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As evidenced by the coincident detections of GW170817 and GRB 170817A, short gamma-ray bursts
are likely associated with neutron star–neutron star merger events. Although rare, some bursts display
episodes of early emission, with precursor flares being observed up to ∼10 seconds prior to the main burst.
As the stars inspiral due to gravitational wave emission, the exertion of mutual tidal forces leads to the
excitation of stellar oscillation modes, which may come into resonance with the orbital motion. Mode
amplitudes increase substantially during a period of resonance as tidal energy is deposited into the star. The
neutron-star crust experiences shear stress due to the oscillations and, if the resonant amplitudes are large
enough, may become overstrained. This overstraining can lead to fractures or quakes which release energy,
thereby fueling precursor activity prior to the merger. Using some simple Maclaurin spheroid models, we
investigate the influence of magnetic fields and rapid rotation on tidally forced f and r modes, and connect
the associated eigenfrequencies with the orbital frequencies corresponding to precursor events seen in, for
example, GRB 090510.
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I. INTRODUCTION

It has long been thought that short gamma-ray bursts
(SGRBs) are associated with neutron star–neutron star
(NSNS) merger events [1–3]. This proposal is strongly
supported by the combined detection of the gravitational
wave (GW) event GW170817 from coalescing NSs and the
subsequent SGRB that was observed by Fermi and
INTEGRAL ∼1.7 s after [4,5]. Although not observed
for this particular event, some SGRBs are preceded by
“precursor” flares: energetically weaker but spectrally
similar flashes are seen several seconds prior to the main
burst in some cases [6–9]. If the main episode arises within
≲2 seconds after the merger, this would imply that some
precursors occur before coalescence. Physical parameters
inferred from precursor flare measurements, such as the
strength of the mutual tidal strain on the progenitors at the
orbital frequencies to which the flashes correspond, may
therefore carry information about fundamental properties
of the progenitor NSs, such as their equation of state
(EOS) [10–13].
In general, a perturbed NS oscillates as a superposition of

modes, the amplitudes of which decay gradually due to the
emission of GWs [14,15]. Pulsation modes are typically
characterized according to the nature of their restoring
force. For example, the fundamental f modes are primarily
restored by the hydrostatic pressure, while the dominant
restoring force for the inertial r modes is the Coriolis

force [16]. Fluid elements are displaced by these oscil-
lations, thus resulting in shear stresses being applied to the
NS crust. If the mode amplitudes are large enough to
overstrain the crust to the point that it breaks in some sense
[17,18], energy may be released from the star in the form of
quakes or cracks [19–21].
A star, as part of a binary system, experiences an external

tidal force with a driving frequency that is proportional to
the orbital frequency (e.g., Ref. [22]). The tidal potential, in
addition to adjusting the oscillation spectrum [23–26],
induces a net quadrupole moment inside the star. This
quadrupole also leads to shearing, though crustal failure
due to tidal stresses alone likely only occurs within the final
≲102 ms of the inspiral [27]. However, at certain orbital
separations, a particular mode eigenfrequency may match
the driving frequency, thus bringing the mode into reso-
nance for a period of time, during which tidal energy is
rapidly absorbed [28–32]. The absorbed energy over a
resonance timescale translates into a maximum mode
amplitude, which, if greater than the critical number
necessary to instigate crustal failure, leads to the consid-
eration that crust yielding due to resonant mode excitations
may be responsible for SGRB precursors [33,34].
In this paper, we investigate tidally forced oscillations

and the induced crustal strains of rotating, magnetized
NSs, to then compare quake energetics and resonance
times with the luminosities and orbital frequencies
observed for precursor flares from SGRBs [6–9]. Strong
magnetic fields may be important in this scenario, as there
is some evidence to suggest that those binaries which emit*arthur.suvorov@tat.uni-tuebingen.de
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precursor flares contain magnetars. For example, the
majority of precursor flares exhibit a nonthermal spectrum
[9], which would be expected if Alfvén waves propagating
along open field lines are the primary means of the
associated energy transport, though this requires a high
surface field strength, B ≫ 1013 G [33,35]. Recent esti-
mates (between ∼0.4% [8] and ≲2.7% [9]) for the
proportion of SGRBs that show precursor activity are
also consistent with magnetar birth rates expected from
population synthesis models [36]. Oscillating NSs also
emit gravitational radiation [37], so precursors attributable
to large mode amplitudes should be accompanied by
appreciable GW signals [38–40], especially if the stars
have intrinsic quadrupole moments from magnetic defor-
mations [41–43], which may be detectable with existing
and upcoming GW observatories [44].
In any case, we adopt simple (equilibrium) models of

constant-density stars and build on the Maclaurin spheroid
solutions to present an analytic approach which can also
account for rapid rotation [45–47]. Although clearly not
realistic, the leading-order expressions for f and (general-
ized) r modes are quantitatively similar between the
Maclaurin spheroids and stars with more realistic EOSs
[48–50] (see Sec. III). Furthermore, it has been suggested
that certain universality relationships between NS param-
eters observed in simulations for differing EOSs (such as
those relating the moment of inertia, Love numbers, and
quadrupole moments, defining the “I-Love-Q” relations
[51,52]) stem from the fact that the spectrum of an
incompressible star reasonably approximates that of a star
with a realistic nuclear EOS [53–55]. The simple models
presented here are meant to serve as a proof of concept, to
see whether strong magnetic fields or tidally induced
spectrum shifts can alter the viability of the f- or r-mode
tidal resonance and subsequent quake scenario to explain
SGRB precursors.
This paper is organized as follows: In Sec. II, we briefly

discuss SGRBs, the properties of the precursor flares
observed in some cases, and how tidal effects and strong
magnetic fields may be relevant. Section III introduces the
Maclaurin spheroid solutions, recaps the theory of their
pulsations, and investigates the maximummode amplitudes
achievable during resonance. Estimates for the mode
frequency shifts due to tidal and magnetic forces are given
in Sec. IV. Section V then assesses the relationship between
the resonant mode amplitudes and those necessary for crust
yielding, to compare the energy available via quakes with
the luminosities of the observed precursors. Some discus-
sion is offered in Sec. VI.
We adopt the following notation for compactness

throughout: B16 ¼ B=ð1016 GÞ, ν300 ¼ ν=ð300 HzÞ, ω3 ¼
ω=ð103 HzÞ (similarly for frequencies in the inertial frame
ωi;3 or for “unperturbed” valuesω0;3),M1.4 ¼ M=ð1.4M⊙Þ,
R13 ¼ R=ð13 kmÞ, and a7 ¼ a=ð107 cmÞ, where the sym-
bols will be defined when introduced.

II. SHORT GAMMA-RAY BURSTS

The SGRB event GRB 170817A was preceded 1.7 s
earlier by the GW signal GW170817 from a coalescing NS
binary [4,5]. Given the ∼40 Mpc distance of the source,
this coincident detection provides strong evidence for the
long-thought hypothesis that SGRBs are associated with
compact merger events involving NSs [1–3]. Although GW
astronomy is still in its infancy, the first GRB was detected
over 50 years ago [56], and many statistical analyses of the
latter events have since been performed. GRBs are typically
categorized according to their duration T90 (i.e., the time
interval in which 90% of the total photon count is detected
within the prompt emission), with short bursts having
T90 ≲ 2 s and long ones having T90 ≳ 2 s [57].

