
 

Confining strings, infinite statistics, and integrability

John C. Donahue and Sergei Dubovsky
Center for Cosmology and Particle Physics, Department of Physics, New York University,

New York, New York 10003, USA

(Received 2 August 2019; accepted 20 March 2020; published 21 April 2020)

We study confining strings in massive adjoint two-dimensional chromodynamics. Off shell, as a
consequence of zigzag formation, the resulting world sheet theory provides a nontrivial dynamical
realization of infinite quon statistics. Taking the high energy limit we identify a remarkably simple and
novel integrable relativistic N-body system. Its symmetry algebra contains an additional “shadow”
Poincaré subalgebra. This model describes the N-particle subsector of a TT̄-deformed massless fermion.
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I. INTRODUCTION

SUðNcÞ quantum chromodynamics (QCD) turns into a
free string theory in the planar (Nc → ∞) limit [1]. For its
maximally supersymmetric cousin the corresponding string
theory has been identified as type IIB critical superstrings
on AdS5 × S5 [2]. Moreover, the corresponding world sheet
theory is integrable and has been solved, resulting in the
exact spectrum of planar N ¼ 4 Yang-Mills (YM) (see [3]
for an overview).
It has proven excruciatingly difficult to reproduce this

success for planar nonsupersymmetric gluodynamics. The
corresponding string theory has not even been identified
yet, despite a rich 45 year-long history of study. One may
suspect at first that the question is not sufficiently well
posed. However, a sharp version of the problem can be
formulated as follows [4]. Consider a background of YM
theory with a single infinitely long confining string (flux
tube). In the strict planar limit the string excitations
decouple from bulk degrees of freedom and give rise to
a microscopic two-dimensional model. The challenge is to
build this world sheet theory.
With this sharp formulation at hand, one immediately

understands the source of the difficulties. Namely, in the
absence of additional massless degrees of freedom on the
world sheet, the flux tube theory in D ¼ 4-dimensional
space-time has irreducible particle production [5,6], asso-
ciated with the Polchinski–Strominger term [7]. Lattice
YM simulations [8–13] (see [14,15] for reviews) rule out
the presence of additional massless excitations on the world
sheet, thus excluding integrability.

Note that at D ¼ 3 integrability does not require addi-
tional degrees of freedom [4]. However, a closer look at the
lattice data shows that the world sheet theory is not
integrable in D ¼ 3 YM either [16–18].
Hence, unlike for the N ¼ 4 case, in the planar limit of

nonsupersymmetric YM we are left with an interacting
nonintegrable two-dimensional model. To make life harder
(and more interesting), at high energies this model exhibits
characteristically gravitational behavior instead of that of a
conventional quantum field theory [19,20].
This leaves two directions for further progress. First, as

gluodynamics does not have any relevant deformations, the
world sheet theory is likely isolated. This turns it into a
natural target for the modern S-matrix bootstrap [21,22],
following the success of the conformal bootstrap in
describing another isolated theory—the 3D Ising model
[23]. A first promising step in this direction has been made
very recently [24].
The other possibility is to identify a nearby integrable

model, and to obtain a description of the world sheet
dynamics by performing a systematic perturbative expan-
sion around this integrable theory. The quality of the latter
expansion will then provide a natural measure of the
proximity of the integrable mode to the full world sheet
theory.
One may object that there is no a priori reason for a

controlled integrable approximation to exist. However, the
analysis of lattice data provides a number of tantalizing
hints supporting this program. This motivated a proposal
for an integrable approximation—the axionic string ansatz
(ASA)—both at D ¼ 3 and D ¼ 4 [4,17,25,26].
The successes of the ASA have a clear physical origin

[20,27]. At low energies the world sheet degrees of freedom
are translational Goldstone bosons of the nonlinearly
realized Poincaré symmetry [5,28–32]. Their low energy
dynamics is well approximated by a classically integrable
Nambu-Goto action. On the other hand, at high energies
world sheet degrees of freedom correspond to partons of
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perturbative QCD (gluons in the YM case). Asymptotic
freedom then implies that hard particle production is
suppressed also at high energies.
This reasoning suggests that the violation of world sheet

integrability may be a transient phenomenon dominated by
intermediate energies, E ∼ ΛQCD. A combination of low
and high energy expansions may then allow one to describe
the world sheet dynamics at all scales.
As argued in [20], a natural playground to test these ideas

is provided by adjoint D ¼ 2 QCD. As the world sheet
theory lives in two dimensions for any D, general lessons
from the study of the world sheet should be universally
applicable.
The goal of the present paper is to report a solution to the

very first step in this program—the identification of an
integrable approximation at D ¼ 2.

