq. (38)
does not include structures of mass MS that are already
assimilated into more massive halos. So while the above
procedure and the results of Fig. 7 are useful to track parts
of the density field’s statistics, they are crude instruments
for extracting the halo spectrum.
The two issues pointed out above—nonisolation and

undercounting of substructure at the scale RS—stem from
the fact that the Fourier transform of the spherical top hat
window Wðk; RSÞ ¼ 3½sinðkRSÞ − kRS cosðkRSÞ�=ðkRSÞ3
has nonzero support even for k ≪ R−1

S . Therefore, rather
than summing the cumulative structure above RS, which is
effectively what the spherical tophat smoothing procedure
does, one can also use a window function that isolates the
structure at a length scale R:

Wðk; RÞ ¼ N exp

�
−
½lnðkR=πÞ�2

4σ̃2

�
ð39Þ

with σ̃ ¼ 1=2 and a normalization constant N such thatR
d lnðkÞjWðk; RÞj2 ¼ 1. The disadvantage of this window

function is that its volume in real space formally diverges,

and therefore cannot be interpreted as a smoothing kernel
as in Eq. (36). Nevertheless, we find this window function
useful to construct a halo spectrum, i.e., a typical mass-
density relation fMs; ρsg:

Ms ≡ CM
4π

3
ρ0DMR

3 ð40Þ

ρs ≡ Cρρ
0
DMa

−3
coll; acoll ¼ fajσðRSÞ ¼ δcg ð41Þ

with fiducial values of CM ≈ 1 and Cρ ≈ 200. In other
words, our procedure amounts to smoothing the dimen-
sionless linear power spectrum PðkÞ in lnðkÞ space, and
taking a typical halo to form when a smoothed 1-sigma
overdensity reaches a value of δc ≈ 1.686. Note that with
our definitions, the total fraction of DM within gravita-
tionally collapsed structures can be larger than unity,
because we are counting a halo and all its subhalos (and
subsubhalos etc.) separately. We expect that if linear
perturbation theory predicts σ2 ≳ 1 at some scale R with
our window function, Oð1Þ of the DM is contained within
structures of mass Ms as in Eq. (40), provided they survive
tidal stripping (see Sec. II B 4).
In Fig. 8, we plot the halo spectrum as defined in

Eqs. (40) and (41) for four different cases, assuming a
scale-invariant primordial curvature power spectrum
PΦðkÞ≈2.1×10−9. We see that the enhancement of density
perturbations at scales with k̃ ∼ 1 results in halos that
collapse earlier than in ΛCDM cosmological history and
can be significantly denser than the ΛCDM prediction at
comparable scales if π − jΘ0j ≪ 1. The typical mass of
these overdense halos is thus the one given in Eq. (5).
As the halos become denser, eventually the de Broglie

wavelength of the gravitationally bound axions becomes
comparable to the size of the halo. At that point, the
repulsive kinetic pressure of the axions becomes important
for the dynamics of the halo and the halos transition to the
soliton regime, represented by the dashed line shown in
Fig. 8. These gravitationally bound axion field config-
urations have been extensively studied in the literature
[31–42], and we devote App. A to a review of some of their
properties. There are, however, two facts that are quite
relevant for the discussion here.
The first is that solitons have a well-defined relationship

between mass and density. Defining a soliton’s scale radius
by rsols ¼ frj∂ ln ρðrÞ=∂ ln r ¼ −2g, we can numerically
solve for the ground-state of the Schrödinger-Poisson
equation to find:

ρsols ≈ 0.7G3
Nm

6ðMsol
s Þ4 ð42Þ

where ρsols ¼ ρðrsols Þ and Msol
s is the mass enclosed within

the scale radius. For a fixed total mass of axions M (with
the scale mass given numerically by Msol

s ≈ 0.4M), this
soliton state is the unique minimum-energy state, and the
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densest energy eigenstate. This one-parameter family of
solutions parametrized by Msol

s acts as an upper bound to
the scale density of a stable halo as a function of its scale
radius, and we plot this bound for a few different axion
masses in Fig. 8. For high misalignment angles, it is
possible to saturate this bound, which we also show
in Fig. 8.
The second relevant fact is that the gravitational soliton

branch described in the above paragraph has a maximum
possible massM (see Appendix A) which corresponds to a
maximum scale mass (for an axion with a cosine potential):

Msol
s;max ≈ 0.4Msol

max ≈ 10
fMPl

m
ð43Þ

which we plot on Fig. 8 for each choice of axion massm by
means of a vertical dotted line. Above this value, the
attractive axion self-interactions overwhelm the repulsive
kinetic pressure and no nonrelativistic, (metastable) ground
state configuration exists. Any sufficiently dense axion
configuration above this mass will collapse within a
dynamical time (i.e., an infall time). Such self-interac-
tion-induced collapses have been studied previously in
Ref. [65]. The large-misalignment mechanism can produce
dense solitons at the mass M�

s in Eq. (5), which is
parametrically only slightly below the critical soliton mass
Msol

s;max, by a factor of ∼ðHeq=mÞ1=4. We speculate that
mergers and accretion due to the gravitational cooling
mechanism of Sec. II B 2 below may tip them over the
edge, thus opening up the possibility for late-time super-
critical soliton collapse into oscillonlike configurations. We
leave a detailed analysis of these phenomena and their
impact on detectability to future work. In Sec. II B 3, we
will study the early-time, direct production of oscillonlike
states, a process that does not involve a soliton as an
intermediate state.

2. Gravitational cooling

For the halos described above, gravitational cooling is
another process, beyond mergers and accretion, that can
significantly alter their structure. Compact halos not in the
soliton regime can cool and form a soliton at their center, and
solitons already present can accrete more mass from the
cooling of their surrounding halos. The cooling timescale τgr
has been estimated by Ref. [66], and in terms of the scale
quantities defined in Sec. II B 1 their expression reads:

τgr ≃ Cgr
Gm3M2

s

ρs

1

Λ
ð44Þ

where Cgr is an Oð1Þ constant, andMs and ρs are the halo’s
scale mass and density, respectively. HereΛ ∼ logðmvsrsÞ is
a Coulomb logarithm (with rs the scale radius and vs the
scale velocity), which we keep for completeness but which is
Oð1Þ for the whole parameter space, and so does not
substantially change the results.

The cooling time scale of Eq. (44) is simply the inverse
rate of gravitational scattering, which is greatly increased by
a bosonic enhancement factor. Indeed, Eq. (44) gives the rate
of gravitational scattering of quasiparticles of mass ∼ρsλ3s
and size λs ∼ 1=mvs; one can therefore view the gravita-
tional cooling process as being due to the scattering of the
interference fringes of the axion field [67], which causeOð1Þ
density fluctuations on the scale of the de Broglie wave-
length λs. Reference [66] finds that after a timescale of
roughly τgr, a soliton will spontaneously form in the halo,
and grow in mass on similar timescales, at least initially.
For moderately enhanced halo scale densities, the soliton

that forms initially is much smaller than the halo in both mass
and size (λs ≪ rs, the “kinetic regime” of Ref. [66]).
Nevertheless, at time t ≫ τgr, the backreaction of gravita-
tional cooling on the halo is likely to be severe. Gravitationally
bound systems have a negative heat capacity, so gravitational
scattering (or any form of kinetic energy exchange for that
matter) generically causes a runaway instability to take
place—the “gravothermal catastrophe.” This phenomenon
is known to occur in globular clusters on a time scale of
∼300 τgr [68,69], andwe expect it to be operative for compact
axion halos as well.
The physical mechanism can be understood as follows:

heat transfer from the dynamically warmer halo core to the
colder periphery of the halo will cause the core to lose
energy, and thus heat up and contract by the negative heat
capacity and the virial theorem. This process is recursive:
the core will continue to collapse (heat up but shrink in
mass Mcore while its density ρcore increases) by using its
immediate outskirts as a heat sink. Reference [68] showed
that for the case of gravitational scattering, there is an
attractor solution for this process, with the collapsing core
expected to leave behind a cuspy halo density profile of
ρðrÞ ∼ ρsðr=rsÞ−α for r ≪ rs. Reference [68] argues that α
takes values between 2 and 2.5, with numerical simulations
favoring α ≈ 2.21. (We expect the halo scale radius and
density to be only moderately increased and decreased,
respectively, by the gravitational cooling process.)
In the case of axion dark matter, the core collapse should

be halted when the core reaches a size where repulsive
kinetic pressure becomes important, i.e., when the line
fMcore; ρcoreg intersects the soliton branch of Eq. (42),
depicted also in Fig. 8 for some benchmark axion param-
eters. The assumption of self-similar collapse combined
with the above reasoning thus allows us to derive a relation
between the solitonic core mass and the host halo mass. The

core density and a function of its mass is ρcore ∝ M−α=ð3−αÞ
core ,

resulting in a core soliton of mass:

Msol
core ¼

�
4π

3

ρsM
α

3−α
s

G3
Nm

6

� 3−α
3ð4−αÞ

: ð45Þ

For α ¼ 2.21, this gives Mcore ∝ M0.41
s , which is to be

contrasted with the expectation of Mcore ∝ M1=3
s for an
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isothermal profile, where α ¼ 2. The latter relation appears
to arise in fuzzy DM simulations [70]. We do not believe
this to be in conflict with what we are describing here. In
our mechanism with self-interactions, ρs is drastically
enhanced and gravitational cooling is more efficient than
for a free scalar field minimally coupled to gravity. We
point out that a transition from an NFW to an isothermal
profile is expected as the first step in the gravothermal
collapse process.10

In Fig. 8, we show the minimum halo scale density at
which gravothermal core collapse is expected to occur.
Specifically, the dot-dashed lines are contours at which
τ−1gr ¼ 300 H0, for the three benchmark axion masses
considered. Halos above this contour, e.g., those withMs ∼
104 M⊙ of the blue halo spectrum in Fig. 8 with m ¼
10−18 eV and π − jΘ0j ¼ 10−12, will have their cores
collapse to the soliton branch. Subsequent to this collapse,
the central soliton is expected to accrete and therefore
increase further in mass and density. For axion decay
constants far below fπ=2, it may be possible that this
central soliton could accrete to the critical soliton mass
at late times, the point at which a dramatic implosion and
bosenova of the type described in Ref. [65] and
Appendix A would take place. For the parameters plotted
in Fig. 8, we do not foresee this scenario to materialize, as
the host halos affected by gravothermal core collapse are
below the critical soliton mass of Eq. (43), but halo mergers
and accretion are possible loopholes to these arguments.
Further numerical work is needed to study this possibility;
it is clear, however, that soliton formation is greatly aided
by the initial enhancement of small-scale structure by our
mechanism. Finally, gravitational scattering between com-
pact axion subhalos may also affect the dynamics of their
larger host halos. This aspect is discussed in Sec. III A 6.

3. Quartic collapse; oscillons

At very large misalignment angles, namely π − jΘ0j ≲
10−12 for the cosine potential, it can be deduced from Fig. 4
that the parametric resonance growth of perturbations can
lead the axion field to grow nonlinear on scales k̃ ∼ 1 well

before matter-radiation equality. For the nonperiodic poten-
tials of Sec. V, the same effects are obtained for jΘ0j ≫ 1,
as indicated in Figs. 19 and 20. Density perturbations on
these scales can potentially decouple from the expansion of
the universe, leading to DM structures that collapse solely
via self-interactions. In this section, we numerically exam-
ine the conditions in which this “quartic collapse” can
occur and compare our results with a (very) simple analytic
model of the collapse process. We restrict ourselves here to
spherically symmetric fluctuations, but we do not expect
qualitative differences in the collapse condition for Oð1Þ
asymmetric perturbations.
Our numerical procedure involves taking a field con-

figuration that consists of a zero-mode background θ0 and a
spherically-symmetric Gaussian axion field wave packet of
radius Rm;0 and fractional overdensity δ0 at the center:

θðtm;0;xmÞ ¼ θ0

�
1þ 1

2
δ0 exp

�
−

r2m
2R2

m;0

��
; ð46Þ

where tm;0 is the time at which we start our simulation. We
also switch to a new comoving coordinate system ftm;xmg
where the axion mass dependence drops out, and the metric
is ds2 ¼ m−2ðdt2m − tmdx2

mÞ. The dimensionless time coor-
dinate is tm ≡m=2H ¼ mt as before, while xm ≡
t−1=2m amx is a dimensionless spacelike coordinate in which
a momentum mode characterized by k̃ has a wavelength of
2π=k̃. Note that, relative to Eq. (8), we are ignoring
curvature perturbations and that rm ≡ jxmj in Eq. (46).
Let us also assume that ∂tmθðtm;0;xmÞ ¼ 0. We study the
evolution of this wave packet via the full nonlinear field
equation (with spherical symmetry and without metric
perturbations), which in this coordinate system reads�
∂2
tm þ 3

2tm
∂tm −

1

tm

�
∂2
rm þ 2

rm
∂rm

��
θ þ sin θ ¼ 0; ð47Þ

along with the initial condition of Eq. (46). Ignoring the
forcing terms from curvature perturbations in Eq. (19)
becomes an increasingly good approximation at late times,
so our real-space, nonlinear simulations with Eq. (47)
capture and thus isolate the effects from the self-inter-
actions only. They are thus complementary to the linear
Fourier analysis of Sec. II A 1. We collect specifications of
our numerical method in Appendix B.
For certain values of the four parameters θ0, tm;0, δ0, and

Rm;0, the wave packet separates from the Hubble flow and
collapses into an oscillon-like object with ρ=m2f2 > 1. In
Fig. 9, we show the evolution of one such collapsing
configuration. The initially small fractional overdensity
δ0 ¼ 0.01 deforms over the course of several e-folds,
decouples from the Hubble flow expansion, and finally
collapses into an oscillonlike structure by tm ≈ 700. The
oscillon is shrinking in comoving size but is decaying more

10The scaling relation of Mcore ∝ M1=3
s has been extrapolated

to halos heavier than those simulated to place constraints on
axions above 10−22 eV [47,48] in mass. We do not believe these
constraints should be trusted; the above scaling applies to
isothermal profiles when the average velocity inside the solitonic
core is equated with the velocity right outside. This core-halo
mass relation should then break down in NFW halos for which
the thermalization radius (the radius within which τgr ∼H−1

0 and
out to which the halo profile now becomes isothermal) is smaller
than the scale radius rs. For particle masses of 10−19 eV, this
happens in halos heavier than 107 M⊙, and this cutoff scales as
m−3=2 for other axion masses. Above this halo mass cutoff,
calculating the radius for which τgr ∼H−1

0 and relating this radius
to the halo mass suggests that Mcore ∝ M2=15

s and the extrapo-
lation used in the above references clearly does not apply.
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slowly in physical size Rp ¼ t1=2m Rm=m. It is clearly a
dynamical object, with periodic bursts of semirelativistic
scalar radiation that decrease in intensity as the central
object loses energy. The semirelativistic radiation bursts
can be seen as the streaks that fan out as rm ∝ ðtm −
tm;burstÞ1=2 initially but then slow down due to the expansion
of the Universe. Note that the density at large comoving
radius is redshifting like dark matter: ρ∞ ∝ t−3=2m . In
Sec. III D and Appendix B, we study the precise character-
istics of the collapse process and the outgoing radiation—
both in scalar and gravitational waves—at higher resolution

and without spherical symmetry but in a static (not
expanding) geometry.
In the bottom panel of Fig. 10, we delineate the mini-

mum δ0 needed to collapse into an oscillon as a function of
Rm;0. We started a suite of real-space simulations all at
θ0¼1 and several benchmark starting times tm;0 ¼ f20; 30;
40; 50; 60; 70; 80; 90g, which correspond to misalign-
ment angles π− jΘ0j¼f5.1×10−3;2.3×10−4;9.9×10−6;
3.3×10−7;1.1×10−8;5.1×10−10;2.6×10−11;9.9×10−13g,
respectively. In those parameter scans, “oscillon collapse”
was operationally defined as ρðrm ¼ 0Þ > m2f2 before
tm ¼ 103, i.e., the central density exceeding double its
starting value of ð1þδ0Þm2f2=2 despite initially decreasing

FIG. 9. Spherically symmetric simulation of the axion field as a
function of dimensionless time tm and radius rm, starting from a
stationary gaussian wave packet with fractional overdensity
δ0 ¼ 0.01 and radius Rm;0 ¼ 0.64 on top of a homogeneous
background with θ0 ¼ 1 at an initial time tm;0 ¼ 80, cf. Eq. (46).
The evolution is governed by the differential equation of Eq. (47).
The top panel shows the energy density ρðtm; rmÞ in units of
m2f2, the middle panel the density differenceΔρ≡ jρ − ρ∞j, and
the bottom panel the total enclosed energy Eencðtm; rmÞ ¼
4π

R rm
0 r2mt

3=2
m ρðtm; rmÞ in units of f2=m. The dashed line shows

the scale of the physical reduced Compton wavelength m−1. The
initially linear overdensity collapses into an oscillon by tm ≈ 700
and emits semirelativistic scalar waves. FIG. 10. Top panel: Linear momentum-space analysis of

axion density fluctuations δk as a function of k̃ sourced by
adiabatic curvature perturbations with small amplitude Φ0;k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2.1 × 10−9

p
. The evolution is tracked for seven different values

of misalignment angles jΘ0j (see text) until the zero mode has
amplitude Θ̄ ¼ 1 at seven corresponding times tm;0. Bottom
panel: Minimum overdensity δ0 for a spherically symmetric
gaussian wave packet of radius Rm;0 (Fourier dual to k̃) to
collapse into an oscillon, starting at the same seven start times tm;0

at which the zero mode θ0 equals unity. Dashed lines show results
based on a (0þ 1)-dimensional reduction assuming wave packet
rigidity and mass conservation, principles which break down
badly for small Rm;0 due to parametric resonance and other
relativistic effects.
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until the configuration becomes nonlinear. In the top panel
of Fig. 10, we show the results of a linear Fourier analysis,
using the methods of Sec. II A 1 to evolve axion density
perturbations δk from tm ¼ 0 to tm;0 for different k̃, the
Fourier dual of Rm;0. We took the axion fluctuations to be
sourced by adiabatic curvature perturbations of standard
size: Φ2

