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Finite size effects come into play during the late stages of neutron star binary inspiral, with the tidal
deformability of the supranuclear density matter leaving an imprint on the gravitational-wave signal. As
demonstrated in the case of GW170817, this leads to a constraint on the neutron star radius (and hence the
equation of state). A deeper understanding of the tidal response requires an analysis of both the state and
composition of matter. While these aspects may not have dramatic impact, they could lead to systematic
effects that need to be kept in mind as the observational data become more precise. As a step in this
direction we explore the role of the composition of matter, which is likely to remain “frozen” during the late
stages of binary inspiral. We provide the first in-depth analysis of the problem, including estimates of how
composition impacts on the effective tidal deformability. The results provide improved insight into how
aspects of physics that tend to be ignored impact on binary neutron star gravitational-wave signals.
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I. INTRODUCTION

The breakthrough detection of signals from inspiraling
and merging black-hole binaries [1,2] and the spectacular
neutron star merger event GW170817 [3] demonstrate the
promise of gravitational-wave astronomy. As the sensitivity
of the detectors improves, we can expect other exciting
discoveries. In particular, further events involving neutron
stars should allow us to put tighter constraints on the
physics of matter under extreme conditions.
A typical neutron star binary system may spend as much

as 15 min in the sensitivity band of advanced ground-based
interferometers (above 10 Hz). The detection of, and
extraction of parameters from, such signals is of great
importance for both astrophysics and nuclear physics.
From the astrophysics point of view, observed event rates
should lead to insight into the formation channel(s) for these
systems, while the nuclear physics aspects relate to the
poorly constrained equation of state for matter at supra-
nuclear densities (see, e.g., [4]). Focusing on the nuclear
physics, binary neutron star signals constrain the equation of
state of supranuclear matter in two ways. First of all, finite
size effects impact on the inspiral signal. The deformability
of the stellar fluid leaves an imprint on the late-time chirp, an
effect encoded in the tidal Love numbers [5–8]. Meanwhile,
oscillations of the merger remnant, which depend on the hot
equation of state, are expected to leave a robust signature
[9–14]. However, the high-frequency nature of the merger
signal makes it difficult to detect with the current generation
of detectors (even at design sensitivity) [15,16].
In this paper we focus on the tidal deformability. Our

aim is simple; we want to explore to what extent the
composition of the neutron star matter enters the problem.

The motivation for this is clear. As the star is deformed
by the tidal interaction, matter is driven out of equilibrium
and it is easy to argue that the relevant nuclear reactions
are too slow to reestablish equilibrium on the timescale of
inspiral.1 This is evident from, for example, the estimates
in [17]. For neutron star cores dominated by a conglomerate
of neutrons, protons and electrons the relevant equilibration
timescales are

tmU ∼
2months

T6
9

; tdU ∼
20 s
T4
9

; ð1Þ

for the modified and direct Urca reactions, respectively.
The temperature is scaled to hot systems, T9 ¼ T=109 K,
but inspiraling neutron stars are old and cold, typically in
the range T9 ≤ 0.01, which would make both tmU and tdU
much longer than the time it takes a given system to move
through the sensitivity band of a ground-based interferom-
eter (minutes). Moreover, at the expected temperature the
star’s interior should be superfluid, in which case reactions
are exponentially suppressed. The presence of, for exam-
ple, hyperons may lead to (perhaps significantly) faster
reactions, but these will mainly affect the inner neutron star
core. Moreover, superfluidity brings additional aspects to
the problem (which warrant a separate discussion; see [18]
for an attempt to account for the relevant issues) so we will
focus on the (simpler) case of nonsuperfluid matter in the
following.

1Note that the situation is different for the tide in an ordinary
stellar binary, where the orbital evolution is excruciatingly slow.
In that context, the assumption of a “static” tide, encoding the
deformability in the Love numbers, does not need to be questioned.
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The upshot of the equilibration argument is that the
equation of state is no longer barotropic, as has been
assumed in virtually every previous analysis of the tidal
problem (most of which follow the steps laid out in [6,7]).
Instead, we want to establish to what extent a frozen matter
composition leads to a noticeable effect on, for example,
the Love numbers,2 and whether this in turn affects the
extraction of neutron star parameters from an observed
signal. The effect may well be small enough that we can
ignore it, given the anticipated observational “errors,” but
we need to make sure that this is the case. In essence, we
want to quantify the systematic “errors” associated with the
current models.

II. THE ADIABATIC PROBLEM

In order to set the stage for the discussion, it is useful to
remind ourselves of the context. The tide raised by a binary
companion (here treated as a point particle, which should
be a good enough approximation for our purposes3)
induces a response in the primary. To quantify this response
we solve the linearized fluid equations in Newtonian
gravity. Assuming that the star is nonrotating, we first of
all have the perturbed continuity equation

∂tðΔρþ ρ∇iξ
iÞ ¼ 0; ð2Þ

where ξi is the displacement vector associated with the
Lagrangian perturbation [20]

Δ ¼ δþ Lξ ð3Þ
(with δ the corresponding Eulerian variation and Lξ the Lie
derivative along ξi), such that the perturbed velocity is
given by

Δvi ¼ δvi ¼ ∂tξ
i: ð4Þ

The perturbed Euler equation is

∂2
t ξi þ

1

ρ
∇iΔp −

Δρ
ρ2

∇ipþ∇iΔΦ ¼ −∇iχ; ð5Þ

or, equivalently, provided that the background is in hydro-
static equilibrium,

∂2
t ξi þ

1

ρ
∇iδp −

1

ρ2
δρ∇ipþ∇iδΦ ¼ −∇iχ ð6Þ

(where it is useful to keep in mind that the Lagrangian
variation commutes with the gradient ∇i).
We also have the Poisson equation for the gravitational

potential

∇2δΦ ¼ 4πGδρ; ð7Þ
while the tidal potential due to the presence of the binary
partner (which generates the fluid perturbation) is given by
a solution to ∇2χ ¼ 0.
In a coordinate system centered on the primary, which

we will take to have mass M⋆, we have [21]