A. Precursor flares

As first reported by Koshut and collaborators [6], some
SGRBs1 are preceded by precursor flares that are somewhat
less intense but phenomenologically similar to the main
episodes. The aforementioned authors estimated that ∼3%
of bursts within the Burst and Transient Source Experiment
(BATSE) showed precursor activity, with a 3σ correlation
between the respective T90 durations of the pre- and main
bursts. This estimate concerning the number of SGRBs
hosting precursors varies substantially in the literature, the
main reason being that the identification of a precursor is
highly sensitive to the actual definition of what constitutes
preemission; stipulating that the time interval between the
precursor and the main GRB need not exceed the T90 of the
main burst, the optimistic estimate that≲10% of bursts may
admit precursors was obtained in Ref. [7]. A more recent
analysis involving a study of 519 SGRBs, which enforced
the above condition, concluded that only ≲0.4% of bursts
show precursor activity [8], while the analysis of Ref. [9],
which did not enforce this condition, found that 18 of the
660 bursts (≲2.7%) within their sample exhibited precur-
sors, though these latter authors also included events of
lower significance (σ ≲ 2).
In Table I, we present relevant properties for the most

statistically significant SGRB precursor candidates dis-
cussed in the above references. Denoting the time of the
preemission relative to the main burst by tB − t, we see that
GRBs 100717, 130310, and 071030 showed precursor
activity ∼ a few seconds prior to the main burst
(tB − t≲ 4.5 s), while other events exhibited precursors
much closer to the main emission, tB − t≲ 1 s. The
durations of these preemission episodes, in line with the
initial findings of Ref. [6], are correlated with the respective

1Long GRBs also show precursor flare activity (which is in
fact more common), but the early emissions are much weaker
energetically and have softer spectra [58,59]. Moreover, since
most long GRBs are thought to be associated with core-collapse
supernovae in low-metallicity environments [60], we do not
consider them in this paper.
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time lags. GRB 090510 is exceptional in the sense that two
precursor events were identified [7], one occurring ∼13 s
prior, and a second occurring ∼0.5 s prior (which lasted
almost until the main burst). The final column of Table I
shows the inferred (Keplerian) orbital frequency Ωorb,

Ωorb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðM þMcompÞ

a3

r
; ð1Þ

whereM andMcomp are the masses of the binary stars with
orbital separation2 a, to which the relative time lag
corresponds in the following sense.
Due to the emission of gravitational radiation, a decays

with time. In particular, matching the GW luminosity with
the rate of change of the orbital energy yields the well-
known equation for aðtÞ [37],

_a ¼ −
64G3

5c5
M3qð1þ qÞ

a3
; ð2Þ

for mass ratio q ¼ Mcomp=M, which has the solution

a ¼ ½81c5R4 − 256
5
G3M3qð1þ qÞðt − tCÞ�1=4

c5=4
; ð3Þ

where tC is the coalescence time, occurring when a≲ 3R
for (averaged) stellar radius R [63]. If we assume that tB ≈
tC (see below), expression (3) allows us to estimate the
orbital separations and frequencies at the times when the
precursor events took place, which will be necessary to
match with the mode frequencies in the resonance scenario
(see Sec. III B). For GRB 090510, for example, expression
(3) gives us that Ωorbðaðt − tC ¼ 0.5ÞÞ ¼ 541.1 Hz and
Ωorbðaðt − tC ¼ 13ÞÞ ¼ 160.5 Hz.

Figure 1 shows the orbital separation [Eq. (3)] as a function
of time for an equal-mass binary M ¼ Mcomp ¼ 1.4M⊙,
where coalescence occurs at tC ¼ 13 s. Precursor times for
GRB 090510 are shown by the vertical dashed lines,
measured as 13 s and 0.5 s prior to the main burst [7],
corresponding to orbital separations a ≈ 19R and a ≈ 8R,
respectively. The gray shaded region represents the actual
merger event, occurring at a≲ 3R [63].
In reality, the main burst will not occur at the instant of

coalescence, since there will be some nonzero timescale
associated with jet formation, which depends on the
physics of the postmerger remnant. For instance, the mass
of the remnant may exceed the Tolman-Oppenheimer-
Volkoff limit but resist collapse due to strong differential
rotation (the hypermassive NS scenario [64]). The SGRB
[65,66] and x-ray afterglow [67,68] may then be powered
either by the NS itself or by a black hole formed through
delayed collapse due to eventual angular momentum losses
from GWemission (see Ref. [69] for a recent review). If the
jet forms through highly magnetized winds from the
hypermassive NS, it is expected that tB − tC ≲ 100 ms
[70], or else neutrino emission from Urca cooling will

TABLE I. Properties of (the most significant) SGRB precursor candidates reported in Refs. [7–9]. The associated orbital frequency
[Eq. (1)] is computed assuming an equal-mass binary with M ¼ Mcomp ¼ 1.4M⊙.

Precursor event Duration [T90 (s)] Time relative to main burst [tB − t (s)] Significance (σ) Orbital frequency [Ωorb (Hz)]

GRB 090510 0.05� 0.02 0.45� 0.05 ≲4.6 562.5þ24.9
−21.4

GRB 090510 ≲0.4 13 5.2 160.5
GRB 100717 0.3� 0.05 3.3 12.8 268.1
GRB 130310 0.9� 0.32 4.45� 0.8 10 239.7þ18.5

−14.4
GRB 071030 ≲0.7 2.5 6.3 297.4
GRB 060502B ∼0.09 0.32 6.1 637.5
GRB 100213A ∼0.44 0.68 11.1 483.0
GRB 140209A ∼0.45 1.06 13.9 409.6
GRB 160726A ∼0.08 0.39 10.2 592.9

FIG. 1. Decay of the orbital separation a, normalized by stellar
radius R ¼ 13 km, as a function of time for a binary with M ¼
Mcomp ¼ 1.4M⊙. The vertical dashed lines mark 0.5 s and 13 s
prior to coalescence (occurring when a≲ 3R [63]), which, assu-
ming that themain burst occurs at coalescence t ¼ tC, are the times
at which precursor flares for GRB 090510 were identified [7].

2We ignore effects related to the eccentricity of the orbit; for
the last stages of binary inspiral with a≲ 102R, angular mo-
mentum losses due to gravitational radiation tend to circularize
the orbit [61,62], so the orbital separation and semimajor axis are
likely to roughly coincide. However, highly eccentric orbits may
present more opportunities for resonances in general [28,31].
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choke the jet and produce a burst that lasts considerably
longer than the T90 ≲ 2 s defining SGRBs [71,72]. If
instead the hypermassive star collapses (or prompt black
hole formation occurs), the magnetized accretion torus
surrounding the freshly formed black hole may drive the jet
via the Blandford-Znajek mechanism [73,74], and the jet
may be launched within ≲30 ms after collapse [75].
In any case, treating the 1.7 s delay time between

GW170817 and GRB 170817A as canonical, (at least
some of) the precursor flares described in Table I were
likely produced prior to the actual merger. In the next
section, we explore the tidal resonance mechanism as a
possible source of the precursors.