0;k ¼ 2.1 × 10−9. The linear evolution was per-
formed for the same parameters as in the bottom panel,
i.e., with initial misalignment angles such that the ampli-
tude of the zero mode, Θ̄, equals unity at tm;0. With a
misalignment of π − jΘ0j≲ 2.6 × 10−11, Θ̄ ¼ 1 is reached
at tm;0 ≳ 80, when one-sigma axion overdensities between
1≲ k̃≲ 5 will reach values δk ≳ 0.002 and are rapidly
growing. Comparison against the real-space results of the
bottom panel reveals that these perturbations are destined to
collapse. For these supercritical parameters, the collapse
time tm;coll is shortly after the fluctuation becomes non-
linear with only a weak dependence on δ0, Rm;0, and
π − jΘ0j. It is always several e-folds after the zero mode
starts oscillating, yielding the hard lower bound of
tm;coll ≫ 102.
We can attempt to capture these quartic collapse dynam-

ics in the radiation-dominated era by following a variational
procedure similar to that of Ref. [34,35]. We derive an
effective equation of motion for the physical size Rp ¼
t1=2m Rm=m of the overdensity, and deduce under which
conditions Rp → 0 in a finite amount of time. This
procedure is analogous to the standard calculation for
gravitational collapse of a spherical-tophat-shaped over-
density [64], which also reduces the problem from one in
d ¼ 3þ 1 dimensions to one in d ¼ 0þ 1 dimension.
In order to derive the equation of motion for Rp, we

expand the energy density of the axion field to fourth order
in θ:

ρ ≃m2f2
�ð∂tmθÞ2 þ θ2

2
þ ð∂rmθÞ2

2tm
−
θ4

24

�
ð48Þ

This expression can formally be expanded as a Taylor series
in δ: ρ ¼ ρ0 þ ρδ þ ρδδ þ � � �. At every order in δ, we can
break down each term into a “mass” and “interaction”
piece, ρ ¼ ρM þ ρint, corresponding to the first and last two
terms of Eq. (48), respectively. The mass of the initial state
wave packet [cf. Eq. (46)] is then:

M ¼
Z

d3VρMδ ≃
f2

m
δ

2
θ20t

3=2
m;0R

3
m: ð49Þ

The combination θ2t3=2m is approximately a constant to
zeroth order in δ, and in the absence of any dynamics, δ and
Rm are constant as a function time as well, such that the
physical radius of the wave packet Rp ¼ t1=2m Rm=m is
expanding with the Hubble flow. However, the wave packet

does have nontrivial dynamics due to its interaction energy,
which can be estimated as:

Eint ¼
Z

d3Vρintδδ ≃M
δ

29=2

�
3

tmR2
m
− θ20

�
: ð50Þ

In the subhorizon, nonrelativistic limit, and assuming wave
packet rigidity11 and mass conservation, the physical radius
of the wave packet should then obey a Newtonian ODE:

R̈p ¼ −
d

dRp

�
ΦFRW þ Eint

M

�
ð51Þ

≃ −
Rp

4t2
þ δ

29=2

�
6

m2R3
p
−
3θ20
Rp

�
: ð52Þ

The first term is the leading correction that takes into
account the deceleration of the Universe’s expansion [71],
with ΦFRW ¼ −ð _H þH2ÞR2

p=2 ¼ R2
p=8t2 during radiation

domination. The second term is the leading self-interaction
force. The initial conditions corresponding to those of
Eq. (46) are

Rpðt0Þ ¼ t1=2m;0rm; _Rpðt0Þ ¼
Rpðt0Þ
2t0

þ π

mRpðt0Þ
; ð53Þ

where in the latter equation, the first term is due to the
Hubble flow velocity HRp and the second term takes into
account the “spreading” of the wave packet. Again, we
define a collapsing wave packet as one for which Rp → 0 in
finite time.
In Fig. 10, we depict the critical parameters for collapse

using the Rp equation with dashed lines. One can observe
that the dichotomy between collapsing and comoving
configurations of Eqs. (46) and (47) is captured by the
simplified dynamics of Eqs. (52) and (53) only at largewave
packet sizes Rm;0 ≳ 3, and then only approximately. For
smaller wave packet sizes, the 0þ 1-dimensional reduction
breaks down spectacularly. As evident from Fig. 9, the
assumption of wave packet rigidity (constant shape) is badly
violated even in the linear regime. Likewise, the assumption
of mass conservation is also not a good principle at small
Rm, as parametric resonance (see Sec. II A 1) can be
understood as a process wherein two axions with zero
momentum (the background) are converted into two axions
with finite momentum (part of the perturbation).

11A “rigid” wave packet is one whose (in this case Gaussian)
shape is preserved. Wave packet rigidity assumes that the
variational ansatz that we have used to convert the d ¼ 3þ 1
Schrödinger equation to a d ¼ 0þ 1 equation for the wave
packet size Rp is a good solution to the original equations of
motion for a stationary state. The middle panel of Fig. 9 clearly
shows wave packet deformation before collapse.
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Our numerical simulations further show (see Appendix B
for details) that the collapsing structures eventually settle
into evaporating oscillons, scalar field configurations whose
dynamics are dominated entirely by the dynamics of the
axion potential, with little influence from gravity. This
relaxation happens mainly through scalar wave emission,
some of which can be seen in Fig. 9. Oscillons have been
known to exist generically for potentials containing attrac-
tive self-interactions, and they can be relatively long-lived
for some axion potentials, although there is no simple
quantitative or qualitative understanding for their longevity.
Our high-resolution simulations show that the oscillon
lifetime in physical units is ≲Oð103Þm−1 for the cosine
potential, not long enough to be cosmologically relevant.12

Since the actual structures collapsing via these self-
interactions are Oð1Þ asymmetric, they can also emit
gravitational waves during their infall and collapse, which
we discuss in Sec. III D.
The violent dynamics of the oscillons’ implosion and

evaporation leaves behind regions of axion debris with
Oð1Þ density fluctuations. This is quite analogous to the
case of dissipating oscillons which form or become part of
QCD axion miniclusters, if the Peccei-Quinn phase tran-
sition occurs after inflation (see e.g., Ref. [72]). We expect
that these regions are slightly larger in comoving scale than
the original density perturbations, and that they will
gravitationally collapse into ultradense halos and solitons
at around matter-radiation equality, cf. Sec. II B 1. We still
expect Oð1Þ fraction of DM to be in these structures; the
debris of the oscillons’ decay will be the bulk of the dense
DM matter substructure, and their signatures will be
discussed in Sec. III.

4. Tidal stripping

The halos that result from the parametric-resonance-
fueled growth of axion overdensities are the densest objects
in the Universe upon their initial formation. They are
therefore robust against tidal stripping effects even as they
are assembled into larger DM halos such as those of
galaxies and clusters. However, present-day baryonic struc-
tures such as stars, globular clusters, and the Milky Way
(MW) disk are of course much denser than typical ambient
DM densities. Most of the observational and experimental
signatures of Secs. III A and III B rely on the survival of the
halos in our Galaxy, so one needs to address the possibility
that they are tidally disrupted by the MW disk or its stellar
constituents. We divide our discussion into two distinct
cases, depending on whether the halo scale radius rs is

either much smaller (rs≪Δrstar) or much larger (rs≫Δrstar)
than the average interstellar separation in the MW disk:
Δrstar ∼ pc. For the intermediate regime rs ∼ Δrstar, there is
no separation of scales, but it should be approximately
correct to interpolate between the constraints of the two
limiting regimes.
First, we discuss the case of halo scale radii much

smaller than the interstellar separation, the case of interest
in particular for the femtohalos of Sec. III B. In this regime,
stellar encounters are brief compared to the (internal)
dynamical time of the halo, so the relevant quantity is
the differential velocity kick imparted on axions on
opposite sides of the halo in the impulse approximation:

ΔvðbÞ ≃ 4GNMstarrs
b2vrel

≈ 8 × 10−15
�
btyp
b

�
2
�

Ms

10−18 M⊙

103

B⊙

�
1=3

ð54Þ

In the above estimate, we assumed a relative velocity of
vrel ≈ 10−3 and a solar-mass perturberMstar ≈M⊙. We also
defined a typical impact parameter b as btyp ¼ ðMstar=
πΣ⊙Þ1=2 ≈ 0.07 pc, with the surface mass density of the
MW disk at the Sun’s position equaling Σ⊙ ≈ 60 M⊙ pc−2.
The local density boost factor is B⊙ ≡ ρs=ρ

⊙
DM. By contrast,

the scale velocity of a halo is vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π lnð2ÞGNρsr2s

p
, or

numerically:

vs ≈ 5 × 10−13
�

Ms

10−18 M⊙

�
1=3

�
B⊙

103

�
1=6

: ð55Þ

Comparison of Eqs. (54) and (55) shows that a single disk
crossing has little effect on the interior structure of a
moderately overdense halo.
Of course, the halo may experience N disk crossings

over the course of its lifetime, with a minimum expected
impact parameter of bmin ¼ btyp=

ffiffiffiffi
N

p
. The requirement that

ΔvðbminÞ < vs is equivalent to a mass-independent lower
bound on the scale density, or equivalently the boost factor:

B⊙ ≳ πGN

ln 2
Σ2
⊙ρ

⊙
DM

v2rel
N2 ≈ 740

�
N
100

�
2

: ð56Þ

We regard Eq. (56) as a conservative lower bound on the
minimum overdensity necessary to prevent a catastrophic
tidal disruption event for a halo that crosses the disk N
times. Typical halos will have N at most ∼150, while those
on eccentric orbits or recently accreted onto the MW could
have substantially lower values of N. Instead, one could
consider the process wherein the internal binding energy
per unit mass (−v2s=4) of the halo is gradually reduced by
dynamical heating of N tidal encounters, each interaction
dumping kinetic energy per unit mass of vsΔvðbÞ, under
the assumption of mass conservation. One then arrives at a

12As we will discuss in Sec. V, the oscillon lifetime can be
significantly longer than Oð103Þ m−1 for potentials other than a
cosine and/or for very large oscillons whose evaporation rate is
suppressed by a form factor. This raises the possibility of DM
being comprised of oscillons; some of the potential signatures of
oscillon DM are discussed in Sec. III.
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bound similar to that of Eq. (56), except stronger by a factor
of ð4 ln NÞ2 on the RHS. However, tidal interactions do
cause partial mass loss—preferentially of particles on more
weakly bound orbits, leaving behind more deeply bound
particles and a denser halo. Reference [73] indicates that
even Eq. (56) may be overly restrictive: a tidal shock energy
far exceeding the halo’s original binding energy can result
in a surviving halo fragment. We therefore expect halos
with rs ≪ Δrstar to survive tidal interactions inside the
Milky Way if they are only moderately overdense.
In the case of larger subhalos with rs ≫ Δrstar, tidal

survival constraints are relaxed because the subhalos are
effectively probing a lower-density medium; the tidal forces
from individual stars are only strong on scales much
smaller than the subhalo itself, and cannot cause its entire
disruption. In the commonly-adopted simplified model of
Ref. [74], one posits that all mass of subhalo outside the
tidal radius rt is tidally stripped by a spherically symmetric
perturber with enclosed mass function MpðRÞ. If the
subhalo is on a circular orbit at radius R from the center
of the host halo, the tidal radius is implicitly given by:

MðrtÞ
r3t

¼
�
3 −

d lnMpðRÞ
d lnR

				
R

�
MpðRÞ
R3

: ð57Þ

Above,MðrÞ is taken to be the enclosed mass function of the
subhalo. If we require that rt > rs on a circular orbit at the
Sun’s radius R ≈ 8.3 kpc from the MW with scale radius
rMW
s ≈ 18 kpc and scale density ρMW

s ≈ 2.6 × 10−3 M⊙ pc−3

[75], we arrive at the weak constraint B⊙ ≳ 1.2. Tidal fields
from density variations in the Galactic disk on scales of order
the subhalo size can be significantly larger, as one can
generally expect Oð1Þ overdensities in the disk with mean
local density ρd;⊙ ≈ 0.087 M⊙ pc−3 [75]. Still applying
Eq. (57) and conservatively taking the RHS to be 4πρd;⊙,
we find that rt > rs requires that B⊙ ≳ 11. Most of the mass
is located outside the scale radius of an NFW-shaped halo, so
if these inequalities are only barely satisfied, one can expect
survival but with substantial mass loss from tidal stripping.

III. OBSERVATIONAL PROSPECTS

In Sec. II, we described how the attractive self-
interactions of axion DM at large initial misalignment give
rise to compact halos much denser than the ΛCDM
expectation at similar scales. In Secs. IV and V, we will
repeat this analysis for the QCD axion and for generalized
axion potentials, respectively, with similarly boosted DM
power spectra and thus denser halos. When formed, these
halos constitute Oð1Þ fraction of the DM, and their spatial
distribution will trace the ambient DM density.
In this section, we describe how we expect DM phe-

nomenology to change in our scenario. We divide the
observable signatures of compact axion halos into four
categories. In Sec. III A, we consider direct gravitational

interactions between these halos and astrophysical objects
such as stars. These include perturbations in stellar phase
space distributions, various gravitational lensing signa-
tures, and potentially observable dynamical friction effects.
The rough region of affected parameter space is shaded in
blue in Fig. 1, and the reader interested in the key results of
this section should focus first on Fig. 11.
We then move in Sec. III B to a discussion of how such

compact halos affect DM direct detection experiments that
search for nonminimal axion couplings to the SM. This is
relevant for high axion masses (shown by the green region
in Fig. 1), and the key results are summarized in the final
two paragraphs of Sec. III B as well as Fig. 13. In particular,
we point out the importance of these effects for the QCD
axion (see also Sec. IV).
We next consider indirect gravitational effects on bar-

yonic structures and early star formation in Sec. III C.
These are relevant only for the lightest axions (with masses
less thanOð10−18Þ eV), a region shaded in brown in Fig. 1,
and we report the key findings on star formation in Fig. 14.
In the final paragraph of this section we also discuss effects
observable in Lyman-α forests, and why current constraints
on ultralight dark matter do not apply and must be
reanalyzed in our case.
Finally, in Sec. III D, we study the extreme case when

collapse happens well before matter-radiation equality and
oscillons are formed. The collapsing structures will emit
gravitational waves and form a stochastic GW background,
and for light axions (masses less than Oð10−14Þ eV), this
background may be detectable in the future. We shade the
affected region of parameter space in orange in Figs. 1 and 15
contains our estimates of power in the stochastic background
as well as the potential reach of upcoming experiments.

A. Direct gravitational interactions

The compact halos formed through the large-misalign-
ment mechanism can be large enough to gravitationally bend
or magnify the light emitted by astrophysical objects as they
move in front of them, or to gravitationally affect the motion
of nearby stars as they move through the Galactic halo. Here
we analyze these effects in detail, and Fig. 11 summarizes
the parameter space that each effect probes as a function of
the halo scale massMs and the halo scale density ρs. Purely
from the minimal coupling to gravity, there are discovery
prospects for halos seeded by large-misalignment axions
with masses as high as m ∼ 10−5 eV. We note that most of
the effects in Fig. 11 do not rely on subhalos that transit the
MW disk or can only probe relatively dense subhalos, and
are thus robust to tidal stripping.
We begin in Sec. III A 1 by discussing how compact

subhalos perturb local stars. In Sec. III A 2, we show that
the most powerful probe in a large part of the parameter
space is astrometric weak lensing. DM subhalos’ lensing of
stellar light can appear as a distortion of the apparent
motion of stars. We consider two types of observables, one
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based on the apparent velocity of background luminous
sources such as distant stars or quasars (blue curves in
Fig. 11), the other based on apparent stellar accelerations
(red curves in Fig. 11).
In Secs. III A 3, III A 4, and III A 5, we discuss

signatures of DM subhalos that rely mainly on strong
gravitational lensing, where lensing produces significant
magnification and multiple images of the lensed object.
We find that DM subhalos within our galaxy are generically
too diffuse to satisfy the strong lensing criterion, but that
for some rare extragalactic stars, located behind critical-
lensing caustics of galactic clusters, can lead to observable
signatures in a very wide range of parameter space (Sec. III
A 4). For extragalactic halos that almost but not quite
satisfy the strong lensing criterion, we describe possibly
detectable anomalous dispersion in LIGO events, although
more analysis is required to firmly establish the reach of
such techniques (Sec. III A 5).
At the end of Secs. III A 2 and III A 3, we also con-

template the possibility that oscillons survive to the present
day and constitute a significant component of DM. In this
case, we outline their corresponding lensing signatures and
constraints. This scenario does not apply to the cosine
potential we have considered thus far because it does not
support cosmologically long-lived oscillons, but could be

relevant for the generalized axion potentials we will
consider in Sec. V. As we discuss there, oscillon configu-
rations in other axion potentials can be significantly longer
lived, although we do not yet know whether these or other
potentials support oscillons that survive to the present day.
Finally, in Sec. III A 6, we discuss dynamical friction

effects coming from massive DM subhalos, but deem
current observations not sufficiently robust to constrain
our scenario.

