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While a fully-coherent all-sky search is known to be optimal for detecting gravitational wave signals
from compact binary coalescences, its high computational cost has limited current searches to less sensitive
coincidence-based schemes. Following up on previous work that has demonstrated the effectiveness of
particle swarm optimization (PSO) in reducing the computational cost of this search, we present an
implementation that achieves near real-time computational speed. This is achieved by combining the search
efficiency of PSO with a significantly revised and optimized numerical implementation of the underlying
mathematical formalism along with additional multithreaded parallelization layers in a distributed
computing framework. For a network of four second-generation detectors with 60 min data from each,
the runtime of the implementation presented here ranges between ≈1.4 to ≈0.5 times the data duration for
network signal-to-noise ratios (SNRs) of ≳10 and ≳12, respectively. The reduced runtimes are obtained
with small to negligible losses in detection sensitivity: for a false alarm rate of ≃1 event per year in
Gaussian stationary noise, the loss in detection probability is ≤5% and ≤2% for SNRs of 10 and 12,
respectively. Using the fast implementation, we are able to quantify frequentist errors in parameter
estimation for signals in the double neutron star mass range using a large number of simulated data
realizations. A clear dependence of parameter estimation errors and detection sensitivity on the condition
number of the network antenna pattern matrix is revealed. Combined with previous work, this paper
securely establishes the effectiveness of PSO-based fully-coherent all-sky search across the entire binary
inspiral mass range that is relevant to ground-based detectors.
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I. INTRODUCTION

A network of spatially well-separated gravitational wave
(GW) detectors is a critical requirement for GWastronomy.
A detector network is essential for estimating the wave-
forms of the two polarizations of a GW signal and for
localizing its source on the sky. Optimally combining the
data from a detector network leads to improved GW search
sensitivity.
Starting with GW150914 [1], a binary black hole inspiral

and merger detected by the two-detector LIGO [2] network,
the LIGO-only and the LIGO-Virgo network collected 11
confirmed compact binary coalescence (CBC) events over
two observing runs [3], O1 and O2. The addition of Virgo
[4] to the network played a particularly important role
in shrinking the localization error for GW170817 [5], the

coalescence of a double neutron star binary, leading to the
spectacular discovery of an electromagnetic counterpart
[6]. The LIGO-Virgo network is slated to be joined by the
Japanese KAGRA [7] detector sometime during the
ongoing (O3) observing run. In the near future, the planned
worldwide network of five second-generation GW detec-
tors will be completed with the construction and commis-
sioning of LIGO-India [8].
It is well known that the optimal methods for the

detection and estimation of CBC signals with network
data [9] are the intimately related maximum likelihood
estimation (MLE) [10] and generalized likelihood ratio test
(GLRT) [11], respectively. Both MLE and GLRT, conflated
under the commonly used term fully-coherent all-sky
search (FCAS) [12], require the global optimization of
the joint likelihood function of data from a detector
network over the full parameter space of CBC signals,
which includes the two sky angles, the masses of the binary
components, and the components of their spins.
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While optimal, the computational cost of FCAS is
daunting if the global optimization is carried out over a
regular grid in parameter space. The addition of a grid in the
sky angles is estimated to increase the number of grid
points by a factor of Oð103Þ over that for a single detector
search [12]. This computational bottleneck has prevented
an always-on FCAS search from being used on all of the
data from a detector network. Instead, all search methods at
present use a semicoherent scheme in which the data from
each detector is first searched separately and only those
events that pass a pairwise coincidence test [13] are
followed up by FCAS search. The inability to deploy
FCAS search on all data has been estimated to result in a
25% loss in the detection volume for the first-generation
LIGO-Virgo network [12].
Even with the drastically reduced live-time of the

FCAS step in semicoherent searches, grid-based optimiza-
tion of the network likelihood for parameter estimation
remains computationally infeasible. Instead, a Markov
Chain Monte Carlo (MCMC) based stochastic optimization
approach [14] is used to estimate the parameters of candidate
events. However, MCMC based methods are themselves
computationally expensive and slow, requiring another
method called BAYESTAR [15] that approximates the full
MCMC to deliver rapid sky localizations for electromagnetic
follow ups. The speed of this method derives from using
estimated values of parameters, other than the sky location,
from the coincidence step. As such, it cannot serve as an
FCAS search method.
Besides enhanced sensitivity, overcoming the computa-

tional barrier of an always-on FCAS search promises other
potential advantages over semicoherent searches. One is a
simpler implementation that eliminates much of the empir-
ical tuning based on ad hoc criteria that is involved in
semicoherent searches, such as the tuning of per-detector
detection thresholds and coincidence window size. Another
is that network analysis allows new kinds of vetoes [16] to
be developed for nonastrophysical signals (“glitches”),
further improving the sensitivity of an FCAS search.
It has been demonstrated in several studies by now that

particle swarm optimization (PSO) [17–20] offers a prom-
ising path forward in drastically reducing the computational
cost of CBC searches. The first application of PSO to a
GW data analysis problem in Ref. [21] demonstrated its
effectiveness for a single-detector CBC search. The appli-
cation of PSO to FCAS search was proposed in Ref. [22]
(WM) and, for a network of first-generation detectors,
showed a 10-fold reduction in the number of likelihood
evaluations compared to grid-based optimization. This
prompted further developments in Ref. [23] (NMW), where
it was shown that the reduced computational burden of a
PSO-based FCAS search also holds for data from a second-
generation detector network. In addition, a faster code was
developed and improved convergence to the global maxi-
mum was obtained by changing the variant of PSO used in
the search. An application of PSO to semicoherent search

itself [24] has shown a large reduction in computational
costs, further bolstering the evidence for its effectiveness.
In this paper, we present the next major step in the

evolution of the PSO-based FCAS search: an optimized
numerical implementation of the mathematical formalism
combined with a multilayered parallelized implementation
that brings us to the doorstep of a real-time FCAS search.
(By real-time, we mean a search that analyzes T sec of data
in T sec of wall-clock time.) The latest version of the code,
called BINARIES (binary inspiral network analysis rapid
implementation enabled by swarm intelligence), can analyze
≈60 min of data in ≈80 min of wall-clock time for a target
four-detector network signal-to-noise ratio (SNR) of 10.0.
The code becomes significantly faster than real-time if the
target is relaxed to SNR≳ 12 since the number of PSO
iterations needed for the search are reduced considerably.
The efficient implementation of the mathematical for-

