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Dark matter may be in the form of nonbaryonic structures such as compact subhalos and boson stars.
Structures weighing between asteroid and solar masses may be discovered via gravitational microlensing,
an astronomical probe that has in the past helped constrain the population of primordial black holes and
baryonic MASSIVE ASTROPHYSICAL COMPACT HALO OBJECTs. We investigate the nontrivial effect of the size
of and density distribution within these structures on the microlensing signal and constrain their
populations using the EROS-2 and OGLE-IV surveys. Structures larger than a solar radius are generally
constrained more weakly than pointlike lenses, but stronger constraints may be obtained for structures with
mass distributions that give rise to caustic crossings or produce larger magnifications.
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I. INTRODUCTION

All our evidence for dark matter is gravitational. Its
presence is seen in its gravitational pull on stars, gravita-
tional lensing of light from distant galaxies, and gravita-
tional imprints on both the thermal fluctuations of photons
from the early Universe and the structure of the Universe on
scales galactic and higher. While extensive attempts
are at large to produce dark matter at colliders and to
detect ambient dark matter directly or, in the remnants of its
annihilation, indirectly, an appealing possibility is to
unmask its microscopic identity in yet more gravitational
phenomena. One such opportunity is provided by the recent
inauguration of gravitational wave astronomy [1], another
by seeking anomalies in pulsar timing arrays [2], and yet
another by the observation of capture of dark matter sped
up by the steep gravitational potentials of compact stars
[3,4]. Astronomical efforts have also been long underway
to constrain black holes or faint astronomical objects
(“MACHOs”) as dark matter candidates via the technique
of gravitational microlensing, the observation of temporary,
all-wavelength brightening of a background star whose
light is deflected by the transiting object. In this paper, we
study the microlensing signals of dark matter in macro-
scopic structures made of nonstandard states, i.e., structures
that are not MACHOs.
The key distance scale in microlensing is the Einstein

radius, the distance of closest approach of light rays seen by
an observer when the source, lens, and observer lie along a
line, as the light bends around a lens of massM. Up toOð1Þ
factors, the Einstein radius is the geometric mean of the

distance to the source star and the Schwarschild radius
associated with the lens, 2GM=c2. Microlensing surveys
are typically sensitive to stars that are 10–1000 kpc away,
and to transit times of minutes to years. Thus, for galactic
dark matter with speed dispersion ∼10−3 c, microlensing is
sensitive to dark matter masses ranging from asteroid to
solar masses. Several scenarios predict a large population
of dark matter structures in this mass range. Nonstandard
cosmologies such as an early period of matter domination
or vector boson production during inflation may enhance
the growth of small-scale density perturbations, as a result
of which most of the dark matter may survive currently in
compact subhalos [5–9]. In a similar vein, axion dark
matter can form dense “miniclusters” [10]. The use of weak
and strong gravitational lensing to probe such substructure
has been already discussed [11]. Dark matter may also lurk
in quantum structures such as boson stars, which are kept
from collapsing under self-gravity by kinetic pressure or
self-repulsion (e.g., [12–15]). An observation of the char-
acteristic microlensing signals of any of these structures
would have enormous implications for cosmology, star
formation, and galaxy evolution.
Gravitationalmicrolensing depends crucially on the spatial

extent of the lens. Dark matter structures much smaller than
themicrolensing Einsten radius imitate pointlike lenses (such
as black holes and MACHOs), and those much greater would
barely lens the source star due to the diffuse spread of their
mass. But for structureswith characteristic size comparable to
theEinstein radius the signal is nontrivial, and therefore so are
the sensitivities of microlensing surveys to the population of
dark matter in these structures. The signal also depends
sensitively on how the net mass of a lens is distributed within
it, as this determines how it bends spacetime and deflects
light. Earlier studies have dealt with microlensing by dense
primordial hydrogen-helium gas clouds [16] and by axion
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miniclusters [10,17]. In this work we extend these studies to
dark matter subhalos with various density profiles, as well as
to boson stars, and obtain constraints on their populations
from the EROS-2 [18] and OGLE-IV [19] surveys. In Fig. 1 we
display, in the space of lens size vs lens mass, the best-case
sensitivities of these surveys to these extended structures. In
Sec. II we explain how to determine these sensitivities. A
recent microlensing survey by the Subaru telescope [20] also
probes our scenario; however, this survey was sensitive to a
range of Einstein radii so small that the finite angular extent of
source stars affects the signal nontrivially. In forthcoming
work [21], we investigate the effect of finite-sized sources on
microlensing by finite-sized lenses.
This paper is laid out as follows. In Sec. II we review the

basics of gravitational microlensing, describing the treat-
ment of extended lenses. In Sec. III we estimate the rate of
microlensing events and derive constraints on the fraction
of dark matter in nonbaryonic structures. In Sec. IV we
outline future avenues of research and conclude. In the
appendixes we collect detailed derivations of lens-plane-
projected mass profiles of the various structures we con-
sider and provide a method for rapid numerical computa-
tions of event rates.

