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Ultralight particles (ma ∼ 10−21–10−22 eV) with axionlike couplings to other particles can be candidates
for fuzzy dark matter (FDM) if the axion decay constant fa ∼ 1017 GeV. If a compact star is immersed in
such a low-mass axionic potential, it develops a long-range field outside the star. This axionic field is
radiated away when the star is in a binary orbit. The orbital period of a compact binary decays mainly due to
the gravitational wave radiation, which was confirmed first in the Hulse-Taylor binary pulsar. The orbital
period can also decay by radiation of other light particles like axions and axionlike particles (ALPs). For
axionic radiation to take place, the orbital frequency of the periodic motion of the binary system should be
greater than the mass of the scalar particle which can be radiated. This implies that, for most of the observed
binaries, particles with mass ma < 10−19 eV can be radiated, which includes FDM particles. In this paper,
we consider four compact binary systems—PSR J0348þ 0432, PSR J0737 − 3039, PSR J1738þ 0333,
and PSR B1913þ 16 (Hulse-Taylor binary)—and show that the observations of the decay in orbital period
set a bound on the axion decay constant of fa ≲Oð1011 GeVÞ. This implies that fuzzy dark matter cannot
couple to gluons.

DOI: 10.1103/PhysRevD.101.083007

I. INTRODUCTION

The axion was first introduced to solve the strong CP
problem [1–4]. The most stringent probe of the strong CP
violation is the electric dipole moment of the neutron.
Quantum chromodynamics (QCD) is one of the possible
theories which can explain the strong interaction. However,
the theory has a problem known as the strong CP problem.
We can write the QCD Lagrangian

L ¼ −
1

4
Ga

μνGaμν þ
Xn
i¼1

½q̄iiDqi − ðmiq
†
LiqRi þ H:c:Þ�

þ θ
g2s

32π2
Ga

μνG̃
aμν; ð1Þ

where the dual of the gluon field strength tensor is

G̃μν ¼ 1

2
ϵμνγδGγδ: ð2Þ

The last term in the QCD Lagrangian violates the discrete
symmetries P, T, CP. Since all the quark masses are
nonzero, the θ term in the Lagrangian must be present. The
QCD depends on θ through some combination of para-
meters, θ̄ ¼ θ þ argðdetðMÞÞ, where M is the quark mass
matrix [5,6]. The neutron electric dipole moment (EDM)
depends on θ̄, and from chiral perturbation theory we can
obtain the neutron EDM as dn ≃ few × 10−16θ̄ e:cm.
However, the current experimental constraint on the neu-
tron EDM is dn < few × 10−26 e:cm, which implies θ̄ ≲
10−10 [7]. The smallness of θ̄ is called the strong CP
problem. To solve this, Peccei and Quinn, in 1977 [1], came
up with the idea that θ̄ is not just a parameter but a
dynamical field driven to zero by its own classical potential.
They postulated a global UPQð1Þ quasisymmetry, which is
a symmetry at the classical level, but explicitly broken
by the nonperturbative QCD effects which produce the θ
term, and spontaneously broken at a scale fa. Thus, the
pseudo-Nambu-Goldstone bosons appear, and these are
known as the axions. The QCD axion mass ðmaÞ is
related to the axion decay constant ðfaÞ by ma ¼
5.7 × 10−12 eVð1018 GeV

fa
Þ. So, if we need an axion decay

constant less than the Planck scale ðMplÞ, then the mass of
the axion is ma ≳ 10−12 eV [8]. Also, there are other
pseudoscalar particles which are not the actual QCD
axions, but these particles have many similar properties
to the QCD axions. These are called the axionlike particles
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(ALPs). For ALPs, the mass and decay constant are
independent of each other. These ALPs are motivated from
string theory [9]. The interaction of ALPs with the standard
model particles is governed by the Lagrangian [10]

L ¼ 1

2
∂μa∂μa −

αs
8π

gag
a
fa

Gμν
a G̃a

μν −
α

8π
gaγ

a
fa

FμνF̃μν

þ 1

2

1

fa
gaf∂μaf̄γμγ5f; ð3Þ

where g’s are the coupling constants, which depend on the
model. The first term is the dynamical term of ALPs. The
second, third, and last terms denote the coupling of ALPs
with the gluons, photons, and fermion fields, respectively.
ALPs couple with the SM particles very weakly because
the couplings are suppressed by 1

fa
, where fa is called the

axion decay constant, and for ALPs, it generally takes a
larger value.
There is no direct evidence of axions in the Universe.