malism of FCAS search presented in this paper differs
significantly from the one used in bothWM and NMW. The
parallelization layers are increased from two in NMW to
three here through major changes, such as shifting to a
multithreaded numerical algorithms library. Together, these
two developments make BINARIES ≈22 times faster than the
code used in NMW on the same computing hardware.
Using BINARIES, we are able to obtain, for the first time,

frequentist error estimates for sky localization and chirp time
parameters for the challenging case of a representative low
mass (1.5 M⊙,1.5 M⊙) binary inspiral signal embedded in
60 min of data. This overcomes the limitations of WM and
NMW to shorter signals and establishes the applicability of
PSO-based FCAS search across the entire mass range of
binary inspirals relevant to ground-based detectors. Using
direct numerical estimation allows a more realistic assess-
ment of parameter estimation errors than analytic estimates
based on the Cramer-Rao lower bound (CRLB) [10] that is
only attained asymptotically at high SNR. Further changes
implemented in the present paper include the use of detector-
specific design sensitivity curves instead of the same,
advanced LIGO, one for all. The resulting error estimates
are, therefore, relevant to the actual worldwide detector
network.
The rest of the paper is organized as follows. Section II

provides a review of the FCAS search formalism, the noise
and signalmodels used in this paper, and the changesmade to
the numerical implementation of the formalism. Section III
discusses PSO and the tuning process used to optimize its
performance. The runtime analysis of BINARIES is examined
in Sec. IV. Results on the detection and estimation perfor-
mance of BINARIES on simulated data are presented in Sec. V.
We conclude with a discussion of the results and pointers to
future investigations in Sec. VI.

II. FULLY-COHERENT ALL-SKY SEARCH

Much of the mathematical formalism for the fully-
coherent all-sky search remains the same as in WM and
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NMW that, in turn, closely follow [9]. In this paper, we
focus more on those aspects of the formalism that were
modified to improve the efficiency of its numerical
implementation.
A T sec long segment of data from the ith detector in a

network of D detectors is denoted by xiðtÞ. Under the null
(H0) and alternative (H1) hypotheses,

xiðtÞ ¼ niðtÞ; ð1Þ

and

xiðtÞ ¼ hiðtÞ þ niðtÞ; ð2Þ

respectively, where niðtÞ is a noise realization and hiðtÞ is
the strain response of the detector to an incident GW signal.
For a source located at azimuthal angle α and polar angle

δ in the Earth centered Earth fixed frame (ECEF) [25], the
detector responses are given by,

0
BBBBBB@

h1ðtþ Δ1ðα; δÞÞ
h2ðtþ Δ2ðα; δÞÞ

..

.

hDðtþ ΔDðα; δÞÞ

1
CCCCCCA

¼ Fðα; δ;ψÞ
�
hþðtÞ
h×ðtÞ

�
; ð3Þ

where the ith row of the antenna pattern matrix Fðα; δ;ψÞ
contains the antenna pattern functions ðFiþðα; δ;ψÞ;
Fi
×ðα; δ;ψÞÞ of the ith detector, hþðtÞ and h×ðtÞ are the

TT gauge polarization components of the GW plane wave
incident on the origin of the ECEF, and Δiðα; δÞ is the time
delay between the plane wave hitting the ECEF origin
and the ith detector. The polarization angle ψ gives the
orientation of the wave frame axes with respect to the
fiducial basis formed by −α̂ and δ̂ in the plane orthogonal to
the wave propagation direction.

A. Noise model

In common with theoretical studies of detection and
estimation performance of CBC search algorithms, we
assume that niðtÞ is the realization of a stationary zero-
mean Gaussian process with one-sided power spectral
density (PSD) SinðfÞ at Fourier frequency f. Further,
niðtÞ and njðtÞ, i ≠ j, are assumed to be realizations of
statistically independent stochastic processes. Figure 1
shows the PSDs used in this paper in the form of strain
sensitivity curves (

ffiffiffiffiffiffiffiffiffiffiffi
SinðfÞ

p
). These correspond to the design

sensitivities of the two aLIGO detectors at Hanford (H) and
Livingston (L), advanced Virgo (V), and KAGRA (K).
Several high power narrowband noise features (“lines”)

are present in the design sensitivity of KAGRA. Due to
their adverse impact on the dynamic range of data and the
associated numerical errors in its processing, the generation

of simulated KAGRA noise must use a PSD that models the
removal of these features. However, without considering a
specific line removal or whitening method, it is not possible
to deduce how much of the bandwidth associated with each
line should be notched or set to zero. In this paper, we
follow the simple approach of interpolating the noise floor
across each line (leaving behind a slight bump). Since the
signal power in the corresponding bands is not suppressed
to the same amount as the lines, we incur an overestimate of
parameter estimation accuracy. We leave it to future work to
revisit this issue more carefully once the characteristics of
real KAGRA noise and specific line removal methods have
been established. It should be noted that lines are present
in real data from all interferometic GW detectors and they
are mitigated in the data conditioning step that precedes
any analysis of real data. The line mitigation step in data
conditioning for an FCAS search can be the same as the one
used in a semicoherent search.