II. HAMILTONIAN FORMALISM AND
INFINITE STATISTICS

Massive adjoint QCD2 is defined by the following
action:

S ¼
Z

dτdσTr

�
−1
2g2

FμνFμν þ ψ̄ði=∇ðadÞ −mÞψ
�
; ð1Þ

where ψ is a Majorana fermion in the adjoint representation
of the SUðNcÞ gauge group.1 We will mostly consider the
heavy mass regime

m2 ≫ g2Nc; ð2Þ
where one expects a straightforward perturbative treatment
to apply. The spectrum of this model was studied exten-
sively in early 1990s [34–36] (see [37] for a recent update).
A study of the world sheet dynamics has been initiated in
[20], we will adopt the same procedure here.
Following [38,39], we put the theory on a finite interval,

σ ∈ ð−L; LÞ with an infinitely heavy fundamental quark-
antiquark pairQ, Q̄ placed at the end points. Eventually, we
take the infinite volume limit L → ∞. Then the world sheet
theory describes dynamics of states created by gauge
invariant single-trace operators of the form

Ow ¼ Q̄
�
Pei

R
C
dσAσψðσ1Þ…ψðσNÞ

�
Q: ð3Þ

Here the integration path C starts at σ ¼ −L and ends at
σ ¼ L, but does not have to be straight. Turning points are
allowed at the locations σi of the adjoint quarks insertions
because the Polyakov zigzag symmetry [40] is broken in
the presence of the adjoint matter. Physically, one may
think that the world sheet theory describes the interior of a
heavy quark QQ̄ meson.

After fixing the spatial gauge, Aσ ¼ 0, one can integrate
out the remaining nondynamical component Aτ of the
gauge field. The resulting Hamiltonian acts in the extended
Hilbert space

Hex ¼ V ⊗ Hf ⊗ V̄; ð4Þ

where Hf is the free fermion Fock space, and VðV̄Þ are
(anti)fundamental representations of the color group. These
additional factors represent color degrees of freedom of the
end point quarks QðQ̄Þ. As a consequence of confinement,
the physical Hilbert space Hph is the subspace of Hex

annihilated by all color charges,

�
T a þ T̄ a þ

Z
dσρa

�
Hph ¼ 0: ð5Þ

Here ρa is the color density of adjoint fermions, and T aðT̄ aÞ
are (anti)fundamental generators representing color
charges of QðQ̄Þ.
To describe the physical states it is convenient to adopt

operator notations following from the identification

V ⊗ V̄ ¼ LðVÞ; ð6Þ

where LðVÞ is the space of linear operators acting on V.
Then a general state in Hex takes the form

jψi ¼
X
i

jψ iiF ⊗ Mi; ð7Þ

with jψ iiF ∈ Hf andMi ∈ LðVÞ. The physical world sheet
Hilbert spaceHw is generated by color singlets of the form

Hw ¼ fψa1 � � �ψaN j0iF ⊗ Ta1 � � �TaNg: ð8Þ

Here Ta’s are fundamental SUðNcÞ generators considered
as elements of LðVÞ. These are not to be confused with the
quantum operators T a’s in (5). Note that Hph contains
additional multitrace color singlet states such as the
mesonic state ψaψaj0iF ⊗ 1. Multitrace states decouple
from the world sheet in the planar limit.
In the momentum representation the physical world

sheet states can be written as linear combinations of

jk1;…; kNi ¼
1ffiffiffi
2

p
�

2

Nc

�Nþ1
2
YN
i¼1

bai†ki
j0iF ⊗

YN
i¼1

Tai ; ð9Þ

where ba†k are fermionic creation operators. For many
purposes it is convenient to also use the coordinate
representation. The corresponding basis is