B. Tidal resonances

In the corotating frame of a NS spinning with angular
velocity Ω, suppose that a mode with azimuthal number m
has frequency ω (see Sec. III A for details). In the inertial
frame, the mode frequency reads

ωi ¼ ω −mΩ: ð4Þ

For a general binary system, the tidal potential ΦT acts like
an external driving force with (inertial frame) frequency
2Ωorb [22]. As such, if, at some point during the inspiral, we
have that

jωij ≈ 2Ωorb; ð5Þ

then the mode comes into resonance with the orbital
motion. At a given resonance frequency, the GW inspiral
time tGW can be estimated from expressions (1) and (3) as

tGW ≈
Ωorb

_Ωorb

¼ 0.63

�
M

1.22M⊙

�
−5=3

ω−8=3
i;3 s; ð6Þ

whereM ¼ Mq3=5ð1þ qÞ−1=5 is the “chirp” mass, and we
have used the resonance condition [Eq. (5)] to rewrite Ωorb
in terms of ωi. The duration of a particular resonance tres
can be approximated by the timescale during which the
tidal driving is phase-coherent with the mode tres ∼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tGW=Ωorb

p
[29,33], which, from Eq. (6), reads

tres ∼ 3.6 × 10−2
�

M
1.22M⊙

�
−5=6

ω−11=6
i;3 s: ð7Þ

It is interesting to note that, for the precursors described in
Table I, tres is within an order of magnitude of the T90

reported for the flashes.
In general, a given n mode (e.g., f mode) can be

described by the associated Lagrangian eigenvector ξn,
which defines the extent to which fluid elements are
displaced by the oscillations induced by that mode (see
Sec. III A). The external force generated by ΦT excites the

oscillation modes and results in an amount of energy being
transferred to the star during the inspiral at a rate [22]

_ET
n ¼

Z
d3xρ

∂ξ�n
∂t · ∇ΦT; ð8Þ

where the asterisk indicates complex conjugation. A
resonant excitation [which fixes the orbital separation a
relative to ωi through Eq. (5)] of a particular mode then
increases the respective amplitude αn of that mode [29,30].
Noting that, to leading order, ΦT ∝ r2Y22 for spherical
harmonic Y22 (see Sec. IV), it is convenient to introduce the
so-called overlap integrals3 Qn, defined as [10,28]

Qn ¼
1

MR2

Z
d3xρξ�n ·∇ðr2Y22Þ: ð9Þ

In terms of these integrals, the maximum mode amplitude
αn;max, achieved during a period of resonance via tidal
energy absorption [Eq. (8)], is given by (see Sec. VI of
Ref. [29] for a detailed derivation)

αn;max ≈
πQn

32

�
ω2
i R

3

GM

�−5=12�Rc2

GM

�
5=4

�
2q3=5

1þ q

�
5=6

¼ 6.2 × 10−3ω−5=6
i;3 M−5=6

1.4

�
Qn

10−3

��
2q3=5

1þ q

�
5=6

: ð10Þ

In addition to the energy deposit [Eq. (8)], tidal inter-
actions also induce a torque onto the NS, which results in
angular momentum transfer; ΔJres ≈ 4MR2ωiα

2
n;max during

a period of resonance [29,32,76]. This angular momentum
can naturally spin up the star. An upper bound on the spin-
up can be obtained by assuming that ΔJres contributes only
to the uniform rotation of the star, so that ΔΩ ∼ ΔJres=I for
moment of inertia I ¼ 2MR2

e=5 [45]. Thus, during a period
of resonance, the spin frequency of the star achieves a
maximum increase due to the tidal torque by a factor

ΔΩ
Ω

≲ 2.1 × 10−4ν−1300ω
−5=3
i;3 M−5=3

1.4

�
R
Re

�
−2
�

Qn

10−3

�
2

ð11Þ

for an equal mass binary, which may be significant
if Qn ≫ 10−3.
In general, oscillation modes which are not damped out

at the crust-core interface may shear the NS crust, in the
sense that the physical stellar surface is “breathing” and
fluid elements shift to a degree that depends on the
amplitude αn of the oscillation mode [77,78]. During this
timescale tres, if the mode amplitude [Eq. (10)] reaches a
sufficiently large value, the crust may be strained to the
point where it can no longer respond elastically and will

3Note that these are defined with respect to a specific
normalization, namely that

R
dV ρξ� · ξ ¼ MR2 (e.g., Ref. [33]).
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thus possibly crack (see Sec. V) [17,18]. In addition to
mode-induced stresses, if the magnetic field (and its excited
oscillation) is also sufficiently strong, then the strain may
exceed the critical threshold due to Maxwell stresses alone
[20,21]. We offer some motivation for considering strong
magnetic fields in the next section.

C. Hints for strongly magnetized progenitors

Although far from conclusive, there is some evidence to
suggest that at least one of the NSs involved in a merger
event, which releases a precursor to the SGRB, is highly
magnetized. We summarize this evidence as follows:
(1) Most recent estimates indicate that precursor flares

are emitted in between ∼0.4% and≲2.7% of SGRBs
[8,9]. This means that the NSs involved are likely to
be unusual in some sense, whether this means rapid
rotation, strong magnetic fields, or otherwise. Pop-
ulation synthesis models suggest that ≲1% of NSs
are born with (surface) magnetic field strengths B≳
1015 G [36], so that ≲2% of any given pair would
contain at least one strong-field NS. While the
internal field may be considerably stronger than
the surface field [79,80], the low proportion of
precursors amongst SGRBs may indicate that a
strong magnetic field is a precondition for early
emission. Moreover, precursors occurring at larger
distances tend to be energetically weaker [9].

(2) Many precursor flares display a predominantly non-
thermal spectrum [9]. A natural explanation for
this could be that mechanical energy stored within
an oversheared crust is relieved through Alfvén
waves, which transport energy to fuel precursor
activity [35]. This situation requires a strong field
(B ≫ 1013 G [33]), or else the generation of pair-
photon cascades from mode-induced backreactions
into B will tend to thermalize the spectrum. Fur-
thermore, as noted in Ref. [34], the surface magnetic
field strength limits the extent to which energy can
be extracted from the crust,

Lmax ∼ 1050
�
ω3jξj
R13

�
B2
surf;15R

2
13 erg s−1; ð12Þ

which can nevertheless readily account for precursor
energetics if B is large enough.

(3) As discussed in Sec. II A, a candidate theory for the
launching of the SGRB jet itself (and for powering
x-ray afterglows [68]) is through the formation of
highly magnetized winds in a (possibly hypermas-
sive) millisecond magnetar [69,70]. Although the
α-Ω dynamo or Kelvin-Helmholtz instability may
explain the emergence of an ultrastrong field (satu-
rating at B≲ 1017 G) in the remnant [79], a flux
conservation argument suggests that the postmerger
object is more likely to be highly magnetized if the

progenitor stars are magnetars; see Ref. [81]. As such,
an ultrastrong field for the remnant would be expected
in this case, thus supporting the viability of this
central engine, even if a dynamo does not operate.

Again, we emphasize that the above points are certainly
not conclusive, but do hint that magnetar-level field
strengths for the progenitors may be tied to precursor
activity.