However, there are lots of experimental and astrophysical
bounds on axion parameters. There are some ongoing
searches for solar axions which correspond to fa ∼
107 GeV having sub-eV masses [11,12]. If solar axions
were there, then it would violate the supernova 1987A result,
which requires fa ≳ 109 GeV. Axions with fa ≲ 108 GeV
provide the component of hot dark matter [13–15]. Large
values of fa are allowed in the anthropic axion window
and can be studied by isocurvature fluctuations [16].
The laboratory bounds for the axions are discussed in
Refs. [17–24]. The cosmological bounds for the cold axions
produced by the vacuum realignment mechanism are dis-
cussed in Refs. [25,26]. The bounds on the axion mass and
decay constant are discussed in Refs. [27–29], if cold axions
are produced by the decay of axion strings.
Explaining the nature of dark matter and dark energy is a

major unsolved problem in modern cosmology. An inter-
esting dark matter model is fuzzy dark matter (FDM)
[30,31]. FDM is made up of axionlike particles (ALPs)
with mass (10−21–10−22 eV) such that the associated de
Broglie wavelength is comparable to the size of a dwarf
galaxy (∼2 kpc). Axions and ALPs can be possible dark
matter candidates [32] or can be dynamical dark energy [33].
Axions can also form clouds around a black hole or neutron
star from superradiance instabilities and change the mass
and spin of the star [34,35]. Cold FDM can be produced by
an initial vacuummisalignment and, to have the correct relic
dark matter density, the axion decay constant should be
fa ∼ 1017 GeV [31]. This ultralight FDMwas introduced to
solve the cuspy halo problem.
ALPs are pseudo-Nambu-Goldstone bosons which have

a spin-dependent coupling with nucleons so that, in an
unpolarized macroscopic body, there is no net long-range
field for ALPs outside the body. However, if the ALPs also
have a CP-violating coupling, then they can mediate long-
range forces even in unpolarized bodies [36,37].

It has been pointed out recently [38] that if a compact star
is immersed in an axionic potential (which will take place if
the ALPs are FDM candidates), a long-range field is
developed outside the star.
The ALPs can be sourced by compact binary systems

such as neutron star–neutron star (NS-NS) or neutron star–
white dwarf (NS-WD) and can have very small mass
(<10−19 eV). They can be possible candidates of FDM.
The FDM density arises from the coherent oscillation of an
axionic field in free space. If such axionic FDM particles
have a coupling with nucleons, then the compact objects
(NS, WD) immersed in the dark matter potential develop
long-range axionic hair. When such compact stars are in a
binary orbit, they can lose orbital period by radiating the
axion hair in addition to the gravitational wave [38,39].
In this paper, we study a model of ALPs sourced by the

compact stars and put bounds on fa from the observations
of the orbital period decay of compact binaries.
The paper is organized as follows: In Sec. II, we compute

in detail the axionic charge (including GR corrections)
of compact stars immersed in a (ultra)low-mass axionic
background potential. In Sec. III, we show how the axionic
scalar Larmor radiation can change the orbital period of
compact binary systems. There may also be an axion-
mediated long-ranged fifth force between the stars in a
binary system. In Sec. IV, we put constraints on fa for four
compact binaries, PSR J0348þ 0432 [40], PSR J0737−
3039 [41], PSR J1738þ 0333 [42], and PSR B1913þ 16
(the Hulse-Taylor binary) [39,43], available in the liter-
ature. In Sec. V, we discuss the implication of the ALPs
sourced by the compact binaries as the FDM. Finally, we
summarize our results.
We use the units ℏ ¼ c ¼ 1 throughout the paper.