B. Signal waveform

The polarization waveforms used in this paper are
obtained from the restricted 2-PN formalism [29] for a
circularized binary with nonspinning components. In this
paper, we only need to show the waveforms schematically,
with more detailed expressions available in, for example,
WM. Under the stationary phase approximation, the wave-
forms in the Fourier domain are

h̃þðfÞ ¼ Aþf−7=6 exp½−iΨðfÞ�; ð4Þ

h̃×ðfÞ ¼ A×f−7=6 exp½−iðΨðfÞ þ π=2Þ�; ð5Þ

ΨðfÞ ¼ 2πftc − ϕc − π=4þ ψðfÞ ð6Þ

where ψðfÞ belongs to a two parameter family of smooth
functions. The parameters depend on the masses, m1 and

FIG. 1. Strain sensitivity curves used in this paper for aLIGO
(Hanford and Livingston), advanced Virgo, and KAGRA. The
curves are labeled, respectively, as aLIGO, AdV, and bKAGRA.
The aLIGO curve is obtained from [26]. The bKAGRA interpolates
across the lines in the actual curve [27] labeled as bKAGRA (Raw)
in the figure. The AdV curve is obtained from [28].
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m2, of the binary components but instead of using them
directly, it is more convenient to use the chirp time
parameters τ0 and τ1.5

τ0 ¼
5

256π
f−1�

�
GM
c3

πf�

�
−5=3

η−1; ð7Þ

τ1.5 ¼
1

8
f−1�

�
GM
c3

πf�

�
−2=3

η−1; ð8Þ

M ¼ m1 þm2; μ ¼ m1m2

M
; η ¼ μ

M
; ð9Þ

where f� denotes the low-frequency cutoff of a high pass
filter that must be applied to GW detector data before
commencing any search in order to suppress the steep rise
in SinðfÞ due to seismic noise. The effect of the high pass
filter is taken into account by setting h̃þ;×ðfÞ ¼ 0 for
f ≤ f�. While f� is arguably detector-specific, we adopt a
common value of f� ¼ 10 Hz in this paper for all second
generation detectors.
The other parameters defining the waveforms are the

overall amplitudes Aþ;×, which depend purely on the
distance to the binary and its orientation relative to the line
of sight; the time, tc, between the instantaneous frequency
of the inspiral signal crossing f� and the plunge at the last
stable orbit that ends the inpiral; the instantaneous phase,ϕc,
of the waveforms at tc.
Besides the low-frequency cutoff, f�, all waveforms also

have a high frequency cutoff caused by the plunge. While
this cutoff depends on the mass parameters of the system,
the amount of time a low mass system spends near plunge
contributes very few cycles to the waveform relative to the
inspiral phase, allowing the waveform model to use a
generic high frequency cutoff. This is set to 1000 Hz for the
waveforms considered in this paper.

C. Detection and estimation

For the noise model used in this paper, the log-likelihood
ratio for a D detector network is given by,

λðDÞ ¼
XD
i¼1

�
hxijhiii − 1

2
hhijhiii

�
; ð10Þ

hi ¼
X4
k¼1

Akhikðt − ΔiÞ; ð11Þ

hpjqii ¼ 4Re
Z

∞

0

df
p̃ðfÞq̃�ðfÞ
SinðfÞ

: ð12Þ

Here, we have used the fact that Aþ;×, ψ , and ϕc can be
reparametrized as amplitudes, Ak, of the so-called template
waveforms

hi1ðtÞ ¼ UiþhcðtÞ; hi2ðtÞ ¼ Ui
×hcðtÞ;

hi3ðtÞ ¼ UiþhsðtÞ; hi4ðtÞ ¼ Ui
×hsðtÞ; ð13Þ

where Ui
a ¼ Fi

aðα; δ; 0Þ, a ¼ þ;×, and h̃cðfÞ ¼ h̃þðfÞ
(h̃sðfÞ ¼ h̃×ðfÞ) for ϕc ¼ 0 and Aþ;× ¼ 1.
Detection in FCAS is based on the GLRT statistic,

defined as

ρ2coh ¼ max
Θ

Γ2ðΘÞ; ð14Þ

Γ2ðΘÞ ¼ max
Θext

λðDÞ; ð15Þ

where Θext and Θ are the sets of so-called extrinsic and
intrinsic parameters: Θext ¼ ðtc; fAkgÞ, k ¼ 1;…; 4, and
Θ ¼ ðα; δ; τ0; τ1.5Þ. Maximization over Ak can be carried
out analytically while tc can be efficiently maximized over
using the fast Fourier transform (FFT).Maximization overΘ
must be done numerically and this dominates the overall
computational cost of the FCAS.We call Γ2ðΘÞ the coherent
fitness function and ρcoh the coherent search statistic.
The MLE estimates of Θ and Θext are the global

maximizers of the log-likelihood function. Since the log-
likelihood differs from λðDÞ only by a constant for given
data, the MLE estimates are obtained for free as part of the
GLRT statistic calculation.

D. Efficient evaluation of the log-likelihood ratio

After analytical maximization over Ak in Eq. (15), one
is left with the evaluation of hhikðt − ΔiÞjhijðt − ΔiÞi and
hxijhikðt − ΔiÞi. Each such inner product [cf. Eq. (12)] is
implemented using the FFT and involves the element-wise
product of two arrays followed by summation, leading to
OðNÞ floating point operations for data segments contain-
ing N samples. Substantial savings in the number of
floating point operations can, therefore, be obtained by
incorporating the following straightforward optimizations
in the numerical evaluation of these inner products.
First, the inner product hhikðt − ΔiÞjhijðt − ΔiÞi is inde-

pendent of Δi since it appears in the phases of the Fourier
transforms of both hikðt − ΔiÞ and hijðt − ΔiÞ and cancels
out when one is multiplied with the complex conjugate
of the other. Since hik depends on just two orthogonal
functions, hc and hs, (hhc; hsi ¼ 0), hhik; hiji depends only
on hhc; hci and hhs; hsi. These, in turn, do not depend on
any of the remaining signal parameters since they all appear
in the phase. Thus, hhc; hci and hhs; hsi can be precom-
puted and stored. Evaluation of hhikðt − ΔiÞjhijðt − ΔiÞi for
given α and δ then simply involves taking algebraic
combinations of these stored scalars.
Next, transferring the detector dependent time shift Δi in

hxijhikðt − ΔiÞi to the detector data,
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hxijhikðt − ΔiÞii ¼ hxiðtþ ΔiÞjhikðtÞii: ð16Þ

replaces the cost of generating 2D waveforms, namely,
hcðt − ΔiÞ and hsðt − ΔiÞ for i ≤ D, with that of doing D
time shifts.
Finally, we replace the data by overwhitened data, i.e.,

x̃iðfÞ → x̃iðfÞ=SinðfÞ, at the start of analysis. This saves the
cost of division by SinðfÞ in constructing the integrand of
the inner product in Eq. (12) between data and templates.