II. MICROLENSING OF EXTENDED OBJECTS

In this section, we review some basics of gravitational
microlensing, largely following the treatment in Ref. [22].

Figure 2 depicts the geometry of the setup. The observer-
lens, lens-source, and observer-source distances are DL,
DS, andDLS respectively; the lens center and the source (an
image and the source) subtend an angle β (θ) at the
observer: in general, more than one image may be formed.
Our calculations simplify as DL, DS, and DLS are much
larger than all other scales in the problem, resulting in
small angular deflections of value α ¼ 4GM=ðc2ξÞ that
only occur, in this approximation, when starlight encoun-
ters the “lens plane” perpendicular to the observer-
source axis.
Next we assume that the lens is spherically symmetric1

with density distribution ρðrÞ so that the total mass
M ¼ 4π

R∞
0 drr2ρðrÞ. The lensing equation that determines

the path of light rays after deflection may then be written as

β ¼ θ −
θ2E
θ

MðθÞ
M

; ð1Þ

where

MðθÞ ¼ 2πD2
L

Z
θ

0

dθ0θ0Σðθ0Þ;

ΣðθÞ ¼
Z

∞

−∞
dzρð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

Lθ
2 þ z2

q
Þ; ð2Þ

the latter quantity being the surface mass density projected
onto the lens plane. The pointlike Einstein angle θE is given
by [25]

θE ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4GM
c2

DLS

DLDS

s
; ð3Þ

FIG. 1. A heuristic estimate of the masses and sizes of dark
matter structures that can be probed by the EROS-2 and OGLE-IV
microlensing surveys of the Magellanic Clouds and Milky Way
Bulge respectively. Here constant detection efficiencies and zero
backgrounds are assumed for simplicity. For a fixed mass, the
smallest lens size corresponds to the Schwarzschild radius of a
black hole with the corresponding mass; the magnification is
suppressed for lenses much smaller than the wavelength of light
used in a survey. The largest lens size for a given mass that can be
probed by the survey in question is approximately the maximum
Einstein radius at that mass, above which the lens becomes too
diffuse to magnify source stars efficiently. The lowest and highest
masses probed by a survey are determined by the observational
cadences of the survey. See Sec. III for further details.

FIG. 2. The geometry of the microlensing setup for a pointlike
lens, seen to produce two images after deflection. From this
geometry follows the lensing equation [Eq. (1)] governing the
path of light rays, which determines the magnification [Eq. (4)].

1For studies on microlensing by aspherical objects, see, e.g.,
Refs. [23,24].
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obtained as the value of θ for a pointlike lens [MðθÞ → M]
at β ¼ 0. This in turn defines the pointlike Einstein radius2

rE ≡DLθE on the lens plane. The volume contained within
circles of radius rE whose centers are along the line of sight is
sometimes known as the “lensing tube”. From Eq. (3) it may
seen that the lensing tube for pointlike lens is an ellipsoid.
Given a lens position β, Eq. (1) may be solved to

determine the image position(s), θ. While gravitational
microlensing does not alter the luminosity of the source, the
images subtend solid angles that are different from the
source, proportionally altering the flux received.3 Thus
the magnification induced by an image is the ratio of its
angular extent to that of the source,

μðθðβÞÞ ¼
���� θβ dθdβ

����: ð4Þ

The light curve, or the magnification as a function of time t,
for a lens with velocity v and minimum impact parameter
ξmin is now determined by setting βrE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2min þ v2t2

p
. As

the lens approaches and leaves the vicinity of the observer-
source axis, its image brightens and dims, the hallmark
signature of gravitational microlensing. Whether such an
occurrence is actually observable depends on the minimum
detectable magnification for a given telescope, as well as
the range of cadences at the microlensing survey, which
sets the transit time scales to which it is sensitive.
For a pointlike lens at some impact parameter (in units of

Einstein radius) u≡ ξ=rE ¼ β=θE, we get from Eqs. (1)
and (4) the total magnification,

μtot ¼
u2 þ 2

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4

p ⟶
u¼1

1.34: ð5Þ

For a pointlike lens, a microlensing event is defined as a
transit across the lensing tube, which acts as the “detector
volume”. That is, a transit is counted as an event if it
produces a total magnification μtot ≥ μT, where it is
conventional to take μT ¼ 1.34. Following this convention,
we will also use this minimum magnification of a transit to
define events for extended lenses.
Let us now characterize the microlensing efficiency of an

extended lens compared to that of a pointlike lens. To do so,
we define the quantity u1.34 as the impact parameter for a
lens such that all smaller impact parameters produce a
magnification above the threshold,

μtotðu ≤ u1.34Þ ≥ 1.34: ð6Þ

For a pointlike lens, u1.34 ¼ 1. For an extended lens, it is
clear from Eqs. (1) and (4) that u1.34 depends on its mass

profile, mðθÞ≡MðθÞ=M. In Appendix A we derive these
mass profiles for all the lens species we consider:

(i) self-similar subhalos, products of the isolated gravi-
tational collapse of primordial density perturbations
[26]. Their density profiles scale as −9=4 powers of
the radius,