χ ¼ −
GM0

jr − DðtÞj ¼ −GM0X
l≥2

Xl

m¼−l

Wlmrl

Dlþ1ðtÞYlme−imψðtÞ;

ð8Þ
where M0 is the mass of the secondary. The orbit of the
companion is taken to be in the plane ½DðtÞ; π=2;ψðtÞ�
where D is the binary separation and ψ is the orbital phase.
For l ¼ 2 (which leads to the main contribution to the
gravitational-wave signal) we have [22]

W20 ¼ −
ffiffiffiffiffiffiffiffi
π=5

p
; W2�2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3π=10

p
; W2�1 ¼ 0:

ð9Þ
The last result follows from symmetry;Wlm must vanish for
all odd lþm.
We need to work out the deformation of the star due to

the companion’s tidal field. That is, we are looking for a
solution to (6) given the specific form for χ. The problem is
usually explored in the frequency domain. Simplistically,
this is often taken to mean that the time dependence of
perturbed quantities is harmonic, proportional to eiωt. In
many situations this is sufficient, but in the present case we
need to be a little bit more careful. The starting point would
be the textbook Fourier transform (or, perhaps rather a
Laplace transform, as we are dealing with an initial-value
problem, noting that this would also involve changing the
lower limit in the integral below). Formally, we need

χ̂ðω; rÞ ¼
Z

∞

−∞
χðt; rÞeiωtdt

¼ −GM0X
l≥2

Xl

m¼−l
WlmrlYlm

�Z
∞

−∞

eiωt−imψðtÞ

Dlþ1ðtÞ dt

�
;

ð10Þ
using hats to indicate frequency domain quantities. In
general, we have

χ̂ðω; rÞ ¼
X
l≥2

Xl

m¼−l
vlrlflmðωÞYlm; ð11Þ

and in order to proceed we need to account for the evolution
of the orbital separation D and the phase ψ . The standard
approach is to assume that the evolution is adiabatic and
make use of the stationary phase approximation. In the
simplest case one would progress by connecting a sequence
of circular orbits with fixed separation [23]. Then we have

2The issue also arises in connection with the so-called I-Love-
Q relations [19], but we will not consider that aspect here.

3This is the standard assumption. The tidal coupling to the
finite size of the companion will be (quadratically) small and can
safely be ignored given the overall level of uncertainty.
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_ψ ¼
�
GM
D3

�
1=2

¼ Ω ⇒ ψ ≈Ωt; ð12Þ

and it follows straight away that

χ̂ðω; rÞ ¼
X
l≥2

Xl

m¼−l
vlrlδðω −mΩÞYlm: ð13Þ

As we are dealing with a linear problem, the delta function
in frequency is inherited by all perturbed quantities,
and hence the solution will (at the end of the day) have
support only at discrete frequencies, ω ¼ mΩ. In particular,
there will be a distinction between the m ¼ 0 contribution,
which is time independent and leads to a static tide, and the
dynamical contributions from the m ≠ 0 terms (usually
discussed in terms of resonances associated with the star’s
oscillation modes [23–26]).
The problem becomes more complicated when we

account for the orbital evolution. The frequency support
in (11) becomes less obvious and the inversion to the time
domain more involved. However, this is the situation we
are dealing with when we consider neutron star binaries
sweeping through the sensitivity band of a gravitational-
wave interferometer. To leading order, the evolution time-
scale due to gravitational radiation reaction is given by

_D ¼ −
64G3

5c5
M4=3M5=3

D3
; ð14Þ

where the dot is a time derivative and we have introduced
the chirp mass

M ¼ μ3=5M2=5; ð15Þ
with the total mass M ¼ M⋆ þM0 and the reduced mass
μ ¼ M⋆M0=M, as usual. The adiabatic approximation
should be reasonable as long as

tD ¼ D

j _Dj ≪
1

Ω
; ð16Þ

and provided that we work at this level we can make
progress in accounting for the shrinkage of the orbit (see,
for example, the discussion in [23,25]). However, in order
to reach the precision required for gravitational-wave
searches (and parameter extraction) we need to do
better. The problem becomes messy as the orbital evolution
requires a higher order post-Newtonian analysis. Moreover,
even this may not be sufficient as the post-Newtonian
scheme breaks down as the system approaches merger,
leading to nonlinear simulations becoming necessary.
Attempts to match approximate solutions and simulation
results set the (still developing) state of the art [27–32].
However, the main point we need to appreciate is simple:
A realistic model will not lead to (13). Rather, we end up
with (11) which means that we have to account for a

frequency dependent factor (f) in order to complete a
dynamical description of the tidal response. This is a key
part of the problem, but we will not attempt to solve it here.
Instead, we take the view that the relevant frequency
dependence [i.e., the function fðω)] is “known” and focus
on the response of the stellar fluid. Admittedly, this leaves
the model incomplete, but our results still provide a new
perspective on the problem and help formulate a strategy
toward future progress.