III. MACLAURIN SPHEROIDS

Stars which are uniformly rotating and of constant
density fall into the class of Maclaurin spheroids, the
equilibrium properties of which have been studied in detail
by Chandrasekhar [45].
Although they are often introduced using cylindrical

coordinates, we stick with spherical coordinates ðr; θ;ϕÞ
throughout for ease of presentation, the origin of which
(r ¼ 0) is set as the center of the primary star. Equilibrium
fluid profiles for uniformly rotating stars are given as
solutions to the Euler equation (e.g., Ref. [82])

0 ¼ ∇
�
p
ρ
þ r2Ω2

2
−Φ

�
; ð13Þ

where p is the stellar pressure, ρ represents the density,Φ is
the gravitational potential, and the velocity profile v has
components vr ¼ vθ ¼ 0, vϕ ¼ Ωr sin θ. In particular, the
Maclaurin spheroids have constant density,

ρ ¼ 3M
4πR3

; ð14Þ

where we note that the stellar volume V ¼ 4π
3
R3. The

pressure is given by

p ¼ πGρ2ðζcot−1ζ − 1Þ½r2ð1þ 2ζ2 þ cos 2θÞ
− 2R2ζðζ þ ζ3Þ1=3�; ð15Þ

where G is Newton’s constant and ζ is a parameter related
to the angular velocity Ω through the transcendental
equation

Ω2 ¼ 2πGρζ½ð1þ 3ζ2Þcot−1ζ − 3ζ�; ð16Þ

which must be solved numerically for ζ given some value
of Ω2=ρ. The spherical limit Ω → 0 corresponds to ζ → ∞.
The stellar surface S, defined by the vanishing of p

[Eq. (15)], is determined through the expression

0 ¼ r2ð1þ 2ζ2 þ cos 2θÞ − 2R2ζðζ þ ζ3Þ1=3: ð17Þ

In particular, the surface of the spheroid forms an equi-
potential for the sum of the gravitational and centrifugal
potentials within Eq. (13), which is why the shape of the
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star is uniquely determined by the rotation parameter ζ in
Eq. (17). The star has equatorial and polar radii given by

Re ¼ R

�
ζ2 þ 1

ζ2

�
1=6

ð18Þ

and

Rp ¼ R

�
ζ2

ζ2 þ 1

�
1=3

; ð19Þ

respectively, where we note that Re ≥ Rp, indicating that
the star is oblate.
In general, the star can support a maximum rotation rate

Ω ≈ 5.3M1=2
1.4 R

−3=2
13 kHz (corresponding to ζ ≈ 0.39), which

is≲20% lower than a realistic breakup limit [83]. However,
spheroids which have ζ ≳ 0.72 are secularly unstable [45],
so we consider Ω≲ 4.9M1=2

1.4 R
−3=2
13 kHz, though this corre-

sponds to a very rapidly rotating star with spin fre-
quency 2πΩ ¼ ν≲ 775 Hz.

A. Free mode structure

Pulsations of Maclaurin spheroids were initially studied
by Bryan [84] and have since been revisited in more
completeness by Braviner and Ogilvie [47]. Since a
detailed analysis of the mode structure can be found in
the aforementioned references, we will merely present the
results which are most important for our purposes.
In general, linear oscillation modes arise when the

background equilibrium undergoes a time-dependent per-
turbation, where each fluid variable χ (e.g., ρ; p;Φ; v;…) is
perturbed according to χ ↦ χeq þ δχðr; θÞeiðωtþmϕÞ, where
χeq is the equilibrium profile. Since the background is an
oblate spheroid, the perturbation variables can be decom-
posed as sums of spheroidal harmonics, which introduces
an additional “quantum number” l into the scheme.4

For a given l and m, the permitted values of the mode
frequency ω are determined by the imposition of boundary
conditions on the stellar surface S, which forms a total
pressure node, i.e., pþ δp ¼ 0 there. Physically speaking,
the perturbed stellar surface should form through the
advection of fluid elements on the background stellar
surface; the thermodynamic enthalpy, which vanishes on
the background surface [Eq. (17)], should also vanish on
the perturbed surface of the oscillating star [85,86]. This
condition can be enforced by demanding that the
Lagrangian pressure perturbation Δp vanish on Seq, viz.

Δpjp¼0 ¼ 0: ð20Þ
By definition, the Lagrangian pressure perturbation
reads [49]

Δp ¼ δpþ ξ ·∇p; ð21Þ
where we have introduced the displacement vector ξ related
to the perturbed velocity through the simple relation

δv ¼ _ξ ¼ iωξ: ð22Þ
For l ¼ jmj, solutions ω to Eq. (20) which do not vanish

in the limit Ω → 0 correspond to pressure-driven modes,
i.e., the fmodes. Form > 0, the f-mode frequenciesωf are
given as solutions to

0 ¼ ω2
f

Ω2
−
2ωf

Ω
−

2l
BlðζÞ

�
1þ ζð1 − ζcot−1ζÞBlðζÞ
ð1þ 3ζ2Þcot−1ζ − 3ζ

�
; ð23Þ

where the function Bl contains the associated Legendre
polynomials Pl

l and Ql
l through

BlðζÞ ¼ ð1þ ζ2Þ
�

1

Ql
lðiζÞ

dQl
lðiζÞ
dζ

−
1

Pl
lðiζÞ

dPl
lðiζÞ
dζ

�
:

ð24Þ

In the formal limitΩ → 0, one can show that we recover the
usual Kelvin mode [84] expressions from Eq. (23), i.e.,

ω2
f

πGρ
¼ 8lðl − 1Þ

3ð2lþ 1Þ þOðΩÞ: ð25Þ

For modes with l ≥ jmj, the fluid also admits inertial
modes (r modes), in the sense that there are eigenvalues ω
solving Eq. (20) which have vanishing frequency in the
nonrotating limit Ω → 0. In this paper, we are interested in
those f and r modes with the strongest couplings to the
tidal potential (see Sec. IVA). Assuming that the orbital
motion lies in the equatorial plane,5 this corresponds to
those with m ¼ 2 and lowest l. For l ¼ 3, m ¼ 2, the
(positive ω) inertial modes have frequency [46]

ωr ¼ 1.23ΩþOðΩ2Þ: ð26Þ

4Traditionally, r modes are introduced through the use of
magnetic-type vector spherical harmonics with δv ∝ YB

l;l (e.g.,
Ref. [38]), so that the “classical” r modes are called l ¼ m
modes. This is the notation adopted here. Note, however, that this
velocity profile induces a density deformation of the form δρ ∝
Ylþ1;l (e.g., Ref. [46]), which is why these classical r modes are
sometimes called l ¼ mþ 1modes, as in Ref. [47]. In this sense,
for example, the l ¼ 4, m ¼ 2 inertial modes of Ref. [47] are
what we call the l ¼ 3, m ¼ 2 r modes.

5This assumption has the implication that the classical rmodes
with l ¼ m ¼ 2 cannot be excited by the leading-order, quad-
rupolar tidal potential (see Sec. IVA), essentially because of
orthogonality relations between the magnetic-type vector spheri-
cal harmonics and the fact that coefficients of cross terms in ΦT

vanish when the spin-orbit inclination angle is zero; see Ref. [87]
for a detailed discussion. Also, again because of orthogonality
between different m harmonics, r modes with m < 2 cannot be
excited by the leading-order tidal potential. Thus, the leading-
order rmodes for our case are the l ¼ 3modes. For binaries with
a significant inclination angle, the l ¼ m ¼ 2 and l ¼ 2; 3,
m ¼ 1 r modes would also be relevant.
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Note that the eigenfrequencies in Eq. (26) are negative in
the inertial frame of Eq. (4), thus indicating that the modes
are subject to the gravitational radiation (CFS) instability
[88–90].
The (rotating frame) frequencies of the f (black curves)

and r (red dashed curves) modes, as functions of spin
frequency ν up until the secular stability limit ν≲ 775 Hz,
are shown in Fig. 2. The solid ðfÞ and dashed ðrÞ curves
indicate the Maclaurin spheroid eigenfrequencies. For
contrast, the dotted curve shows the rotationally corrected
f-mode [see expression (21) of Ref. [91] ] eigenfrequencies
determined in NSs with more realistic EOSs. For the
fundamental modes, we have that the rotational corrections
to the frequencies disagree with the realistic values by at
most ≈15%. Although calculations of the eigenfrequencies
for rmodes with l ¼ 3 for realistic EOSs are unavailable in
the literature, Ref. [49] found similar deviations for the
l ¼ 2 r-mode frequencies. We thus expect that the l ¼ 3
Maclaurin values reasonably approximate those in stars
with more realistic EOSs too (though general relativistic
effects may be important [40]). In general, with the
exception of f modes for very rapidly rotating stars with
ν≳ 600 Hz, the frequencies ω increase monotonically
with ν.
Finally, the perturbed versions of the Euler equa-

tions (13), along with the continuity and Poisson equations,
can be solved exactly to yield the perturbed fluid variables

for the dominant f (i.e., l ¼ m ¼ 2) and r (i.e., l ¼ 3,
m ¼ 2) modes.
The quantity of most importance to us is the Lagrangian

displacement defined in Eq. (22). For the l ¼ m ¼ 2 f
modes, one has [47]