(ii) lenses with density profiles that scale as −3=2
powers of the radius. These are inspired by the
inner profiles of ultracompact minihalos (UCMHs),
said to form at redshifts ≥ 1000 in regions where
overdensities are very large, δρ=ρ≳ 10−3 [27],

(iii) Navarro-Frenk-White (nfw) subhalos, suggested to
be the products of hierarchical clustering triggered
by, e.g., cold dark matter [28],

(iv) boson stars, gravitationally stable structures com-
posed of scalar fields [14],

(v) uniform spheres (of constant density) as a toy model.
In the top panel of Fig. 3 we plot the various u1.34 as a

function of r90=rEðxÞ, where r90 is the radius within which
90% of the lens mass is contained, and x≡DL=DS. As
expected, u1.34 → 1 (u1.34 → 0) for r90 ≪ rE (r90 ≫ rE),
while the most interesting features arise in the intermediary
regime. The spikes in u1.34 at r90 ≲ rE for the UCMH-like
subhalo, boson star and uniform sphere are caused by the
lens crossing a “caustic”, an impact parameter at which the
number of images changes discontinuously and produces
infinite magnification (in reality regulated by the finite
extent of the source). For these lens species, regions where
u1.34 < 1 correspond to there being only one image
contributing to μtot at u ¼ u1.34, however even a single
image can have large μtot for r90 ≳ rE, so that u1.34 > 1 in
this region. For NFW and self-similar subhalos there are no
caustics, and u1.34 > 1 for r90 ≳ rE. Their mass distribu-
tions make them efficient lenses even at very large r90, so
that u1.34 decreases gradually as rmax=rE is increased. The
above information on microlensing efficiency is key to
obtaining microlensing event rates and constraints on lens
populations, a task to which we will turn in the next section.
Let us illustrate the above features with concrete exam-

ples. In the bottom panel of Fig. 3 we have plotted u1.34
versus DL for NFW subhalos and boson stars of mass
10−3 M⊙ for various r90: 3 R⊙, 30 R⊙, 300 R⊙, where
R⊙ ¼ 6.96 × 109 is the solar radius. The distance to the
source is here assumed to be 50 kpc, corresponding to the
distance to the Large Magellanic Cloud. The maximum rE
in this setup is 70 R⊙. Lenses much smaller than this have
u1.34 ≃ 1 everywhere, viz., behave like pointlike lenses. The
30 R⊙ (300 R⊙) NFW subhalo is slightly more (less)
efficient than pointlike lenses everywhere in the lensing
tube. Both the 30 R⊙ and 300 R⊙ boson stars are more
efficient than pointlike lenses in the middle of the lensing
tube, and less efficient near the source and observer. The
30 R⊙ boson star is also seen to spike in efficiency about
5 kpc off the source or observer, which occurs due to it
crossing a caustic at these distances.

2In this paper, Einstein angle and radius, θE and rE, should be
understood to refer only to the values corresponding to a pointlike
lens of mass M.

3One assumes here that the lens is transparent to light (as is true
for structures of dark matter) lest it occult the image. We thank
Yue Zhao for raising this point on either side of the Pacific.
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III. EVENT RATES AND CONSTRAINTS

Having defined a microlensing event in Sec. II, we now
estimate the rate of events collected inmicrolensing surveys.
Here we follow the treatment in Ref. [29], which takes into
account the distribution of darkmatter velocities, assumed to

beMaxwell-Boltzmann, aswell as the density of darkmatter
along the line of sight to the source, ρlensðxÞ ¼ fDMρDMðxÞ,
where fDM is the mass fraction of lenses making up the dark
matter density ρDM. For a singe source star and unit exposure
time, the differential event rate with respect to x and event
time scale tE is then obtained as

d2Γ
dxdtE

¼ εðtEÞ
2DS

v20M
fDMρDMðxÞv4EðxÞe−v

2
EðxÞ=v20 ; ð7Þ

where vEðxÞ≡ 2u1.34ðxÞrEðxÞ=tE with rEðxÞ given in
Eq. (3) and u1.34ðxÞ plotted in Fig. 3, v0 ¼ 220 km=s is
the dark matter circular speed in the Galaxy, and εðtEÞ is the
efficiency of telescopic detection. Equation (7) assumes that
the source and the observer are static in the microlensing
setup, which yields event rates to within 10% accuracy [30].
It also assumes that all lenses in a population have a single
massM. Generalizing to other mass distributions is straight-
forward. The total number of events is then given simply by

Nevents ¼ N⋆Tobs

Z
1

0

dx
Z

tE;max

tE;min

dtE
d2Γ
dxdtE

; ð8Þ

where N⋆ is the number of source stars used in the survey,
Tobs is the total observation time, and tE;min (tE;max) is the
minimum (maximum) time scale of an event in the survey. In
AppendixBwe briefly describe how to numerically evaluate
the above integral rapidly.
The parameters used for EROS-2 and OGLE-IV are given in

Table I. For evaluating Nevents in Eq. (8), we use the
locations of the source stars and the detection efficiencies
provided in Refs. [18,30], and assume an isothermal profile
for the Milky Way halo,

ρDMðrÞ ¼
ρs

1þ ðr=rsÞ2
;

r≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
Sol − 2xRSolDS cosl cos bþ x2D2

S

q
; ð9Þ

where RSol ¼ 8.5 kpc, ρs ¼ 1.39 GeV=cm3, and rs ¼
4.38 kpc are the galactic radial distance of the Sun, the
core density, and core radius respectively [31]; l and b are
the longitude and latitude of the source in galactic coor-
dinates. Picking an isothermal galactic halo, in which v0
does not vary with distance, simplifies our calculation of
the event rate; we have checked that our results are robust
against the choice of the halo profile.