III. A SIMPLE HOMOGENEOUS MODEL

Let us turn to the issue of solving (6) in the frequency
domain. As a first example, we consider a homogeneous,
incompressible star. The calculation is straightforward and
turns out to be instructive. We have Δρ̂ ¼ 0 and ∇iρ ¼ 0,
which means that the continuity equation reduces to

∇iξ̂
i ¼ 0: ð17Þ

Moreover

δρ ¼ Δρ − ξj∇iρ ⇒ δρ̂ ¼ 0: ð18Þ
The Euler equation then simplifies to

−ω2ξ̂i þ
1

ρ
∇iδp̂þ∇iδΦ̂ ¼ −∇iχ̂; ð19Þ

while the Poisson equation becomes

∇2δΦ̂ ¼ 0: ð20Þ
Since we also know that ∇2χ̂ ¼ 0, we see from (19) that

∇2δp̂ ¼ 0: ð21Þ
Expanding in spherical harmonics (here, and in the

following, leaving out the implied, frequency dependent,
factor of f from (11) in all perturbation expressions), it is
easy to see that the radial problem is degenerate (explicitly
depending only on l, with the source term determining
the m dependence). Introducing notation such that (for
clarity omitting the m label, as there should be no risk of
confusion)

δΦ̂ ¼
X
l

ΦlYlm; ð22Þ

and similar for other perturbed quantities, the solution to
the radial part of Laplace’s equation for a given value of l
can be written (suppressing the indices on the coefficients,
which should not cause confusion)

Φl ¼ crl þ d
rlþ1

: ð23Þ

That is, the (regular) interior solution is
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Φl ¼ crl: ð24Þ

Similarly, we have

pl ¼ brl; ð25Þ
while (11) leads to

χl ¼ vrl: ð26Þ
The radial component of (19) leads to (after using the

orthogonality of the spherical harmonics)

−ω2ξl þ
1

ρ
p0
l þΦ0

l ¼ −χ0l ð27Þ

(here and in the following primes represent derivatives
with respect to r and we take ξl to represent the radial
component of the displacement) or

ω2ξl ¼
�
1

ρ
bþ cþ v

�
lrl−1: ð28Þ

We also know that the Lagrangian variation of the pressure
must vanish at the surface, so

Δp ¼ δpþ ξj∇jp ¼ 0 ⇒ brl þ ξlp0 ¼ 0 at r ¼ R:

ð29Þ
Using hydrostatic equilibrium

p0 ¼ −ρΦ0 ¼ −
GM⋆ρ
R3

r ð30Þ

we have

bRl − ξl
GM⋆ρ
R2

¼ 0 ⇒
bRl−1

ρ
¼ ξl

GM⋆
R3

: ð31Þ

We also require continuity of the perturbed gravitational
potential across the surface. This leads to

Φin
l ðRÞ ¼ Φout

l ðRÞ ¼ d
Rlþ1

: ð32Þ

Meanwhile, the derivative of the potential must satisfy
(remembering that the density is not continuous at the
surface in the case under consideration)

ðΦin
l Þ0ðRÞ ¼ −ðlþ 1Þ d

Rlþ2
− 4πGρξlðRÞ: ð33Þ

Combining the two conditions, we see that the interior
potential should satisfy

Φ0
l þ

lþ 1

r
Φl ¼ −4πGρξl at r ¼ R: ð34Þ

That is, we have

ð2lþ 1ÞcRl−1 ¼ −4πGρξl ⇒ cRl−1 ¼ −
4πGρ
2lþ 1

ξl: ð35Þ

In the absence of a tidal interaction, the problem reduces
to that of free oscillations of the body. That is, the solution
provides the normal modes of the star. Thus, setting v ¼ 0
we can sanity check the calculation against the standard
f-mode result for uniform density stars (see, e.g., [33]).
From (28) we get

ω2¼ l

�
GM⋆
R3

−
3GM⋆

ð2lþ1ÞR3

�
¼2lðl−1Þ

2lþ1

GM⋆
R3

≡ω2
f: ð36Þ

What changes when we add the tidal potential? In
essence, we need δΦ̂ → δΦ̂þ χ̂ as the total potential
and its derivative have to be continuous at the surface.
However, the tidal potential is already continuous, so the
condition (34) remains unchanged. This means that we
have the two relations

ð2lþ 1ÞcRl−1 ¼ −4πGρξl ⇒ ξl ¼ −
2lþ 1

4πGρ
cRl−1 ð37Þ

(from before) and
�
ω2ξl −

1

ρ
blRl−1

�
¼

�
ω2 − l

GM⋆
R3

�
ξl ¼ ðcþ vÞlRl−1:

ð38Þ
Combining these, we arrive at

−ð2lþ 1Þc
�
ω2 − l

GM⋆
R3

�
¼ 3GM⋆

R3
ðcþ vÞl: ð39Þ

Introducing the dimensionless frequency

ω̃2 ¼ ω2

GM⋆=R3
; ð40Þ

and making use of the f-mode result, we arrive at the final
relation

c ¼ −
3l

2lþ 1

v
ω̃2 − ω̃2

f

¼ ω̃2
f − l

ω̃2 − ω̃2
f

v: ð41Þ

Let us now make contact with the Love number and the
tidal deformability. In general, the matching of the gravi-
tational potential at the star’s surface provides the multipole
moment, Il, of the body according to

Φl ¼ −
4πG
2lþ 1

Il
rlþ1

⇒ d ¼ cR2lþ1 ¼ −
4πG
2lþ 1

Il: ð42Þ

If we also use

χl ¼
4π

2lþ 1
elrl ¼ vlrl; ð43Þ
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then the Love numbers, kl, are defined as