II. THE AXION PROFILE FOR AN ISOLATED
NEUTRON STAR/WHITE DWARF

The axion Lagrangian at the leading order of 1=fa is
given in Eq. (3). The axion pseudoshift symmetry a →
aþ δ is used to remove the QCD theta angle. Suppose the
fermions are quarks and we give a chiral rotation to the
quark field, so that only the nonderivative coupling appears
through the quark mass term. Such a field redefinition
allow us to move the nonderivative couplings into the two
lightest quarks, and all other quarks are integrated out. So,
we can work in the effective two-flavor theory. Thus, in the
chiral expansion, all the nonderivative dependence of the
axion is contained in the pion mass term of the Lagrangian

L ⊃ 2B0

f2π
4
hUM†

a þMaU†i; ð4Þ

where U ¼ e
iΠ
fπ and Π ¼ ½ π0ffiffi

2
p

π−

ffiffi
2

p
πþ

−π0 �, and B0 is related with
the chiral condensate and determined by the pion mass
term. fπ is called the pion decay constant. We can obtain
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the effective axion potential from the neutral pion sector.
On the vacuum, the neutral pion attains a vacuum expect-
ation value and can trivially be integrated out, leaving the
effective potential [44]

V ≈ −m2
πf2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4mumd

ðmu þmdÞ2
sin2

�
a
2fa

�s
; ð5Þ

where mu and md are the up and down quark masses,
respectively, and mπ is the mass of the pion.
It has been pointed out in Ref. [38] that, if we consider

ALPs which couple to nucleons, then compact stars such as
neutron stars and white dwarfs can be the source of long-
range axionic force. The reason for this long-range force is
as follows. In the vacuum, the potential for the ALPs is

V ≈ −ϵm2
πf2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4mumd

ðmu þmdÞ2
sin2

�
a
2fa

�s
: ð6Þ

For simplicity, we choose mu ¼ md, and therefore, the
mass of the ALPs in vacuum becomes

ma ¼
mπfπ
2fa

ffiffiffi
ϵ

p
: ð7Þ

Inside a compact star, the quark masses are corrected by the
nucleon density, and the potential inside the star changes to

V¼−m2
πf2π

��
ϵ−

σNnN
m2

πf2π

�����cos
�

a
2fa

�����þO
��

σNnN
m2

πf2π

�
2
��
ð8Þ

and

σN ¼
X
q¼u;d

mq
∂mN

∂mq
; ð9Þ

where nN is the nucleon number density, mq is the quark
mass, mπ is the pion mass, and fπ is the pion decay
constant. σN ∼ 59 MeV from lattice simulation [45], and
we consider the parameter space where ϵ ≤ 0.1 [38]. The
tachyonic mass of the ALPs is the square root of the second
derivative of the potential [Eq. (8)] at a ¼ 0. Inside the
neutron star, σNnN=m2

πf2π is not equal to zero, and
mT ≳ma. Thus, the magnitude of the tachyonic mass of
the ALPs inside the compact star becomes

mT ¼ mπfπ
2fa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σNnN
m2

πf2π
− ϵ

r
; r < rNS; ð10Þ

where rNS is the radius of the compact star. The compact
star can be the source of ALPs if its size is larger than the
critical size given by [38]

rc ≳ 1

mT
: ð11Þ

For a typical neutron star and white dwarf, the condition in
Eq. (11) is satisfied. By matching the axionic field solutions
inside and outside the compact star, we get the long-range
behavior of the axionic field. The axionic potential has
degenerate vacua, and this degeneracy can be weakly
broken by higher-dimensional operators suppressed by
the Planck scale [46]. The degeneracy can also be broken
by a finite-density effect like the presence of a NS and WD.
At very high nuclear density, the axionic potential changes
its sign, which allows the ALPs to be sourced by compact
stars. Due to the very small size of the nuclei, it cannot be
the source of the ALPs, and long-range axion fields arise
only in large-sized objects like NSs and WDs.
Using Eq. (7) in Eq. (10), we can write the tachyonic

mass as

m2
T ¼ σNnN=4f2a −m2

a: ð12Þ

Using the values of all the parameters and ma ∼ 10−19 eV,
we get the upper bound of the axion decay constant [using
Eq. (11)] as fa ≲ 2.636 × 1017 GeV. Axions can never be
sourced by a neutron star if fa is greater than this upper
bound. Similarly, a white dwarf cannot be the source of
axions if fa ≳ 9.95 × 1014 GeV.
Compact stars with a large nucleon number density can

significantly affect the axion potential. The second deriva-
tive of the potential [Eq. (8)] with respect to the field
value is

∂2V
∂a2 ¼m2

πf2π

��
ϵ−

σNnN
m2

πf2π

�
1

4f2a
cos

�
a
2fa

�
þO

��
σNnN
m2

πf2π

�
2
��

:

