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Gravitational wave signals from compact astrophysical sources such as those observed by LIGO and
Virgo require a high-accuracy, theory-based waveform model for the analysis of the recorded signal.
Current inspiral-merger-ringdown models are calibrated only up to moderate mass ratios, thereby limiting
their applicability to signals from high-mass-ratio binary systems. We present EMRISur1dq1e4, a reduced-
order surrogate model for gravitational waveforms of 13 500 M in duration and including several harmonic
modes for nonspinning black hole binary systems with mass ratios varying from 3 to 10000, thus vastly
expanding the parameter range beyond the current models. This surrogate model is trained on waveform
data generated by point-particle black hole perturbation theory (ppBHPT) both for large-mass-ratio and
comparable mass-ratio binaries. We observe that the gravitational waveforms generated through a simple
application of ppBHPT to the comparable mass-ratio cases agree surprisingly well with those from full
numerical relativity after a rescaling of the ppBHPT’s total mass parameter. This observation and the
EMRISur1dq1e4 surrogate model will enable data analysis studies in the high-mass-ratio regime, including
potential intermediate-mass-ratio signals from LIGO/Virgo and extreme-mass-ratio events of interest to the
future space-based observatory LISA.
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I. INTRODUCTION

As the LIGO [1] and Virgo [2] detectors improve their
sensitivity, gravitational wave (GW) detections [3–9] are
becoming routine [10,11]. In the current observing run, for
example, gravitational wave events are now being detected
multiple times a month [12]. Among the most important
sources for these detectors are binary black hole (BBH)
systems, in which two black holes (BHs) radiate energy
through GWs, causing them to inspiral, merge, and finally
settle down into a single black hole througha ringdownphase.
To date, all LIGO/Virgo events show support only for

systems with mass ratios1 q ¼ m1=m2 < 8 [13]. Never-
theless, one should expect to observe larger mass-ratio
systems in the future. For example, the first and second
observing runs [13] have already observed compact objects
over a mass range of 1.3 M⊙–85 M⊙, suggesting combi-
nations involving mass ratios in the range of 10–20 are not
unreasonable for LIGO/Virgo to detect, especially if the
lighter member of the binary is a neutron star or for BBH
systems within the accretion disks of active galactic nuclei
[14]. A third-generation (3G) ground-based detector, like

the Einstein Telescope or Cosmic Explorer [15–17], may be
able to reach up to redshifts beyond 10 andwith an improved
low-frequency sensitivity limit, implying an increased rate
of detection of BBH events with unequal mass ratios
[18,19]. Intermediate-mass-ratio inspirals are also one of
the key target sources of the future LISA space-based
gravitational wave [20–22] detector along with extreme-
mass-ratio systems comprised of a small compact body
(possibly a neutron star or stellar mass black hole) orbiting a
supermassive black hole (at a galactic center) [21–24].
In all of these cases we need accurate and fast-to-evaluate

inspiral-merger-ringdown (IMR) models covering a range
of large- to extreme-mass-ratio systems. Such models are
needed to maximize the science output of data collected by
ground-based detectors or to perform mock data analysis
studies for LISA and 3G detectors.
Successful detection and parameter estimation relies on

being able to compute, from accurate numerical relativity
(NR) simulations, the detailed waveform signal template
for such systems. Because solving the Einstein field
equations for thousands to millions of potential astrophysi-
cal sources is exceedingly challenging, several approximate
waveform models that are much faster to evaluate have
been developed [25–40], including an effective one-body
model [41,42] calibrated up to q ¼ 100 using results from

1We use the convention q ¼ m1=m2, where m1 and m2 are the
masses of the component black holes, with m1 ≥ m2.
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black hole perturbation theory [29]. These models assume
an underlying phenomenology based on physical consid-
erations and calibrate any remaining free parameters to NR
simulations. Within the LISA waveform modeling com-
munity, the computational expense of perturbation theory
waveforms presents a similar bottleneck. By relying on a
combination of approximations, progress has been make
toward the development of “kludge” models which can
generate waveforms quickly while capturing the qualitative
features of extreme-mass-ratio inspiral (EMRI) waveforms
[43,43–46].
Surrogate modeling [47,48] is an alternative approach

that does not assume an underlying phenomenology and
has been applied to a diverse range of problems [29,47–
55,55–62]. These models follow a data-driven learning
strategy, directly using waveform training data collected by
running numerically expensive partial differential equation
(PDE) solvers. Surrogate models are accurate in the region
of parameter space over which they were trained as well as
extremely fast to evaluate. For example, for our model the
underlying solver used to generate a single training wave-
form takes about 2 hr, while its corresponding surrogate can
be evaluated in under a second.
Modeling IMR signal templates for black hole binary

systems with moderate to large mass ratios has remained
challenging. One practical reason is that comparable-mass
binaries, a dominant source for currently operational ground-
based detectors, have received significant attention from the
waveform modeling community. Furthermore, this is a
parameter regime that is particularly challenging for NR as
the small length scales introducedby the smaller BH impose a
very high grid resolution requirement. In the extreme cases,
i.e., when one black hole is supermassive like those at the
center ofmost galaxies, themass ratiomay approachq ∼ 109.
These arewell beyond the scope of NR and are typically well
suited for black hole perturbation theory.
In this paper we present a surrogate model for gravita-