FIG. 3. Threshold impact parameter in units of the pointlike
Einstein radius, as defined in Eq. (6), for various lens species. Top:
as a function of the lens radius containing 90% of the total mass
r90, in units of the pointlike Einstein radius. Bottom: as a function
of the distance to the lens DL for NFW subhalos and boson stars of
various sizes with total mass M ¼ 10−3 M⊙ and distance to the
source DS ¼ 50 kpc. In both panels, the spiky features appear for
lens sizes and distances corresponding to the lens crossing a
caustic, where the magnification formally diverges. The threshold
impact parameter defines the cross sectional radius of the “detector
volume” at a microlensing survey, transits across which are
counted as events. Hence the information in these plots is key
to obtaining limits on dark matter populations, as done in Sec. III.

TABLE I. Survey parameters used for placing constraints in Sec. III. The third panel provides the location of the
source in terms of (distance, longitude, latitude), taken from Ref. [32].

Survey Source field (DS, l, b) N⋆ Tobs (day) tE range (day)

EROS-2 [18] LMC (50 kpc, 280.46°, −32.89°) 5.49 × 106 2500 [1,1000]
SMC (60 kpc, 302.81°, −44.33°) 0.86 × 106

OGLE-IV [19,30,33] MW Bulge (8.5 kpc, 1.09°, −2.39°) 4.88 × 107 1826 [0.1,300]
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In Fig. 1 we show a heuristic estimate of lens sizes and
masses probed by the EROS-2 surveys of either Magellanic
Cloud and by the OGLE-IV survey of the Milky Way Bulge,
assuming zero foreground, and a constant detection effi-
ciency of εðtEÞ ¼ 0.2 (εðtEÞ ¼ 0.05) and event time scales
ftE;min; tE;maxg ¼ f1 d; 500 dg (f0.6 d; 10 dg) for EROS-2

(OGLE-IV), an approximation that qualitatively characterizes
the surveys in Refs. [18,30]. Lenses cannot be more compact
than black holes; hence, their sizes are bounded from below
by their Schwarzschild radius ∝ M. Moreover, the micro-
lensing geometric setup breaks down for lens sizes much
smaller than the photonic wavelength spectrum of the tele-
scope, since the effects of wave optics greatly suppress the
magnification [34]. In Fig. 1 we have indicated this with a
horizontal dashed line.As argued inSec. II, lens sizes that can
be constrained by microlensing are approximately bounded
from above by their pointlike Einstein radius ∝ M1=2.
At a given microlensing survey, there is a minimum

(tE;min) and maximum (tE;max) transit time, set respectively
by the maximum and minimum observational cadences.
For smallM, we have vE ≫ 1, and evaluating Eq. (8) in this
limit, Nevents ∝ M=t3E;min. Thus the detection rate is sup-
pressed as we decrease M: these lenses transit too briefly
even for the survey’s highest cadence. For largeM, we have
vE ≪ 1, and in this limit Nevents ∝ t3E;max=M

2. Here the
detection rates are suppressed as we increase M: these
lenses are too scarce in number and transit too long for the
survey’s lowest cadence. In Fig. 1, Nevents > 1 for the mass
range within the vertical lines corresponding to a survey
and Nevents < 1 outside.
To inspect the above limitations in more detail, in Fig. 4

left-hand panel we show for pointlike lenses (u1.34 ¼ 1) the
distance-integrated event rates dΓ=dtE at EROS-2 and
OGLE-IV. We see that these surveys sample most transits
arising from pointlike lenses of masses around 10−5 M⊙.
However, low-tE transits of lenses that are much lighter are

missed. This is because lighter lenses generate thinner
lensing tubes, across which high-velocity transits from the
tail of the Maxwell-Boltzmann distribution last for very
short times, below the cadence thresholds of the telescope.
High-tE transits of lenses that are very heavy are also
missed. This is because these lenses generate very thick
lensing tubes, across which low-velocity transits, albeit
magnifying some background star, may not alter the source
flux appreciably over the maximum timescale of transit to
which the telescope is sensitive.