ξf ¼ 2αfr sin θeiωte2iϕfsin θ; cos θ; ig; ð27Þ
while for the l ¼ 3, m ¼ 2 r modes, one finds the
considerably more complicated expression

ξr ¼
2αrr sin θ
R2ωΩ

eiωte2iϕf2 sin θð42r2ωðω − ΩÞcos2θ þ ðωþ 2ΩÞ½3b2ζðω − 2ΩÞ þ 7ir2ðωþΩÞsin2θ�Þ;
2 cos θð3b2ζðω2 − 4Ω2Þ þ 7r2ð3ω2cos2θ þ ½ði − 3Þω2 þ ð6þ 3iÞωΩþ 2iΩ2�sin2θÞÞ;
− ið−42r2ω2cos2θ þ ðωþ 2ΩÞ½−6b2ζðω − 2ΩÞ þ 7r2ðωþ 4ΩÞsin2θ�Þg; ð28Þ

with

bζ ¼
R

ζ1=3ð1þ ζ2Þ1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 4ð1þ ζ2ÞΩ2

ω2 − 4Ω2

s
; ð29Þ

mode amplitude(s) α, and it is implied that only the real
components are of interest.
It is important to note that in a realistic neutron-star

model with a solid crust, damping induced by viscous
friction at the crust-core interface may prevent the modes
from reaching the stellar surface [92]. For a constant-
density model with M ¼ 1.4M⊙ and R ¼ 10 km, spin
frequencies ν≳ νcrit ≈ 39ðμ=1030 dyn cm−2Þ1=2 Hz for
shear modulus μ are sufficient to ensure that r modes
strongly penetrate the crust [93].

B. Resonant amplitudes

From the above expressions for ξn, we can evaluate the
overlap integrals [Eq. (9)] to estimate the maximum mode
amplitudes [Eq. (10)] achievable during resonance. For the
f modes, we find

Qf ¼ 0.69
Re

R
; ð30Þ

in agreement with Ref. [63]. For the r modes, we have

Qr ¼ 3.53 × 10−3ν2300R
−3
13M

−1
1.4 þOðν4Þ; ð31Þ

as found in Ref. [87], where we note that higher-order
corrections in Ω are negligible except for very rapidly
rotating models with ν≳ 800 Hz. For an equal-mass binary
(q ¼ 1), we therefore find that the resonant mode ampli-
tudes [Eq. (10)] are

FIG. 2. l ¼ m ¼ 2 f-mode [black curves: the solid line shows
the Maclaurin value, while the dotted line shows the realistic EOS
expression (21) of Ref. [91] ] and l ¼ 3, m ¼ 2 r-mode (red
dashed curve) mode frequencies, normalized by the dynamical
frequency

ffiffiffiffiffiffiffiffiffi
πGρ

p
, as a function of spin frequency ν.
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αf;max ≈
0.74Re

R
M−5=6

1.4 ðM1=2
1.4 R

−3=2
13 − 0.28ν300Þ−5=6; ð32Þ

and

αr;max ≈ 1.68 × 10−2ν7=6300M
−11=6
1.4 R3

13: ð33Þ

Having introduced the oscillation modes of Maclaurin
spheroids, we now turn to an investigation of how tidal
(Sec. IVA) and magnetic (Sec. IV B) forces can modulate
the mode frequencies shown in Fig. 2.

IV. FREQUENCY MODULATIONS

The introduction of a perturbing force δF into the Euler
equations (13) leads to a modulation δω in the mode
frequencies, essentially because a change to the perturbed
pressure profile leads to a shift in the eigenvalue solutions
of Eq. (20). In general, these shifts are given by the exact
expression [16,94]

δω

ω0

¼ 1

2ω2
0

R
dVξ� · δFR
dVρjξj2 ; ð34Þ

where we denote the “unperturbed” mode frequencies
found in the previous section as ω0. Equation (34) can
be evaluated for some particular choices of δF.

A. Tidal potential

In addition to potentially exciting modes due to reso-
nance [Eq. (5)], tidal forces also necessarily shift the mode
frequencies [23,24]. Treating the companion star as a point
source, the tidal potential ΦT admits a multipole expansion
of the form [10,28,29]

ΦT ¼ −
GMcomp

a

�
1þ

X
k¼2

�
r
a

�
k
Pk
0ðcos ϕ̃ sin θÞ

�
; ð35Þ

where ϕ̃ ¼ ϕ − ϕc, with ϕc representing the angular
position of the secondary star as measured from the
perihelion of the orbit,

ϕc ¼ Ωorbt; ð36Þ

with Ωorb given by Eq. (1). The leading-order (k ¼ 2) term
of ΦT , most relevant for tidally forced oscillations [22],
reads

ΦT ¼ −
1

8

GMcomp

r

�
r
a

�
3

P2
2ðcos θÞe2iϕeiλt; ð37Þ

with λ ¼ 2Ωorb being the forcing frequency. If the primary
star is rotating with angular velocity Ω, the forcing
frequency in the corotating frame is obtained through
Ωorb ↦ Ωorb −Ω.

The perturbing tidal force is thus given by

δFT ¼ ρ∇ΦT: ð38Þ

We can now evaluate the frequency shift in Eq. (34). Since
the Lagrangian displacements ξ and eigenfrequencies ω
depend on the rotation rate in a complicated way (espe-
cially for the r modes), we present, for convenience, best
(least-squares) fits to the frequencies as functions of the
stellar parameters.
For leading-order f modes, we have

δωT
f

42.3 Hz
¼ −q

�
αf
0.1

�
−1
M3=2

1.4 R
3=2
13 a−37

× ð1 − 0.21ν300 þ 0.055ν2300Þ; ð39Þ

which, importantly, is negative for positive-mode ampli-
tude αf, and thus makes resonance “easier” to achieve in
principle. For r modes, we have

δωT
r

0.67 Hz
¼ q

�
αr
0.01

�
−1
M2

1.4a
−3
7

× ð1þ 21.8ν−1300 − 1.82ν300Þ: ð40Þ

Note that the shifts in Eqs. (39) and (40) are only, strictly
speaking, valid near resonance [Eq. (5)].
It is worth noting that recently, a variation of the

radiation-reaction secular instability (similar to the CFS
instability [88–90]) in tidally forced NSs was shown to
operate when Ω > Ωorb [95]. The growth time of this
instability can be faster than the GW inspiral time [Eq. (6)]
in the final≲10 s of inspiral, as relevant for precursors, and
may thus further shift the mode eigenfrequencies. This will
be investigated in future work.

B. Magnetic field

We begin by constructing an axisymmetric, dipolar6

mixed poloidal-toroidal magnetic field in the manner out-
lined in Ref. [43], so that the Lorentz force can be
introduced to evaluate Eq. (34).
An axisymmetric magnetic field admits a Chandrasekhar

decomposition [96] into poloidal and toroidal components,
viz.