ð13Þ

Outside of the compact star, σN ¼ 0, which implies that

∂2V
∂a2 ¼m2

πf2π

�
ϵ

1

4f2a
cos

�
a
2fa

�
þO

��
σNnN
m2

πf2π

�
2
��

: ð14Þ

Therefore, outside of the compact star ðr > rNSÞ, the
potential attains minima ð∂2V∂a2 > 0Þ corresponding to the

field values a ¼ 0;�4πfa;… and maxima ð∂2V∂a2 < 0Þ cor-
responding to the field values a ¼ �2πfa;�6πfa…, etc.
Inside the compact star ðr < rNSÞ, σN ≠ 0 and σNnN

m2
πf2π

> ϵ.

Therefore, inside the compact star, the potential has
maxima at a ¼ 0;�4πfa;… and minima at the field values
a ¼ �2πfa;�6πfa…, etc.
The axionic field becomes tachyonic inside of a compact

star and resides on one of the local maxima of the axionic
potential; outside of the star, the axionic field rolls down
to the nearest local minimum and stabilizes about it.
The axionic field asymptotically reaches zero (a ¼ 0) at
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infinity. Therefore, throughout the interior of the compact
star, the axionic field assumes a constant value a ¼ 4πfa,
the nearest local maximum.
For an isolated compact star of constant density, the

equation of motion for the axionic field is [38]

∇μ∇μ

�θ
2

	
¼

�−m2
T sinðθ2Þsgnfcosðθ2Þg ðr < rNSÞ;

m2
a sinðθ2Þsgnfcosðθ2Þg ðr > rNSÞ;

ð15Þ

where θ ¼ a=fa. The sgn function is required to take care
of the absolute value j cosðθ=2Þj in the potential. Note that
the equation of motion for the axionic field inside the
compact star is satisfied by the field value a ¼ 4πfa.
Assuming the exterior spacetime geometry due to the

compact star to be the Schwarzschild, the axionic field
equation [Eq. (15)] becomes�

1 −
2GM
r

�
d2a
dr2

þ 2

r

�
1 −

GM
r

�
da
dr

¼ m2
aa; ð16Þ

where M is the mass of the compact star, G is Newton’s
gravitational constant, and we have used the approximation
sinðθ=2Þ ≈ θ=2 for small θ.
At a large distance (r ≫ 2GM) from the compact star,

the axionic field [Eq. (16)] becomes

d2a
dr2

þ 2

r
da
dr

¼ m2
aa: ð17Þ

Assuming a ¼ ξðrÞ=r, the above equation reduces to
ξ00 −m2

aξ ¼ 0 (where the prime denotes a derivative with
respect to r). This has the solution ξ ¼ C1emar þ C2e−mar.
Since a → 0 in the limit r → ∞, C1 ¼ 0. Thus, a behaves
as a ∼ qeffe−mar=r, where we rename the integration con-
stant C2 as qeff . Further, for sufficiently light mass
(ma ≪ 1=D ≪ 1=rNS, where D is the distance between
the stars in a binary system), the scalar field has a long-
range behavior with an effective charge qeff . For scalar
Larmor radiation, the orbital frequency (ω) of the binary
pulsar should be greater than the mass of the particle that is
radiated (i.e., ω > ma). This translates the mass spectrum
of radiated ALPs for a typical neutron star–neutron star
(NS-NS) or neutron star–white dwarf (NS-WD) binary
system into ma ≲ 10−19 eV. Also, the axion Compton
wavelength should be much larger than the binary distance
in order to use the massless limit in the computation of
scalar radiation and effective charge, i.e., m−1

a ≫ D. The
critical value of axion mass required for the scalar radiation
and the binary distance for four compact binary systems are
given in Table I, which is consistent with the assumption of
ma ≲ 10−19 eV. Consequently, the axion Compton wave-
length (inverse of axion mass) is larger than the binary
distance, and hence, the size of the star (the size of a NS is
1020 GeV−1, and the size of a WD is 1023 GeV−1).
To identify the effective charge qeff , we exploit the

continuity of the axion field across the surface of the

compact star. Therefore, we solve Eq. (16) in the massless
limit (ma → 0), i.e.,

�
1 −

2GM
r

�
d2a
dr2

þ 2

r

�
1 −

GM
r

�
da
dr

¼ 0: ð18Þ

Integrating Eq. (18), we get a0 ¼−C3=r2ð1−2GM=rÞ, and
further integration yields a ¼ − C3