GIl ¼ −2klR2lþ1el ⇒ kl ¼
1

2

ΦlðRÞ
χlðRÞ

¼ c
2v

: ð44Þ

For the homogeneous model we then have (cf. the dis-
cussion in [34])

kl ¼
ω̃2
f − l

2ðω̃2 − ω̃2
fÞ
: ð45Þ

The model is admittedly simplistic, but it leads to
important insights. The final relation (45) links the tidal
deformability, expressed in terms of the Love number, to
the frequency of the fundamental mode of the star. We can
make a number of observations: First of all, in the limit
ω̃ ≪ ω̃f we have

keql ¼ 1

2

3l
2lþ 1

1

ω2
f

¼ 1

2

3l
2lþ 1

2lþ 1

2lðl − 1Þ ¼
3

4ðl − 1Þ : ð46Þ

This is the expected result for the “equilibrium” tide, as we
arrive at the same answer by setting ω ¼ 0 from the outset
[35]. Second, we see how the tidal deformability depends
on the f-mode frequency. This helps explain phenomeno-
logical relations such as those developed in [36]. Next, we
note that, in the case of a fixed orbital distance, the time-
domain result splits into the expected static contribution
(from m ¼ 0) and a time dependent component with the
f-mode resonances at ωf ¼ �mΩ (from the m ≠ 0 terms)
[21,23,25,26]. However, the difference is entirely due to the
frequency dependence of fðωÞ which comes into play
when we invert the transform to the time domain. Finally,
and perhaps most notably, the relation (45) provides the
frequency dependence of the star’s tidal response. This is a
key ingredient for any model involving evolving orbits and,
as we will see, is crucial for an understanding of the role the
matter composition plays in the problem.

IV. THE EFFECTIVE LOVE NUMBER

Inspired by the homogeneous model, let us now consider
the problem for more realistic stellar models. In essence,
we need to solve

−ω2ξ̂i þ
1

ρ
∇iδp̂ −

1

ρ2
δρ̂∇ipþ∇iδΦ̂ ¼ −∇iχ̂ ð47Þ

for some given equation of state.
First of all, recalling the usual argument for the equi-

librium tide, we assume that the matter is in chemical
equilibrium (we will relax this assumption later). That is,
we take the equation of state to be barotropic, p ¼ pðρÞ,
such that

δp ¼
�∂p
∂ρ

�
β

δρ ¼ c2sδρ; ð48Þ

with c2s the speed of sound (calculated for matter in beta
equilibrium). We also know that the unperturbed back-
ground configuration is such that

∇ip ¼ −ρ∇iΦ ¼ −ρg ⇒ p0 ¼ −ρΦ0; ð49Þ
where (as before) a prime indicates a radial derivative and
we have introduced the gravitational acceleration g.
Expanding in spherical harmonics (as before) and

introducing

Ul ¼ Φl þ χl; ð50Þ
we have the radial component of the Euler equation (in the
ω → 0 limit)

p0
l −

p0

ρ
ρl ¼ −ρU0

l; ð51Þ

and the angular part

pl ¼ −ρUl: ð52Þ
Meanwhile, the perturbed Poisson equation becomes

r2U00
l þ 2rU0

l − lðlþ 1ÞUl ¼ 4πGr2ρl; ð53Þ
where we have made use of the fact that χl solves the
corresponding homogeneous equation.
Let us now pause to note that the problem appears to be

overdetermined. We seem to have too many equations for
the number of variables. However, taking a radial derivative
of (52) we get

p0
l ¼ −ρ0Ul − ρU0

l ¼
ρ0

ρ
pl − ρU0

l: ð54Þ

Using this in (51) we have

ρ0

ρ
pl −

p0

ρ
ρl ¼ 0 ⇒ ρ0pl ¼ p0ρl; ð55Þ

which is consistent with (48) as long as we have a
barotropic equation of state. This identity reduces the
number of equations, so the problem is well posed, after
all. In essence, this is the Newtonian version of the result
discussed in [37].
Now we have

r2U00
l þ 2rU0

l þ
�
4πGr2ρ

c2s
− lðlþ 1Þ

�
Ul ¼ 0; ð56Þ

which is easily solved by integrating from the center to
the surface of the star. At the surface we match to the
exterior potential. This matching provides the multipole
moment, Il, and the Love number, kl, reproducing the steps
from (42) to (44).
However, as we have already indicated, the calculation

of the tidal deformability and the Love number may not be
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(strictly) valid for neutron star binaries close to merger.
Basically, the nuclear reactions required to establish
chemical equilibrium are too slow to act on the inspiral
timescale. If this is the case we can no longer assume that
the equation of state for the perturbations is barotropic.
Instead, it would be reasonable to assume that the compo-
sition is held frozen as the system sweeps through the
sensitivity band of a ground-based detector. This changes
the response of the stellar fluid to the tidal driving which, in
turn, allows us to estimate the impact the matter compo-
sition has on the problem.
Taking the matter composition into account (assuming

a simple model composed of neutrons, protons, and
electrons), we have a two-parameter equation of state
p ¼ pðρ; xpÞ (say), where xp ¼ np=n is the proton fraction.
In the Newtonian context the mass density is simply
ρ ¼ mBn where n is the baryon number density. Hence,
we can thinkofρ as a proxy for the number density.Moreover,
the continuity equation (2) remains unchanged (although,
strictly speaking, it now represents baryon number conser-
vation). As an illustration of the range of values we may need
to consider, and the corresponding variation with density,
we illustrate the proton fraction for three equation-of-state
parametrizations from the Brussels-Montreal Collaboration
[38,39] in Fig. 1. These (BSk) models have the particular
advantage that one can readily work out the different
thermodynamical derivatives we require.
To account for nuclear reactions, we follow [40] and

introduce a new dependent variable β ¼ μn − μp − μe which
encodes the deviation from chemical equilibrium (with μx,
x ¼ n; p; e being the chemical potentials). We then have

Δp ¼
�∂p
∂ρ

�
β

Δρþ
�∂p
∂β

�
ρ

Δβ ¼ c2sΔρþ
�∂p
∂β

�
ρ

Δβ;

ð57Þ

with

Δβ ¼ B
1þ iA=ω

Δρ; ð58Þ

and the thermodynamical derivatives

A ¼
� ∂β
∂xp

�
ρ

γ

n
; B ¼

�∂β
∂ρ

�
xp

: ð59Þ

The relevant reaction rate is encoded in γ, assuming a small
deviation from equilibrium.
Let us consider the relevant timescales. Introducing a

characteristic reaction time

tR ¼ 1

jAj ; ð60Þ

we see that, if the reactions are fast compared to the
dynamics (assumed to take place on a timescale ∼1=ω),
then we have ωtR ≪ 1, and if we consider the evolution in
the adiabatic limit (where ω → 0), then