III. PARTICLE SWARM OPTIMIZATION

The maximization over the intrinsic parameters in
Eq. (14), namely ðα; δ; τ0; τ1.5Þ, is carried out in BINARIES

using PSO. By now the technical details of the PSO
algorithm are well described in several papers (e.g., NMW),
making the brief summary given below adequate for our
purpose.
All PSO variants use the basic idea of evaluating the

function to be maximized, called the fitness function, at
multiple locations, called particles, within a (bounded)
search space. The particles move stochastically in the
search space following rules, called dynamical equations,
that implement a simple model of flocking behavior
observed in bird swarms. In this model, the displacement
(called velocity in PSO) of each particle from one iteration
to the next is affected by two forces, called social and
cognitive, that attract the particle toward the best location
found by its neighbors and the best location found by the
particle in its history. The iterations are initialized with
random locations and velocities. While a variety of termi-
nation conditions are available in the literature [19], we use
the simplest one where the algorithm is stopped after a
specified number, Niter of iterations.
In this paper, we use the same PSO variant, called local

best (lbest) PSO [18], that was used for FCAS in NMW.
In this variant, neighborhoods of particles are determined
by the ring topology: particle indices are arranged on a ring
and a specified number of these on either side of a given
index identify the neighbors of the corresponding particle.
Specifically, the total number of particles is set at 40 with
two neighbors for each particle. In contrast, the variant used
in WMwas global best (gbest) PSO where each particle has
all other particles as its neighbors. For the same number of
particles, the performance of lbest PSO as configured above
has been demonstrated to be better for the FCAS search
than gbest PSO.
In common with most practical stochastic optimization

methods, PSO is not guaranteed, even asymptotically, to
converge to the global maximum. As such, for a finite
number of iterations, one can only demand an acceptable
probability of convergence to a specified region containing
the global maximum. One of the key elements behind the
success of PSO in FCAS is the best-of-M-runs strategy
[20,30] for boosting the convergence probability: multiple

runs of PSO, utilizing independent random number
streams, are performed on the same GW data and the
run that terminates with the best (maximum) value of Γ2ðΘÞ
provides both the coherent search statistic as well as the
estimates of Θ and Θext.
Along with Niter, the number of runs, Nruns, forms the

only set of PSO parameters that are tuned in BINARIES. The
metric used for tuning these parameters is based on the fact
[21] that the global maximum of the coherent fitness
function should always be shifted away from the location,
Θ0, of the true signal parameters. This, after all, is what
leads to parameter estimation errors in the presence of
noise. Consequently, the value of the coherent search
statistic found by PSO, denoted as ρ0cohðNruns; NiterÞ, should
at least be greater than the value, denoted as ρð0Þcoh, of the
coherent fitness function at Θ0 if convergence to the global
maximum is successful. This leads to our definition of the
tuning metric:

MðNruns; NiterÞ ¼ Prðρ0cohðNruns; NiterÞ < ρð0ÞcohÞ; ð17Þ
where PrðAÞ is the probability of an event A. The goal of
tuning is to bring MðNruns; NiterÞ to an acceptably small
value. Needless to say, this metric can only be estimated for
simulated data where Θ0 is known.

IV. RUNTIME ANALYSIS

BINARIES is implemented in the C programming lan-
guage and uses the Intel MKL multi-threaded numerical
algorithms library for computing FFTs. Three nested
parallelization layers are implemented. The outer layer
uses LAUNCHER [31] to distribute independent runs of PSO
across different nodes of a distributed computing cluster. In
the inner layer, a specified number of OpenMP [32] parallel
processes (threads) evaluate PSO particle fitness values.
Each process is further assigned a specified number of
threads for use by MKL functions.
We have tested and compared the performance of

BINARIES on two different computing clusters, namely,
Stampede 2 (S2) and Lonestar 5 (LS5) housed in the Texas
Advanced Computing Center. The nodes used on S2 have
one Intel Xeon Phi Knights Landing (KNL) processor per
node with 68 cores supporting up to 4 threads per core. The
LS5 nodes used have two Intel Xeon E-5-2690 (Haswell)
processors per node with 12 cores each supporting up to 2
threads per core.While these processors also differ in other
details such as the clock rate and cache memory size that
are pertinent to computational speed, the main determinant
for BINARIES is the number of concurrent OpenMP and MKL
threads that can be supported. The threads related to fitness
evaluations are distributed on all the processing cores of a
node, with each node executing one PSO run.
The search space for PSO is typically taken to be a

hypercube. Given that the search over the sky in BINARIES

is not partitioned, this translates into a rectangle in τ0, τ1.5
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space. To cover the entire range of τ0 and τ1.5 values for
CBC signals, a set of rectangles in this space along with
their overlap fraction must be prescribed. Since the search
in each rectangle can be conducted in parallel, and since the
runtime—defined as the wall-clock time taken to complete
the analysis of a given segment of data—does not depend
on the size of the rectangle searched but on the number of
detectors, data duration, number of PSO particles, and the
number of PSO iterations, having multiple rectangles does
not increase the overall runtime of the PSO-based FCAS
search. Similarly, the best-of-M-runs (c.f., Sec. III) strategy
does not add to the runtime of BINARIES if all the runs are
computed in parallel. Thus, for an analysis of runtime, it is
sufficient to consider the search over only one rectangular
region and one PSO run.
There are two factors that contribute to the computa-

tional speed of BINARIES: the improved numerical imple-
mentation of the mathematical formalism described in
Sec. II D and, as described above, the number of parallel
OpenMP and MKL threads used. We fix the number of
OpenMP threads at 40, the number of PSO particles used in
BINARIES, while the number of MKL threads is varied to find
the optimum operating point.
To quantify the effect of the improved numerical