A. Limits on pointlike lenses

The features discussed above result in the 90% C.L. limits
plotted in the right-hand panel ofFig. 4, on the fractionof dark
matter in pointlike lenses as a function of theirmass. To obtain
the EROS-2 limits, we used Eq. (8) and set Nevents ¼ 3.9,
corresponding to the number of events expected at the
90% C.L. for the one event observed, assuming Poisson
statistics. Our limits differ somewhat from those estimated
by the EROS collaboration, who count events as [18]

NEROS
events ¼ N⋆Tobs

2

π

εðtEÞ
htEi

τ; ð10Þ

where τ is the “optical depth”, the probability of finding a lens
in the lensing tube at any given instant,

τ ¼ DS

Z
1

0

dx
fDMρDMðxÞ

M
πr2EðxÞ: ð11Þ

In the mass range constrained by EROS-2 there are also
weak bounds from the MACHO Collaboration, which do not
change the limits appreciably when combined with EROS-2

[35]. Weaker limits also exist from the EROS-1 survey [36];
these would strengthen our limits at most by 20% for
large M, and are completely superseded by OGLE-IV for
small M. Finally, the observation of the blue supergiant

FIG. 4. Left: Differential event detection rates per unit exposure of dark matter in pointlike lenses at the EROS-2 and OGLE-IV
microlensing surveys, as obtained from Eq. (7) and Table I. The low-tE (high-tE) contribution of very light (very heavy) lenses to the
event rates are left out due to limitations of the cadences. Right: 90% C.L. limits on the fraction of pointlike lenses making up the dark
matter density, as estimated in Sec. III. See text for further details.

GRAVITATIONAL MICROLENSING BY DARK MATTER IN … PHYS. REV. D 101, 083013 (2020)

083013-5



MACS J1149 LS1 at a distance of 4.3 Gpc, interpreted as a
pointlike lens crossing a caustic and producing Oð103Þ
magnification, provides a constraint in this mass range [37].
However, we do not display it here as the astrophysics is
relatively uncertain and the EROS-2 limit could almost
entirely cover the constrained region (see Fig. 8 ofRef. [37]).
To obtain the OGLE-IV limits one must account for

Oð1000Þ events observed in their 5-year data set, which
agree at the 1% level with astrophysical models of standard
foreground events [30].4 There are also six events near

tE ∼ 0.1 days for which there is no satisfactory explanation
[19,30,39], but here we will adopt the null hypothesis that
they constitute the foreground. Using Ref. [30]’s binning of
events in tE, for every bin iwe defineNDM

i as the number of
darkmatter-induced events obtained fromEq. (8) andNFG

i as
the foreground count. Then defining NSIG

i ≡ NFG
i þ NDM

i ,
we use the quantity [40],

κ ¼ 2
XNbins

i¼1

�
NFG

i − NSIG
i þ NSIG

i ln
NSIG

i

NFG
i

�
; ð12Þ

and obtain the 90% C.L. Poissonian limit by locating (fDM,
M) for which κ ¼ 4.61. Our resultant limit on the right-hand
panel of Fig. 4 is in good agreement with that obtained
in Ref. [30].

FIG. 5. 90% C.L. limits from the microlensing surveys EROS-2 (red curves) and OGLE-IV (blue curves) on the fraction of dark matter in
nonbaryonic extended structures, as obtained in Sec. III. Structures smaller than 10 R⊙ (R⊙) may be approximated as a pointlike lens at
EROS-2 (OGLE-IV), resulting in constraints essentially the same as in Fig. 4. Larger structures magnify background stars nontrivially
depending on their size and internal mass distribution (see Fig. 3), resulting in structure-specific constraints.

4We note the recent appearance of OGLE-IV’s 8-year data set
[38] containing 5790 observed events as opposed to 2622 in the
5-year data set. As the standard foreground has not been
estimated for the new data (a task beyond our scope), we use
the 5-year data set for obtaining limits, remarking that we do not
expect the limits to improve markedly due to increased fore-
grounds.
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B. Limits on extended lenses: Main results

Next we obtain constraints for extended lenses of various
sizes and density profiles by setting u1.34 in Eq. (7) to the
values plotted in Fig. 3. We display these limits in Fig. 5,
which are the main results of our paper. For r90 ≲ 10 R⊙
(r90 ≲ R⊙), the EROS-2 (OGLE-IV) limits are the same as that
for pointlike lenses seen in Fig. 4. For r90 in these ranges,
the lenses are smaller than the smallest rE to which each
survey is sensitive; hence u1.34 → 1 as seen in Fig. 3. As we
increase r90, the limits for all lens species generally weaken
for small M, where rE is small so that u1.34 < 1 for
r90=rE > 1 as seen in Fig. 3. In particular, the OGLE-IV

limits for r90 ¼ 30 R⊙ are M ≲ 10−6–10−5 M⊙, weaken-
ing by 1–2 orders of magnitude with respect to pointlike
lenses. The limit weakens further by Oð100Þ for
r90 ¼ 300 R⊙. Similarly, the EROS-2 limit on M weakens
by 1–2 orders of magnitude with respect to pointlike lenses
for r90 ¼ 300R⊙.
For the r−3=2 and the boson star profiles, however, we