jσ1;…; σNi ¼
Z YN

i¼1

dkiffiffiffiffiffiffi
2π

p e−ikiσi jk1;…; kNi: ð10Þ1A study of different fermion representations can be found
in, e.g., [33].
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In the heavy mass regime (2) eigenstates of the world sheet
Hamiltonian are well characterized by their parton number.
In particular, one finds the world sheet vacuum j0i ¼
j0iF ⊗ 1 and one-particle excitations jki ¼

ffiffi
2

p
Nc

ba†k ⊗ Ta,
dubbed “free quarks” in [39].
As emphasized in [20], the world sheet multiparticle

states (9) and (10) do not describe conventional identical
particles. For instance, the configuration space of two-
particle states (10) is the whole plane instead of the half-
plane, as jσ1; σ2i ≠ jσ2; σ1i. Equivalently, in the planar
limit the exchange term is missing in multiparticle inner
products,

hσ0N;…; σ01jσ1;…; σNi ¼
YN
i¼1

δðσi − σ0iÞ: ð11Þ

This is the inner product for a system of N distinguishable
particles, indicating that the world sheet theory provides a
nontrivial dynamical realization of infinite quon statistics
(see, e.g., [41]). It also serves as an interesting counterex-
ample to the common lore [42] that the conventional Fock
space is the only possible arena for Lorentz invariant
quantum dynamics.
Up to now our treatment of the world sheet theory was

mostly kinematical. To study dynamics and to implement
the program outlined in the Introduction we need to
evaluate how the world sheet Hamiltonian acts on the
physical spaceHw and to learn how to develop perturbation
theory in this unconventional Hilbert space. We leave this
task for a separate publication [43] and will discuss here
only the very first step—identification of an unperturbed
Hamiltonian H.
Let us first inspect two-particle matrix elements of the

full world sheet Hamiltonian Hw. In the c.o.m. frame one
finds [20]

hk2; k1jHwjk;−ki ¼ δðk1 þ k2Þ
�
δðk1 − kÞ2ωk −

g2Nc

4π
V
�
:

Here ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
and

V ¼ Uðk; k1Þ
P

ðk − k1Þ2
þ iπδ0ðk − k1Þ −

m2

4ω2
kω

2
k1

; ð12Þ

where Uðk; k1Þ is a smooth function of momenta. It is equal
to unity for k; k1 ≪ m, or k; k1 ≫ m and also in the forward
limit k ¼ k1. P stands for the principal value.
Even though V is multiplied by the ’t Hooft coupling, it

cannot be entirely treated as a perturbation due to the
presence of forward singularities in (12). The physical
meaning of these singularities is transparent in position
space. Setting Uðk; k1Þ ¼ 1, dropping the last nonsingular
term in (12) and switching to position space we arrive at

V0ðσÞ ¼ σ þ jσj: ð13Þ

We see that the conventional statistics gets restored on-
shell—the growth of the potential (13) at σ ¼ þ∞ reduces
the number of scattering states by a factor of 2, restoring the
agreement with state counting for conventional identical
particles.
It is straightforward to check that the story repeats

for multiparticle states. Namely, all terms in the full
Hamiltonian which grow at spatial infinity are diagonal
in the particle number and combine into the following
potential in the N-particle sector:

VN ¼ g2Nc

4π

XN−1

i¼1

V0ðσi;iþ1Þ; ð14Þ

where σi;iþ1 ¼ σi − σiþ1. As a result, in the asymptotic
regions τ → �∞ one only finds configurations with σ1 ≤
σ2 � � � ≤ σN and the conventional statistics gets restored
on shell for any number of colliding particles. Zigzags
responsible for the emergence of the off-shell infinite
statistics cost energy and do not survive on shell.

III. INTEGRABLE WORLD SHEET MECHANICS

These results suggest the following choice of the
unperturbed Hamiltonian in the world sheet perturbation
theory:

HN;m ¼
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
i þm2

q
þVN; ð15Þ

where the subscript N indicates that (15) is a restriction of
the unperturbed Hamiltonian H to the N-particle sector. In
addition to the conventional free piece, HN;m also incor-
porates the leading forward singularities, which determine
the asymptotic growth of the potential. A similar leading
order Hamiltonian was also obtained in the Abelian case (at
N ¼ 2) based on ℏ counting [38].
To see whether (15) is a good choice it is natural to check

at least the following two conditions:
(i) Is (15) Poincaré invariant?
(ii) Is (15) integrable?
We restrict to the classical analysis of (15). Even though

the procedure which lead us to (15) was not manifestly
Lorentz covariant, the final result is. Indeed, piecewise the
potential (14) is either free or describes a constant electric
field acting on some of the particles. Both options corre-
spond to Lorentz invariant dynamics in two dimensions.
More precisely, a single particle moving in a constant
electric field is invariant under the centrally extended
Poincaré group [44]. However, the central charge vanishes
for (15) after contributions from all particles are added up.
The corresponding boost generator is