Δβ ≈ 0: ð61Þ
The system remains in beta equilibrium and the standard
(barotropic) analysis of the tidal deformability holds.
However, we are interested in the opposite limit—where

reactions are slow. Then we have ωtR ≫ 1 (see [40]), and
we can Taylor expand (58) to get

Δβ ≈ Bð1 − iA=ωÞΔρ ≈ BΔρþO

�
1

ωtR

�
: ð62Þ

However, we can no longer (at least not meaningfully) take
the ω → 0 limit. If we insist on doing this, the problem
inevitably becomes barotropic as, for any fixed tR, we must
cross over into the fast-reaction regime. The argument is
analogous to that for the composition g-modes, discussed
in [40]. In essence, if we want to consider the impact of a
frozen composition we cannot work in the static limit—we
have to consider dynamical aspects of the tide and solve the
frequency-dependent problem.
Motivated by this, let us see how the analysis changes if we

consider a general (compressible and possibly stratified)
model. First of all, we need to quantify the difference between
the barotropic and the frozen-composition cases. Effectively,
this can be done by noting that we have

Δp ¼ Γ1Δρ; ð63Þ

with

Γ1 ¼ Γ≡
�∂p
∂ρ

�
β

; ð64Þ

in the barotropic case, but with Γ1 distinct from Γ in general.
An illustration, again for three BSk models, of the difference

0 0.2 0.4 0.6 0.8 1

n (fm
-3

)

0

0.1

0.2

0.3

0.4

x
p

BSk19

BSk20

BSk21

FIG. 1. Proton fractions for three “realistic” BSk models from
[38,39].
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between the two adiabatic indices (in the two limits we have
discussed) is provided in Fig. 2, and the relative difference
between Γ1 and Γ is shown in Fig. 3. In the numerical
examples considered later,wewill takeΓ1 to be constant,with
values spanning the range suggested byFig. 2. This is perhaps
not particularly realistic, but it serves as a useful startingpoint.

A. Mode expansion

Taking a lead from the results for the homogeneous
model, we aim to express the driven response of the fluid in
terms of a set of normal modes,4 corresponding to solutions
ξn (where n is a label that identifies the modes, say in terms
of the number of nodes in the radial eigenfunction and the
corresponding spherical harmonics). Letting the (real)
mode frequency be ωn we have (leaving out the hats for
frequency domain quantities in order to avoid the notation
becoming cluttered)

ξi ¼
X
n

anξin; ð65Þ

and each individual mode (labeled by n) satisfies

−ω2
nρξ

i
n þ Cξin ¼ 0; ð66Þ

where the C operator is messy, but we do not need an
explicit expression here.
Making use of the inner product from [41]

hξn0 ; ρξni ¼
Z

ρξ�n0ξnd
3x ð67Þ

(where the asterisk indicates the complex conjugate) it is
easy to show that the modes are orthogonal (at least as long
as the frequencies are real). That is, we have (keeping the
normalization of the modes explicit for the moment)

hξn0 ; ρξni ¼ A2
nδnn0 : ð68Þ

We use the orthogonality to rewrite (47) as an equation for
the mode amplitudes:

än þ ω2
nan ¼ −

1

A2
n
hξn; ρ∇χi: ð69Þ

Finally, making use of the perturbed continuity equation

δρn ¼ −∇iðρξinÞ; ð70Þ

and integrating by parts, we have (assuming that the density
vanishes at the surface of the star)

−hξn; ρ∇χi ¼ −
Z

ρðξinÞ�∇iχd3x

¼
Z

χ∇iðρξinÞ�d3x ¼ −
Z

χδρ�nd3x: ð71Þ

In general, e.g., when the star is spinning, it may be
practical to express the stellar perturbations with respect to
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FIG. 2. Adiabatic indices for the three BSk models from Fig. 1 (black ¼ Γ and red ¼ Γ1).
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FIG. 3. Difference between frozen composition and barotropic
adiabatic indices for the models from Fig. 2.

4Note that, while it is common to assume that the modes form a
complete set, it is not clear that this is actually the case for more
realistic neutron star models.
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a different set of spherical harmonics [21,42], but we will
not worry about this here.
Making use of the expression for the tidal potential (11)

we have an equation for the driven modes (for each l, as the
different values of m are still degenerate)

−ω2an þ ω2
nan ¼

vlQn

A2
n

; ð72Þ

where we have introduced the “overlap integral”

Qn ¼ −
Z

δρ�nrlþ2dr: ð73Þ

In effect, we have a driven set of modes with amplitude

an ¼
1

ω2
n − ω2

Qn

A2
n
vl; ð74Þ

which may become resonant during a binary inspiral. This
is a well-known result [22–25].
Turning to the matching at the surface, the perturbed

gravitational potential satisfies

r2
d2

dr2
δΦþ 2r

d
dr

δΦ − lðlþ 1ÞδΦ ¼ 4πGr2δρ: ð75Þ

For the overlap integral we need

rlþ2δρ ¼ rl

4πG

�
r2

d2

dr2
δΦþ 2r

d
dr

δΦ − lðlþ 1ÞδΦ
�

¼ rl

4πG

�
d
dr

�
r2

d
dr

δΦ
�
− lðlþ 1ÞδΦ

�
: ð76Þ

Integrating by parts, we get

4πG
Z

R

0

rlþ2δρdr

¼
�
rl
�
r2

d
dr

δΦ
��

r¼R

0

−
Z

R

0

lrlþ1

�
d
dr

δΦ
�
dr

− lðlþ 1Þ
�

1

lþ 1
rlþ1δΦ

�
R

0

þ l
Z

R

0

rlþ1

�
d
dr

δΦ
�
dr

¼ Rlþ2

�
d
dr

δΦ
�
r¼R

− lRlþ1δΦðRÞ: ð77Þ

However, we know that the solution should satisfy (since
the density now vanishes as r → R)