1. Local gravitational perturbations

As DM subhalos traverse the Galaxy, they will gravi-
tationally attract nearby stars and perturb their 6D phase
space distribution. A star that passes near a compact
subhalo with impact parameter b, which we assume to
be spherical for simplicity, will receive a velocity kick of:

Δv ¼ −b̂
2GNMðbÞ

bV

≈ −b̂ 0.5 km s−1
�

MðbÞ
107 M⊙

��
166 km s−1

V

��
kpc
b

�
; ð58Þ

where V is the relative velocity between the subhalo and the
star and MðbÞ is the subhalo mass enclosed within the

FIG. 11. Astrophysical probes of direct gravitational effects from compact halos, parametrized in terms of their sensitivity to halo scale
mass Ms and scale density ρs. Above the dashed (dotted) green line, compact subhalos would produce observable velocity kicks in
stellar streams (the Galactic disk). The green region outlines the best-fit parameters of one such tentative impact on the GD-1 stream. In
the dark gray region, these kicks can be strong enough to eject stars from the Galactic disk or even halo. Above the solid (dashed) blue
line, astrometric lensing by compact halo induces localized distortions in the proper motion μ of background sources that are observable
by Gaia (SKA). Likewise, correlations in stellar proper accelerations α induced by astrometric weak lensing are detectable by Gaia
(Theia) above the solid (dashed) red line. On the purple line, the halo scale radius equals the typical distance traveled over a 9-year
observation time, demarcating the transition between transient and enduring lensing effects for unmagnified sources. Inside the gold-
colored solid (dashed) line, an observable fraction of GW events at aLIGO (LISA) will be diffracted. Photometric irregularities in the
microlensing light curve of highly magnified, caustic-transiting stars may be observable above the orange line.
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impact distance b. As the subhalo moves through the
interstellar medium, it causes a correlated distortion in the
real-space distribution depending on the time elapsed since
impact. It has been proposed to search for these perturba-
tions in the 6D phase space distribution of stars in the
MW’s disk [76] and stellar halo [77], with purported
sensitivities to subhalos with masses down to perhaps as
low as 107 M⊙ in the CDM paradigm. The effect of
Eq. (58) is too small to be seen on any one star for all
but the most massive and/or densest subhalos, since the
velocity dispersions in the Galactic disk and stellar halo are
∼25 km s−1 and ∼166 km s−1, respectively. Since the effect
of Eq. (58) is coherent for all stars along the subhalo’s
trajectory, one can in principle average down this intrinsic
dispersion noise, as well as any additional instrumental
uncertainties. However, to what extent this averaging
procedure can beat down the noise remains an open
question, as it depends on the degree of preexisting
departures from kinetic equilibrium, which have recently
been found in both the disk [78] and stellar halo [79–84]. In
Fig. 11, we mark by the green dashed line as potentially
detectable those subhalos for which the velocity kick
produced by a compact subhalo’s passage is larger than
2 km s−1.
Promising alternative targets for local gravitational

perturbations caused by DM substructure are stellar streams
[85–90], the tidal debris tails originating from disrupted
globular clusters or dwarf galaxies. They can be thought of
as low-noise “antennae” of gravitational effects, as they are
inherently dynamically cold, out-of-equilibrium systems.
This is because their velocity dispersion is bounded from
above by the dispersion of the progenitor, and their
morphology delineates their orbit, i.e., the velocity vectors
of their stellar constituents are approximately tangential to
the stream. For example, the GD-1 stream has a dispersion
of about 2.3 km s−1, a length of ≳100 kpc, and a width of
about 30 pc [91]. Close encounters with a dense subhalo
would kick stars out of the stream, creating a local under-
density near the point of impact (a “gap”) and a potentially
observable secondary stream (a “spur”) emanating from
the gap [92,93]. Interestingly, such features have recently
been discovered in the GD-1 stream [94]. Tantalizingly for
our purposes, if these features are due to a subhalo
puncturing the stream, they appear to have been caused
by one that is denser than predicted in the standard CDM
framework. Unfortunately, it is challenging to unambigu-
ously attribute the disruption features to a dark subhalo, as
they become apparent only after about a MW orbital time,
so it is hard to exclude close encounters with known or
unknown globular clusters. In Fig. 11, we recast the
posterior best-fit parameters from the potential DM subhalo
impact of Ref. [94] in green. We also outline the parameter
space for which one can generate velocity kicks large
enough to disrupt a very cold stream: Δv ≳ 0.5 km s−1

for maxfb; rsg≳ 10 pc.

2. Astrometric weak gravitational lensing

Compact subhalos in the Milky Way can also induce
apparent motions of stars and other luminous sources
through gravitational lensing whenever they are near the
line of sight to the background light source, without
producing multiple images or magnification. Astrometric
weak lensing was first considered for pointlike objects in
Refs. [95–97] and for cuspy minihalos in Refs. [98,99]. A
program of searches with optimal observables for both
compact object and extended subhalos was outlined in
Ref. [100], in light of ongoing (Gaia [101], HSTPromo
[102]) and future astrometric surveys (WFirst [103–105],
Theia [106], SKA [107], TMT [108], etc.) with much
improved precision and/or catalogue size.
Time-domain astrometric lensing signatures can be

usefully divided into two categories: transient and endur-
ing effects, depending on whether the minimum impact
parameter b to the line-of sight is smaller or larger,
respectively, than the change in impact parameter over a
typical multi-year astrometric survey vτ ∼Oð10−3 pcÞ.
Unless the subhalo is extremely cuspy (e.g., ρðrÞ ∝ rγ

with γ < −2), the lensing deflection angle is maximized for
impact parameters near the scale radius, i.e., b ∼ rs.
A subhalo can thus produce a gravitational lensing transient
only if

ρs ≳ 3

4π

Ms

ðvτÞ3 ≈ 2 × 1010ρ⊙DM

�
Ms

M⊙

��
10−3 pc

vτ

�
3

: ð59Þ

An object that forms via gravitational collapse of a linear
density perturbation cannot have a density that parametri-
cally exceeds the density at matter-radiation equality (see
Sec. II B 1):

ρsjgr−coll ≲ 200ρeq ≈ 2 × 107 ρ⊙DM: ð60Þ

Therefore, only very light (Ms ≲ 10−3 M⊙) gravitationally
collapsed subhalos can produce transients, but at densities
bounded by Eq. (60), they yield too small an angular
deflection (4GNMs=b ≈ 0.04 μ as for Ms ¼ 10−3 M⊙ and
b ¼ 10−3 pc) to be detectable by current state-of-the-art
astrometric observatories, which reach at best μas-level
precision for bright sources. We outline the boundary of
this transient regime by the purple line in Fig. 11. In this
transient regime, pulsar timing arrays may shed light on
compact substructures via the Shapiro time delays and
Doppler effects that they induce [109].
Enduring gravitational lensing effects arise for impact

parameters (and subhalo radii) larger than about 10−3 pc.
The instantaneous angular deflection is in practice unob-
servable because the true celestial positions of luminous
sources is not known, and the lensing-induced number
density changes are much smaller than intrinsic and shot-
noise density fluctuations over angular scales that a subhalo
subtends over the sky. However, time derivatives of the
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angular deflections, specifically lensing-induced proper
motions and accelerations of characteristic size μ ∼
4GNMsvl=r2s and α ∼ 4GNMsv2l =r

3
s , respectively, are

observable in practice. Reference [100] proposed to look
for local (using templates) and global (using correlations)
evidence of these distortions. First results on Gaia’s second
data release confirm Ref. [100]’s projected sensitivities for
a local proper motion template analysis [110] as well as a
proper motion correlation analysis [111].
In Fig. 11, we show the projections of Ref. [100] for the

reach of local proper motion templates (blue) with Gaia
(solid) and SKA (dashed), and of global acceleration
correlations (red) with Gaia (solid) and Theia (dashed),
assuming a Ωsub=ΩDM ≈ 0.3 DM fraction in subhalos of
mass Ms and density ρs. The expected sensitivity to halo
scale density is proportional to ρs ∝ M−1

s Ω−1
sub for a local

proper motion template analysis (see Eq. (6.5) of Ref. [100]
or Eq. (8) of Ref. [110]), and as ρs ∝ M0

sΩ−1
sub for a global

acceleration power spectrum analysis (see Eq. (6.11) of
Ref. [100] or Eq. (B.4) of Ref. [111]), both up to
logarithmic corrections.
Astrometric weak lensing from oscillons. Observable

astrometric lensing transients can be produced by oscillons,
as their internal density is parametrically equal to:

ρoscs ¼ Cosc
ρ m2f2 ≃

Cosc
ρ

25=2Cπ=2
ρeq

�
m
Heq

�
3=2

�
f

fπ=2

�
2

≈ 2 × 1023ρ⊙DM
Cosc
ρ

Cπ=2

�
m

10−15 eV

�
3=2

�
f

fπ=2

�
2

; ð61Þ

where Cosc
ρ is a model-dependent constant of order unity.

The typical mass of oscillons forming through our mecha-
nism of Sec. II B 3 is

Mosc
s ¼ Cosc

M
f2

m
≃

Cosc
M

25=2Cπ=2

ρeq

m3=2H3=2
eq

�
f

fπ=2

�
2

≈ 6 × 10−4 M⊙
Cosc
M

Cπ=2

�
10−15 eV

m

�
3=2� f

fπ=2

�
2

ð62Þ

with Cosc
M a model-dependent constant that is Oð103Þ for a

cosine potential at tm;0 ∼ 90 but can be larger for other
potentials and very small values of f=fπ=2. The density of
Eq. (61) is so high that oscillons are effectively pointlike
when it pertains to their lensing signatures. Reference [100]
projected that the ongoing Gaia survey has the potential to
discover pointlike objects making up at least a percent of
dark matter down for masses greater than 10−4 M⊙ by the
end of its mission. Time-domain, astrometric, weak lensing
is thus a powerful probe of axion models with “flat”
potentials (such that oscillons are cosmologically long
lived), low f=fπ=2 (such that they form at high abundance),
and axion masses less than 10−15 eV.

3. Photometric microlensing

One of the most promising purely gravitational probes
of our scenario is photometric microlensing [112].
Historically, this is a program which has set tight con-
straints on subunity DM fraction in compact objects down
to 10−10 M⊙ [113–117], but such constraints are limited to
extremely dense objects. Microlensing surveys search for
the transient order-unity increase in brightness of a back-
ground luminous source caused by the passage of a lens
near the Einstein radius θE ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4GNMDLS=ðDLDSÞ
p

where DL, DS, and DLS are the angular diameter distances
to the lens, to the source, and from the lens to the source
respectively. This expression is only valid when the entire
mass M is enclosed within θE, but with the exception of
potentially long-lived oscillons, the axion minihalos dis-
cussed here are not dense enough to strongly lens, and so
prior constraints do not apply. We can, however, employ a
technique first discussed in Ref. [118].
The basic idea is to exploit single stars at z≳ 1 that are

located near gravitational lensing caustics of intervening
galaxy clusters and are thus highly magnified (with
magnification μ ∼ 102–103, see e.g., Refs. [119–121]).
Very small changes in the mass distribution of the lensing
cluster can shift the location of the image closer to or
further away from the caustic and result in large changes in
measured brightness, so tracking the brightness of such
stars over time can provide information about the cluster
subhalo distribution. In particular, Ref. [118] suggests
using stellar microlensing events (when one of these source
stars is additionally magnified due to microlensing by a star
in the lensing cluster), and finds that with reasonable
observing parameters they should be able to detect var-
iances in the lensing convergence κ down to one part in 104

at length scales l ∼ 10–104 AU=h in the lensing cluster.
Here we repeat an abbreviated analysis for our case using
slightly more conservative values: We assume only that one
can detect variances in κ of Oð10−3Þ at length scales
of l ∼ 30–104 AU.
The lensing convergence κ is defined as the ratio of the

surface density of the lens to the critical surface density
Σcrit ¼ 1=ð4πGDeffÞ where Deff is an effective distance
given by Deff ¼ DLDLS=DS. In the event that a lens halo is
composed of several subhalos (and our line of sight through
the halo passes through several such subhalos), the power
spectrum of the convergence due to halo substructure is
given by [118]:

PκðqÞ ¼
Σcl

Σ2
crit

Z
dMs

M2
s

dfðMsÞ
d lnMs

jρ̃ðq;MsÞj2 ð63Þ

where Σcl is the surface density of the cluster, fðMsÞ is the
subhalo mass distribution, and ρ̃ðq;MsÞ is the Fourier
transform of the subhalo density distribution ρðr;MsÞ. In
the case of spherical symmetry this is simply:

LARGE-MISALIGNMENT MECHANISM FOR THE … PHYS. REV. D 101, 083014 (2020)

083014-23



ρ̃ðq;MsÞ≡ 4π

Z
∞

0

r2dr
sinðqrÞ
qr

ρðr;MsÞ: ð64Þ

The relevant measure of fluctuations in κ is then given in
terms of the power spectrum above by:

ΔκðqÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2PκðqÞ

2π

r
; ð65Þ

where here and above q can be mapped onto a specific
length scale l by l ¼ 2π=q. We can now estimate how
sensitive this technique will be for our case. We take
Deff ∼ 1 Gpc, ρðr;MsÞ to be an NFW profile of given scale
mass and density, and fðMsÞ to be a delta function with
30% of the DM concentrated in subhalos of a fixed mass.
Because we select for stars located on strong lensing
caustics, we take Σcl ≃ 0.8Σcrit, the factor of 0.8 allowing
for a star that is nearby but does not exactly lie on a caustic.
The lens model for the star of Ref. [119], for example,
predicts that for that star, Σcl ¼ 0.83Σcrit [122].
Finally, we must check that the assumption of many

subhalos along our line of sight is valid, and that the
timescale of the fluctuations is shorter than the timescale of
a typical intracluster-star-microlensing event τmicrolens ¼
Oð106Þ s. During such an event, if the lensing star
and the source star have a relative velocity vrel, then the
image of the source star moves an approximate distance
dmicrolens ∼ vrelμτmicrolens where μ ∼ 102–103 is the magni-
fication. Typical cluster velocities are of the order
10−2–10−3, so we have dmicrolens ∼ 106 s–103 AU. To
ensure that there are many subhalos along our line of
sight, we require that Σclπd2microlens ≳ 10Ms, and dmicrolens ≳
rs is required for the timescale of fluctuations to be shorter
than a typical microlensing event duration.
Assuming these requirements are satisfied, we calculate

Δκð2π=lÞ. We mark as potentially detectable parameter
space wherein Δκð2π=lÞ > 10−3 for at least one length
scale in the range 30 AU < l < 104 AU, and we delineate
the lower boundary of this region by the orange line in
Fig. 11. Because this technique can probe even relatively
low boost factors (and thus relatively weakly bound
structures), simulations of subhalo mergers and accretion
are needed to refine our estimate here.
Microlensing from oscillons. As mentioned above,

inducing a substantial change in brightness during a usual
microlensing event requires the lens halo to lie entirely
within its Einstein radius on the sky. This can be translated
to a requirement on internal density:

ρs≳ 1

ð4πGNDlÞ3=2M1=2
s

∼1016ρ⊙DM

�
M⊙

Ms

�
1=2

�
kpc
DL

�
3=2

: ð66Þ

Comparing Eqs. (61) and (66) shows that oscillons within
the MW (with DL ≲ 10 kpc) can satisfy this, meaning
the photometric microlensing surveys of Refs. [113–116]

are sensitive to oscillons that are cosmologically long-
lived and produced at high fractional abundance. They can
thus test axion models wherein oscillons are produced at
≳10% fractional abundance and the axion mass is in the
range 10−11 eV≲m≲ 10−19 eV (such that 10−10 M⊙≲
Mosc

s ≲ 102 M⊙).

4. Extragalactic strong gravitational lensing

Flux ratio anomalies in multiply-imaged background
sources can provide indirect windows into the substructure
of strongly lensing galaxies [123–128]. DM substructure can
also perturb the position [129–132] and relative time delays
[133,134] of the lensed images, andmany studies [135–142]
have explored the potential to pin down the subhalo
spectrum of strong gravitational lenses. Reference [143]
claims a detection of a subhalo of Ms ∼ 109 M⊙, and also
derived limits on the abundance of subhalos down to
Ms ∼ 2 × 107 M⊙. The interpretation of the upper limits
on subhalo abundance depend strongly on poorly deter-
mined quantities such as the host galaxy’s mass and
concentration, so it would be interesting to characterize
these uncertainties more quantitatively and recast the obser-
vations of Ref. [143] to constrain axion subhalo mass
functions such as those depicted in Fig. 8.

5. Diffraction of gravitational waves

Gravitational waves emitted from BH-BH merger events
will be lensed by the intervening mass distribution and can
potentially provide another probe of dark matter substruc-
ture. Even if the lens is not massive enough to lead to
multiple images (detectable as multiple copies of the same
merger event at different time delays), it can imprint
characteristic distortions in both the waveform’s amplitude
and phase [144]. The strength of these distortions is
characterized by a dimensionless parameter w:

w ≃ 1.3ð1þ zLÞ
�

fGW
102 Hz

��
Menc

100 M⊙

�
ð67Þ

where zL is the redshift of the lens, fGW is the GW
frequency, andMenc is the mass enclosed within the impact
parameter of the lens. Distortion effects are maximized
when w ∼Oð1Þ. The detection potential for such distor-
tions has been studied by Ref. [144], who claim that high-
signal-to-noise-ratio events (SNR≳ 20–30) at advanced
LIGO (aLIGO) will be able to probe BH-BH merger events
with w ∼Oð1Þ out to ≳1 Gpc. Since aLIGO operates at
frequencies of Oð101–103Þ Hz, it will thus be sensitive to
DM substructure with mass of order Oð10–1000Þ M⊙
enclosed within the impact parameter.
As Ref. [144] points out, the GW diffraction effect can

change significantly based on the lens mass profile.
Compact axion halos produced from the large-misalignment
mechanism have a different internal density profile than
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CDM halos (see footnote 8) so a reanalysis is necessary for
a precise appreciation of the sensitivity. We can make
conservative estimates for this GW diffraction technique by
using an NFW profile down to a smoothing scale of
2π=ðmvsÞ. We do this as follows:
In the case of strong self-interactions, we expect that a

large fraction fs of the DM is bound up in minihalos of a
characteristic mass Ms and density ρs. The probability of
any given BH-BH merger passing by such a minihalo with
an impact parameter at most b is roughly [144]:

PðbÞ∼0.045fs

�
1þzL
2

�
3
�
DBH

5Gpc

��
105M⊙

Ms

��
b

1 pc

�
2

ð68Þ

where DBH is the proper distance from us of the BH–BH
merger event and zL is the redshift of the lens. This
expression can be derived simply from the geometric cross
section πb2 of such halos and the known dark matter
density. Taking DBH ∼ 5 Gpc, zL ∼ 0.3, and fs ∼ 0.3, we
compute the smallest impact parameter bmin such that at
least 1% of the BH–BH events will be lensed with b <
bmin. If bmin is less than the smoothing scale 2π=ðmvsÞ, then
we take bmin to be the smoothing scale instead). We then
require that there exists a b > bmin such that the lens mass
enclosed within a cylinder of radius b leads to 0.5 < w < 5

for some GW frequency 101 Hz < fGW < 103 Hz. In
addition, we check that this b is no larger than ten times
the Einstein radius for this mass, as suggested by the
discussion in Ref. [144]. The strength of distortions scales
as with RE=b, the Einstein radius over the impact param-
eter, so there is a drop off in signal detectability as b grows.
The experimental sensitivity then determines the maximum
impact parameter b that can be probed and thus the lower
cutoff on observable scale density of the femtohalos.
If the requirements of the above paragraph are satisfied,

we mark the parametersMs and ρs as potentially detectable
in Fig. 11 by aLIGO. Finally, we repeat the same analysis
for LISA [145] but for the frequency window 10−4 Hz <
fGW < 10−1 Hz.
We find that this technique is a second promising probe

of regions of parameter space also covered by present or
future astrometric lensing surveys, but we caution that these
results are schematic estimates and a full reanalysis is
necessary to be more precise. In particular, such a rean-
alysis is necessary to understand the ultimate sensitivity of
LIGO and LISA to such diffraction signals, which leads to
an Oð1Þ uncertainty in the estimates reported in Fig. 11.