implementation and the use of MKL threads, we ran
BINARIES on the same platform (LS5) as the codes used
in NMW and found it to be ≈22 times faster on average.
The effect of different processors, and the different number
of threads that they can support, is shown in Fig. 2 where
the runtime (Trun) of BINARIES is analyzed across S2 and
LS5 as a function of the duration of data (T) and different
numbers of MKL threads. While, interestingly, the optimum
number of MKL threads was found to depend on T for short
data durations, its best value is 4 for the large T of 60 min

considered in this paper. Overall, the change in processor
from Haswell to KNL (with 4 MKL threads) provides a
factor of ≈2.3 speed up.
Figure 3 shows the distribution of Trun on KNL and its

dependence on the number, Niter, of PSO iterations for
T ¼ 60 min. We see that the runtime is quite stable, with a
fairly narrow spread, and the average Trun has a linear
dependence on Niter. BINARIES attains faster than real time
processing speed, Trun < T, for Niter ≤ 1000.
Besides the type of processor, the demands a code puts

on other hardware parameters must also be noted. Among
these, the principal one is the available system random
access memory (RAM). The RAM consumed depends on
the sampling rate of the data, the use of single (4 bytes) or
double (8 bytes) precision data types, length of the data to
be analyzed, number of detectors, and most importantly, the
number of concurrent PSO particle evaluations. For analy-
sis in double precision of 60 min data sampled at 2048 Hz,
BINARIES requires a base amount of 576 MB plus 192 MB
per detector for evaluating the fitness of a single PSO
particle. For a total load of 40 PSO particles, with
concurrent evaluation of all fitness values, the RAM
required is ≈54 GB for a four detector network. For short
data stretches of 60 sec, keeping all other variables fixed,
the RAM needed is ≈900 MB.

V. RESULTS

The performance of BINARIES is characterized using
simulated data realizations. Each realization consists of
60 min long time series from the four-detector HLVK
network at a sampling frequency of 2048 Hz. The noise
realizations in each time series are generated following the
model described in Sec. II. To have a large number of noise

FIG. 2. Runtime, (Trun), as a function of the duration of data (T)
for BINARIES running on S2 and LS5 with different numbers of
MKL threads. The number of MKL and OpenMP threads are shown
as the first and second numbers, respectively, in the parentheses
next to the name of the cluster (S2 or LS5). The dependence of
Trun on T is approximately linear with slope 1.75, 1.46, and 3.39
for S2(1,40), S2(4,40), and LS5(1,40), respectively. For large T,
S2 is ≈2.3 times faster than LS5. Trun in all the cases above is
obtained for the number of PSO iterations set to Niter ¼ 1500.

FIG. 3. The distribution of runtime, Trun, of BINARIES on
the KNL processor as a function of the number, Niter, of
PSO iterations for duration of data T ¼ 60 min. The 1st,
50th, and 99th percentiles of the runtime (in minutes) are
f25.6; 27.3; 28.4g, f51.6; 54.9; 57.0g, and f77.7; 82.3; 85.7g
for Niter ¼ 500, 1000, and 1500, respectively. BINARIES was
run with 40 OpenMP and 4 MKL threads in all cases. Starting from
the lowest Niter, the first two histograms were obtained from 7200
trials while the third used 35200 trials.
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realizations and yet remain within the cycle lengths of
standard pseudorandom number generators, we adopt the
standard approach used in GW searches for measuring
background rates: unphysical and independent time shifts
of ≥10 sec are applied to the noise time series from the
different detectors to generate effectively new noise real-
izations. For our choice of the time shift and the number of
time shifts, 1000 new realizations can be generated from a
given data realization in this manner.
We use two different sky locations for generating

strain responses: (L4) α ¼ 32.09°, δ ¼ −53.86°, and (L5)
α ¼ 150.11°, δ ¼ −60.16°. The polarization angle is set to
be ψ ¼ 30° at both locations. L4 and L5 are two out of the 6
locations used in WM and correspond to the best and worst
condition numbers for the antenna pattern matrix Fðα; δ;ψÞ
of the HLVK network.
The binary component masses are kept equal and set to

1.5 M⊙. The signal time of arrival at the ECEF origin is set
to be 20 min after the start of the data and, for the chosen
mass parameters and f�, the strain response in each detector
lasts 15.1 min.
The signals are normalized to have a prescribed network

signal to noise ratio (SNR) defined as

SNR ¼
�XD
i¼1

hhijhiii
�1=2

; ð18Þ

For each location, we generate strain responses with
SNR ¼ 9, 10, 12, and 15.
Results related toH0 (noise-only) data are obtained from

1000 realizations while 250 H1 (signal plus noise) data
realizations are used for each combination of location and
SNR. For the search space of PSO, α and δ cover the entire
sky, while τ0 ∈ ½500; 1500� sec and τ1.5 ∈ ½5; 15� sec.
In the remainder of this section, we first present the

results for PSO tuning followed by the detection and
estimation performance of BINARIES.

A. PSO tuning

The tuning procedure for PSO involves estimating the
metric MðNruns; NiterÞ defined in Eq. (17) from a set of
simulated H1 data realizations for a given combination of
Niter ∈ f500; 1000; 1500g, Nruns ∈ f4; 8; 12g, and SNR.
To reduce the computational burden involved in tuning,
the number of H1 data realizations is lowered to 120 and
only the L4 location is used.
Figure 4 illustrates how the performance of PSO evolves

for a given SNR as Niter and Nruns are changed. Given a
scatterplot from this figure corresponding to some Niter and
Nruns combination, the simplest estimate ofMðNruns; NiterÞ
is just the fraction of points that fall below the diagonal.
This raw estimate can be improved upon using the boot-
strap [33] based procedure introduced in NMW.
Table I presents statistical summaries of the sample

distribution ofMðNruns; NiterÞ for different combinations of

Niter, Nruns, and SNR. We see that the tuning metric moves
toward lower values, as desired, with an increase in Niter or
Nruns. Given the number of nodes and the number of
threads per node in a distributed computing environment,
the table entries can be used to find the appropriate values
for Niter and Nruns to use. Similarly, given a desired value of
the metric, the table allows us to scope out the computing
resources needed to achieve that value.
Since the computing clusters available to us could

easily accommodate the largest value of Nruns in Table I,
we simply choose Nruns ¼ 12 and look for the largest
Niter needed to achieve a sufficiently low value of
MðNruns; NiterÞ. Following this approach, we see that
setting Niter ¼ 500 for SNR ≥ 12 already gives a low value
of ≤0.1 for the first and ≈0.1 for the 99th percentile,
respectively, of the tuning metric distribution. Thus, we do
not need to move further down the table in this case. For
SNR ≤ 10, on the other hand, one needs Niter ¼ 1500 to
meet similar conditions. Thus, in summary, we choose