d
dr

δΦþ lþ 1

r
δΦ ¼ 0 at r ¼ R; ð78Þ

so (77) leads to

4πG
Z

R

0

rlþ2δρdr ¼ −ð2lþ 1ÞRlþ1δΦðRÞ; ð79Þ

and we have

Qn ¼
2lþ 1

4πG
Rlþ1δΦnðRÞ ¼ In: ð80Þ

We recognize In as the contribution each mode makes to
the mass multipole moment.

B. The effective tidal deformability

We now want to connect the mode expansion to the tidal
deformability and the effective Love number. The purpose
is to discuss what happens far away (above and below)
from a given resonance.5 To do this, we need a represen-
tation of the perturbed gravitational potential associated
with the mode expansion.
To obtain the desired result, we need to connect the mode

expansion for the displacement to the gravitational poten-
tial. It is then useful to consider the components of the
displacement vector

ξi ¼ WðrÞ
r

Ylm∇irþ VðrÞ∇iYlm; ð81Þ

and similarly for the contribution from each mode

ξin ¼
�
Wn

∇ir
r

�
Ylm þ Vn∇iYlm; ð82Þ

from which it follows that the normalization constant is
given by

A2
n ¼

Z
R

0

ρ½W2
n þ lðlþ 1ÞV2

n�dr: ð83Þ

We now see that the tidal problem leads to a fluid
displacement of form

ξi¼
X
n

1

ω2
n−ω2

Qnvl
A2
n

��
Wn

∇ir
r

�
YlmþVn∇iYlm

�
: ð84Þ

Going back to the Euler equation, the θ component
leads to

−ω2V þ 1

ρ
δpþ δΦ ¼ −χð¼ −vlrlÞ: ð85Þ

Moreover, at the surface we have Δp ¼ 0 so

5It is important to appreciate that this issue, although obviously
related, is distinct from the analysis of the impact of individual
mode resonances [22–25]. Our discussion of the static limit is, as
far as we are aware, new and original. It also adds important
intuition by connecting the dynamical response to the tidal
deformability, an issue of relevance for gravitational-wave
astronomy.
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−ω2VðRÞ − p0

ρ

WðRÞ
R

þ δΦðRÞ ¼ −χðRÞ; ð86Þ

and it follows that

δΦðRÞ ¼ −χðRÞ þ ω2VðRÞ − g
WðRÞ
R

: ð87Þ

That is, we have

kl ¼
1

2

δΦðRÞ
χðRÞ ¼ −

1

2
þ 1

2vlRl

�
ω2VðRÞ − g

WðRÞ
R

�
: ð88Þ

Making use of the mode expansion, this becomes

kl ¼ −
1

2
þ 1

2Rl

X
n

Qn

A2
n

1

ω2
n −ω2

�
ω2VnðRÞ−

GM⋆
R3

WnðRÞ
�
:

ð89Þ

In the low-frequency limit (with ωmuch smaller than the
lowest frequency mode6), we have

kl ≈ −
1

2
−

1

2Rl

X
n

Qn

ω2
nA2

n

GM⋆
R3

WnðRÞ

¼ −
1

2
−
1

2

X
n

Qn

ω̃2
nA2

n

WnðRÞ
Rl ; ð90Þ

where we have used the dimensionless frequency from
before.
Now recall that

Qn ¼
2lþ 1

4πG
Rlþ1δΦnðRÞ; ð91Þ

and use

δΦnðRÞ ¼ ω2
nVnðRÞ − g

WnðRÞ
R

ð92Þ

to get

Qn ¼
2lþ 1

4πG
Rlþ1

�
ω2
nVnðRÞ − g

WnðRÞ
R

�
: ð93Þ

This leads to the final result

kl ¼ −
1

2
−
2lþ 1

8π

X
n

M⋆
ω̃2
nA2

n

WnðRÞ
R2

½ω̃2
nVnðRÞ −WnðRÞ�:

ð94Þ

Alternatively, we can rewrite (93) as

WnðRÞ ¼ −
4π

2lþ 1

Qn

M⋆Rl−2

�
1 − ω̃2

n

�
Vn

Wn

�
R

�
: ð95Þ

Introducing the dimensionless overlap integral [25]

Q̃n ¼
Qn

M⋆Rl ; ð96Þ

we have

WnðRÞ
Rl ¼ −

4π

2lþ 1

Q̃n

Rl−2

�
1 − ω̃2

n

�
Vn

Wn

�
R

�
−1

ð97Þ

and

kl ≈ −
1

2
þ 2π

2lþ 1

X
n

Q̃2
n

ω̃2
n

�
M⋆R2

A2
n

��
1 − ω̃2

n

�
Vn

Wn

�
R

�
−1
.

ð98Þ

If we (finally) normalize the modes in such a way that

A2
n ¼ M⋆R2; ð99Þ

we arrive at the expression

kl ≈ −
1

2
þ 2π

2lþ 1

X
n

Q̃2
n

ω̃2
n

�
1 − ω̃2

n

�
Vn

Wn

�
R

�
−1

¼ −
1

2
þ
X
n

knl : ð100Þ

As a quantitative test we compare results for three
models corresponding to a background configuration with
Γ ¼ 2 (i.e., a standard n ¼ 1 polytrope). Our reference
model is barotropic, Γ1 ¼ Γ, and we compare it to two
stratified models, with Γ1 ¼ 2.05 and 7=3, respectively.
The results from Fig. 3 suggest that these cases span the
range of “reasonable” parameter values. Moreover, mode
results and overlap integrals for the same values of Γ1 are
already available from [25], which means that we have an
independent check of the numerics. However, we need to
go one step further and add the ratio of the two eigen-
functions at the surface. The numerical results, listed in
Tables I–III (see also Fig. 4), demonstrate the relative
importance of the g modes for strongly stratified models,
evident from the larger values of the overlap integrals Q̃n
and the relative contributions (knl ) to the overall Love
number.