notice additional features: for smallM there are two regions
where the limits on fDM are weaker than pointlike lenses
and two where they are stronger. We can understand this
from the behavior of their u1.34 in Fig. 3; for fixed r90,
scanning from left to right on this plot roughly corresponds
to scanning from right to left on Fig. 5. Thus, (1) for large
M the lens is pointlike (u1.34 → 1); (2) as we lower M we
enter the region where the lens is efficient (i.e., u1.34 > 1)
due to caustic crossings, giving stronger limits; (3) as we
lower M further, the lens is inefficient (i.e., u1.34 < 1) due
to the contribution of a sole pointlike image to the
magnification, giving weaker limits; (4) as we lower M
even further, the lens is efficient again (i.e., u1.34 > 1) due
to large magnification from one image, giving stronger
limits again; (5) finally, for very small M the lens is too
spatially diffuse to magnify the source efficiently (i.e.,
u1.34 ≪ 1), giving weaker limits again.
We end this section by remarking that we have not used

any information about the light curves of events in deriving
our constraints. For some lens species, e.g., boson stars,
extra features in the light curves that may arise from
caustic crossings could be used to better distinguish them
from foregrounds, potentially giving improved limits or
sensitivity.

IV. DISCUSSION

In this work, we estimated constraints from the gravi-
tational microlensing surveys EROS-2 of the Magellanic
Clouds and OGLE-IV of the Galactic Bulge, on the pop-
ulation of dark matter in nonbaryonic structures of self-
similar subhalos, density profiles that scale like the inner
regions of ultracompact minihalos, NFW subhalos, and
boson stars. Our main results are summarized in Fig. 5.
In deriving these limits we assumed that the source stars
were pointlike, an approximation that breaks down for the

high-cadence survey of M31 by Subaru that is sensitive to
small Einstein radii [20]. Computing the magnification of
finite-sized stars by finite-sized lenses and estimating the
ensuing limits on dark matter populations is the subject of
our forthcoming work [21].
Our work is applicable to several avenues of research.

While we have estimated population limits on four repre-
sentative extended structures, they may also be estimated
for subhalos of other density profiles [2,16], ten AU-sized
dark stars [41], R⊙-sized mirror stars [42], primordial dark
matter halos [43], extended structures formed by mirror
dark matter [44], and so on. Microlensing surveys of the
Galaxy by the space-based WFIRST [45] and Euclid [46]
(the Earth-based LSST [47]) would probe sub-Earth mass
(stellar mass) dark matter structures. The stellar mass range
can also be probed by lensing of type-Ia supernovae [48].
Using parallax measurements in lensing can probe asteroid
to planet masses [49,50]. Should numerous microlensing
events be detected, the data on light curves may help us
estimate the subhalo mass function and perform dark matter
astrometry, in particular help identify departures from the
standard halo model such as the presence of tidal streams,
as already constrained by weak lensing in the time domain
[51,52]. Finally, it would be interesting to investigate the
effect on our constraints of varying the magnification
threshold in Eq. (6).
On the whole, microlensing is a promising gravitational

probe to discover dark matter structures bred by novel
cosmologies and astrophysics.
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APPENDIX A: MASS PROFILES
AND LENSING EQUATIONS

In this appendix we give some more information about
the mass profiles MðθÞ=M appearing in the lensing
equation in Eq. (1) for various lens species, discuss features
of the resultant solutions to the lensing equation, and obtain
expressions for the magnification. These aspects show up
as features in the threshold impact parameter u1.34 (Fig. 3),
which are relevant for counting microlensing events and
placing constraints.
Let us begin with generalities. Expressing angles

in units of the Einstein angle θE or, equivalently, distances
on the lens plane in units of the Einstein radius
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(u≡ β=θE ¼ DLβ=rE, t≡ θ=θE ¼ DLθ=rE) allows us to
rewrite Eqs. (1) and (2) as

u ¼ t −
mðtÞ
t

; ðA1Þ

where mðtÞ≡MðθEtÞ=M describes the distribution of the
lens mass projected onto the lens plane. For a spherically
symmetric density profile ρðrÞ,

mðtÞ ¼
R
t
0 dσσ

R∞
0 dλρðrE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ λ2

p
ÞR∞

0 dγγ2ρðrEγÞ
: ðA2Þ

From Eq. (4), the magnification can be written as

μ ¼
���� tu dt

du

���� ¼
����1 −mðtÞ

t2

����−1
����1þmðtÞ

t2
−
1

t
dmðtÞ
dt

����−1: ðA3Þ

From this it is seen that the only way in which the total
lens mass M and the distances DL, DLS, DS enter the
problem is through their contributions to rE in Eq. (3). At a
fixed rE, the density profile of the lens ρðrÞ turns up asmðtÞ
in Eq. (A1). Solving the lensing equation, we can then use
Eq. (A3) to determine the magnification of the image(s) as a
function of u. We perform this calculation for specific
lenses in the following subsections. In what follows, we
will make some approximations that illustrate properties of
the mass profile mðtÞ and the resulting solutions of the
lensing equation—however, to obtain the limits shown
above, we have numerically calculated the mðtÞ profiles
without resorting to any approximate forms.