B ¼ B0

�
∇ψ ×∇ϕþ

�
Ep

Et

1 − Λ
Λ

�
1=2

βðψÞ∇ϕ
�
; ð41Þ

where B0 sets the characteristic field strength, ψ ¼
fðrÞ sin2 θ is a scalar stream function, and the toroidal

6For simplicity, we consider only dipolar magnetic fields here,
though it should be noted that multipolar components can
introduce non-negligible deformations into the hydrostatic pres-
sure profile for magnetar-like field strengths [41,42].
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component β is a function of ψ only. In expression (41), we
have introduced the quantities

Ep ¼ 1

8π

Z
V
dV

��
1

r2 sin θ
∂ψ
∂θ

�
2

þ
�

1

r sin θ
∂ψ
∂r

�
2
�

ð42Þ

and

Et ¼ 1

8π

Z
V
dV

βðψÞ2
r2sin2θ

; ð43Þ

which represent the poloidal and toroidal energies stored
within the internalmagnetic field, respectively. In Eq. (41),
0 < Λ ≤ 1 parametrizes the relative strengths of the poloi-
dal and toroidal components; e.g., Λ ¼ 0.5 defines a field
with an equal poloidal-to-toroidal energy ratio: Ep ¼ Et.
In general, many options are available for the function f

appearing within the stream function ψ , though we make
the same choice as in Ref. [43],

fðrÞ ¼ r2

8

�
35 − 42

�
r
R

�
2

þ 15

�
r
R

�
4
�
; ð44Þ

which ensures that the magnetic field B is finite everywhere
and (approximately) continuous with respect to a current-
free external field. We pick the function β as

βðψÞ ¼
� ðψ − R2Þ2=R3 for ψ ≥ R2;

0 for ψ < R2;
ð45Þ

which ensures that the toroidal field is confined within an
equatorial torus, as generally observed in time-dependent
simulations (e.g., Ref. [97]). Magnetic field oscillations δB
are then determined as solutions to the Faraday equation,

0 ¼ iωδB −∇ × ðδv × Bþ v × δBÞ; ð46Þ

taking care to preserve the divergence-free condition
∇ · δB ¼ 0, where δv is determined from Eq. (22) using
the displacements ξ computed in the previous section.
Figures 3 and 4 show the magnetic field lines for the

background B and total Bþ δB configurations, respec-
tively, for spin frequency ν ¼ 300 Hz. In Fig. 3, the blue
curve shows the spherical surface x2 þ y2 ¼ R2, while the
red dashed curve shows the (true) oblate surface defined by
Eq. (17), which is elliptical rather than spherical due to the
centrifugal force in the Euler equation (13). In Fig. 4,
however, the background Maclaurin surface is shown in
blue, while the red dashed curves show the (true) perturbed
stellar surface at t ¼ 0, defined by the vanishing of the
Lagrangian pressure perturbation Δp, which depends on
the character of the perturbation through ξ. In the latter
figure, we have that δB is determined through Eq. (46) for
f-mode (left panel) and r-mode (right panel) perturbations.
We see that the f-mode pulsations push the field lines

laterally, thus shifting the toroidal geometry as the field
lines are stretched due to the equatorial “breathing” typical
for pressure-driven modes, which (quasi)periodically make
the star more oblate. On the other hand, the axial r modes
induce an approximately horizontal flow, which in turn
winds the field lines and drags them along arcs directed
towards the center of the star. The stellar surface in this case
is negligibly disturbed, as expected, since r modes induce
weak changes to the pressure profile.
Having found δB from Eq. (46), the perturbing Lorentz

force,

δFB ¼ −ð4πÞ−1½ð∇ × BÞ × δBþ ð∇ × δBÞ × B�; ð47Þ

can be found, and the frequency shifts [Eq. (34)] can be
computed.
For the f modes, we find a fit

δωB
f

50.3 Hz
¼ −B2

16M
−3=2
1.4 R5=2

13

�
1 −

0.951
Λ

�
× ð1 − 2.15ν300 þ 5.45ν2300

− 5.14ν3300 þ 1.37ν4300Þ; ð48Þ

while for the leading-order r modes, we have

FIG. 3. Field lines for the background magnetic field B for a
rotating configuration with ν ¼ 300 Hz. Even at this spin
frequency, the stellar surface is roughly spherical; the red dashed
curve shows the (true) stellar surface [Eq. (17)], while the blue
curve shows the spherical surface x2 þ z2 ¼ R2.
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δωB
r

55.1 Hz
¼ B2

16M
−1
1.4R13

�
1 −

1.15
Λ

�
× ð1 − 0.98ν−1300 − 2.38ν300 þ ν2300Þ: ð49Þ

Note that δωB
r scales with Ω−1 because ωr ∝ Ω [Eq. (26)],

and an inverse power of ωr is picked up from Eq. (34).
In Fig. 5, we plot the relative mode frequency shifts for

the f modes [red dashed (δωB
f > 0) and dotted (δωB

f < 0)
curves; expression (48)] and r modes [black curves;
expression (49)] as functions of the poloidal-to-toroidal
strengthΛ for some fixed stellar parameters. We see that the
r-mode frequencies are more sensitive to the magnetic field
in general, with δωB

r =δωB
f ∼ 4 for Λ ∼ 0.5. However, in any

case, large field strengths B≳ 1016 G are required to
introduce a significant shift, unless the toroidal field is

dominant [98–100]. In this latter instance, the frequency
shifts are always positive due to the sign of the Lorentz
force [Eq. (47)], which, in general, makes resonance more
difficult to achieve for f modes, though easier for r modes,
since they have negative frequency in the inertial frame.
The presence of a magnetic field also implies that Alfvén
modes can be excited [101], though we will not consider
resonances with these modes here.
We caution the reader that, because we have neglected

backreaction effects into ξ from the perturbing forces,
expression (35) gives us that δωr ∝ ν−1. As such, the
expressions presented above for r modes should only be
considered valid for ν≳ 30 Hz (cf. also the criterion
ν≳ 39 Hz set by viscous damping [92,93] discussed in
Sec. III A), or else the approximation scheme likely breaks
down. Since the magnetic force FB is highly anisotropic in
general (especially for nondipole fields; see footnote 6), the
functional form of the eigenfunctions ξ may also be
impacted if the field is ultrastrong [98,99].
Additionally, in presenting the computed shifts in

Eqs. (48) and (49), we have taken rather large values for
both the spin frequency and magnetic field simultaneously,
which might be objectionable due to spin-down arguments.
In particular, a magnetar with a strong magnetic field is
expected to spin slowly after several spin-down timescales
have elapsed—i.e., after several tsd ∼ 2.2 × 102B−2

16 ν
−2
300 s

post-birth. For a strong magnetic field and rapid rotation to
coexist, we require that (i) the magnetar be young, or (ii) the
magnetar have a surface magnetic field much weaker than
the core field (cf. Refs. [80,102]), or (iii) the magnetar
resisted significant electromagnetic spin-down during the
binary lifetime due to angular momentum accretion [103]
[cf. Eq. (11)].

FIG. 4. Field lines for the total magnetic field Bþ δB, where δB is induced by f (left panel: αf ¼ 0.04) and r (right panel: αr ¼ 0.02)
modes at t ¼ 0 for a rotating configuration with ν ¼ 300 Hz. The field lines are laterally shifted (for f modes) and twisted (for rmodes)
relative to the background dipole configuration due to the mode perturbations. The red dashed curve shows the perturbed stellar surface,
which is different for different mode perturbations, while the blue curve shows the background Maclaurin surface.