6This is a somewhat subtle issue, but the discussion of the
g-mode spectrum in [40] ensures that the limiting procedure
makes sense.
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The numerical results are interesting. In each case, the
mode sum converges to the expected value for the Love
number. For a barotropic model with Γ ¼ 2 the results
should be kl ≈ 0.259909 [35], and the results from Table I
do, indeed, converge toward this number. This tells us that
the sum over the star’s different oscillation modes provides
an alternative representation for the Love number. It is
important to note that this is true also for the stratified
models; see Table IV. The fundamental f mode provides
the dominant contribution in all cases (as expected given
that this mode most closely resembles the tidal driving
force), but in order to have a precise representation we need
to account for both pressure and gravity modes. In fact, for
the (somewhat extreme) Γ1 ¼ 7=3 case the first g mode is
more prominent than the p modes.
Should we be surprised about these results? Probably

not. As long as the modes of the star are complete, the
mode-sum representation of the Love number must con-
verge to the barotropic result (after all, we can determine kl

in the static limit). The contribution of individual modes
changes with Γ1, but the final answer is always the same.
Nevertheless, the results are important as they provide the
first actual demonstration that the dynamical response of
the star, usually discussed in terms of mode resonances
[23–26], has as its static limit the tidal deformability. In
essence, we have formally established the link between the
tidal deformability and asteroseismology. The results also
point us in the direction we have to go if we want to
quantify the impact of matter composition on the tidal
response—we need to consider the dynamics encoded in
the frequency dependence of (89).
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FIG. 4. A summary of the results for the overlap integrals jQ̃nj
for the three models considered in Tables I–III. The results show
that, while the matter composition has little impact on the
fundamental f mode and the pressure p modes, the impact of
the gravity g modes is more pronounced for models with Γ1

deviating significantly from the background adiabatic index Γ.

TABLE I. Numerical results for barotropic n ¼ 1 polytropes
(with Γ1 ¼ 2) and l ¼ 2.

Mode ω̃n jQ̃nj ðVn=WnÞR knl
p4 9.0471 4.4927 × 10−5 1.2218 × 10−2 −1.7426 × 10−6

p3 7.2581 3.0791 × 10−4 1.8983 × 10−2 −5.9238 × 10−4

p2 5.4144 2.6168 × 10−3 3.4104 × 10−2 1.3425 × 10−3

p1 3.4615 2.6888 × 10−2 8.3845 × 10−2 −1.6411 × 10−2

f 1.2267 5.5792 × 10−1 4.4163 × 10−1 0.77528

TABLE II. Numerical results for n ¼ 1 polytropes with
Γ1 ¼ 2.05 and l ¼ 2.

Mode ω̃n jQ̃nj ðVn=WnÞR knl
p2 5.4949 2.5459 × 10−3 3.3111 × 10−2 1.6522 × 10−3

p1 3.5204 2.5865 × 10−2 8.1049 × 10−2 −1.9849 × 10−2

f 1.2274 5.5796 × 10−1 4.4009 × 10−1 0.77055
g1 0.1845 1.7657 × 10−3 27.8841 2.2458 × 10−3

g2 0.1270 4.264 × 10−4 60.9918 8.2137 × 10−4

g3 0.0975 1.2493 × 10−4 104.4819 3.3549 × 10−4

g4 0.0794 4.1194 × 10−5 158.1560 1.4542 × 10−4

TABLE III. Numerical results for n ¼ 1 polytropes with
Γ1 ¼ 7=3 and l ¼ 2.

Mode ω̃2
n jQ̃nj ðVn=WnÞR knl

p2 5.9316 2.2079 × 10−3 2.8417 × 10−2 9.6779 × 10−4

p1 3.8411 2.1197 × 10−2 6.8024 × 10−2 −1.0631 × 10−2

f 1.2291 5.5805 × 10−1 4.3227 × 10−1 0.74685
g1 0.4361 1.110 × 10−2 4.9584 1.4299 × 10−2

g2 0.3035 2.6048 × 10−3 10.6541 5.0402 × 10−3

g3 0.2343 7.6158 × 10−4 18.0985 2.0379 × 10−3

g4 0.1912 2.4981 × 10−4 27.2719 8.7876 × 10−4

g5 0.1618 8.7649 × 10−5 38.1746 3.9289 × 10−4

TABLE IV. The accumulated contribution to the tidal deform-
ability from the different modes, in order of relevance of the
contribution, for the three different models we consider. We expect
(for the barotropic Γ ¼ 2 case) to have kl ≈ 0.259909. If we add up
the contributions from the different modes in each case, the results
converge to the expected answer (the remaining difference is
represented by the last entry in each column). The mode sum is
always dominated by the f mode with a modest correction from
the other modes of the star, but the enhanced importance of the g
modes with increasing stratification is notable.