FIG. 4. Scatterplots of the coherent search statistic found by
PSO, ρ0cohðNruns; NiterÞ, and the coherent fitness value at the true

signal parameters, ρð0Þcoh, for an SNR ¼ 9 source at the L4 location.
Each subplot corresponds to the combination of Niter and Nruns
stated in its title as (SNR, Niter, Nruns), and shows the values of

ρ0cohðNruns; NiterÞ and ρð0Þcoh for 120 data realizations. Points (black)
below the diagonal indicate instances in which PSO failed to
converge to the global maximum of the coherent fitness function.
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Nruns ¼ 12, Niter ¼ 500, and Nruns ¼ 12, Niter ¼ 1500 for
the analysis of data containing SNR ≥ 12 and SNR ≤ 10
signals, respectively.
When analyzing real data, one would need to fix a target

minimum SNR at which good performance of PSO is
required and proceed in the same manner as above to tune
Nruns and Niter. The training data for tuning in this case
could either be simulated or derived from a section of real
data that is set aside for this purpose. There would be a
single set of Niter and Nruns values when searching real data
and a single detection threshold derived from the analysis
of H0 data with these parameters. However, for simulated
data, where the signal SNR is known a priori, we can
reduce computational costs by using Niter and Nruns tuned
to different target minimum SNRs. For example, we can use
the values tuned for a target minimum SNR ¼ 12 instead of
SNR ¼ 9 to analyze data with SNR ¼ 15 signals since this
reduces the computational burden of the simulation without
significantly affecting detection performance.
Relating the tuned value of Niter for SNR ¼ 9 to the

distribution of runtimes presented in Fig. 3, the runtime of
BINARIES for four-detector data on a KNL cluster can be
expected to take ≈40% longer than real-time. If the target
minimum SNR is increased to ≳12, for which Niter ¼ 500,
BINARIES can analyze data at almost twice real-time speed
with a 60 min data segment processed in ≈27 min on the
average.

B. Detection performance

Figures 5–8 show the estimated distributions of the
coherent search statistic found by PSO, ρ0coh, under the
H0 and H1 hypotheses for different SNR values. The H0

distributions in each figure are obtained using the values of
Niter and Nruns tuned, as described above, for the respective
SNR. The distribution underH1 is shown separately for the
two source locations, L4 and L5.

A comparison of the H1 histograms at a given SNR
shows that the distribution of the coherent search statistic
is principally governed by SNR. However, the condition
number of the antenna pattern matrix, Fðα; δ;ψÞ, at the
source location also has an effect. This is indicated by
performing a two-sample Kolmogorov-Smirnov (KS) test
of the null hypotheses that the two H1 samples are drawn
from the same probability distribution. The p-value of the
test—the probability of obtaining the observed KS statistic
value under the null hypothesis—is listed in the captions
of the figures. It suggests a clear difference between the
probability distributions at SNR ≤ 10 but a statistically
insignificant difference for SNR≳ 12. It is interesting to

TABLE I. The PSO tuning metricMðNruns; NiterÞ for a discrete set of SNR values. For each Nruns and Niter combination, there are four
rows corresponding (from top to bottom) to SNR ¼ 9, 10, 12 and 15, respectively. In each row, the numbers from left to right are the
1st and the 99th percentiles of the sample distribution of MðNruns; NiterÞ, respectively.
Niter Nruns ¼ 2 Nruns ¼ 4 Nruns ¼ 6 Nruns ¼ 8 Nruns ¼ 10 Nruns ¼ 12

500 0.633 0.783 0.517 0.667 0.433 0.583 0.383 0.525 0.342 0.483 0.317 0.450
0.633 0.792 0.483 0.650 0.408 0.558 0.358 0.500 0.325 0.450 0.300 0.417
0.325 0.500 0.183 0.325 0.125 0.242 0.092 0.192 0.075 0.167 0.067 0.142
0.042 0.150 0 0.058 0 0.033 0 0.025 0 0.017 0 0.017

1000 0.450 0.608 0.308 0.467 0.233 0.375 0.192 0.317 0.167 0.275 0.142 0.250
0.425 0.583 0.292 0.433 0.233 0.358 0.200 0.317 0.183 0.283 0.167 0.258
0.100 0.217 0.033 0.117 0.017 0.083 0.008 0.067 0.008 0.058 0.008 0.050
0 0.033 0 0.008 0 0.008 0 0 0 0 0 0

1500 0.333 0.492 0.192 0.333 0.133 0.250 0.092 0.208 0.075 0.175 0.058 0.150
0.308 0.467 0.192 0.317 0.133 0.250 0.108 0.208 0.092 0.183 0.083 0.167
0.042 0.133 0.008 0.067 0.008 0.042 0.008 0.033 0.008 0.025 0.008 0.025
0 0.017 0 0 0 0 0 0 0 0 0 0

FIG. 5. Histograms of the coherent search statistic found by
PSO, ρ0cohð12; 1500Þ, under the (black curve) H0 and (red and
green curves) H1 hypotheses for SNR ¼ 9. Under H1, the
histograms corresponding to the source locations (red) L4 and
(green) L5 are shown separately. Also shown (solid blue curve) is
the best-fit lognormal probability density function for the H0

distribution. The dashed line at ρ0coh ¼ 9.5 marks the detection
threshold obtained from the best-fit for a false alarm rate of 1
event per year. The p-value of the two-sample KS test between
theH1 samples is 7.2 × 10−5. Retaining only ρ0coh > 9.0 results in
a p-value of 0.33.
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note that for the shorter data length (64 sec) used in NMW,
the two distributions did not differ significantly even for
SNR ¼ 9.
The two-sample KS test was also carried out between the