1. Uniform sphere

As a warm up, we will study a spherical lens of uniform
density. This distribution has the virtue of being analyti-
cally tractable and shares some qualitative features with
other lenses such as the boson star profiles we will find
below. The density of such an object can be written as
ρðrÞ ¼ ρ0Θðrm − rÞ where rm is the radius of the sphere.
From Eq. (A2) we obtain

mðtÞ ¼
�
1 − ð1 − t2=t2mÞ3=2; jtj < tm
1; jtj ≥ tm;

ðA4Þ

where tm ≡ rm=rE. The lensing equation (A1) is now
quintic in t, and depending on b and tm, gives either
one or three real solutions. In particular, there may be three
solutions for tm <

ffiffiffiffiffiffiffiffi
3=2

p
. When juj < jtm − t−1m j two of the

solutions, located at jtj > tm, correspond to pointlike lens
solutions,

t� ¼ u
2

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

u

2
r !

⇒
X

jμ�j ¼
u2 þ 2

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4

p : ðA5Þ

The third solution is located at jtj < tm and does not have
an analytic form, but we can determine it for jtj ≪ tm,
which corresponds to u ≪ jtm − t−1m j,

t3 ≃ u

�
1 −

3

2t2m

�
−1
; ðA6Þ

with magnification,

μ3 ≃
�
1 −

3

2t2m

�
−2
�
1 −

3u2

t2m

�
1 −

3

2t2m

�
−2
�
: ðA7Þ

Note that if we take tm → 0, the magnification from this
image vanishes, μ3 → 0, and the total magnification is just
that in (A5). In other words, we recover the pointlike
magnification in Eq. (A5) when we shrink the lens to the
pointlike limit.
Now for tm <

ffiffiffiffiffiffiffiffi
3=2

p
and large u, there is just one

solution at t ¼ tþ given in Eq. (A5). As one dials u from
large to small values, the number of solutions to the lens
equation goes from one to three. At the transition, there are
two solutions where the magnification formally diverges,
since for that solution du=dt ¼ 0. In reality, this divergence
is regulated by the finite size of the source. The existence of
such caustics can, however, have an important effect,
causing u1.34 > 1 for the uniform sphere for some range
of rm=rE as seen in Fig. (3).
For tm >

ffiffiffiffiffiffiffiffi
3=2

p
, there is only one solution to the lensing

equation regardless of u. For large u, it is t ≃ u with μ ≃ 1.
For small u, is t ¼ t3 in Eq. (A6) with an approximate
magnification of

μ3 ≃ 1þ 3

t2m
ð1 − u2Þ; ðA8Þ

so that to obtain μ > 1 we need u < 1; i.e., the lens must be
within the pointlike lensing tube.

2. Power-law density profiles

Another profile that will be useful for us is a simple
power law, ρðrÞ ∝ rn. For n ≥ −3, to avoid a divergent total
mass we must cut this profile off at some radius rm. The
mass profile in this case is

mðtÞ ¼
R
t
0 dσσ

R ffiffiffiffiffiffiffiffiffi
t2m−σ2

p
0 dλðσ2 þ λ2Þn=2R tm

0 dγγ2þn
; ðA9Þ

where, again, tm ¼ rm=rE. It is useful to understand the
behavior of this at small t. In this regime, we can simplify
the expression by taking the upper limit on the λ integral to
be ∞, finding

mðtÞ ∝
�

t
tm

�
3þn

: ðA10Þ
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Thus, if n > −2, then mðtÞ=t → 0 as t → 0, giving
u ¼ t ¼ 0 as a solution to the lensing equation (A1).
For a density profile that is not too diffuse, i.e., tm < 1,
we have mðt ¼ 1Þ ¼ 1, and so u ¼ 0, t ¼ �1 also satisfies
the lensing equation. This means that if n > −2 and tm < 1,
there is a range of impact parameters u such that there are
three solutions to the lensing equation, and therefore there
are impact parameters corresponding to caustics where the
number of images changes abruptly and formally produces
μ → ∞. For steeper profiles, n < −2, u ¼ t ¼ 0 is not a
solution of the lensing equation, and one thus finds only
two solutions to the lensing equation, with no caustic
crossings.
We consider two power-law profiles in this work. The

first is the so-called self-similar profile [26],

ρðrÞ ∝ r−9=4;

which has been suggested to result from direct gravitational
collapse of initial state perturbations within scalar con-
densates, such as axion miniclusters [10]. From Sec. II of
this appendix, we see that the mass profile mðtÞ at small t
scales as

mðtÞ ∝ t3=4: ðA11Þ

Therefore, we only expect two lensed images, without any
caustic crossings. As a result we expect a smooth transition
from an inefficient lens, for when the maximum radius of
the subhalo is large, to a pointlike lens, for when it is small.
This is indeed the behavior we see in the critical impact
parameter u1.34 for the “self-similar subhalo” in Fig. 3.
The second power-law density profile that we study is

slightly shallower than the self-similar profile above,

ρðrÞ ∝ r−3=2:

This form is motivated by studies of the inner region of
“ultracompact minihalos” [27] as well as halos limited in
size by free streaming [53]. Based on the discussion above,
the mass profile at small t scales as

mðtÞ ∝ t3=2; ðA12Þ

so that mðtÞ=t → 0 as t → 0. This means that, when its size
is comparable to the pointlike Einstein radius, the r−3=2

profile can give rise to caustic crossings and the associated
enhancement of the microlensing magnification. We see
this exhibited in Fig. 3 where u1.34 > 1 for some values of
r90=rE for ρ ∝ r−3=2, similar to the uniform sphere, which
can provide a reasonable approximation of this density
profile for microlensing.