2GM ln ð1 − 2GM=rÞ þ C4,
where C3 and C4 are integration constants. For the r ≫
2GM limit, a → qeff=r, and therefore, C3 ¼ qeff and
C4 ¼ 0. Therefore, we get the axionic field profile outside
the compact star

a ¼ −
qeff
2GM

ln

�
1 −

2GM
r

�
: ð19Þ

The behavior of the axionic potential as a function of the
axionic field and distance are illustrated in Fig. 1. The
nature of the axionic field as we go from the inside to
the outside of a compact star is also shown in Fig. 1. The
variation of the effective-charge-to-mass ratio of a compact
star is shown in Fig. 2 as a function of the mass-to-radius
ratio for different decay constants.
At the surface of the compact star, aðrNSÞ ¼ 4πfa. Thus,

we identify

qeff ¼ −
8πGMfa

ln ð1 − 2GM
rNS

Þ : ð20Þ

If GM
rNS

≪ 1, qeff ∼ 4πfarNS [38]. However, for a typical
neutron star (M ¼ 1.4 M⊙ and rNS ¼ 10 km), the above
correction is not negligible. For a white dwarf, the effect is
negligible. The charges can both be positive as well as
negative, depending on the sign of the axionic field values
at the surface of the compact star. If q1 and q2 are the
charges of two compact stars, then if q1q2 > 0, the two
stars attract each other, and if q1q2 < 0, they repel each
other [38]. For a neutron star, the new effective axion
charge [Eq. (20)] is smaller than 4πfarNS by 21.46%. The
effect of the new axion charge is illustrated in Fig. 3, where
a plot of the axion profile both inside and outside a neutron
star is shown.

TABLE I. Summary of the axion Compton wavelength ðm−1
a Þ

and binary distance D for all four compact binaries. All relevant
parameters for the numerical calculation are given in Sec. IV.

Binary system
Critical value of
m−1

a (GeV−1)
Binary separation

D (GeV−1)

PSR J0348þ 0432 2.14 × 1027 4.64 × 1024

PSR J0737 − 3039 2.08 × 1027 4.83 × 1024

PSR J1738þ 0333 7.41 × 1027 9.65 × 1024

PSR B1913þ 16 6.76 × 1027 1.08 × 1025
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III. AXIONIC FIFTH FORCE AND
THE SCALAR RADIATION FOR

THE COMPACT BINARIES

Such a long range axionic field mediates a “fifth” force
(in addition to the Newtonian gravitational force) between
the stars of a binary system (NS-NS or NS-WD),

F5 ¼
q1q2
4πD2

; ð21Þ

where q1;2 are effective charges of the stars in the binary
system. Due to the presence of this scalar-mediated fifth
force, Kepler’s law is modified by [47]

ω2 ¼ Gðm1 þm2Þ
D3

ð1þ αÞ; ð22Þ

where α ¼ q1q2
4πGm1m2

is the ratio of the scalar-mediated fifth
force to the gravitational force, ω is the angular frequency
of orbital motion of the stars, m1 and m2 are the masses of
the stars, and μ ¼ m1m2=ðm1 þm2Þ is the reduced mass of

(a)

(b)

(c)

FIG. 1. (a) Plot of the axionic potential V as a function of the
axionic field. We assume m2

T=m
2
a ¼ 2. The black dashed line

corresponds to σN ≠ 0 (i.e., inside the compact star), and the red
solid line corresponds to σN ¼ 0. Note that the axionic field
evolves from the local maximum a ¼ 4πfa inside a compact star
to the nearest local minimum a ¼ 0 outside the compact star.
(b) The plot of V as a function of r inside and outside the neutron
star. Note that there is discontinuity in VðrÞ at r ¼ rNS due to sign
change in the potential. (c) Plot of the axionic field a as a function
of r. We assume a neutron star as an example of the compact
object in the plots. The typical mass and radius of a neutron star
areM ¼ 1.4 M⊙ and rNS ¼ 10 km, respectively. We can obtain a
similar type of profile for white dwarfs.