6. Dynamical constraints

Massive subhalos will experience a dynamical friction
force from their collective gravitational scattering of the
surrounding medium [146], and will thus gradually lose
angular momentum and sink to the center of their host halo.
Following Ref. [147], a subhalo on a circular orbit of initial
radius ri and speed vc, embedded in an isothermal halo

with density profile ρðrÞ ¼ v2c=4πGNr2 made up of con-
stituents much less massive thanMs, will sink to the center
in a time:

tDF≃
1.17
F

r2i vc
GNMs

≈
4.0×1010 y

F

�
108M⊙

Ms

��
ri

8 kpc

�
2

; ð69Þ

with vc ≈ 235 km s−1 appropriate for the MW halo at the
Sun’s location. The form factor F is an effective Coulomb
logarithm F ¼ ½lnð1þ Λ2Þ − lnð1þ Λ2

sÞ�=2 with Λ≡
bmaxv2c=GNMs and Λs ≡ Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
s=b2max þ 2Rs=Λbmax

p
, that

depends on the maximum impact parameter, bmax ≈
200 kpc for the MW, and the minimum impact parameter,
which we take to be the scale radius of the subhalo Rs. For
reference, F ≃ lnΛ ≈ 10ð15Þ for Ms ¼ 108 M⊙ð106 M⊙Þ,
as long as Rs ≪ 3 pcð0.03 pcÞ. For larger sizes
Rs ≳GNMs=v2c, the Coulomb logarithm is suppressed
and tends to F ≃ lnðbmax=RsÞ regardless of Ms and vc.
Equation (69) does not take into account backreaction,

subhalo-subhalo scattering, baryonic components, mass
loss from tidal disruption, orbit eccentricity, nor the more
complicated density profile of the MW halo, but we
nevertheless presume it to be a reasonable approximation.
We expect the MW’s evolution to be drastically altered if a
significant fraction of its constituents have a dynamical
friction timescale shorter than a Hubble time. It is evident
from Eq. (69) that MW subhalos as light as 107 M⊙ are
significantly affected by dynamical friction, but until
galaxy-scale simulations are performed and compared to
data, we refrain from extracting constraints pertaining to
dynamical friction effects on the evolution of the MW.
The flipside to the above dynamical friction effects is that

subhalos also have the capacity to dynamically heat their
surrounding medium, including star clusters or compact
ultrafaint dwarf galaxies. Reference [148] has employed this
effect on a star cluster in Eridanus II and ten compact dwarfs
to set constraints on pointlike dark matter objects of masses
≳5 M⊙. For extremely compact objects such as long-lived
oscillons, those constraints would likely apply without
change. It would be interesting to repeat the analysis of
Ref. [148] and investigate the phenomenology for compact
subhalos: in this scenario, the stars can also dynamically cool
by gravitational scattering on the internal structure of the
subhalos, so the limits will likely weaken. A related effect,
namely the catastrophic tidal disruption of wide stellar
binaries (as opposed to the diffusive dynamical heating
from tidal forces), is in principle also sensitive to sub-pc dark
matter objects heavier than a few tens of solar masses
[149,150], although current observations are not yet suffi-
ciently robust to exclude an order unity dark matter fraction
in such objects [151].
To conclude, dynamical friction or heating effects from

compact subhalos are a promising probe of DM substruc-
ture, but we believe more work is required in order to
consider them robust.
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B. Femto-halo effects in direct detection

For heavier axion masses, the large misalignment
mechanism enhances power at scales too small to be
relevant cosmologically or even astrophysically. Still, if
the axion has nonzero interactions with the SM, these
changes to the power spectrum can affect the prospects for
direct detection. In this section, we will focus on axion
halos with masses at or below 10−15 M⊙, which we will
refer to as femto-halos (FHs). As we will see in Sec. IV, this
part of the parameter space is also relevant for QCD axion
DM searches. These FHs have a large number density and
can potentially be observed by Earth-bound direct DM
detection experiments, as the FH incidence rate on Earth is:

γ ≈
0.3
year

�
103

B⊙

�
2=3

�
10−18 M⊙

Ms

�
1=3

ð70Þ

where B⊙ ≡ ρs=ρ
⊙
DM is the femto-halo’s density boost

relative to the local DM density.
Current direct axion DM searches look for a mono-

chromatic signal at frequency f ≃m=2π that is coherent for
roughly v−2vir ≈ 106 periods. The amplitude of the signal is
set by the local DM density and is typically assumed to be
stationary. Axion searches are mostly resonant and, since
the axion frequency is unknown, the resonant frequency is
scanned.13 As we have seen in Sec. II B, the large
misalignment mechanism may result in only a fraction
of DM being in the form described above. With most of the
axion DM in FHs, the DM signal becomes transient, lasting
for the FH’s crossing time:

tcross ¼
rs
vrel

≈ 0.3 day

�
103

B⊙

�
1=3

�
Ms

10−18 M⊙

�
1=3

; ð71Þ

where we have taken vrel ¼ 10−3 for definiteness. For
completeness, we note that this corresponds to a FH scale
radius:

rs ≈ 2 × 10−7 pc

�
103

B⊙

�
1=3

�
Ms

10−18 M⊙

�
1=3

: ð72Þ

During an encounter with a FH, the expected signal power
is a factor of B⊙ higher than expected from a smooth DM
component. Figure 12 shows contours of constant inci-
dence rate and crossing time as a function of the FH mass
and the overdensity relative to the local DM density.
FH axions have a much lower velocity dispersion relative

to galactic axions, greatly increasing the effective coher-
ence time of a DM signal in any axion experiment while a
FH goes through the detector. The corresponding ratio

between the scale velocity inside the FH vs, and the virial
velocity outside is

vs
vvir

≈ 4 × 10−11
�
B⊙

103

�
1=6

�
Ms

10−18 M⊙

�
1=3

: ð73Þ

The effective fractional spread in the frequency of the FH’s
DM signal is then

δf
f

¼ vrelvs ≈ 2 × 10−17
�
B⊙

103

�
1=6

�
Ms

10−18 M⊙

�
1=3

; ð74Þ

with vrel ∼ 10−3 the relative velocity between the DM FH
and the detector.
A natural question is to what degree these dynamically

ultracold structures are distorted by tidal effects upon their
entry into the Solar System. The tidal force from the Sun is
practically always much greater than the self-gravity of the
FH as it approaches Earth. Nevertheless, the FH does not
get completely torn apart before it reaches our planet, due
to the limited time it spends traversing the Solar System.
We estimate the fractional change in the FH’s size to be

Δrs
rs

∼
GNM⊙

AUv2rel
∼Oð10−2Þ; ð75Þ

FIG. 12. Contours of constant incidence rate (solid lines) and
detector crossing time (dashed lines), as a function of the FH
mass and density boost factor B⊙ relative to the local DM density.
The shaded region gives a conservative estimate of the tidal
disruption constraint from disk crossings, as estimated in Sec. II
B 4. We also show halo spectra for the QCD axion with decay
constants of fa ¼ 1010 GeV and fa ¼ 2 × 1010 GeV in red and
green, respectively, derived in Sec. IV and also shown in Fig. 18.
For reference, we display on the upper horizontal axis the axion
mass m that yields the value of M�

s [see Eq. (5)] on the lower
horizontal axis, but as the QCD axion halo spectra demonstrate,
any fixed value of m leads to FHs with a couple orders of
magnitude variation in mass.

13The most notable axion experiment that falls in this category
is ADMX [152]. We also refer the reader to the Particle Data
Group review of axions [153] for a summary of other proposed
experiments that are relevant for our discussion.
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where AU is the Earth-Sun distance. We thus expect the
shape and the size of the FH to be essentially unaltered
from their prior values.
Tidal effects will primarily affect DM searches via the

differential velocity they impart across the FH. This differ-
ential velocity is typically much larger than the FH’s
internal scale velocity, and will appear as a frequency drift
in the laboratory’s rest frame, drastically reducing the
effective coherence time in a practical axion DM search.
(In principle, one can construct frequency-drifting signal
templates, but these are computationally costly to imple-
ment, as shown by searches for monochromatic gravita-
tional waves in LIGO [154].) We estimate the total
differential velocity across the FH to have a magnitude
of δvtidal ∼GNM⊙rs=ðAU2vrelÞ upon its arrival at Earth.
The resulting frequency drift is then determined by how
much of this differential velocity is experienced during a
“shot” time tshot, which we take to be a small fraction of
tcross:

δfdrift ∼
m
2π

vrelδvtidal
tshot
tcross

∼
m
2π

vrel
GNM⊙

AU2
tshot: ð76Þ

Requiring that the frequency drift be small enough that it
may be ignored during any one shot, one gets an upper
bound on the shot time as a function of the FH mass,
density, and axion mass, i.e., by requiring tshot < δf−1drift.
Breaking up the total integration time into shots of duration
tshot that saturates this inequality constitutes an axion DM
search with effective fractional frequency resolution of:

δf
f
∼ 10−12

�
10−4 eV

m

�
1=2

: ð77Þ

There is thus a parametric gain in effective coherence
time—1012 periods or more instead of the usual v−2vir ∼ 106

periods—even though the effects Solar System’s tidal
forces are substantial.14

Based on the above considerations, we can outline a new
strategy for axion DM in the form of FHs. First of all, the
intermittent nature of the signal favors a broadband data-
recording approach: looking at a more extended range of
frequencies increases the probability that the experiment is
operating at the right frequency when a FH is going through
the detector. Since most axion experiments are based on
resonant antennae, a few comments are in order. Any
experiment, resonant or nonresonant by design, can be run
in a broadband mode. The problem is that for some
resonant experiments such as ADMX, many of the com-
ponents are optimized over an extremely narrow band-
width, which makes running the experiment off-resonance

suboptimal. This can be ameliorated by redesigning this
hardware to respond to a wider range of frequencies.
This brings us to the second point: the reduced sensitivity

off resonance can be compensated by the long coherence
time and the boost in power relative to a search for a diffuse
Galactic axion DM component. In fact, the sensitivity in
axion coupling for FH DM searches can ultimately be
improved relative to a search for a standard axion signal,
provided an optimized broadband data-taking protocol is
implemented. The signal power is not stationary: it is
expected to spike at the incidence rate γ for a duration tcross
by the local axion density boost factor B⊙. Such inter-
mittent signals will be missed more often than not in most
currently implemented experimental protocols, and some-
times even downright rejected if they are confused with a
systematic background transient. Instead of slowly scan-
ning a narrow frequency bandwidth over the total running
time of the experiment, a better strategy is to coherently
integrate the data stream and record a broader frequency
bandwidth over a the longest possible shot satisfying
tshot < δf−1drift, and then incoherently adding the Fourier
signal power of the shots. A more optimized search strategy
could involve frequency-drifting matched filters over
longer shot times (perhaps up to tcross), at the cost of
considerable additional computational complexity and data
volume. Our suggested protocol entails a data volume of
OðtshotfÞ bytes every tcross, the result of taking the average
Fourier signal power of tcross=tshot number of shots.
Besides being temporally intermittent and more coher-

ent, the signal from axion FHs is distinguishable from the
standard Galactic axion signal also in terms of its spatial
properties. For a standard axion, the mean velocity v̄ ¼ hvi
and the spread in velocity, e.g., quantified by the standard
deviation σv ¼ hðv − v̄Þ2i1=2, are of the same order, so the
spatial coherence length λcoh ∼ 1=mσv roughly equals the
typical reduced de Broglie wavelength λdB ¼ 1=mv̄. For
FH axions, the typical reduced de Broglie wavelength is
λdB ¼ 1=mvrel where vrel is the speed of the FH in the lab
frame, but the coherence length is much larger: λcoh∼
1=mvs. Two or more detectors with separations larger than
λdB but shorter than λcoh will therefore still pick up spatially
phase-correlated signals, unlike for standard Galactic
axions not bound in ultracold FHs. Such an array of
detectors can even reconstruct the FH’s velocity from these
phase correlations, and would aid rejection of systematic
transient backgrounds.
To summarize, these are the following key points to keep

in mind when designing an experimental search for FH
axion DM:

(i) As a FH crosses the detector, the signal is a factor of
B⊙ bigger in power and at least ∼106 times more
coherent than a DM signal coming from a diffuse
Galactic component.

(ii) Given that most searches are based on resonant
antennae, it is imperative to also look for signals off

14Since the FH size is much larger than the size of the earth for
nearly all of the parameter space discussed here, we believe the
tidal effects of the earth to be subdominant.
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resonance. The loss in sensitivity off resonance can
be often be recovered by the boost in power and
longer coherence time.

(iii) The experiment needs to record data for an extended
period of time over large bandwidths, to ensure that
a FH has an Oð1Þ probability to cross the detector at
least once during the experimental running time, at
each frequency. Special care needs to be taken to
handle the large data volume.

Ultimately, the exact data analysis strategy would have to
be independently determined for each experimental setup,
but the discussion above clearly shows that a search for an
intermittent signal can be done concurrently with any search
for a continuous galactic DM signal. As shown in Fig. 13,
taking into account the possibility of axion DM in the form
of FHs is of great importance for high-frequency axion DM
searches. Current exclusions on the axion DM parameter
spacewould not necessarily apply if the vast majority of DM
is in the form of FHs, while some experiments may be
sensitive to smaller couplings than originally envisioned.
Thismeans that numerical simulations of the largemisalign-
ment mechanism in the nonlinear regime are crucial for
extracting limits in axion DM searches.

C. Baryon structure and early star formation

In ΛCDM, the bulk of star formation takes place in halos
with a mass greater than 108 M⊙, at redshifts z≲ 30 (see
e.g., Ref. [155] for a review). However, when structures

collapse much earlier, stars may form at much higher
redshift and in lower-mass halos. For axion masses between
10−22 and 10−18 eV, the axion self-interactions affect halo
masses between 104 and 109 solar masses. In this section,
we show that collapsed structures on these scales at high
redshifts can satisfy the two main requirements for star
formation: a sufficient baryon component and a cooling
mechanism. At the end, we also briefly discuss possible
constraints from Lyman-α forests.
Baryons have a finite sound speed that inhibits their

infall into perturbations on arbitrarily small scales. Before
recombination, this sound speed is close to the speed of
light and the growth of baryon density perturbations is
suppressed at all scales. After recombination, the baryon
sound speed drops to a value set by the baryon gas
temperature Tb [156]:

c2sðaÞ ¼
γTb

μmH
¼ γTCMB−0

μmHa

�
1þ a=a1

1þ ða2=aÞ3=2
�
−1

ð78Þ

where γ ¼ 5=3, μ ¼ 1.22, TCMB−0 ≈ 2.7 K is the present-
day CMB temperature, and mH is the hydrogen mass. The
constants a1 ¼ 1=119 and a2 ¼ 1=115 in the expression
above adequately capture the behavior of the baryon
temperature after recombination. For redshifts larger than
∼100, Compton scattering of baryons with CMB photons
dominates over adiabatic cooling from the Universe’s
expansion, and Tb tracks the photon temperature.
We naïvely expect the effects of the finite sound speed in

baryons to be captured by the Jeans scale kJ above which
baryons do not collapse into structures:

kJðaÞ
a

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGNρmðaÞ

p
csðaÞ

ð79Þ

where ρmðaÞ is the average matter density at a given
redshift. This Jeans scale is defined by an instantaneous
comparison between gravitational attraction and matter
pressure in the equation governing linear perturbation
growth, however even once gravity begins to dominate
over pressure, the process of infall takes a finite time. This
consideration leads to a more physical filtering scale, kf,
that accounts for the baryons’ finite infall velocity. As was
first shown in [157], for small comoving momenta k
one can approximate the small scale structure of baryons
δbðkÞ as:

δbðkÞ ≃ δb −
k2

kfðaÞ2
δm ð80Þ

where δb and δm are the fluctuations in baryons and
matter at very large length scales, respectively. Here kf
is defined as:

FIG. 13. Axion-photon coupling vs axion mass plot, adapted
from Ref. [153]. Assuming that the axion-photon coupling is
given by gaγγ ∼ α

4πf, where α is the fine structure constant, we
show the value of the coupling as a function of the axion mass for
which the axion displacement is π − jΘ0j ¼ 0.1 (blue line) and
π − jΘ0j ¼ 10−15 (purple line). The blue line thus defines the
region above which the large-misalignment mechanism can be
responsible for DM production, and a large fraction of the axion
DM is in FHs. The DM constraints on this plot, namely the
haloscope and telescope searches (as well as any prospective
discovery reach curves) should be recasted in terms of their
sensitivity in this region.
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kf ¼ δ1=2m