H1 samples after excluding values of ρ0coh < 9.0. Under this
restriction, the p-value in all cases indicates that there is no
statistically significant difference between the two samples.
All of the difference clearly arises from the distribution of
ρ0coh at low values. Since the cutoff value of 9.0 is below any
reasonable detection threshold (see below), this implies that
the distribution of ρ0coh values for detected signals will
always be observed to be independent of GW source
location (for at least SNR ≥ 9.0 tested here).
The distribution of ρ0coh under H0 is observed to change

for different values of Niter, with a shift toward lower values
for smaller Niter. This can be understood qualitatively from

the fact that, unlike the case of H1, the fitness function
under H0 has many local maxima dispersed throughout the
search space with comparable heights. The likelihood of
PSO missing the global maximum is, therefore, higher in
this case as its exploration ability, which is controlled by
Niter, is reduced. Consequently, lower ρ0coh values are found
by PSO under H0 for lower Niter. This effect is quite mild,
however, leading to only a marginal change in the detection
threshold.
For a fiducial false alarm rate (FAR) of 1 false event per

year, the false alarm probability per 60 min data segment is
1.14 × 10−4 if there is no overlap between consecutive
segments. The corresponding detection threshold, obtained
by fitting a log-normal distribution to the H0 histograms,
for Niter ¼ 1500 and Nruns ¼ 12, is η ¼ 9.5. The same
procedure for the H0 histogram under Niter ¼ 500 and
Nruns ¼ 12 yields a slightly lower threshold of 9.3.
Table II shows detection probabilities for different

combinations of SNR and sky locations under the
conservative choice of using the higher detection threshold.
The effect of antenna pattern condition number is clear: for
low SNR values, the detection probability at L5 is markedly
worse than at L4. The effect of the condition number and,
consequently, the discrepancy in detection probability
dissipates for SNR≳ 12.

TABLE II. Detection probabilities for all combinations of SNR
and sky locations at a detection threshold of η ¼ 9.5 correspond-
ing to a FAR of ≈1 false event per year. Also listed (third column)
is the loss in detection probability, LDP, defined in Eq. (19). The
last two columns separate the contributions to LDP by the two sky
locations used for generating data realizations.

SNR L4 L5 LDP LDP=L4 LDP=L5

9 0.504 0.372 11.798% 0.000% 21.429%
10 0.820 0.720 4.324% 0.538% 8.152%
12 0.992 0.972 1.613% 0.806% 2.419%
15 1.0 1.0 0.000% 0.000% 0.000%

FIG. 6. Same as Fig. 5 except that SNR ¼ 10 and the p-value of
the two-sample KS test is 0.02. Retaining only ρ0coh > 9.0 results
in a p-value of 0.83.

FIG. 7. Histograms of the coherent search statistic found by
PSO, ρ0cohð12; 500Þ, under the (black curve) H0 and (red and
green curves) H1 hypotheses for SNR ¼ 12. Under H1, the
histograms corresponding to the source locations (red) L4 and
(green) L5 are shown separately. Also shown (solid blue curve) is
the best-fit lognormal probability density function for the H0

distribution. The dashed line at ρ0coh ¼ 9.3 marks the detection
threshold obtained from the best-fit for a false alarm rate of 1
event per year. The p-value of the two-sample KS test between
the H1 samples is 0.23. Retaining only ρ0coh > 9.0 results in a
p-value of 0.48.

FIG. 8. Same as Fig. 7 except that SNR ¼ 15 and the p-value of
the two-sample KS test is 0.52. There is no change in the p-value
when retaining only ρ0coh > 9.0 because all the values satisfy this
cutoff.
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The necessarily finite and typically small sample size
used for tuning PSO means that the true value of the metric
MðNruns; NiterÞ need not be zero even when its estimated
value from the sample is. For a sufficiently large number of
trials, therefore, there will always be a finite fraction in
which the coherent search statistic value found by PSO,
ρ0coh, drops below the coherent fitness at the true location,

ρð0Þcoh. However, while each such dropout is an instance of
failure to converge to the global maximum of the coherent
fitness function, what matters is the loss in the detection
probability that this entails. Detection probability is

reduced by a dropout event only if ρð0Þcoh exceeds the
detection threshold but ρ0coh does not. To measure this
effect, we define the loss in detection probability,

LDP ¼ Pðρ0coh ≤ ηjρð0Þcoh ≥ ηÞ; ð19Þ

where PðAjBÞ denotes the conditional probability of event
A given event B, and η is the detection threshold. An
examination of the estimated LDP values shown in Table II
shows that it decreases quite rapidly as SNR increases,
becoming too small to measure with our simulations for
SNR ¼ 15. As with the detection probability, we have also
shown LDP for each location separately, and it is evident
that again the condition number has a major effect with L5
showing a significantly higher loss in detection probability.
In fact, the loss in detection probability at SNR ¼ 9 arises
entirely from the L5 data realizations.
A feature of the distribution of the coherent search

statistic under H1 that may appear surprising at first is the
appearance of a bump, seen as an excess in histogram
counts, at low values. This excess is reduced (see Fig. 6)
and ultimately disappears (cf. Figs. 7 and 8) as the signal
SNR goes up. The appearance of this bump is simply due to
the coherent search statistic being the global maximum of
the coherent fitness function, not its value at a fixed
location. The presence of a signal only affects the distri-
bution of coherent fitness function values in a small region
of the full parameter space, the distribution elsewhere being
close to that for H0 data. For a sufficiently weak signal, the
probability that the global maximum escapes from the
small region affected by the signal is higher. When this
happens, the value of the coherent search statistic is drawn
from its distribution under H0. For a strong signal, on the
other hand, the global maximum stays confined to the
region close to the signal and its governing distribution is
that under H1. In other words, the distribution of the
coherent search statistic in the presence of a signal is
actually a mixture of two distributions with the probability
of sampling from either depending on the strength of the
signal. A counterpart of this effect is also seen in Fig. 4,
where a leveling off is observed in the values of ρ0coh at low
values of ρð0Þcoh.