J ¼
XN
i¼1

σi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
i þm2

q
þ 1

2

XN−1

i¼1

ðσi þ σiþ1ÞV0ðσi;iþ1Þ: ð16Þ
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The Poisson brackets between H, J and the total momen-
tum P satisfy the ISOð1; 1Þ Poincaré algebra

fH;Pg ¼ 0; fJ; Pg ¼ H; fJ;Hg ¼ P: ð17Þ

One might expect then that the system (15) is also
integrable, i.e., no momentum transfer occurs in multi-
particle collisions. Indeed, as a consequence of crossing
symmetry, momentum transfer implies particle production.
The latter is absent for H. In accord with this argument,
in the relativistic two-dimensional2 N-body systems of
[48,49] integrability automatically follows from Poincaré
invariance.
However, a straightforward Mathematica simulation of

(15) shows that the system is not integrable. Most likely
this is related to difficulties with preserving the Poincaré
algebra (17) at the quantum level in very similar models
[50,51]. We leave it to [43] to study whether this may be
resolved by including subleading forward singularities in
H. Instead, here we observe that the high energy limit of
(15) given by

HN ≡HN;0 ¼
XN
i¼1

jpij þ
XN−1

i¼1

ðσi;iþ1 þ jσi;iþ1jÞ ð18Þ

does give rise to a Poincaré invariant integrable N-body
model. From now on we set the ’t Hooft coupling to unity,
g2Nc ¼ 4π. Note that this limit does not contradict (2), as

p2 ≫ m2 ≫ g2Nc. On the other hand, (18) does not
actually rely on (2)—this Hamiltonian describes the high
energy world sheet dynamics independently of whether (2)
holds or not.
Integrability of (18) is the main observation of this paper.

It confirms that (18) does provide a good starting point for
the high energy expansion on the world sheet. The fastest
way to check integrability is to solve the equations of
motion,

_σi ¼ si; _pi ¼ si−1;i − si;iþ1: ð19Þ

Here si ¼ signpi, s0;1 ¼ sN;Nþ1 ¼ −1 and sj;jþ1 ¼
signσj;jþ1 for 1 ≤ j < N. A general solution of (19) is a
piecewise linear function of time. Using Mathematica3 it
does not take long to convince oneself that the initial and
final asymptotic sets of momenta are always the same. As
an illustration, in Fig. 1 we plot a nontrivial five-particle
collision and a self-repeating three-particle solution of the
integrable periodic version of the model obtained by
setting s0;1 ¼ sN;Nþ1 ¼ signðσN − σ1 − 2πÞ.
We will present a detailed study of the resulting

integrable structure in [43] and restrict here to just a few
remarks. Given the piecewise linear time dependence of the
solutions, it is natural to look for conserved topological
invariants TðSÞ and also for stepwise linear conserved
charges of the form

Iðσ; pÞ ¼ AiðSÞσi þ BiðSÞpi; ð20Þ

FIG. 1. Time evolution for a sample five-particle scattering (left) and of a three-particle configuration in the periodic case (right).

2Recall that at D > 2 the “no interaction theorem” [45–47]
excludes interacting finite-dimensional relativistic Hamiltonian
systems.