3. NFW subhalos

The Navarro-Frenk-White (NFW) profile is often a good
description of structures that form through hierarchical
structure formation. This profile scales as r−1 for small radii
and as r−3 for large radii. The scale factor rs defines the
transition between the two regimes. More concretely, the
profile is [28]

ρðrÞ ¼ ρs
ðr=rsÞð1þ r=rsÞ2

:

The total mass contained within this profile diverges
logarithmically, so we must cut it off at some radius rm.
As in Ref. [10], we take rm ¼ 100 rs for the structures we
consider, motivated by numerical studies of axion mini-
clusters. The mass profile mðtÞ is obtained numerically,
which we use to determine u1.34 in Fig. 3. Given the large
ratio between rs and rm, the NFW profile we consider is
essentially r−3. Following the discussion above, this means
that jmðtÞ=tj is large near t ¼ 0, and therefore multiple
images and caustics do not appear as with shallower density
profiles. This means that the NFW lens smoothly interpo-
lates between the pointlike and inefficient regimes, as seen
in Fig. 3.

4. Boson stars

Boson stars are Bose-Einstein condensates: gravitation-
ally bound clumps of a scalar field (elementary [12] or
composite [54]) condensate, kept from collapsing under
self-gravity by kinetic pressures and possibly self-repulsive
forces. Their occupation numbers in quantum states are
typically very high; hence they are described by classical
field theory. It is typically sufficient to consider the non-
relativistic limit,5 in which their hydrostatic equilibrium is
described by Schrödinger-Poisson equations. In the limit of
negligible self-coupling, we solve these equations numeri-
cally to compute our mass profile mðtÞ and the resultant
u1.34 in Fig. 3.
The Schrödinger-Poisson equations are given by [12]

i∂tψ ¼ −
1

2mϕ
∇2ψ þmϕΦψ ;

∇2Φ ¼ 4πGjψ j2; ðA13Þ
where ψ is a nonrelativistic decomposition of the scalar
field ϕ,

ϕðr; tÞ ¼ 1ffiffiffi
2

p
mϕ

e−imϕtψðr; tÞ þ c:c:;

with mϕ the mass of the scalar and Φ the self-gravitational
potential. The ground state of a boson star is spherically
symmetric and can be written as

5See, however, Ref. [15].
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ψgsðr; tÞ ¼
�

mϕffiffiffiffiffiffiffiffiffi
4πG

p
�
ΨðrÞe−iμt; ðA14Þ

where the dimensionless parameter Ψ parametrizes the
radial distribution, and μ is a chemical potential. For the
ground state, the first equation in (A13) becomes

μΨ ¼ −
1

2mϕ

�
Ψ00 þ 2

r
Ψ0
�
þmϕΦΨ ðA15Þ

in the absence of self-interactions. We solve these equations
numerically, as no closed form solution for ΨðrÞ exists
generally. As a function of radius, the enclosed mass is then
given by

MðrÞ ¼ 1

mϕG

Z
mϕr

0

dyy2Ψ2ðyÞ; ðA16Þ

from which the projected mass profile mðtÞ may be
computed. Rescalings of Ψ leave Eq. (A15) invariant;
hence solutions exist for any boson star mass:

�
M

10−3 M⊙

�
∼ λ

�
10−7 eV

mϕ

�
; ðA17Þ

where λ is the ratio of the gravitational potential energy per
scalar constituent to its mass mϕ [55]. For the nonrelativ-
istic treatment to be self-consistent, 0 < λ ≪ 1.
As seen in Fig. 3 and mentioned in Sec. I, the qualitative

features of boson star microlensing signals are captured by
the uniform sphere toy model.

APPENDIX B: SPEEDY EVALUATION
OF EVENT RATES

We here outline a method to rapidly evaluate the integral
in Eq. (8) that, to our knowledge, has not been mentioned in
the literature before. First we rewrite the integrand as
ðAðxÞ=t4EÞe−BðxÞ=t2E to separate the tE-dependent and x-
dependent parts. Then we note that the integral over tE
has an analytic form,

A
Z

dtE
e−B=t

2
E

t4E
¼ A

2B

�
e−B=t

2

tE
−

ffiffiffi
π

p erfð ffiffiffiffi
B

p
=tEÞffiffiffiffi

B
p

�
:

Using this, we can evaluate the integral over x in Eq. (8) for
narrow bins of tE, taking the efficiency εðtEÞ constant in
each bin. Summing over the bins gives Nevents.
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