Γ1 ¼ 2 Γ1 ¼ 2.05 Γ1 ¼ 7=3

Mode kl Mode kl Mode kl

f 0.27528 f 0.27055 f 0.24685
þp1 0.25887 þp1 0.25526 þg1 0.26115
þp2 0.26021 þp2 0.25653 þp1 0.25052
þp3 0.26015 þg1 0.25878 þg2 0.25556

þg2 0.25960 þp2 0.25653
þg3 0.25993 þg3 0.25856
þg4 0.26008 þg4 0.25944

þg5 0.25983

9 × 10−4 7 × 10−4 3 × 10−4
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C. The dynamical tide

Having demonstrated that the sum over the star’s
oscillation modes provides a precise description of the
tidal response in the static limit, let us turn to the dynamical
response associated with finite frequencies. The static result
gives us confidence that this is a meaningful exercise,
closely related to previous discussions of resonant mode
excitation in binary systems [23–25] but focusing on the
role of the (no longer static) m ¼ 0 contribution. Taking
(89) as our starting point and introducing dimensionless
frequencies, as before, we have

kl ¼ −
1

2
−

1

2Rl

X
n

Qn

A2
n

WnðRÞ
ω̃2
n − ω̃2

�
1 − ω̃2

�
Vn

Wn

�
R

�
: ð101Þ

Next we use (97) and normalize the modes to arrive at

kl ¼ −
1

2
þ 2π

2lþ 1

X
n

Q̃2
n

ω̃2
n − ω̃2

�
1 − ω̃2

�
Vn

Wn

�
R

�

×

�
1 − ω̃2

n

�
Vn

Wn

�
R

�
−1
: ð102Þ

That is, we arrive at a closed expression for the frequency
dependent tidal response (encoded in kl) and, given the
numerical results from Tables I–III, it is straightforward to
obtain the desired dynamical behavior. This, in turn, allows
us to quantify the level at which each individual mode
contributes to the overall result. Results for the three
different values of Γ1 we have considered are provided
in Fig. 5. The different panels show the relative contribu-
tions to the tidal deformability (compared to that of the f
mode alone). The resonances associated with each mode,
which occur when ω̃ ¼ ω̃n, are easily distinguishable in
each case, and the resonance associated with the f mode
leads to a common feature (at ω̃ ≈ 1.2) in all panels. The
results tell us that modes other than the f mode contribute
to the overall result at the few percent level. Moreover, the

results for Γ1 ¼ 7=3 bring out the fact that in this case the
leading g mode dominates over the first p mode for all
frequencies. However, for the (likely) more realistic case
with Γ1 ¼ 2.05 the g mode contribution is almost an order
of magnitude weaker than that of the first p mode. These
results are important as they provide the first demonstration
of the level at which frozen matter composition impacts on
the tidal response across the range of frequencies relevant
for a binary inspiral. Of course, the notion that resonant
mode excitation comes into play is not at all new. However,
the discussion tends to focus on m ≠ 0 modes (which
would make a dynamical contribution for systems with a
fixed orbital separation). The fact that the m ¼ 0 contri-
bution has similar features [which should come into play
for evolving orbits, when the function fðωÞ is nontrivial;
see the discussion in Sec. II] appears to not have been
appreciated previously. Moreover, the discussion of mode
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excitation tends to focus on the impact on the gravitational-
wave signal as the system passes through resonance, i.e., a
narrow frequency range (see [26] for a recent discussion).
Finally, the overall mode contribution to the tidal res-

ponse (including only the modes listed in Tables I–III) is
illustrated in Fig. 6. This figure requires some additional
explanation. We know from Table IV that the modes we
include lead to a truncation error at the 10−3 level. This sets
the level for the horizontal part of the curves toward the left
of the figure. The inclusion of further modes should bring
this level down (up to numerical precision). Instead, we
should focus on the behavior at frequencies beyond the first
mode resonance. This illustrates the difference between
the barotropic models and the stratified cases, again
suggesting that matter composition may affect the result
at the percent level.

V. IMPLICATIONS

We have discussed the tidal response of a neutron star
during the late stages of neutron star binary inspiral,
focusing on the role of the matter composition. This issue
has previously been ignored as studies have almost exclu-
sively assumed barotropic fluid models. However, it is easy
to argue (given the timescale involved) that the matter
composition should remain “frozen” during the late stages
of binary inspiral, leading to a stratified perturbation
problem (where the adiabatic index of the perturbation is
different from that of the equilibrium background). This
connects with previous work on tidal resonances, which has
quantified the role of the g modes (which rely on strati-
fication for their existence [23–25]). Similarly, the pro-
posed nonlinear p − g instability [43–46] relies on the
coupling between p modes and g modes. Of course, one
may argue that the impact of stratification on the tidal
response should be small enough that it can safely be
ignored. Indeed, our numerical results indicate that the
difference is at (or below) the level of a few percent.

However, it is nevertheless important to quantify this
contribution. We need to do this in order to understand
systematic “errors” associated with the assumed physics,
which ultimately determine the accuracy with which we
can hope to extract stellar parameters (such as the radius)
from observations. The problem is also important from
the physics point of view. Having quantified the level at
which the matter composition enters the discussion we can
compare to (for example) the role of the elastic crust [37]
and superfluid components [18]. Finally, and perhaps most
importantly, our discussion suggests a “new” approach to
dynamical tides, putting the mode excitation in focus, not
only for resonances associated with the m ≠ 0 modes but
also for them ¼ 0 contribution. This is interesting as it may
allow us to develop new phenomenological models for the
all-important gravitational-wave phasing (as an alternative
to the effective Love number prescription from [47,48]; see
also the recent effort in [49]). A first step in this direction is
outlined in [50].
Today’s gravitational-wave detectors are not at a level

where a change of a percent in the tidal response makes
much difference, but one might want to keep an eye on the
relevant issues as they are likely to become relevant for
third-generation gravitational-wave instruments (see, e.g.,
[51] for a discussion of the achievable sensitivity). In terms
of future theory development, we need to turn the current
proof-of-principle models into predictive calculations by
incorporating a realistic matter description. However, this
is a difficult step as it requires a fully general-relativistic
model and there have (as yet) been no efforts to extend the
discussion of tidal mode excitation in this direction.
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