FIG. 5. Eigenfrequency shifts δωB for f modes [red dashed
(δωB

f > 0) and dotted (δωB
f < 0) curves] and r modes (black

curve) due to the magnetic field as a function of the poloidal-to-
toroidal field-strength ratio Λ. We have taken ν ¼ 300 Hz,
M ¼ 1.4M⊙, and R ¼ 13 km.
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C. Total shift

Putting everything from the previous sections together,
we thus have that

ω ¼ ω0 þ δωT þ δωB: ð50Þ

In Fig. 6, we show the unperturbed (ω0;i, black curve)
and perturbed [Eq. (50), red dashed curve] f-mode
frequencies in the inertial frame as a function of spin
frequency ν with a ¼ 107 cm, M ¼ Mcomp ¼ 1.4M⊙,
B0 ¼ 1017 G for a purely poloidal configuration (Λ ¼ 1),
and mode amplitude αf ¼ 0.1, with stellar radii R ¼ 13 km
(left panel) and R ¼ 15 km (right panel). Overplotted
are twice the values of the orbital frequency (the GW
frequency times 2π) associated with the GRB 090510
precursors [7], together with the maximum GW frequency
attainable prior to coalescence. Even for this extreme
magnetic field strength, the mode frequency shifts are
relatively modest, in agreement with results from the
literature [98–100].
For R ¼ 13 km, a rotation rate near the secular stability

limit ν ≈ 760 Hz would be required for tidal resonances of
the “unperturbed” f modes with frequency ω0;i to poten-
tially explain precursor activity ∼13 s prior to the merger,
while ν ≈ 740 Hz is needed for the perturbed modes with
frequency ωi [63]. Rotation rates required for precursors
occurring closer to coalescence with t − tC ≈ 0.5 s are
lower by ≈10%. For a larger stellar radius R ¼ 15 km
(possibly already excluded by GW170817 [104]), the
necessary spin frequency drops to ν ∼ 550 Hz, which is
more reasonable (cf. ν ¼ 716 Hz for the fastest known
pulsar, PSR J1748-2446ad). We thus conclude that, unless
the main burst occurs ≳100 ms later than the coalescence
time (tB > tC; see Sec. II), which would imply that the
associated orbital frequencies are larger than those pre-
sented in Table I and thus are closer to the maximum
frequency, it is difficult for f-mode resonance to explain
early-time (tC − t≲ 10 s) precursor activity, even when

strong magnetic fields and tidal frequency shifts are
considered.
Figure 7 is similar to Fig. 6, except it shows the r-mode

frequencies, with the (somewhat) more modest values B0 ¼
1016G and R ¼ 1.3 × 106 cm, where we have a purely
poloidal magnetic field Λ ¼ 1 (left panel) and a field with a
significant toroidal component Λ ¼ 0.3 (right panel). In
this case, low rotation rates are favored to explain the
precursors; for ν ∼ 40 Hz, the resonance condition [Eq. (5)]
can be satisfied, with the exact intersection point shifting by
a factor ≲2 when frequency perturbations, dominated by
the magnetic contribution [Eq. (49)], are taken into
account. Interestingly, since the toroidal field increases
the mode frequency, even for Λ ¼ 0.3 we see that early-
time resonances are harder to achieve because the magnetic
field leads to an inflection in the eigenfrequency profile at
ν ∼ 100 Hz. A weaker toroidal field is thus favored to
explain precursors in the tidal resonance scenario for both f
and r modes.
Assuming the resonant amplitudes are large enough (see

below), two precursor events (i.e., in GRB 090510) might
be explainable, for a NS with ν≲ 200 Hz, in the following
way: An early-time resonance with the r modes occurs
some ∼10 s prior to coalescence, triggering the first
precursor. Then, assuming that our estimates for tC − t
are high for the reasons discussed above, an f-mode
resonance (or direct tidal shattering [27]) might occur near
the maximum GW frequency, giving rise to a second
precursor. Additionally, although the growth timescale is
likely much longer than the resonance timescale [Eq. (7)],
the CFS instability [88–90] may increase r-mode ampli-
tudes by up to factors ≳10 [38,105,106]. This would imply
that spin-up due to resonance [Eq. (11)] could be nontrivial,
so that multiple r-mode resonances might occur if the
r-mode amplitude increases significantly over ∼10 s
between precursors due to this instability. However, the
viability of this latter possibility depends critically on
the interplay between the r-mode growth timescale and
the (viscous) spin-up timescale.

FIG. 6. Unperturbed (ω0;i, black curve) and perturbed [Eq. (50), red dashed curve] f-mode frequencies in the inertial frame as a
function of spin frequency ν, where we set R ¼ 13 km (left panel) and R ¼ 15 km (right panel). Overplotted are twice the values of the
orbital frequencies relevant for GRB 090510 (cf. Fig. 1).
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V. ENERGETICS

Having considered the relationship between mode
frequencies and resonances, we turn now to the associated
energetics of the precursor. In particular, the stellar pulsa-
tion modes introduce a Lagrangian displacement which
shears the crust to a degree that depends on the mode
amplitude α, which reaches its maximum values [Eq. (10)]
during a period of resonance [29,30]. If the stresses exceed
a critical threshold, determined by the crystalline properties
of the crust [17,18], it is possible that the crust may yield
and fracture [20,21]. We explore the relationship between
the amplitudes necessary to instigate crustal failure with the
values obtained from tidal resonances [Eq. (10)].

A. Crustal failure

In general, the elastic strain tensor σ has components
(e.g., Ref. [107])

σij ¼
1

2
ð∇iξj þ∇jξiÞ: ð51Þ

We assume that the crust fails when the von Mises
criterion, coming from classical elasticity theory, is met.
This happens when (see, e.g., Ref. [21])

σ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
σijσ

ij

r
≳ σmax; ð52Þ

where σmax is the maximum breaking strain that the
crust can sustain, and σ is the strain tensor defined in
Eq. (51). The recent semianalytic lattice stability models of
Chugunov and Baiko [18] find σmax ≈ 0.04.
For the f modes, using Eqs. (27) and (51), we find the

relationship

σf ¼ 2
ffiffiffi
2

p
αf; ð53Þ

which has no spatial dependence. This is due to the nature
of the Maclaurin spheroid solutions, whereby the constant
density and simple spatial profile for the Lagrangian

displacement [Eq. (27)] states that the crust is strained
uniformly, so that it either fails either everywhere or
nowhere. In this case, the volume of the failure region,
if σf ≳ σmax, is just the crustal volume Vc ≈ 4π

3
ðR − RcÞ3,

where Rc ∼ 0.9R. A more realistic equilibrium model (see,
e.g., Refs. [19–21] and below) would give rise to some
spatial dependence for σf. Nevertheless, we have from
Eq. (53) that if

αf ≳ 1

50
ffiffiffi
2

p
�
σmax

0.04

�
; ð54Þ

then crustal failure would be expected. The resonant
amplitude [Eq. (32)] exceeds the fracturing amplitude
[Eq. (54)] by an order of magnitude.
For the r modes, the crustal strain σ can also be written

down easily using the r-mode displacement [Eq. (28)],
though the expression is lengthy, so we avoid it here.
Figure 8 shows the r-mode crustal strain σ for spin

frequencies ν ¼ 100 Hz (left panel) and ν ¼ 500 Hz (right
panel), where we set the mode amplitude αr ¼ 2 × 10−4, a
value which is an order of magnitude smaller than the
resonant maximum [Eq. (33)] for ν ∼ 100 Hz. We see that
rotation decreases the strain near the poles, while simulta-
neously increasing the strain near the equator, which is
stronger by a factor ∼102 in either case. The von Mises
criterion [Eq. (52)] with σmax ¼ 0.04 suggests that the crust
would yield only in equatorial regions for the resonant
amplitude [Eq. (33)] if ν≲ 100 Hz, though it would yield
almost everywhere if ν≳ 500 Hz. Note also that we have
taken ω ¼ ω0 when computing σ, though the corrections
discussed in Sec. IV will impact the geometry of the failure
region if, for example, the magnetic field is strong
(B≳ 1016 G), especially for low-spin frequencies.