C. Estimation performance

The parameter estimation performance of BINARIES is
characterized here for SNR ∈ f12; 15g for which the
corresponding detection probabilities (cf. Table II) are near
unity. Figs. 9 and 10 show the distribution of the estimated

FIG. 9. Estimated sky location of a SNR ¼ 12 source at (top)
L4 and (bottom) L5 locations. In both plots the true location of
the source is shown by a star, and estimated locations from H1

data realizations are shown by red circles. In the bottom plot, the
square shows the antipode of the true location.

FIG. 10. Same as Fig. 9 but for SNR ¼ 15.
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sky locations at these SNR values. They follow the same
pattern as seen in NMW for shorter signals: while the
estimated locations of a source at L4 are fairly well-
clustered around the true value, two distinct clusters appear
for a source at L5. The secondary cluster of estimated
locations in the latter case appears close to the point that is
antipodal to the true location. This is a clear manifestation
of the condition number of the antenna pattern matrix
Fðα; δ;ψÞ, which is worse at L5 than L4, and consistent

with its effect on detection probabilities at lower SNR
values. While its deleterious effect on detection probability
disappears for SNR ∈ f12; 15g, it remains in force for sky
localization error.
It is important to emphasize here that, as was determined

during the tuning process, PSO almost always converges to
the global maximum for SNR ∈ f12; 15g. This indicates
strongly that the appearance of the secondary cluster of
locations is not due to a failure in convergence to the global
maximum but its actual jump to that location due to the
effect of noise. The exact mechanism by which the
condition number creates a secondary location is yet to
be elucidated and is left to future work.
Figures 11 and 12 show the distribution of estimated chirp

time parameters corresponding to sources at L4 and L5.

FIG. 12. Same as Fig. 11 except SNR ¼ 15.FIG. 11. Estimated chirp times for a SNR ¼ 12 source at (top)
L4 and (bottom) L5 locations. In both plots the true values of the
chirp times are marked by a star, and estimated values from H1

data realizations are shown by black dots. The contours shown
include (blue) 68% and (red) 95% of the total probability of a
kernel density estimate, obtained using a Gaussian kernel
with a bandwidth of 2, of the 2-dimensional probability density
function.
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The condition number of the antenna pattern matrix does not
have any noticeable effect on these distributions. This is
consistent with the known result, from CRLB analysis, that
errors in sky location have low correlation with errors in the
chirp times [15].

VI. DISCUSSION

We have presented performance results for a new code,
called BINARIES, that implements a PSO-based FCAS
search. Using this code we were able to verify that the
PSO-based search, which had previously been demon-
strated for few minute long data segments in WM [22] and
NMW [23], can be extended to the analysis of the longest
data length needed for CBC searches.
The BINARIES code differs significantly from the code

used previously in NMW: (i) A new and more efficient
numerical implementation of the mathematical formalism
underlying FCAS search is used, and (ii) a third paralle-
lization layer is introduced using a multi-threaded numeri-
cal algorithms library. Together, these changes result in a
factor of ≈22 enhancement in the speed of the code.
Simulated 60 min long data realizations from a network

of four second-generation detectors (HLVK) at their
respective design sensitivities were generated for different
source locations and SNR values. The mass parameters of
the source were chosen to be (1.5,1.5) M⊙, which is
representative of long duration CBC signals. Depending
on the target minimum SNR, the runtime of BINARIES

ranges from 40% slower than real time to about twice as
fast. For the latter, it is possible to detect SNR≳ 12 signals
with a detection probability of nearly unity at a FAR of ≈1
false event per year. This is the first demonstration that the
computational barrier confronting an always-on FCAS
search, which promises substantially better sensitivity than
semicoherent searches, is not insurmountable at astrophysi-
cally relevant signal strengths.
Analysis of H0 (noise-only) data shows that SNR ¼ 9

falls below the detection threshold required by the FAR
chosen in this paper. This could be an intrinsic feature of a
four detector network or the result of PSO failing to
converge often enough to the global maximum of the
coherent fitness function. For the current choice of PSO
variant, a realistic signal strength that allows confident
detections is SNR ≈ 10 for which the detection probability
is ≳70%.
It should be emphasized here that the network SNR

values above correspond to a four-detector network. In the
simple case where a signal has equal single-detector SNR
across a network, an SNR ¼ 10 corresponds to a two-
detector SNR ¼ ð10= ffiffiffi

4
p Þ × ffiffiffi

2
p ¼ 7.07, which is below

the network SNR of events reported in current LIGO-only
semicoherent searches. Moreover, the detection probability
for a given SNR and number of detectors also depends on
the mass range of the search. In NMW, where a high mass
binary with a total mass of 29 M⊙ was used as an example,
a detection probability of ≈70%, at a false alarm rate of 1
false event per year, was achieved for a lower four-
detector SNR ¼ 9.
Our study of sky localization error highlights the

important effect of the condition number of the antenna
pattern matrix, which measures the ill-posedness of the GW
network analysis problem arising from the relative orien-
tations of detectors. It was found that the error region on the
sky can split into two widely separated areas for a source
location having a high condition number. The detection
probability for such a source is also reduced although this is
a significant effect only for SNR≲ 10. The loss in detection
probability, caused by the failure of PSO to converge to the
global maximum, is consistently higher for the source
location having a higher condition number. The above
results suggest that incorporating some form of regulari-
zation [34–36] in the derivation of the coherent search
statistic for CBC signals is important for improving sky
localization and detection sensitivity.
The number of parallelization layers used in BINARIES

can be increased by offloading the bulk of the computations
involved in fitness evaluation, such as the inner product of
arrays in Eq. (16), to graphics processing units (GPUs).
Given that a larger number of MKL threads leads to a
significantly faster processing speed, the Oð103Þ threads
available on GPUs promise to provide an even greater
improvement. This investigation is currently in progress.
While BINARIES has been applied to simulated data in

this paper, our eventual goal is to apply it to O1, O2, and
future open data. This requires embedding BINARIES in an
end-to-end search pipeline that includes data conditioning,
glitch vetoes, postprocessing, and background rate analy-
sis. Results from the analysis of real data following the
completion of the full pipeline will be reported in future
papers.
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