3An exactMathematica solver and the resulting movies can be
downloaded at https://jcdonahue.net/research.
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where S ¼ ðs0;1; s1;…; sn; sn;nþ1Þ is the set of all signs. For
instance, using (19) it is straightforward to check that

T2 ¼
1

2

XN
i¼1

siðsi−1;i þ si;iþ1Þ ð21Þ

stays constant. To see the physical meaning of T2 let us
evaluate it in the asymptotic regions, where all si−1;i ¼ −1.
One finds

T2 ¼ NL − NR;

where NLðRÞ are the numbers of left(right) movers in the
asymptotic regions. It is natural to think of S as a sequence
of classical spin variables. Interestingly, T2 turns then into
the Ising Hamiltonian.
T2 also provides a convenient starting point to construct

a nontopological charge by looking for FT2
satisfying

fFT2
; Hg ¼ T2. Using (19) it is straightforward to con-

struct FT2
in the nonperiodic case,

FT2
¼
XN
k¼1

�
k−

1

2

�����pkjþ
XN−1

k¼1

kjσk;kþ1j−N
�
σNþ

HN

2

�
:

FT2
itself is only conserved in the sector with NL ¼ NR.

However, it is possible to build a new conserved quantity in
all sectors by acting on FT2

with the boost generator.
Namely, let us define

P̃ ¼ T2fJ; FT2
g − NFT2

; H̃ ¼ T2FT2
− NfJ; FT2

g:

Then the Poincaré algebra (17) gets enlarged to

fH̃;P̃g¼0; fJ;P̃g¼ H̃; fJ;H̃g¼ P̃

fH;H̃g¼fP̃;Pg¼N2−T2
2; fP;H̃g¼fH;P̃g¼0: ð22Þ

It was suggested in [20] that in a putative gravitational
description of the world sheet the zigzags should corre-
spond to black holes and the exotic off-shell statistics to
black hole complementarity. In this context it is encour-
aging to find the “shadow” Poincaré subalgebra ðH̃; P̃; JÞ.
It will be interesting to check whether the shadow charges
ðH̃; P̃Þ may be identified with the Hamiltonian and
momentum seen by infalling observers.
Similar techniques also allow one to obtain additional

integrals in involution atN > 2. For instance, forN ¼ 3 the
following translationally invariant combination is con-
served in the NR ¼ 2, NL ¼ 1 sector

I12¼V0ðp1ÞþV0ðσ1;2Þþ
V0ðp2Þ

4
ð3þ s1ðs1;2−1Þþ s1;2Þ:

This establishes Liouville integrability at N¼3. Interes-
tingly, I12 is not a higher order polynomial in momenta, as
typically found using the Lax pair technique in similar
integrable models (such as the Toda chain [52]). We expect
that also at N > 3 the ansatz (20) leads to N − 2 additional
independent charges in involution.

IV. FUTURE DIRECTIONS AND RELATION TO TT̄

The presented results open numerous avenues for future
research. In particular, what about the quantum integrability
of (18)? The following argument indicates that it should
hold. The classical two-particle phase shift following from
(18) is δ ¼ s, which coincides with the exact phase shift of a
known quantum integrablemodel—the TT̄ deformation of a
free massless fermion [19,53–56] (see, e.g., [57,58] for
explicit derivations of the corresponding classical action).
This indicates that there exists a quantization of (18)
resulting in the same phase shift, and that (18) describes
the N-particle subsector of the TT̄ deformed fermion,
similarly to how the Ruijsenaars-Schneider model describes
theN-particle subsector of the sine-Gordon theory [48]. The
appearance of the shadow Poincaré subalgebra in (22)
mirrors the presence of dynamical and world sheet “clocks
and rods” in the gravitational formulation of the TT̄
deformation [59–62]. This relation also suggests that the
infinite quon Hilbert spaceHw may provide a natural arena
for defining off-shell observables in TT̄ deformed theories.
It will be interesting to connect this to the recent construction
of [63]. Finally, this relation indicates that an integrable
relativisticN-body systemdescribed here is actually amodel
of dynamical geometry (gravity), see also [64].
As far as the D ¼ 2 QCD physics goes, it was noticed in

numerical studies of the spectrum that meson mass eigen-
states have definite parton numbers with a very high
accuracy even for small quark masses [34,35]. It was also
observed that the equation for the spectrum becomes
exactly solvable in the high energy limit [36]. Both these
observations should be related to the integrability found
here and it will be useful to make the connection precise.
In addition, it will be very interesting to see which of the

presented results can be generalized to D ¼ 3, 4 and to
connect this approach to other signs of approximate
integrability in QCD, such as [65,66]. It is encouraging
to see that an integrable TT̄-deformed model emerged at
high energies in theD ¼ 2 case, given that according to the
ASA the integrable models appearing at D ¼ 3, 4 are also
TT̄ deformations.
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