B. Crustal fracture energy

In the previous section, we found that the von Mises
criterion [Eq. (52)] can be met for both f and rmodes. Here

FIG. 7. Unperturbed (ω0;i, black curve) and perturbed [Eq. (50), red dashed curve] r-mode frequencies in the inertial frame as a
function of spin frequency ν, where we set Λ ¼ 1 (left panel) and Λ ¼ 0.3 (right panel). Overplotted are twice the values of the orbital
frequencies relevant for GRB 090510 (cf. Fig. 1). Note that ωi < 0 for these modes; they are subject to the gravitational radiation (CFS)
instability [88–90].
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we adopt the simple prescription that crustal failure implies
a quake and energy release, though the situation is likely to
be more complicated in reality. Depending on thermody-
namic aspects of the crust, such as the melting temperature,
phases of plastic flow may be induced rather than fracturing
[108,109].
We wish to estimate the amount of energy potentially

released due to crustal fracturing, to see if it is consistent
with that which is observed from the precursor flares. To do
this, we consider the available energy density U integrated
over the resonance interval ½0; tres�, where tres is given by
Eq. (7), and over regions where the crust actually yields,
i.e., in regions where the von Mises criterion [Eq. (52)] is
met. As such,

Z
dtEquake ¼

Z
tres

0

dt
Z
σ≥σmax

dVUðt; xÞ

≈ tres

Z
σ≥σmax

dVUð0; xÞ ð55Þ

is the energy released, during a period of tidal resonance, as
a result of crustal activity. Expression (55) qualitatively
agrees with that of Ref. [20] (though these authors
considered magnetic stresses). The major contributions
to U come from the rotational Urot ¼ 1

2
ρv · v and magnetic

Umag ¼ ð8πÞ−1B · B energy densities. There is also a tidal
contribution, though it is negligible except in the final
stages of inspiral, a ≲ 5R. In particular, expression (55)
then gives us thatZ

dtEquake ≈ 1.64 × 1047 erg s

×

�
tres

3.6 × 10−2 s

�
×

�
Volðσ ≥ σmaxÞ
5 × 1015 cm3

�
× ðM1.4ν

2
300R

−1
13 þ 4.4 × 10−3B2

16Þ; ð56Þ

which should be compared with Eq. (12). We may con-
clude, therefore, that crust yielding due to f- and r-mode
resonances, if the amplitudes α reach the resonant values
[Eq. (10)], can accommodate, energetically speaking,
SGRB precursor events.

VI. DISCUSSION

In NSNS binaries, mutual tidal interactions prior to
coalescence can naturally lead to the excitation of stellar
oscillation modes. If the oscillations come into resonance
with the orbital motion [Eq. (5)], tidal energy is rapidly
absorbed by the mode(s) over some resonance timescale
[Eq. (7)] [10,28,29], and the respective amplitudes grow
substantially (Sec. III B). If the resonant amplitudes are
large enough (see Fig. 8), the shear stresses σ exerted on the
crust as a result of the (magneto)hydrodynamic displace-
ment ξ can exceed some critical threshold [Eq. (52)],
causing a crustal failure event, such as a quake. In
particular, there is strong evidence that SGRB events are
associated with binary NS mergers [1–3], and some bursts
(see Tab. I) are known to be preceded by episodes of early
emission (“precursor flares”). In light of the above, it has
been suggested that crustal failures, instigated by tidal
resonances prior to coalescence, may source the SGRB
precursors [33,34]. In this paper, we further develop this
model by including magnetic fields (noting that there is
some evidence to suggest that binaries exhibiting precur-
sors contain magnetars; see Sec. II C), and by comparing
the resonant amplitude(s) with the crustal breaking strain
for both f and r modes, to see what stellar parameters
would be necessary to accommodate precursor data [7–9].
As argued in Sec. IV C, we found that multiple precursors
from the same object (such as those seen in GRB 090510)
might be accommodated by an early-time (tB − t ∼ 10 s)
r-mode resonance, followed by a late-time f-mode reso-
nance (or direct tidal shattering [27]) ≳102 ms prior to the
merger.

FIG. 8. Crustal strain σ for the Lagrangian displacement induced by r modes [Eq. (28)] for ν ¼ 100 Hz (left panel) and ν ¼ 500 Hz
(right panel), with amplitude αr ¼ 2 × 10−4. Brighter shades indicate a greater value for σ. The black curve indicates the crust-core
transition, while the red curve shows the (spin-frequency-dependent) stellar surface. (The crust has been stretched by a factor of 4 for
improved visibility).
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In this work, we have only considered f- and r-mode
resonances. However, g modes (including torsional shear
modes and interface modes [110]), which are perturbations
restored by buoyancy or are otherwise supported by a
fluid-to-solid transition, may also be important7 in the
precursor scenario, since they have typical frequencies
≲102 Hz in the corotating frame [111] (see also Ref. [112])
and can have nontrivial overlap integrals [10,29,33]. The
g-mode frequencies are comparable with the r-mode
frequencies for low rotation rates, and thus offer an
alternate avenue for explaining multiple precursors from
tidal resonances; i.e., one could imagine two flares being
sourced via crust yielding through separate instances of
g- and r-mode resonances. Furthermore, in addition to
transferring energy [Eq. (8)] and angular momentum
[Eq. (11)], tidal interactions lead to heating through
friction, and can raise the NS temperature to ≳108 K prior
to coalescence [29]. As such, buoyancy-driven modes
arising due to thermal gradients may be especially signifi-
cant in the resonance scenario. Additionally, if hot enough,
the NSs may shed mass through a radiation-driven wind
prior to merging at a≲ 3R [113], which can lead to baryon
loading in the region which comes to surround the
postmerger remnant. This would reduce the gamma-ray
luminosity of the main GRB episode due to absorption.
Unfortunately, g modes cannot be accommodated by

Maclaurin spheroid models, because there are no composi-
tional gradients to support a nonzero Brunt-Väisälä fre-
quency. A thorough exploration of tidally forced g-mode
properties and tidal heating for magnetized neutron stars
using more realistic stellar models will be conducted
elsewhere.
In addition to the absence of compositional gradients, it

is important to note that several approximations are present
in the simple, analytic calculations presented here. Though
it has been found that f- and r-mode frequencies for
Maclaurin spheroids reasonably approximate the values
obtained when using realistic EOSs (see Fig. 2), the elastic
response of the crust [Eq. (51)] is sensitive to the exact
profile of the displacement vector, and so our models
should not be taken as representative of real astrophysical
NSs. Detailed analyses using sophisticated simulations of
the NS quasinormal mode spectrum, involving realistic
equations of state [40] and tidal couplings/deformabilities
[114,115], would be useful in this direction.
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