�Z
t

tr

dt0

a2

Z
t0

tr

dt00

a2
c2sðaÞfDMδb

�
−1=2

; ð81Þ

where fDM ¼ 0.85 is the DM fraction of the matter
component. Unfortunately, Eq. (81) fails to capture an
effect of second order in the density perturbations that is
nevertheless sizeable. Baryon acoustic oscillations produce
a relative streaming velocity vbm between DM and baryon
perturbations [156] with dispersion of σbm ¼ 10−4c ∼ cδm
right after recombination, which subsequently redshifts
adiabatically. Although of second order, this effect is thus
enhanced by the large prerecombination sound speed and
can be important.
In Ref. [158], it was shown that both this relative

streaming velocity as well as the finite sound speed due
to the baryon temperature can be included in a modified
equation for kf:

k−2f ¼ δm

Z
t

tr

dt0

a2

Z
t0

tr

dt00

a2
fDM½c2sðaÞδb þ ðvbm · k̂Þ2δDM�;

ð82Þ
where tr is the time at recombination, vbm ¼ nσbm, and n
quantifies the number of standard deviations of vbm. It
should be noted that the relative streaming velocity has a
direction and thus the result depends on the direction of
wave number direction k̂.
From this newly derived kf, we can define a filtering

mass MfðaÞ ¼ 4π
3
ρ0mðπ=kfÞ3 below which we expect halos

with a baryon fraction much smaller than the large-scale
average. In Fig. 14, we plot Mf for vbm ¼ f0; σbm; 2σbmg.
As discussed in Sec. II B, axion self-interactions result in
collapse of DM structures at a much earlier time compared
to ΛCDM cosmology, and MfðacolÞ corresponds to the
minimum halo mass with a significant baryon fraction for
the different possible values of the scale factor acol at
collapse.15 The baryon fraction scales approximately as
[158]:

fb ¼ fbo

�
1þ ð21=3 − 1ÞMfðaÞ

M

�−3
; ð83Þ

with fbo ¼ þ0.15 − 0.005vbm=σbm. Figure 14 shows
which halos have at least 103 M⊙, 10 M⊙, and 0.1 M⊙
of baryonic mass, in our efforts to outline the critical
condition for the formation of at least one star.
A significant baryon fraction is a necessary but not

sufficient condition for star formation in a gravitationally
collapsed structure. Another important requirement is that

the virial temperature of the halo is large enough to allow
for gas cooling. In ΛCDM, the most important form of
cooling is provided by collisions of atomic hydrogen [155],
which only occurs in halos with virial temperatures larger
than 104 K. As Fig. 14 shows, this implies that in ΛCDM,
halos of mass smaller than 108 M⊙ have greatly suppressed
star formation rates.
For axion DM, when self-interactions are important,

collapse can happen much earlier at higher densities.
Atomic cooling is possible for halos of smaller mass than
in ΛCDM, since Mcool;HðaÞ ¼ 2 × 106 M⊙ð100aÞ−3=2, but
other cooling mechanisms could also be in effect. At the
high densities of the early universe, other cooling mech-
anisms can also be operational. H2 molecular cooling, for
example, is in principle active when the virial temperature
is higher than 100 K [159], or halo masses larger than
Mcool;H2

¼ 2 × 103 M⊙ð100aÞ−3=2. We record this mini-
mum halo mass in Fig. 14 as well, although the light from a
few early stars can disassociate H2, halting further cooling
and star formation [160]. More work is thus required to
understand exactly how such stellar feedback affects further
star formation at high redshifts.
The discussion above clearly shows that for DM struc-

tures that collapse earlier, the minimum halo mass required

FIG. 14. We plot the value of the minimum mass a halo must
have in order to carry a significant fraction of baryons, i.e., the
filtering mass, Mf, for three different values of the baryon-DM
relative streaming velocity vbm ¼ 0 (dashed green line), vbm ¼
σbm (solid yellow line), and vbm ¼ 2σbm (dashed blue line) as a
function of the halos’ collapse scale factor, a. In the shaded
regions, halos carry less than f103 M⊙; 10 M⊙; 0.1 M⊙g of
baryonic mass Mb. We also show the minimum halo mass,
Mmin, where baryons can cool through atomic (dot-dashed red
line) or molecular hydrogen cooling (dot-dashed mauve line). In
order for a halo to be able to form stars, it must have at least one
efficient cooling mechanism. Depending on when a compact
axion halo forms, the mass of the smallest star forming halo can
be as low as 104 M⊙, which corresponds to axion masses of
10−18 eV. Given that baryonic structure formation is significantly
modified, this plot also shows that constraints on fuzzy DM such
as those coming Lyman-α need to be revisited.

15If collapse happens before recombination, we expect the
early formed DM halos to accrete baryons postrecombination
when Ms > MfðarÞ. The resulting halo will consist of the earlier
formed dense DM core, and the more diffuse postrecombination
accreted component of matter.
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to form stars can be greatly reduced from the ΛCDM
prediction. In principle, as Fig. 14 shows, the first stars
could form in halos with mass as low as 104 M⊙.
Unfortunately, beyond identifying that these requirements
are satisfied, we cannot make further quantitative predic-
tions. The reason is that little is understood about early star
formation beyond the ΛCDM paradigm. How does gas
cloud fragmentation proceed at such high densities? Does
radiative feedback inhibit or help star formation at high
densities? How does reionization happen? Although it
seems quite likely that stars will form in these high-redshift
structures, without proper simulations to answer such
questions it is impossible to be sure.
Given Planck’s measurement of reionization, one might

expect that early star formation would be highly con-
strained. As extensively discussed in Ref. [161], one cannot
draw such a conclusion very easily. At high densities,
recombination could be much more efficient so that the
ionizing radiation emitted from the first stars fails to keep
the universe ionized. It is also not known from first
principles how much ionizing radiation can escape a
primordial halo, and thus not completely clear what the
observable consequences of such early star formation
would be.
In addition to changing the process of reionization, early

star formation can alter the evolution history of astrophysi-
cal black holes as well as the 21-cm line history of the
Universe. For astrophysical black holes, a period of star
formation earlier than in the ΛCDM scenario could explain
the appearance of high-redshift quasars by allowing for a
longer growth period through Eddington-limited accretion.
In our scenario, the black hole seed mass can be smaller by
up to a factor of Oð100Þ. For ULAS J1342þ 0928 [162],
the most distant quasar known with an estimated mass of
8 × 108 M⊙, this would relax the seed BH mass require-
ment from several tens of thousands solar masses to less
than 1000 M⊙. Given the size of the axion DM parameter
space where the star formation history can be significantly
altered, we thus believe our scenario deserves substantial
further investigation through numerical simulations in
combination with present and upcoming high-redshift data
from the James Webb telescope and 21-cm probes of
reionization such as EDGES [163], HERA [164], LEDA
[165], the SKA low frequency aperture array, and others.
Simulations are also necessary in order to understand

how such shifts to the power spectrum can be probed and
constrained by Lyman-α forests. For ultralight masses of
Oð10−22 eVÞ, axion dark matter without large-misalign-
ment is constrained because of the matter power spectrum
suppression above the wave number k� [45]. In our case,
however, the structure enhancement discussed above will
counteract some of this power suppression, and in extreme
cases may provide such an enhancement that the excess of
power will be constrained. Reference [46] has conducted a
preliminary study of this effect, but more work and

simulations are necessary to understand exactly what
region of the parameter space is constrained. Lyman-α
forests are perhaps able to probe up to masses of
Oð10−21Þ eV at values of f low enough to be in the
oscillon-formation regime, which would mean that halos
heavier than 109 M⊙ can be affected. This region of
parameter space is also relevant for the gravitational wave
signatures described below, in Sec. III D.

D. Gravitational wave emission

As studied in Sec. II B 3, the large-misalignment mecha-
nism in extreme cases can lead to oscillon formation long
before matter-radiation equality. The collapsing axion field
structures are originally asymmetric and lose mass and
angular momentum as they transition to oscillon configu-
rations. While this process is dominated by scalar wave
dynamics, the spherical asymmetry of the collapsing scalar
field produces a small but potentially detectable component
of stochastic gravitational waves.
We have computed this gravitational wave emission via

numerical simulationswhich are described inAppendixB 3,
and their most relevant characteristics and implications can
be estimated analytically and independently of the specific
form of the potential.
We find that a good fit to the gravitational wave emission

can be drawn from the standard quadrupole formula:

PGW ≃
GN

5
ð ⃛QÞ2; ð84Þ

where ⃛Q is the third time derivative of the quadrupole
moment. We assign a quadrupole moment to each oscillon
of size Q ¼ ηMoscR2

osc, where Mosc is the (initial) oscillon
mass, Rosc its characteristic radius and η a factor describing
its eccentricity. Since the field of axion density fluctuations
is initially a Gaussian random field, eccentricity factors of
Oð1Þ are physically reasonable. According to our simu-
lations, for deformations of order 25%–50%, we have
that η ≃ 1.
The mass, radius, and frequency of oscillation of the

emitting oscillon are determined as follows. The mass of
the collapsing object, which will be roughly the mass of the
initial oscillon configuration, is estimated as the enclosed
mass inside a volume of comoving radius π=k:

Mosc ≃
4π

3
ρ0DM

0
B@ πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ma2eqHeq

q
k̃

1
CA

3

ð85Þ

where ρ0DM is the DM density today defined in Sec. I, and k̃
is the dimensionless comoving wave number from Eq. (16).
This mass will then collapse until the density becomes of
order m2f2, which is roughly the point at which the
oscillons are formed and gravitational waves are emitted.
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This determines the radius Rosc that goes into the quadru-
pole. Finally, the angular frequency of oscillation and thus
of the emitted gravitational waves, will be ωGW ≃ αR−1

osc:

αω−1
GW ≃ Rosc ≃

�
3

4π

Mosc

m2f2

�
1=3

ð86Þ

our numerical simulations imply that α ≃Oð3Þ.
We are considering scales k̃ which collapse at a time

tm ¼ tm;coll well within radiation domination. The scale
factor at collapse is

acoll ≃ aeq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tm;coll

2Heq

m

r
: ð87Þ

After collapse, both the energy density and frequency of
the GWs will be redshifted. Assuming thatOð1Þ of the DM
is in these collapsing objects (an assumption supported by
Ref. [25]), the energy density ΩGW emitted in gravitational
waves relative to the DM energy density today scales as

ΩGW

ΩDM
≃
ω−1
GWPGW

Mosc
acoll

≃ 10−10η2α5
�
10−22 eV

m

� ffiffiffiffiffiffiffiffiffiffiffi
tm;coll

p
k̃2

�
ρπ=2
ρ

�
1=3

; ð88Þ

with characteristic frequency

fGW ≃
ωGW

2π
acoll

≃ 6 × 10−15 Hz α

�
m

10−22 eV

�
1=2

k̃
ffiffiffiffiffiffiffiffiffiffiffi
tm;coll

p �
ρπ=2
ρ

�
1=3

:

ð89Þ

Note that Eq. (88) and the assumptions behind it are general
and hold for any potential that can give rise to configu-
rations that collapse long before equality.
The power and frequency of the expected GW signal

depend sensitively on k̃ and tm;coll. Aided by numerical
simulations, we observe that when the power spectrum
boost G factor of Eq. (27) becomes of order 106 and thus
δ ≃ 1, the resulting nonlinear structures collapse into
relativistic objects shortly afterwards (cf. Sec. II B). This
observation allows us to estimate the collapse time from the
parametric resonance formulas within the linear theory
(cfr. Sec. II A). We furthermore check that in the d ¼ 0þ 1
rigid wave packet approach of Sec. II B, the self-interaction
term of Eq. (50) is larger in magnitude than the kinetic term.
This ensures that, if a structure reaches δ ≃ 1 within the
time that Eint < 0, then it will collapse into an oscillon and
give gravitational waves. The bottom panel of Fig. 10
suggests that this approach is approximately correct at large
values of δ (when parametric resonance shuts off due to the

nonlinearities), especially for larger collapsing structures
(or small k̃).
Equations (88) and (89) suggest that the signal is

dominated by the most massive collapsing structures,
corresponding to the smallest possible k̃ that grows non-
linear. The above combination of the linear parametric
resonance theory (Sec. II A 1) and the nonlinear quartic
collapse analysis (Sec. II B 3) yields a set of three con-
ditions that must be satisfied for a scale k̃ to collapse: (a) the
power boost factor must reach a value of Gðk̃; tm;collÞ ¼ 106,
(b) tm;coll occurs well within radiation domination, and
(c) Eint of Eq. (50) is negative. Note that the time at which
parametric resonance shuts off, defined below Eq. (25), is
parametrically the same (with a somewhat larger numerical
coefficient) as the maximum time allowed by the constraint
Eint < 0, so satisfying (a) means that (c) is automatically
satisfied as well.
From the linear treatment of perturbations, we expect a

range of k̃ to parametrically resonate and collapse, as
suggested by Fig. 4. However, by the time the smallest k̃
satisfies the above conditions, higher k̃ have already
become nonlinear, if we assume a scale-invariant spectrum
of curvature perturbations. In fact, the linear theory predicts
that there can be substantial time separation between the
collapse of the first (and higher) k̃ and the collapse of the
last (and smallest) one. But once the first-collapsing scales
have entered the oscillon regime, the nonlinearities reduce
the amount of energy available in the zero mode, essentially
stunting any further growth for smaller k̃, and the linear
regime procedure outlined above fails. Simulations of
similar systems in Ref. [25] indicate that the vast majority
of the axion energy density leaves the zero mode after the
first scales undergo quartic collapse, rendering it unable to
source the parametric resonance of the smaller wave
numbers.16 The same simulations indicate that this col-
lapsing process is rapid, taking only roughly a factor of 10
in tm from the first hints of collapse to complete fragmen-
tation into oscillons. Thus we estimate the effects of
nonlinearities on our signal by finding the smallest k̃ that
collapses within a factor of 10 in time from the first
collapsing scale, and using this k̃ to evaluate Eqs. (88)
and (89).
The results of the procedure outlined above are shown as

the purple region in Fig. 15 for the cosine potential. The
upper blue line corresponds to tm;0 ≃ 100 and the lower one
to tm;0 ≃ 600. As one turns up the misalignment angle and
thus tm;0, the range of collapsing k̃ in the linear theory gets
extended on both ends, causing the first-collapsing k̃ to be

16One could consider a primordial power spectrum with
suppressed power at these large k̃0s, so that the smallest
collapsing k̃ as determined from the linear procedure is still
accurate, but considering such scenarios goes beyond the scope
of this paper.
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higher and collapse earlier, ultimately suppressing the
signal. In the shaded region between the orange dashed
lines in Fig. 15, we also depict the naïve expectation
obtained by extending the linear regime description to the
latest-collapsing structures. As noted above, turning up the
tuning allows for even smaller k̃ to parametrically resonate
in the linear theory, which also collapse much later,
potentially resulting in an enhancement of the signal with
the tuning. In this case, the upper part of the curve (i.e., for
fGW < 3 × 10−10 Hz) is cut off by the requirement that
collapse occurs well within radiation domination, and
tcoll ≤ teq=10, where teq is the time of matter-radiation
equality. The shaded black region also corresponds to
scales such that the collapsing mass is larger than
109 M⊙, and is excluded by structure formation [45].
Figure 15 shows how the linear description appears to
overestimate by several orders of magnitude the expected
GW signal. This is mainly because a much larger hierarchy
in the collapse time is possible between the different
collapsing k̃ when the nonlinear effects are neglected.
As noted in footnote 16, this estimate can become accurate
for different primordial curvature power spectra.
There can be also GW emission from two additional

regimes: (i) the interaction of two oscillons as they decay,

expand, and collide; and (ii) the interaction of the scalar
waves, emitted during the early collapse of a structure, with
another oscillon. The power emitted from such configura-
tions will, however, be suppressed by the usual r−2 dilution
due to propagation/expansion in 3D space as well as by the
geometric cross section of the interaction. As such, these
additional contributions are subdominant with respect to
the signal of Eq. (88). These other GWs will be produced
later than the ones of Eq. (88), so both their amplitude and
frequency will be less redshifted by the present day, but this
is not sufficient to overcome their suppression. We thus
take Eq. (88) to be an upper limit of the stochastic GW
power leftover from these oscillon dynamics.
As Fig. 15 illustrates, the gravitational wave emission

can cover many orders of magnitude in frequency for
different axion masses. We also show representative sensi-
tivities of several current and upcoming experiments that
promise to cover the relevant frequency window. These
experiments fall in three categories: (a) looking for effects
in the apparent motion of stars or quasars through astrom-
etry, (b) pulsar timing observations, and (c) excess gravi-
tational wave radiation manifesting as additional relativistic
degrees of freedom. In Appendix D, we briefly review each
one of these and describe their sensitivity as shown in the
figure.
We should also note that for other potentials, such as the

ones discussed in Sec. V, the GW signal can be enhanced in
the higher mass end of the spectrum, i.e., in the range
within the PTA sensitivity curves. This is the result of the
potentials being flatter at large field values, delaying the
onset of the oscillations and subsequent collapse.
Additionally, the larger quartic allows even smaller k̃ to
parametrically resonate and collapse.
For most of our parameter space, these signatures fall

below existing sensitivities, but we are hopeful that
advances in astrometric surveys and pulsar timing arrays
will be able to probe our scenario in the near future, to
constrain or detect gravitational waves from the large-
misalignment mechanism in the ∼10−22–10−20 eV and
∼10−15–10−14 eV axion mass ranges.