FIG. 2. The variation of the effective-charge-to-mass ratio of
the neutron star with the ratio of mass to radius for different
values of the axion decay constant.

FIG. 3. Plot of the axion field a as a function of r. The blue
curve stands for the axion field a ∼ qeff=r, and the red curve
stands for the axion field a ∼ −qeff=2GM lnð1 − 2GM=rÞ outside
the neutron star. For the blue curve, the effective axion charge is
qeff ¼ 4πfarNS, and for the red curve qeff is given by Eq. (20).
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the binary system. There are constraints on the fifth force
from either scalar-tensor theories of gravity [47–49] or the
dark matter components [49–51]. In this paper, we show
that the constraint on α from orbital period decay by scalar
radiation is more stringent than the measured change in
orbital period [Eq. (22)] due to fifth force.
The orbital period of the binary star system decays with

time because of the energy loss, primarily due to the
gravitational quadrupole radiation and about 1% due to
ultralight scalar or pseudoscalar Larmor radiation. The total
power radiated for such quasiperiodic motion of a binary
system is

dE
dt

¼ −
32

5
Gμ2D4ω6ð1 − e2Þ−7

2

�
1þ 73

24
e2 þ 37

96
e4
�

−
ω4p2

24π

ð1þ e2=2Þ
ð1 − e2Þ52 ; ð23Þ

where e is the eccentricity of the elliptic orbit and E is the
total energy of the binary system. The first term on the rhs
is the gravitational quadrupole radiation formula [39,50],
and the second term is the massless scalar dipole radiation
formula [38,39,52]. There is the radiation of the ALPs if the
orbital frequency is greater than the mass of the ALPs. The
dipole moment in the center-of-mass frame of the binary
system can be written as

p ¼ q1r1 − q2r2 ¼ q1
μD
m1

− q2
μD
m2

ð24Þ

or

p ¼ 8πGfaμD



1

ln
�
1 − 2Gm2

rNS

	 −
1

ln
�
1 − 2Gm1

rNS

	�; ð25Þ

where r1;2 are the radial distances of the stars in the binary
system from the center ofmass along the semimajor axis. For
nonzero scalar radiation, the charge-to-mass ratio (q=m)
should be different for two stars. Thus, for the companion
star in a binary system with the equal effective charge, there
should be some mass difference of the two stars. The decay
of the orbital time period is given by [39,53]

_Pb¼6πG−3
2ð1þαÞ−3

2ðm1m2Þ−1ðm1þm2Þ−1
2D

5
2

�
dE
dt

�
; ð26Þ

where Pb ¼ 2π=ω. NS-NS binaries (with different mass
components) as well as NS-WD binaries are the sources for
the scalar Larmor radiation and also for the axion-mediated
fifth force. On the other hand, NS-BH systems can be the
source of scalar radiation, but there is no long-range fifth
force in between, as the scalar charges for the black holes
(BHs) are zero [54].

In the next section, we consider four compact binaries
and put constraints on fa.

IV. CONSTRAINTS ON AXION PARAMETERS
OF DIFFERENT COMPACT BINARIES

A. PSR J0348 + 0432

This binary system consists of a neutron star and a low-
mass white dwarf companion. The orbital period of the
quasiperiodic binary motion is Pb ¼ 2.46 h. The mass of
the neutron star in this binary system is Mp ¼ 2.01 M⊙,
and the mass of the white dwarf is MWD ¼ 0.172 M⊙. The
radius of the white dwarf is rWD ¼ 0.065R⊙, and we
assume the radius of the neutron star is rNS ¼ 10 km.
We compute the semimajor axis of the orbit using
Kepler’s law [Eq. (22)]. The observed decay of the
orbital period is _Pb ¼ 0.273 × 10−12 s s−1 [40]. This is
primarily due to gravitational quadrupole radiation from
the binary NS-WD system. The contribution from the
radiation of some scalar or pseudoscalar particles must
be within the excess of the decay of the orbital period,
i.e., _PbðscalarÞ ≤ j _PbðobservedÞ − _PbðgwÞj. If ALPs are emitted
as scalar Larmor radiation, then we can find the upper
bound on the axion decay constant. Using Eqs. (22), (23),
(25), and (26) and taking the ALPs as massless, we
obtain an upper bound on the axion decay constant as
fa ≲ 1.66 × 1011 GeV. The ratio of the axionic fifth force
and the Newtonian gravitational force between the stars in
this system comes out to be α≲ 5.73 × 10−10.