IV. QCD AXION

We now turn away from a general analysis of ultralight
scalar models to focus on the QCD axion. This proposed
solution to the strong-CP problem is independently well-
motivated [1–3], but the specifics of its potential and
phenomenology mean we need to make a few major
changes to the above computations. The first is that the
mass ma and decay constant fa of the field are no longer
independent, and are instead related by [166]:

maðT ¼ 0Þ ¼ 5.70 μeV

�
1012 GeV

fa

�
ð90Þ

FIG. 15. The purple band is the expected stochastic gravita-
tional wave background from Eq. (88) as a function of the
observable frequency of Eq. (89). The upper end of the purple
band corresponds to tm;0 ≃ 100 and the lower end to tm;0 ≃ 600.
The black band on the lower frequency end corresponds to
exclusions due to structure formation [45], since the collapsing
mass is ≳109 M⊙. The yellow band between the orange dotted
lines is the prediction of the linear theory. The horizontal lines are
current constraints (solid) and future reach (dashed) of different
experiments. Future PTA sensitivities (solid) are also shown (see
Appendix D for details). The red “Astrometry” line assumes 108

quasars and σμ ¼ 1 μas y−1 noise levels, while the SKA-100
sensitivity curve assumes 100 pulsars observed for 30 yrs with an
error of 10 nsec and a cadence of 14 days. The blue dotted lines
are contours of constant axion mass. The signal from the
∼10−22–10−20 eV and ∼10−15–10−14 eV axion mass ranges is
within expected future sensitivities.
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This has the effect of reducing the parameter space to one
dimension. Fixing fa determines ma uniquely, and thus
also determines the required initial misalignment angle Θ0

necessary to produce the proper present-day dark matter
abundance (assuming dark matter is predominantly com-
posed of QCD axions). Because we are interested in effects
that are most prominent when the field begins near the top
of its potential, we will be interested in relatively smaller
values of fa ≲ 2 × 1010 GeV compared with much of the
QCD axion literature. This will correspond to masses
ma ≳ 3 × 10−4 eV.
The second major change is that the axion potential

changes shape and becomes temperature-dependent. At
zero temperature, the potential is no longer a perfect cosine
and depends on the masses of the light quarks [166]:

VðϕÞ ¼ −m2
πf2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4mumd

ðmu þmdÞ2
sin2

�
ϕ

2

�s
ð91Þ

where mπ and fπ ≃ 92 MeV are the pion mass and decay
constant respectively, and mu and md are the masses of the
up and down quarks. For the measured values of the SM
parameters, this potential is sharper at the top than a cosine
potential, which would seem to imply a need for greater
tuning in order to see the sorts of extreme boosts to
structure growth that we are studying. However, this
potential is only valid at low temperatures.
At high temperatures, the dominant contribution to the

potential comes from QCD instantons, and a good approxi-
mation to the potential is given by the dilute instanton gas
approximation (DIGA):

Vðϕ; TÞ ¼ m2
aðTÞf2a

�
1 − cos

�
ϕ

fa

��
ð92Þ

where T is the temperature and m2
aðTÞ scales as:

maðTÞ2 ≡ χQCDðTÞm2
aðT ¼ 0Þ: ð93Þ

The topological susceptibility χQCDðTÞ scales as ∝ T−8.16

for temperatures T > 1 GeV, and can be computed numeri-
cally using lattice QCD.
For our analysis, we use the numerical lattice results of

Ref. [167], which match the DIGA scaling χQCD ∝ T−8.16

though not the overall size. At large temperatures T >
3 GeV beyond the results of Ref. [167], we extrapolate
using the DIGA scaling exponent but our results are largely
insensitive to the exponent in the scaling behavior. In the
large-misalignment range of interest, fa < 1011 GeV, and
the temperature at the onset of oscillation (and shortly after,
when parametric resonance occurs) is T > GeV (see e.g.,
Fig. S30 in Ref. [167]). At these temperatures, not only the
topological susceptibility but also its derivatives with θQCD
quickly conform to those expected from a cosine potential.

For example, the quartic coupling quickly reduces to that of
a cosine potential (cf. Fig. 4 of Ref. [168]). We may thus
approximate the full QCD potential with the form in
Eqs. (92) and (93).
We can now proceed to the full analysis. Defining tm, tk,

and k̃ as in Sec. II A 1 (using the zero-temperature mass
maðT ¼ 0Þ for ma) we have that the background field
evolves according to Eq. (11) with sinðΘÞ replaced by
χQCDðTÞ sinðΘÞ. Note that because χQCDðTÞ ≪ 1 at high
temperatures, the field may enter the horizon and begin
oscillating substantially after tm ∼ 1, and in fact this is the
case for the low-fa QCD axions under consideration here.
Using this, we fix the relationship between fa and the
required initial misalignment angle Θ0 for a given DM
abundance, the results of which are shown in Fig. 16.
Equations (18) and (19) then describe the growth

of QCD axion perturbations, and the covariant density
perturbation is given by Eq. (20), replacing each appear-
ance of sinðΘÞ and cosðΘÞ with χQCDðTÞ sinðΘÞ and
χQCDðTÞ cosðΘÞ respectively. We evolve these equations
numerically for a range of k̃ and initial misalignment
angles; the results are shown in Fig. 17. Note that the
temperature-dependence of the QCD axion mass generally
delays the onset of oscillation, so the wavenumbers that are
unstable under parametric resonance are noticeably smaller

FIG. 16. QCD axion abundanceΩa as a fraction of the total DM
abundance ΩDM, as a function initial misalignment angle Θ0 and
decay constant fa. The thick black line denotes the curve where
the QCD axion energy density matches the observed DM density.
Parameter space above this line is therefore excluded, and a QCD
axion below this line could only make up a subcomponent of the
DM, but can still exhibit structure enhancement (which is only a
function of Θ0). For QCD axions comprising the totality of the
DM, the thick black line gives a relationship between the decay
constant f and the required initial misalignment angle Θ0.
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than those in Fig. 4, peaking around k̃ ∼ 10−2 rather than
k̃ ∼ 5.
A Newtonian treatment—analogous to that of

Sec. II A 2—of perturbations can be given long after
they enter the horizon, and at late times (Oð100Þ periods
after the field begins oscillating), we stitch the exact
general relativistic solution to the Newtonian solution in
order to average out the oscillatory behavior. Because all
temperatures in the late-time universe are much lower
than 1 GeV, the nonlinear behavior is exactly the same as
discussed in Sec. II B, and we give a present-day halo
spectrum for a few representative values of fa in Fig. 18.
Note in Fig. 18 that for scale masses larger than those

that receive a boost, the predicted scale densities are
actually below the ΛCDM result. This is due to the
temperature-dependence of the QCD axion mass, which
means the field does not be have like a matter fluid until the
temperature drops below that of the QCD phase transition.
Scales that enter the horizon at higher temperatures have
χQCD < 1 early in their history, which means the forcing
term from Eq. (19) does not cause as much growth at early
times as it does in CDM. For scales that enter the horizon
when T ≲ 100 MeV, the zero-temperature potential is a
good approximation throughout their evolution and the
behavior returns to the ΛCDM result. In practice, this
depression of growth at scales above the peak implies that
when the structure growth is enough to cause collapse, all

the power in the halo power spectrum will be confined to a
smaller range of scale masses, and so the fraction of DM in
structures at these scales will be higher than it would be for
the axions of the previous section.
The effects discussed in this paper are most prominent for

larger QCD axion masses, of the order ma ≳ 3 × 10−4 eV,
a range which will soon be probed by experiments
such as MADMAX [169], ORPHEUS [170], HAYSTAC
[171], ADMX-HF [172], ORGAN [173], QUAX [174],
TOORAD [175], dish antennae [176], plasma haloscopes
[177], andmultilayer optical haloscopes [178]. If the structure
growth is enough to result in gravitationally collapsed halos
robust against tidal stripping (i.e., for fa ≲ 2 × 1010 GeV), it
is likely that most of the DM in our Galaxy will be clustered
into axion femto-halos. In that case, the expected sensitivity of
such experiments must be re-evaluated to take this clustering
into account. Experiments such as ARIADNE [179,180],
which are sensitive to this mass range but do not require that
the QCD axion be the DM, will be unaffected. We leave a
complete reanalysis of thevarious constraints for futurework.
Although the QCD axion is the most motivated example of a
light scalar with a temperature-dependent mass, it is not the
only option; our results are readily modified for general time-
dependent potentials.
Gravitationally bound structures in the context of the

QCD axion have also been discussed in the literature under

FIG. 17. Transfer function jδk=Φk;0j2 of the QCD axion density
fluctuation δk relative to the primordial curvature fluctuationΦk;0

evaluated at a time tm ¼ 40toscm , where toscm is the time at which the
QCD axion field begins oscillating (when maðTÞ ∼ 3HðTÞ). The
results are presented as a function of comoving wave number k̃
and axion decay constant fa. In this plot we assume that the QCD
axion comprises the totality of the DM, and thus the decay
constant fa uniquely determines the required initial value of the
misalignment angle Θ0.

FIG. 18. Halo spectrum for QCD axion DM in terms of scale
massMs and scale density ρs for various values of decay constant
fa. The predicted CDM halo spectrum is also shown, although
the scales here are far smaller than any that have yet been
measured. For the red, green, and blue values of fa, the dashed
lines depict the dilute soliton branch of Eq. (42), the dotted lines
depict the maximum (critical) soliton mass, and the dot-dash lines
delineate the density above which gravothermal catastrophe
occurs inside the halo (see Sec. II B 2). Note that at scale masses
larger than those that receive a boost, the predicted scale densities
are actually less than those in CDM, implying a reduction of
structure growth on these scales. Although not shown on this
figure, each of these colored lines will continue to decrease until
they meet the gray fa ¼ 1011 GeV line at which point they will
follow it back up to the CDM prediction.
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the name axion miniclusters [8–13]. Those objects are
qualitatively quite different from the ones discussed here.
Axion miniclusters form during a post-inflationary Peccei-
Quinn (PQ) phase transition, which leads to large density
fluctuations on small scales that collapse at or slightly
before matter-radiation equality. In our case, there is no PQ
symmetry present after inflation and the perturbations in
the axion field are simply the primordial curvature pertur-
bations enhanced by the axion self-interaction effects
discussed in Sec. II A. One very important observational
difference of the QCD axion miniclusters relative to the
compact halos we consider here is that the former are very
necessarily extremely dense. As a result, they encounter
Earth only about once every 105 years and cannot pos-
itively affect axion DM searches in the laboratory.

V. INITIAL CONDITIONS AND GENERAL
AXION POTENTIALS

In Secs. II and III, we have restricted ourselves to the
case of the cosine potential. This is because the one
instanton contribution to axion potentials is quite generic
in a weakly coupled theory and it is also the case most
relevant for the QCD axion. At first glance though, we
seem to be faced with a serious problem of tuning. In order
for the effects of self-interactions to be appreciable, the
axion field has to start less thanOð10−3–10−2Þ from the top
of the potential. The most extreme case, namely that of self-
interaction-driven structure collapse during radiation domi-
nation, naïvely requires tuning at the level of 1 part in 1012,
but this figure merits a few comments.
First, there are dynamical mechanisms that can drive the

field’s initial value to the top of the cosine potential, in
which case it is natural for it to be tuned near π. One
possible such mechanism, described in Ref. [181], is to
have a contribution to the axion potential during inflation
that gives it a large mass (specifically m > Hinf ) and aligns
the minimum with π rather than 0 (both 0 and π are natural
choices for the minimum because they are the only two
values of Θ that preserve CP-symmetry). The axion will
then roll down to π and remain there until the end of
inflation when this potential contribution turns off. From
there, the field will evolve as discussed in Sec. II with an
initial value that appears to be tuned.
The concrete model constructed in Ref. [181] applies

specifically to the QCD axion, but similar mechanisms
likely exist for other axionlike particles. The basic ingre-
dient necessary is a difference between the minimum of the
potential during inflation and the minimum after, which
should be unsurprising given that the minima of any
potential are generically temperature-dependent. During
inflation the system is thermal at the Hawking temperature
TH ¼ Hinf=2π, and so thermal contributions to the axion
potential can easily lead to the zero-temperature maxi-
mum (Θ ¼ π) being a minimum during inflation. Such
dynamics also have the added advantage that they suppress

isocurvature fluctuations. These are constrained by the
CMB, and provide nontrivial constraints on axion models
which we discuss in Appendix C.
Second, even if no dynamics are involved, an under-

standing of the tuning requires an understanding of the
probability measure associated with the initial field value as
well as the probability measure associated with an
anthropic argument. The latter can in principle alleviate
the tuning substantially, which we investigate with a brief
discussion of an anthropic argument due to Ref. [182]. The
basic idea is that if ρDM were much less than we observe it
to be, structures would not be able to collapse before the
Universe entered the present era of dark-energy domina-
tion. Since expansion would then rapidly dilute all matter,
no structures would collapse and thus no observers would
form. On the other hand, if ρDM were much larger than its
observed value, baryons would be proportionally rarer and
thus baryonic observers would be less common. In our
case, using the technique and priors of Ref. [182] yields an
actual tuning of order the square root of the “naïve” tuning.
This analysis cannot be rigorous—the measures used are
subject to significant uncertainties and disagreement in the
literature—but it still serves to demonstrate that anthropic
arguments can substantially alleviate the tuning necessary
to observe the effects discussed in this paper.
Ultimately, we must note that the tuning depends heavily

on the shape of the potential near the top. As discussed in
Sec. II A 1, the requirement for large self-interaction-
induced growth in density perturbations is a “delay”
between the time when the field starts oscillating and its
naïve oscillation time (i.e., when m ∼ 2H). For a field that
begins near the top of its potential, changes in the potential’s
slope can lead to parametric changes in how long it takes to
begin rolling. Realistic axion potentials descending from
some unknown UV completion may deviate significantly
from the cosine potential of Eq. (3), and more naturally
realize a delay in the onset of oscillations.
The effects that we point out in this paper are present in

large classes of models with different axion potentials as
long as they have attractive self-interactions. In several of
these models, including some models of axion monodromy,
the potential is flatter than quadratic (that is they scale like
VðϕÞ ∼ ϕp for some p < 2, or equivalently VðϕÞ < 1

2
m2ϕ2

at large field values) for a large field range, which is exactly
what is required for the effects described above to manifest
themselves. As discussed at the end of Sec. II A 1, the
extreme growth in energy density perturbations requires a
“delay” in the onset of oscillations from its natural time-
scale tm ∼ 1 (m ∼ 2H). This natural timescale is the exact
result for a purely quadratic potential with mass m, so any
delay must come from the potential being flatter than
quadratic. The precise nature of how it flattens will
determine how much the field is delayed in its oscillation,
but any such delay will lead to similar phenomenology: a
set of wavelengths with an exponential growth instability.
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To illustrate this, we consider two different toy models and
then discuss how generic their behavior really is. More
discussion of these effects is also present in Ref. [17].
The first model we consider is an axion with potential:

VðϕÞ ¼ m2f2
ϕ2

2f2 þ ϕ2
¼ m2f2

θ2

2þ θ2
; ð94Þ

where θ≡ ϕ=f. This potential has the same mass m and
overall energy scale m2f2 as the cosine potential in Eq. (3).
Such a potential can arise quite naturally for example
from integrating out a heavy field in a two-scalar model.
As discussed in Ref. [183], we can begin with a potential
such as

VðϕL;ϕHÞ ¼ g2ϕ2
Lϕ

2
H þM2ðϕH − ϕ0Þ2; ð95Þ

and integrate out the heavy field ϕH to obtain the potential
of Eq. (94) with m2 ¼ 2g2ϕ2

0 and f2 ¼ M2=ð2g2Þ.
We can now repeat the linear growth analysis from

Sec. II A 1 with this potential to obtain Fig. 19. For
jΘ0j≳ 2, the field’s oscillation is delayed and there are
large enhancements to structure growth for a range of
length scales. For jΘ0j≳ 4, some scales receive enough of a
boost that they will collapse during radiation domination.
This potential will thus exhibit all of the observable
phenomenology discussed in Sec. III, but does not suffer
from any of the tuning issues present in the cosine potential.
Axion potentials with an unbounded field range and a

flattening at large field values have also been discussed
extensively in the axion monodromy literature. e.g.,
Refs. [15,16,183,184]. As a prototypical example from
this class of models we consider the case of a D4-brane

stretched between two NS5-branes around an internal
cylinder. This model is discussed briefly in Ref. [185],
but for our purposes it is only important that the low-energy
4D-theory will include a moduli field θ corresponding to
the winding of the D4-brane around the cylinder. The
potential of this field is then given by:

Vðϕ≡ fθÞ ¼ m2f2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ θ2

p
− 1Þ: ð96Þ

This potential is quadratic near the origin and flattens to
become linear at field excursions jθj≳ 1. Again we can
repeat the linear growth analysis from Sec. II A 1 with this
potential to obtain Fig. 20, where we can see that indeed
there will be significant structure growth and early collapse
for jΘ0j≳ 10.
Both of these examples serve to demonstrate that the

phenomenology and signatures discussed in this paper
are not unique to the cosine potential of Eq. (3) but are
rather generic to any axion model with a delayed onset
of oscillation relative to the natural timescale toscm ¼
2Hosc=m ∼ 1 near any minimum where the quadratic
expansion is good approximation. For models with a cosine
potential, this requires an initial misalignment angle tuned
quite close to the top of the potential, but for other models
this is not the case. For the monodromy potential of
Eq. (96), it is easy to show that toscm ∼ jΘ0j1=2 for very
large initial field misalignments jΘ0j ≫ 1. As long as
Θ̄ ≫ 1, the energy density is linear in the field value,
and will scale as a−2 [54], so we have ρ=m2f2 ∼ Θ̄ ∼
jΘ0jtoscm =tm during radiation domination. Hence we find that
Θ̄ ¼ 1 at a dimensionless time tm;0 ∼ jΘ0j3=2 that can be
very large indeed, leading to strong parametric resonance

FIG. 19. Transfer function for the axion energy density (see
Fig. 4) for an axion with the ratio potential of Eq. (94).

FIG. 20. Transfer function for the axion energy density (see
Fig. 4) for an axion with the monodromy potential of Eq. (96).
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effects [cf. Eq. (29)]. The ratio potential of Eq. (94) has an
even steeper dependence of tm;0 on large initial misalign-
ments jΘ0j.
Intriguingly, in numeric simulations of both the above

potentials, we have found metastable oscillon states with
substantially longer lifetimes than similar states for the
cosine potential. We have been unable to find a precise
expression for their lifetimes, but simulations confirm that
both Eq. (94) and Eq. (96) lead to states that live at least
Oð105=mÞ and possibly much longer (other groups have
also found states living at least Oð108=mÞ in similar
potentials [17]). If they live a few orders of magnitude
longer than this, they may be cosmologically relevant and
have observable signatures, some of which we have already
discussed in Sec. III A. We leave a more detailed analysis of
these states and their phenomenology for future work.

VI. DISCUSSION

In this paper, we have shown how axion self-interactions
can lead to nongravitational DM structure growth resulting
in compact halos, and we have proposed several observa-
tional signatures of these halos. This growth is driven by
parametric resonance for modes of order the axion
Compton wavelength at the time when the axion field
starts oscillating. The effect on DM density perturbations is
bigger when the axion field starts with “large misalign-
ment,” that is at a flat portion of its potential. This
enhancement of structure formation thus presents a quali-
tative and quantitative production mechanism for compact
DM halos, which in extreme cases can be scalar field
configurations such as solitons and oscillons.
The possibility of the existence of such objects in our

universe was considered before but without a concrete
cosmological production mechanism (with the exception
of the aforementioned QCDminicluster literature). Here we
outline a framework that can make quantitative predictions
for the production of compact axion structures in terms of
fundamental parameters of the theory. The totality of all our
observational predictions is summarized in Fig. 1, covering
an enormous range of axionmasses from 10−22 eV to 10 eV.
For axion masses larger than 10−5 eV—and for the QCD

axion with decay constants near fa ∼ 1010 GeV—a large
fraction of the axion DM is in compact dense halos that
episodically visit Earth, substantially affecting contempo-
rary and future experiments that target this parameter space.
Axion DM experiments operating in this mass range should
reconsider their search strategies and their method of data
analysis to account for these effects. In fact, if the vast
majority of the axions is in dense halos, then regions of the
axion parameter space that are now considered excluded
because of negative direct axion DM searches could
actually be allowed, so a reinterpretation of the present
axion exclusion plots may become necessary. A related
theoretical challenge is to compute precisely the fraction of

DM axions that is in compact halos, which will likely
require numerical simulation.
Axions lighter than 10−5 eV can be probed through

various types of gravitational lensing searches as well as
measurements of our local DM distribution. Axions lighter
than 10−18 eV can lead to substantially earlier star for-
mation, possibly accelerating the formation of early super-
massive black hole seeds, or providing new signatures
accessible with better measurements of re-ionization.
Understanding such signatures will also probably require
numerical simulation, as will the computation of the
compact halo spectrum and the relevance of the gravo-
thermal catastrophe for the late-time properties of these
halos. Although we have not studied their signatures in this
paper, axions heavier than 10 eV can also form gravita-
tionally bound structures that survive to the present day,
and this could potentially spur new ideas for direct
detection experiments in this range. We leave this possibil-
ity for future work.
In the extreme case where nonlinear DM structure forms

well before matter-radiation equality, we are presented with
the exciting possibility of oscillon DM. Of course this
would require that the oscillon is cosmologically long
lived, which is not the case for the cosine potential.
Nevertheless, numerical simulations reveal that oscillons
of other well-motivated, flatter potentials can live for at
least 108 cycles [17], corresponding to lifetimes of tens of
millions of years for fuzzy DM. This suggests the idea of
oscillon DM may be realizable for some potentials.
Axions are extremely well-motivated DM candidates,

and are a main focus of research beyond the Standard
Model. With this work, we hope to bring into focus a
largely overlooked property of axions that changes our
notions of DM structure and its signatures. The large-
misalignment mechanism for axion DM production points
to previously unexplored possibilities for the properties of
axion DM and its experimental signatures over tens of
orders of magnitude in parameter space.
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APPENDIX A: BOUND STATES

In order to understand the collapse dynamics and
resulting objects, we must first recall the spectrum of
self-bound axion field configurations. These are well
known in the literature [31–42] and can be split into two
categories: solitons and oscillons. The former are diffuse
objects (with size ≫ 1=m) held together by their self-
gravity and stable over cosmological times. The latter, on
the other hand, are far more compact (with size Oð1=mÞ)
and only metastable.
Since they are not our main focus in this paper, we do not

go into much detail about these solutions except to recall a
few important results about them. First, solitons: field
configurations bound by self-gravity and stabilized by
kinetic pressure. For f ≪ MPl, we can treat these configu-
rations with a nonrelativistic approximation to the scalar
Klein-Gordon equation. This yields a Schrödinger equation
that can be solved numerically [34] (and approximated
analytically [35]) to yield the following:
(1) Solitons are long-lived, with lifetimes far longer than

the age of the Universe [36,38]. Fundamentally, this
is because they are diffuse objects, with sizes much
larger than 1=m and accordingly small velocities
vsol. Since self-interaction-induced radiation (i.e.,
outgoing axions) is a relativistic effect, it is expo-
nentially suppressed by a form factor ∼e−1=v2sol.

(2) Solitons have a well-defined mass-radius relation
given by [34]:

R99 ∼
9.95

GNm2M
ðA1Þ

where R99 is the radius containing 99% of the mass
of the soliton.

(3) Solitons have a fixed density profile which can be
numerically obtained by solving the Schrödinger-
Poisson equation. Here we give an approximation to
this profile. Defining the scale radius as in Sec. II B 1
by rsols ≡ frj∂ ln ρðrÞ=∂ ln r ¼ −2g and the scale
density ρsols ≡ ρðrsols Þ, the soliton’s density profile
is well-approximated by:

ρðrÞ ≃ ρ0 exp
�
−

r2

2R2
0

�
or

ρðrÞ ≈ ρ0
½1þ r2

2nR2
0

�n ðA2Þ

where ρ0 ≈ 2.945ρsols andR0 ≈ 0.6530rsols . The first of
these approximations is accurate at small radii, while
the second with n ¼ 8 is accurate to 10% for r≲
3.2rsols . At asymptotically large radius, lnρðrÞ∝−r, as
for e.g., hydrogenic wave functions.

(4) There is a maximum mass for solitons in potentials
with attractive self-interactions. At larger masses,
configurations are unstable to a violent collapse and
subsequent explosion due to the attractive self-
interactions of the cosine potential (which can be
seen in, for example, [34,35,186] and the simula-
tions of Ref. [65]). For the cosine potential of
Eq. (3), the critical mass Mcrit can be estimated
analytically to be

Mcrit ≃
ffiffiffiffiffiffiffiffiffiffi
24π3

p fMPl

m
: ðA3Þ

We also briefly review oscillons, dense relativistic struc-
tures bound together and stabilized solely by self-
interactions.17 They have also been studied in the literature
(see e.g., Refs. [32,39,43,190,191]), although they are not
nearly as well-understood as solitons. For our purposes, how-
ever, we only need a few empirical observations about them,
all of whichwe checked for awide variety of initial conditions
via numerical simulations described in Appendix B:
(1) The internal density of the oscillon is Oðm2f2Þ, the

natural scale associated with the potential of Eq. (3).
(2) For small oscillons with sizes of Oðfew=mÞ, we can

use the above density to obtain a rough estimate of
the oscillon mass:Oð102–3f2=mÞ, in agreement with

17There has been disagreement in the literature over what to
call these objects. We use the word soliton to refer to those objects
which are bound by gravity and stabilized by kinetic pressure,
while we use the word oscillon to refer to those objects which are
both bound and stabilized by self-interactions and kinetic
pressure. The former have also been referred to as “dilute axion
stars” (e.g., in Ref. [39]). The latter, meanwhile, have been
referred to as “dense axion stars” (e.g., in Refs. [32,39,187–189])
and, in a particularly confusing turn of events, “solitons” (e.g., in
Ref. [43]).
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our simulations. Initial field configurations with
substantially more mass tend to radiate it away in
a transient burst and initial field configurations with
substantially less tend to immediately disperse.

(3) Because of their approximately constant internal
density, oscillons have a mass-radius relation given
by M ∝ R3.

(4) The per-particle binding energies of the oscillons are
not too large, of orderOð0.1mÞ. This can be inferred
from the spectrum of emitted radiation at large
distances (see Appendix B).

(5) Perhaps most importantly, for the cosine potential of
Eq. (3), oscillons are only metastable, with relatively
short lifetimes τosc ≲Oð103=mÞ. They decay by
emitting axion radiation until they reach a small
enough mass such that self-interactions are no longer
able to bind them. At that point, they begin dispers-
ing outward due to the repulsive kinetic pressure
(and the expansion of the Universe).
This is observed in numerical simulations (see

Appendix B), but it is also known that different
axion potentials can give support far longer-lived
oscillons. Potentials with lifetimes τosc > Oð108=mÞ
are known [17], and there is no clear upper bound.
Such long-lived objects may be cosmologically
relevant, but at the moment we defer these questions
for later work. Since the longest-lived oscillons of
the cosine potential have τosc ≲Oð103=mÞ, they will
decay before matter-radiation equality if they are
formed in the early Universe.

APPENDIX B: NUMERICAL RESULTS

To understand the dynamics of the axion field and extract
its generic behavior under the conditions of interest, we
employed several fully nonlinear, relativistic numerical
simulations. These allow us in particular to develop and
sharpen our analytic estimates for the time and length scales
involved in a self-interaction-induced collapse (a highly
nonlinear process) as well as to explore potential observ-
able opportunities in gravitational waves. In Appendix B 1,
we discuss a set of spherically-symmetric studies, which
we used primarily to probe the stability and lifetimes of
oscillons in our various potentials. These studies are
complemented with corresponding analysis in an expand-
ing Universe of which implementation details and results
are presented in B 2. We also employ fully three-
dimensional simulations to confirm our estimates for the
gravitational power radiated during a self-interaction-
induced collapse. These are discussed in Appendix B 3.

1. Spherically-symmetric simulations

a. Implementation

For simplicity, we adopt Schwarzschild coordinates
where the metric can be written as,

ds2 ¼ −α2dt2 þ a2dr2 þ r2dΩ2: ðB1Þ

Thus the only relevant metric functions are the lapse
function αðt; rÞ and aðt; rÞ. These coordinates become
singular when a horizon forms but we study weak regimes
so this issue does not arise. In our implementation, we
employ “standard” first order variables as used in e.g.,
Ref. [192],

Φ≡ ϕ0; Π≡ a
α
_ϕ; ðB2Þ

using the notation _f ¼ ∂tf and f0 ¼ ∂rf; rescaling both
ðr; tÞ by m−1 and ϕ by f−1; and, for convenience, we also
introduce R≡ fffiffiffiffi

8π
p

MP
. From the rr and rt components of

Einstein’s equations, we obtain

α0 ¼ α

2

�
r8πR2

�ðΦ2 þ Π2Þ
2

− Va2
�
þ a2 − 1

r

�
; ðB3Þ

_a ¼ 4πΦΠ α aR2: ðB4Þ

The first-order variables of the axion field then obey

_Π ¼
�
Φα

a

�0
þ 2gα

ra
− αaV 0; ðB5Þ

_Φ ¼
�
α

a
Π
�0
; ðB6Þ

_ϕ ¼ α

a
Π: ðB7Þ

To efficiently cover the large range of scales relevant in
the problem, we employ a nonuniform radial grid defined
by r ¼ υ tanðxÞ with x ∈ ½0; 2πÞ; x is then uniformly
discretized with dx ¼ π=ð2ðNx − 1ÞÞ. Here, υ ¼ 20 is
included for convenience and Nx the number of points
in our discretization. The radial equation (B3) is solved at
each given time while the evolution equations (B4)–(B7)
are employed to obtain the scalar field behavior and the
metric field a. The radial integration is done through a
Runge-Kutta 4th-order algorithm integrating inwards with
the asymptotic boundary condition α ¼ 1; integration in
time is performed with a Runge-Kutta 3rd-order in time
using the method of lines. Spatial derivatives are computed
with second (third, or fourth) order finite-difference oper-
ators satisfying summation by parts [193,194]. Regularity
at the origin is addressed by using l’Hôpital’s rule at r ¼ 0
to regularize the equation. We employ maximally dissipa-
tive boundary conditions at the outer radial boundary. A
small amount of artificial dissipation is added for conven-
ience (for stability and convergence as well as for ensuring
spurious high frequency behavior does not affect low
frequency physics). For further details see [194–196].
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Finally, in our simulations where we typically employ
R ¼ 10−3; 10−2, the timestep spacing is chosen as dt ¼
10−1dx to satisfy the Courant-Friedrichs-Levy (CFL) con-
dition and accurately capture the rapid time-scale variations
of the field dynamics.

b. Results and observations

We first ran a set of spherically-symmetric simulations
with initial conditions corresponding to subcritical and
supercritical solitons. The subcritical solitons remained
stable for as long as we simulated (> Oð106=mÞ), while
the supercritical solitons collapsed under the influence of
self-interactions to an oscillon of radius Ro ≈ 3=m, before
violently radiating away enough of their energy to become
subcritical and then fuzzing out to a subcritical soliton. A
typical central value of scalar field and density profile for a
collapsing supercritical soliton is shown in Figs. 21 and 22
respectively. These have been obtained with initial data
defined as:

ϕðt ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffiffi
π=10

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0=σ3

q
e−r

2=ð2σ2Þ;

∂tϕðt ¼ 0Þ ¼ 0: ðB8Þ

In the plots here, we adopt M0 ¼ 2 × 104, σ ¼ 40, but we
also simulated a variety of other masses and initial sizes and
obtained qualitatively similar results in all cases. Our
results here should be compared with those of Ref. [65],
with which they are broadly consistent.
To establish that no “stable oscillons” (i.e., states bound

by self-interactions and long-lived on cosmological scales)
could form, we also simulated several high-energy-density
initial conditions, including initial states corresponding to

solutions of the Schrödinger equation under a nonrelativ-
istic assumption. For the cosine potential [Eq. (3)], we
found metastable states for a wide variety of initial
conditions, but no states that lived longer thanOð103=mÞ ¼
Oð1000Þ yr 10−22 eV

m . They are thus not cosmologically long
lived, so we do not expect any of them to be present in the
late-time Universe. We note in passing that in finely-tuned
configurations significantly longer lifetimes are in principle
achievable (e.g., [187,188]) though this possibility would
not be generic. For other potentials, such as those of
Eqs. (94) and (96), we also simulated such initial con-
ditions, and for these we were able to find metastable states
with lifetimes at least Oð105=mÞ, at which point the
simulations became computationally costly. It is unknown
what leads to such longevity in these potentials, and
whether there is an upper bound on the lifetime of such
oscillons. We reserve a careful study of this for future work,
limiting ourselves in this paper only to outlining some of
the observable consequences of cosmologically long-lived
oscillons should they exist.
By measuring the scalar field at large distances from the

center, we were also able to extract the spectrum of
outgoing scalar radiation. We performed this analysis both
for collapsing supercritical solitons and for the longest-
lived metastable oscillon states we could produce, and in all
cases the results showed clear peaks at energies ω approx-
imately 3ω0; 5ω0; 7ω0;…, where ω0 is the energy of the
soliton or oscillon state and is slightly less thanm due to the
state’s binding energy. A representative spectrum is shown
in Fig. 23. This is consistent with self-interaction-induced
3 → 1; 5 → 1; 7 → 1;… processes being the dominant
contributors to scalar emission from oscillons and collaps-
ing solitons, which is in turn consistent with the fact that all

FIG. 21. Central value of the axion field for R ¼ 5 × 10−3

using an initial condition given by Eq. (B8) with M0 ¼ 2 × 104,
σ ¼ 40. This simulation used a spherically-symmetric code
which required far fewer computational resources than the 3D
code used to generate Fig. 24, but the results are in agreement
both qualitatively and quantitatively in terms of rough timescales
and field excursions.

FIG. 22. Central value of the axion energy density for R ¼
5 × 10−3 using an initial condition given by Eq. (B8) with
M0 ¼ 2 × 104, σ ¼ 40. Note the spikes in density visible during
the collapse and the eventual fuzzing out after enough energy
has been lost. While the configuration is far from perfectly
periodic or regular, it is quite long-lived compared to its natural
timescale of m−1.
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metastable oscillon states we observed were small in size
(with radius of order 1=m).

2. Expanding-universe simulations

a. Implementation

In Sec. II B 3, we simulated the collapse of fracti-
onally small, spherically symmetric overdensities in an
expanding Universe, according to Eq. (47) with the initial
conditions of Eq. (46). We used Mathematica 11.3’s
NDSolve routine [197] with the adaptive time resolu-
tion (in tm space) of MethodOfLines. Anticipating
the need for higher spatial resolution near the origin due
to the collapse of the wave packets, we transformed the
partial differential equation on a discretized spatial grid
uniform in r1=2m using SpatialDiscretization
and TensorProductGrid. The spatial resolution was
allowed to float dynamically up to MaxPoints ¼
2 × 106: for the simulation in Fig. 9, we started with
minimum number of MinPoints ¼ 600 initial spatial
lattice points evenly distributed in r1=2m space between
rm;min ¼ 2.5 × 10−3 and rm;max ¼ 25. We employed
Neumann boundary conditions at spatial boundaries, and
checked that results were independent of the box size, i.e.,
rm;min and rm;max. (Because of the presence of the zero
mode at the outer boundary, dissipative boundary con-
ditions would lead to unwanted artefacts.) The time
resolution was also dynamically variable but was never
allowed to exceed a time step in tm space larger than
MaxStepSize ¼ 2 × 10−3. Numerical convergence and
robustness of the obtained results was verified by varying

the spatio-temporal resolution as well as slightly changing
the initial conditions, and inspecting if the qualitative
features of the numerical solution were the same.

b. Results and observations

The results of the simulation in Fig. 9 are described in
Sec. II B 3, and serve as a bridge between the linear theory,
the collapse into an oscillon-like configuration, and the
subsequent evaporation. We have performed similar sim-
ulations for larger-radius wave packets, which we found to
collapse into larger-mass oscillon states with somewhat
longer lifetimes, and more complicated behavior in the
nonlinear regime. Another simulation with exactly the
same parameters as in Fig. 9 save for the opposite sign
of δ0 ¼ −10−2, i.e., a linear underdensity, reveals that
underdensities also grow via parametric resonance but
do not produce implosions, instead the growth of fluctua-
tions turns off smoothly when nonlinearity is reached.
We have also run simulations for a handful of multi-scale

configurations, e.g., two superimposed wave packets of
different radii. In those cases, we found that the collapse of
the small wave packet did not prevent the collapse of the
larger wave packet. In order to study the interactions
between oscillons and to understand the mode mixing
over a large range of scales, simulations with a larger
dynamic range in both time and space would be helpful.