B. PSR J0737− 3039
PSR J0737 − 3039 is a double neutron star binary system

whose average orbital period is Pb ¼ 2.4 h. Its observed
orbital period decays at a rate _Pb ¼ 1.252 × 10−12 s s−1.
The pulsars have masses M1 ¼ 1.338 M⊙ and M2 ¼
1.250 M⊙. The eccentricity of the orbit is e ¼ 0.088 [41].
Using Eqs. (22), (23), (25), and (26), we obtain the upper
bound on the axion decay constant as fa≲9.76×1016GeV.
Besides the axion radiation, axion-mediated fifth force
arises in this binary system. We obtain the value of
α≲ 9.21 × 10−3.

C. PSR J1738 + 0333

This pulsar–white dwarf binary system has an average
orbital period Pb ¼ 8.5 h and the orbit has a very low
eccentricity, e < 3.4 × 10−7. The mass of the pulsar is
Mp ¼ 1.46 M⊙, and the mass of the white dwarf isMWD ¼
0.181 M⊙. The radius of the white dwarf is rWD ¼
0.037R⊙. The rate of the intrinsic orbital period decay is
_Pb ¼ 25.9 × 10−15 s s−1 [42]. Using this system, we obtain
the upper bound on the axion decay constant as fa≲
2.03 × 1011 GeV. The value of α comes out ≲8.59×10−10.
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D. PSR B1913 + 16: Hulse-Taylor binary pulsar

The observed orbital period of the Hulse-Taylor binary
decays at the rate of _Pb ¼ 2.40 × 10−12 s s−1. The masses of
the stars in this binary system arem1 ¼ 1.42 M⊙ andm2 ¼
1.4 M⊙ [39]. The eccentricity of the orbit is e ¼ 0.617127,
and the average orbital frequency isω ¼ 0.2251 × 10−3 s−1.
For this system, we obtain the upper bound on the decay
constant as fa ≲ 2.12 × 1017 GeV. We obtain the value of α
for this system: ≲3.4 × 10−2. Note that the binary orbit of
this system is highly eccentric. As a result, the contributions
of the eccentricity factors in the radiation formulas [Eq. (23)]
are important. For the GW radiation, the eccentricity factor is
11.85, and for the scalar radiation, it is 3.94.
In Table II, we have obtained the upper bound of the

axion decay constant and the relative strength of the axion-
mediated force for the four compact binaries.

V. IMPLICATION FOR THE AXIONIC FUZZY
DARK MATTER

The ALPs that are radiated from the compact binaries
can be possible candidates of FDM, whose mass is
∼Oð10−21–10−22 eVÞ). In the very early Universe, the
axionic field evolves with a cosine potential

V

�
a
fa

�
¼ m2

af2a



1 − cos

�
a
fa

��
: ð27Þ

The equation of motion for the axionic field is

äþ 3H _a −
1

R2
∇2aþm2

aa ¼ 0; ð28Þ

where RðtÞ is the scale factor in the FRW spacetime. Taking
the Fourier transform of Eq. (28), the modes decouple, and
we have

äk þ 3H _ak þ
k2

R2
ak þm2

aak ¼ 0: ð29Þ

For nonrelativistic (small-k) or zero modes, the third term
becomes zero, and the equation of motion of the axionic
field is a damped harmonic oscillatory. The axionic field
takes a constant value as long as H ≳ma, which fixes the

initial misalignment angle, and then the axionic field starts
oscillating with a frequency ∼ma. When the oscillation
starts at H ∼ma, then the energy density of axionic field is
of the order of m2

aa20, where a0 is the initial field value
during inflation. The oscillation modes are damped as R−3

2.
The energy density of the axionic field, when it is
oscillating, goes as 1

R3. Hence, at late times, the axionic
energy density redshifts like a cold dark matter. The ratio of
dark matter to radiation energy densities increases as 1

T with
the expansion of the Universe, and the dark matter starts
dominating over radiation at T ∼ 1 eV. Using these facts,
the dark matter relic density becomes [31]