3. Three-dimensional simulations

We also ran a few fully three-dimensional simulations
incorporating full general relativity in order to study
gravitational wave radiation from an asymmetric collapsing
cloud. As discussed in Sec. II B 1, an axion cloud collaps-
ing under the influence of self-interactions in the early
Universe will in general be asymmetric. This asymmetry
will lead to gravitational wave radiation, but in order to
estimate the actual power radiated, we must know how long
it takes for the collapsing structure to radiate away its
asymmetry. Our fully consistent 3D simulations allow us to
follow the behavior of the scalar field and compute, in
particular, the gravitational radiation emitted by the system
and contrast it with our analytical estimates discussed in
Sec. III D.

a. Implementation

We employ the HAD [198] computational infrastructure
to efficiently study our system of interest, described by a
scalar field minimally coupled to the Einstein equations in
3D (subject to the cosine potential for concreteness). This
infrastructure provides distributed, adaptive mesh refine-
ment Berger-Oliger style AMR [198,199] with full sub-
cycling in time, together with an improved treatment of
artificial boundaries [200]. We adopt the CCZ4 formulation
of Einstein equations (for details see Ref. [201]).
Discretization is achieved through finite difference schemes

FIG. 23. Spectrum of outgoing radiation for R ¼ 5 × 10−3

using an initial condition given by Eq. (B8) with M0 ¼ 2 × 104,
σ ¼ 40. This simulation used a spherically-symmetric code. Note
the peaks at peaks at ≈3ω0; 5ω0; 7ω0;…whereω0 ≈ 0.9m. These
indicate that 3 → 1, 5 → 1, 7 → 1 etc. processes are dominant
contributors to scalar wave emission from oscillonlike field
configurations. The large nonrelativistic peak just above m is
due partly to transient radiation still present from our initial state
and partly to the fact that the oscillon has not yet settled to its
ground state (and because of its short lifetime, does not have time
to before dispersing).

LARGE-MISALIGNMENT MECHANISM FOR THE … PHYS. REV. D 101, 083014 (2020)

083014-41



based on the method of lines on a regular Cartesian
grid. A fourth-order accurate spatial discretization satisfy-
ing the summation by parts rule, together with a third
order accurate (Runge-Kutta) time integrator, are used
to achieve stability of the numerical implementation
[194,195,202].
Our simulations are performed in a domain ½−1600=m;

1600=m�3 with a coarse resolution of Δx1 ¼ 40=m and
allow up to 7 levels of refinement which automatically
adapt through a self-shadow hierarchy to ensure the error in
the solution is kept below 4 × 10−4 (thus, the minimum
resolution is 0.3125=m). As observed in the spherically
symmetric studies, the system goes through a rather violent
temporal oscillation–even when relevant spatial wave-
lengths are relatively long–, due to the source dependence
on R. We thus adopt a small Courant parameter of λc ≈
10−2 such that Δtl ¼ λcΔxl on each refinement level l to
guarantee that the CFL condition is satisfied and relevant
physical behavior is accurately captured. Previous related
work with this infrastructure (e.g., [203–206]) have thor-
oughly tested the implementation. Here we have further
verified its suitability for our current purposes through con-
vergent studies. Armed with this implementation, we study
asymmetric initial configurations—which are also weakly
gravitating—defined in a similar way as in Eq. (B8),

ϕðt ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffiffi
π=10

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0=σ3

q
e−r̂

2=ð2σ2Þ

∂tϕðt ¼ 0Þ ¼ 0; ðB9Þ

with r̂2 ¼ ðo1xÞ2 þ ðo2yÞ2 þ z2. The parameters fo1; o2g
are chosen to define nonspherical initial configurations and
explore the radiative properties of the system in the
gravitational and scalar sectors.

b. Results and observations

We have run several cases described by M0 ¼ f5 × 103;
2 × 104g, o1 ¼ o2 ¼ f1; 1.25; 1.5g, σ ¼ f20; 40g and
o1 ¼ 1; o2 ¼ f1.25; 1.5g, for R ¼ f10−2; 5 × 10−3; 10−3g
to scan a range of relevant cases that could be studied with
reasonable computational resources—typically a month of
running employing 40 processors. As we show below, the
overall behavior follows closely that observed in our
extensive 1D studies and the combined information pro-
vides a clear picture of the axion field’s dynamics in the
nonlinear regime.
All cases progress in a similar manner. Initially, much

like what is seen in the spherically symmetric case, a
transient stage lasting a few ≈100=m shows the field
oscillating with frequency 2πm and slowly radiating—
mainly through the scalar channel. Then, through a rather
sudden change, the scalar field extent of initial size ≈σ
collapses to a size of ≈3=m, which is followed by strong
oscillations interspersed with phases describing a modest

FIG. 24. Central value of the axion field for R ¼ 10−3;
5 × 10−3. Note this plot shows the same qualitative features
(and rough quantitative timescales and field ranges) as those of
Fig. 21.

FIG. 25. Emitted power of gravitational waves vs time for two
representative cases (with R ¼ 10−3; 5 × 10−3 and o1 ¼ o2 ¼
1.25) normalized with the expected R4 dependency.

FIG. 26. Total radiated energy, relative to the initial mass of the
field configuration, vs time for M0 ¼ 2 × 104, σ ¼ 40 and o1 ¼
o2 ¼ f1.25; 1.5g together with their corresponding estimates
using the quadrupole formula and the leading gravitational wave
frequency.
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expansion and recollapse. Figure 24 illustrates such behav-
ior by showing the central value of the scalar field for
fM0 ¼ 2 × 104; σ ¼ 40; o1 ¼ 1; o2 ¼ 1.5g. It is during the
collapsing stages that gravitational radiation is mainly
produced at bursts due to sudden changes in the source.
The power emitted in gravitational waves agrees with

Eq. (88) presented in Sec. III D. This is illustrated in Fig. 25
which shows the power radiated in gravitational waves for
asymmetric initial configurations (o1 ¼ 1, o2 ¼ 1.5) nor-
malized by R−4 (∝ f−4). Also, Fig. 26 depicts the cumu-
lative energy radiated (until time t) versus time for two
asymmetric configurations (o1 ¼ 1; o2 ¼ f1.25; 1.5g) nor-
malized with respect to the initial mass of the axion
configuration (described by M0 ¼ 2 × 104; σ ¼ 40).
Importantly, we note that as time progresses the matter
distribution approaches a spherical shape mainly due to:
(i) significant scalar field radiation, and (ii) “gravitational
cooling”, where scalar field “blobs” with masses ≈1% of
the initial mass are shed and propagate away18 from the
oscillon at v ≈ 0.2c. This latter behavior is illustrated in
Fig. 27, corresponding to the case M0 ¼ 2 × 104, σ ¼ 40
and o1 ¼ o2 ¼ 1.5. Both of those processes together with
gravitational wave emission weaken gravitational radiation
as time progresses, as can be appreciated in Figs. 25 and 26.

APPENDIX C: ISOCURVATURE CONSTRAINTS

Isocurvature fluctuations may also place constraints on
large-misalignment axions in some models. Provided the
field is light during inflation (m ≪ Hinf ), we compute
constraints on the axion parameter space as a function of

Hinf , shown in Fig. 28. However, as we discuss briefly in
Sec. V, the axion can be much heavier during inflation
(m ≫ Hinf ) if it has a temperature-dependent potential, and
in this case we will see that isocurvature fluctuations are
substantially suppressed and thus provide no constraint on
the axion parameter space. The dashed lines shown in
Fig. 28 assume the former, but should not be interpreted as
absolute constraints given the above discussion.
Any scalar field ϕ with m ≪ Hinf present during

inflation will pick up fluctuations on all scales of order

δϕ ∼
Hinf

2π
ðC1Þ

where Hinf is the Hubble scale during inflation [210].
In our case, where ϕ is the axion field, this translates
into fluctuations in the misalignment angle of order
δΘ ∼Hinf=ð2πfÞ. The Planck collaboration constrains
such fluctuations to be small [51], and requiring this will
constrain f to be larger than some minimal value that
depends on Hinf .
We are primarily interested in the case where the field

starts near the top of the potential since this is where all our
signatures come from. For the pure cosine potential of
Eq. (3), we have from Sec. II A 1 that when the field starts
with an initial misalignment angle Θ0 near the top, the late-
time density ρ is proportional to:

ρ ∝ 0.2½toscm þ 4 ln toscm �2; ðC2Þ

toscm ≡ ln

�
1

π − jΘ0j
21=4π1=2

Γð5
4
Þ

�
: ðC3Þ

Fluctuations of order δΘ0 in the initial misalignment
angle Θ0 translate into late-time density fluctuations δiso
of order:

δiso ≡ δρ

ρ
¼ dρ

dΘ0

δΘ0

ρ
≃ C

δΘ0

ðπ − jΘ0jÞ ln π=ðπ − jΘ0jÞ
ðC4Þ

where C is a constant that varies between roughly 1.5 and
2.5 with weak dependence on Θ0.
Planck requires that isocurvature fluctuations in the

power spectrum be subdominant to the measured adiabatic
fluctuations by a factor of roughly 10−2 [51]. Since the
adiabatic fluctuations in the power spectrum are Oð10−9Þ
this means δiso ≲

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10−210−9

p
∼ 10−5.5. For fixed Hinf , this

translates into a constraint on the smallest allowable f or,
equivalently, a constraint on the maximum allowable tuning
for Θ0.
In the regime where jΘ0j ≪ 1, the energy density in

axions is ρ ∝ m2f2Θ2
0 and Eq. (C4) reduces to:

δiso ¼
Hinf

πfjΘ0j
: ðC5Þ

FIG. 27. Representative snapshots at the equatorial plane of the
scalar field density ρ ¼ T00 at four different times tm ¼ 310, 394,
470, 500. As the scalar field in the central region oscillates, two
scalar field “blobs” are expelled from the central region.

18We note in passing that analogue behavior has also been
observed in other settings involving scalar field nonlinear
interactions, e.g., scalar field collapse [31,207] and boson star
collisions [206,208,209].
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The product fjΘ0j for a given axion mass m is fixed by the
requirement that the axion carries all the DM density today.
Taking into account the analysis in Sec. II A 1, a bound on
δiso is thus equivalent to a constraint on fπ=2. In turn, this
translates to an upper bound on the axion mass m which is
now a function of Hinf , scaling roughly roughly as H−4

inf .
The above discussion of the two extremes, π − jΘ0j ≪ 1
and jΘ0j ≪ 1, explains the asymptotic behavior of the exact
bounds shown in Fig. 28 which have been derived for an
arbitrary Θ0.
With an understanding of the above, we turn to the case

where the temperature-dependence of the axion potential
causes it to be heavy during inflation (m ≫ Hinf ). In this
case it still picks up fluctuations, but they are substantially
suppressed when averaging over the scales measured in the
CMB [211]:

δϕ ∝
H1=2

inf

mλ3=2CMB

ðC6Þ

where λCMB ∼ 10 Mpc ∼ 1=ð10−30 eVÞ is the smallest
length scale that can be probed with the CMB. In this
case Eq. (C4) picks up a similar suppression, and so for
m≳Hinf , isocurvature fluctuations are suppressed far

below any level of detectability and thus provide no
constraint on the axion parameter space.

APPENDIX D: LOW-FREQUENCY
GRAVITATIONAL WAVE DETECTION

For gravitational waves of frequency below 10−7 Hz,
there are three known detection methods: astrometry, pulsar
timing arrays, and the CMB. Here, we briefly review each
method and discuss their sensitivity as presented in Fig. 15.

1. Astrometry

Stochastic gravitational waves cause an apparent dis-
tortion of the position of background sources on the
celestial sphere [212]. At low frequencies, where the
GW frequencies are smaller than the inverse integration
time of the observations, the time derivative of this
distortion will manifest itself as a stochastic proper motion
of e.g., extragalactic sources, which should otherwise
appear nearly stationary by account of their large line-
of-sight distance. The GW abundance is related to this
stochastic proper motion as [213–215]:

ΩGW ¼ hμ2i
H2

0

¼ 6

5

1

4πH2
0

X2
m¼−2

X2
i¼1

hjsðiÞl¼2;mj2i: ðD1Þ

FIG. 28. Same as Fig. 1, with isocurvature constraints (lower bounds on f) indicated by dashed black lines for three different
inflationary scales Hinf . To the right of the vertical black lines, the axion misalignment from the top of the cosine potential increases by
order unity or more during 60 e-folds of inflation, due to lack of Hubble friction.
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In the second equation, we used the fact that 5=6 of the
expected signal is contained in the quadrupole (l ¼ 2)
modes, if one decomposes the proper motion field as μ ¼P

l;m sð1ÞlmΨlm þ sð2ÞlmΦlm, where Ψ ¼ ∇Ylm=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

and Φ ¼ r̂ ×Ψ are the (orthonormal) spheroidal and
toroidal vector spherical harmonics, respectively.
The variance at which any low-l mode coefficient can be

measured with N uniformly distributed sources measured

with proper motion standard deviation σμ, is σ2ðsðiÞlmÞ≃
4πσ2μ=N. Therefore, the expected precision δΩGW to which
one could measure the stochastic background is

δΩGW ≃
12

H2
0

σ2μ
N

≈ 6 × 10−8
�

σμ
μas y−1

�
2
�
106

N

�
: ðD2Þ

If low-l systematics can be held under control, which is a
challenge [216,217], thenGaia is projected to reach a limit of
ΩGW < 0.006 after its nominal 5-year mission time with its
current catalogue of 556,869 quasars [218]. With a likely
quadrupling of the catalogue size and a mission extension to
10 years, further improvements by a factor of 1=32 in ΩGW

can be expected. (Note that a statistics-limited σ2μ ∝ τ−3int
scales as the inverse cube of the integration time τint.)
Astrometry with radio interferometers is also a promising
avenue, as evidenced by the constraint ΩGW < 0.0064 at
95% confidence level (CL) with 711 radio sources observed
by the Very Large Baseline Array (VLBA) [218]. Future
astrometric missions—either space-based, optical satellites
[106,219,220] or ground-based, radio interferometers such as
SKA [107]—can potentially attain sensitivities of δΩGW ∼
10−8 with large and precise catalogues over long integration
times. Proper accelerations of quasars (SKA) or galactic stars
(Gaia, Theia) α≡ _μ can also be used to search for stochastic
gravitational waves at low frequencies f ≲ 1=τint.

19 Their
sensitivity in terms of δΩGW is parametrically worse by a
factor of ∼1=ðfτintÞ2, but they offer the possibility of much
larger andmore precise catalogues, as Galactic stars have tiny
intrinsic proper accelerations (but generally large proper
motions).

2. Pulsar timing arrays (PTA)

Stochastic gravitational waves produce random changes in
the times-of-arrival of pulses from individual pulsars. The
effects can be inferred from cross-correlation of timing
residuals of two pulsars [221]. The sensitivity improves with
increasing pulsar stability σ, observation time tint and decreas-
ing cadence (i.e., the timeΔt between two observations of the
same pulsar). Using the prescription of Refs. [222,223] and
[224,225], and assuming that our signal is peaked around
frequencyfGW with a spreadofΔf ∼ fGW, the sensitivity of a
pulsar network consisting of Np pulsars is given by:

H2
0ΩGW ≈ 6 × 105

Δtσ2

Np
ffiffiffiffiffiffi
tint

p f9=2GW: ðD3Þ

The above equation applies when t−1int ≲ fGW ≲ Δt−1;
outside this frequency range there is essentially no sensi-
tivity to GW radiation. In Eq. (D3), we have assumed a
detection SNR threshold ϱth ¼ 3 [225]. In Fig. 15, we
present our estimates for current and future pulsar timing
experiments. In particular, we indicate sensitivities corre-
sponding to EPTA [226], IPTA [227], and SKA [228]
assuming 5, 20 and 100 pulsars followed for 10, 15 and
30 years respectively. The apparent steady improvement in
sensitivity of PTA efforts indicate tantalizing prospects for
detection/constraints in the 10−15–10−14 eV range.

3. CMB, BBN, and large-scale structure

GWs produced deep in the radiation dominated era con-
tribute to the total radiation that drives the expansion of the
Universe andcanhave an imprint on theCMBaswell as onbig
bang nucleosynthesis (BBN). Their energy contribution is
indistinguishable from that of relativistic neutrinos and can
thus be parametrized as a relativistic degree of freedom NGW,
contributing toNeff . The Planck [50] limit onNeff can then be
translated into a bound onΩGW. In Fig. 15, we plot the limits
calculated by Ref. [229], where the 2015 Planck polarization
data in the SimLow likelihood together with the Planck
Lensing likelihood and BAO observations at 95% C.L. was
used. Future satellite missions such as EUCLID [230]
will improve the bound by more than one order of magnitude.
The corresponding dashed lines on Fig. 15 come from
simulations of mock data (see Ref. [229] for further details).
The BBN bound is relevant only for structures that collapse at
z≳ 4 × 108 and is of the order of the CMB bound.
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[119] P. L. Kelly et al., Nat. Astron. 2, 334 (2018).
[120] W. Chen et al., Astrophys. J. 881, 8 (2019).
[121] A. A. Kaurov, L. Dai, T. Venumadhav, J. Miralda-Escudé,
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