ΩDM ∼ 0.1

�
a0

1017 GeV

�
2
�

ma

10−22 eV

�1
2

; ð30Þ

where a0 ¼ θ0fa, and θ0 is the initial misalignment angle
which can take values in the range −π < θ0 < π. Since the
coupling of ALPs with matter is proportional to 1

fa
, large

values of fa correspond to weaker coupling with matter.
Therefore, direct detection of the ALPs in this scale is much
more difficult. However, the ALPs in this large-fa scale
have some theoretical motivations [9]. The axion decay
constant in the GUT scale implies that a single axion
condensate can trigger the breaking of symmetries in
nature. ALPs of mass Oð10−21–10−22 eVÞ sourced by
the binary systems can give rise to the correct relic density
of FDM if the axion decay constant is fa ∼ 1017 GeV and
the initial misalignment angle θ0 ∼Oð1Þ. Any value of fa
other than 1017 GeV requires fine-tuning of the initial
misalignment angle, which can take values from −π to þπ.
For the NS-WD binaries PSR J0348þ 0432 and PSR

J1738þ 0333, the bound on the axion decay constant
[fa ≲Oð1011 GeVÞ] is well below the GUT scale, and this
gives the stronger bound. This implies that if the ultralight
ALPs have to be FDM, then they do not couple with
gluons.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we have obtained upper bounds on the
decay constant of the ultralight ALPs from the study of
decay in orbital period of the compact binary stars (NS-NS,
NS-WD). Compact stars such as neutron stars and white
dwarfs can be the source of ALPs. We have assumed that
the mass of the ALPs is sufficiently low such that the
axionic field has a long-range behavior over a distance
between the binary companions. Due to such an axionic
field, the binary system will emit scalar Larmor radiation.
Although the gravitational quadrupole radiation mainly
contributes to the decay of orbital period, the contribution
of scalar radiation is not negligible. However, its contri-
bution must be within the excess value of the observed
decay in the orbital period. For the NS-NS and NS-WD

TABLE II. Summary of the upper bounds on the axion decay
constant fa of ALPs radiated from compact binaries. For all the
binaries, we assume ma < 10−19 eV.

Compact binary system fa (GeV) α

PSR J0348þ 0432 ≲1.66 × 1011 ≲5.73 × 10−10

PSR J0737 − 3039 ≲9.76 × 1016 ≲9.21 × 10−3

PSR J1738þ 0333 ≲2.03 × 1011 ≲8.59 × 10−10

PSR B1913þ 16 ≲2.12 × 1017 ≲3.4 × 10−2
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binary systems, an additional axionic “fifth” force arises
which is not relevant as much as the scalar radiation in
our study.
We have obtained the axionic profile for an isolated

compact star, assuming it to be a spherical object of
uniform mass density. We have identified the form of
effective axionic charge of the compact star [38] and its GR
correction. We have also considered eccentricity of the
orbits of binary systems—a generalization of previous
results for axionic scalar radiation [38]. Using the updated
formula for the total power radiated, we have studied four
compact binary systems: PSR J0348þ 0432, PSR
J0737 − 3039, PSR J1738þ 0333, and PSR B1913þ 16
(the Hulse-Taylor binary pulsar). The upper bound on the
axion decay constant fa is found as fa ≲Oð1011 GeVÞ.
If the masses of the ALPs which are sourced by compact

binaries are Oð10−21–10−22 eVÞ and fa ∼ 1017 GeV, then
they can contribute to the relic density of FDM. However,
the bound fa ≲Oð1011 GeVÞ from WD binaries does not
favor ALPs as the FDM.

ALPs can give rise to isocurvature fluctuations during
inflation which are tightly constrained from CMB obser-
vation. The Hubble scale during inflation (for single-field
slow roll models) is HI ¼ 8 × 1013

ffiffiffiffiffiffiffiffiffiffiffi
r=0.1

p
GeV [55] and

therefore, for our bound fa ≲Oð1011 GeVÞ, it is possible
to have 2πfa < HI , which means that the ALPs’ symmetry
breaking takes place after inflation, and there will be no
isocurvature perturbations from ALPs. However, observa-
tions of Lyman-α disfavor FDM [56].
ALPs with a larger mass range (ma > 10−19 eV) can be

probed from the observation of the gravitational wave
signals from binary merger events at the LIGO-Virgo
detectors. For this, detailed analysis of the gravitational
waveform and phase is required which will take into
account the energy loss by axionic emission.
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