tional waveforms emitted from nonspinning black hole
binary systems that span an extremely wide range of mass
ratios, from q ¼ 3 to q ¼ 10 000. This is the first surrogate
model that covers such a wide range of mass ratios. The
model includes all of the phases of the system’s evolution
starting from a slow inspiral through plunge and ringdown
and includes not only the dominant quadrupole mode, but
also several of the most important higher harmonic modes
that are especially important at a larger mass ratio [63–67].
The model spans 13 500 M in duration, which for a q ¼ 10

and q ¼ 104 system corresponds to 32 and 144 orbital
cycles, respectively. This model can be immediately used in
data analysis studies or phenomenological model-building
efforts that involve large-mass-ratio systems and serves as a
proof of principle that the surrogate modeling methodology
developed for LIGO-type sources remain applicable for
LISA-type sources. In future work we will extend our
model to include spinning BHs and more orbits.

The training data we use to build this reduced-order
surrogate model are generated using the point-particle
black hole perturbation theory (ppBHPT) framework,
i.e., a high-performance Teukolsky equation [68] solver
code (using a point-particle source) in the time domain
[69–72]. While black hole perturbation theory’s domain of
validity is typically taken to be very high-mass-ratio
binaries, it is interesting to note that a simple rescaling
of the mass parameter is sufficient to achieve accurate
agreement with NR waveforms for mass ratios less than 10.
That perturbation theory waveforms agree at all with NR
for small-mass-ratio systems is somewhat remarkable given
that this regime is typically considered beyond perturbation
theory’s domain of validity.

II. BACKGROUND ON PPBHPT

In the context of the large-mass-ratio limit of a black hole
binary system, the system’s dynamics can be described
using Kerr black hole perturbation theory. In this approach,
the smaller black hole is modeled as a point particle with no
internal structure, moving in the space-time of the larger
Kerr black hole. Gravitational radiation is computed by
evolving the perturbations generated by solving the
Teukolsky master equation with a particle source [69–72].
We implemented this ppBHPT approach in two steps.

First, we compute the trajectory taken by the point particle,
and then we use that trajectory to compute the gravitational
wave emission. For the first step, the particle’s motion can
be characterized by three distinct regimes—an initial
adiabatic inspiral, in which the particle follows a sequence
of geodesic orbits, driven by radiative energy and angular
momentum losses computed by solving the frequency-
domain Teukolsky equation [73–76] with an open-source
code GremlinEq [77–79]; a late-stage geodesic plunge into
the horizon; and a transition regime between those two
[71,80–82].2 It should be noted that our trajectory model
does not include the effects of the conservative or second-
order self-force [83], although once these postadiabatic
corrections are known (see, e.g., Refs. [84–86]) they could
be easily incorporated to improve the accuracy of the
inspiral’s phase.
With the trajectory of the perturbing compact body fully

specified, we then solve the inhomogeneous Teukolsky
equation in the time domain while feeding the trajectory
information from the first step into the particle source term
of the equation. In particular, (i) we first rewrite the
Teukolsky equation using compactified hyperboloidal

2For the low-mass-ratio cases, unsurprisingly, the Ori-Thorne
transition trajectory algorithm does not perform very well. This
results in a small jump in the velocities of the point particle as it
exits the adiabatic inspiral and also when it begins the plunge.
This jump results in some small unphysical oscillations in the
waveforms, especially in some of the higher-order modes. We
correct for this by using a “smoothening” procedure.
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coordinates that allow us to extract the gravitational wave-
form directly at null infinity while also solving the issue of
unphysical reflections from the artificial boundary of the
finite computational domain; (ii) we take advantage of
axisymmetry of the background Kerr space-time and
separate the dependence on the azimuthal coordinate ,
thus obtaining a set of (2þ 1)-dimensional PDEs; (iii) we
then recast these equations into a first-order, hyperbolic
PDE system; and in the last step (iv) we implement a two-
step, second-order Lax-Wendroff, time-explicit, finite-dif-
ference numerical evolution scheme. The particle-source
term on the right-hand side of the Teukolsky equation
requires some specialized techniques for such a finite-
difference numerical implementation, and, for technical
reasons, we set the spin of the central black hole (a ¼ 10−6)
sufficiently close to zero. Additional details can be found in
our earlier work [69–72] and the associated references. Our
numerical evolution scheme is implemented using
OpenCL/CUDA-based GPGPU computing which allows
for very long duration and high-accuracy computations
within a reasonable time frame. Numerical errors in the
phase and amplitude are typically on the scale of a small
fraction of a percent [87] (cf. Fig. 1).

III. DESCRIPTION OF THE SURROGATE
MODEL EMRISUR1DQ1E4

Our surrogate model is built using a combination of
methodologies proposed in previous works [47,48,51],
which we briefly summarize here.
We collect our waveform training data by numerically

solving the inhomogeneous Teukolsky equation at 37
different values of the mass ratio q (cf. the bottom panel
of Fig. 1) and for each value of q extract the harmonic
modes, hl;mðt;qÞ, for ðl; mÞ ¼ fð2; f2; 1gÞ; ð3; f3; 2; 1gÞ;
ð4; f4; 3; 2gÞ; ð5; f5; 4; 3gÞg. Following Ref. [51], we enact
a time shift and physical rotation about the z axis such that
(i) each waveform’s time is shifted such that t ¼ 0 occurs at
the peak of the (2,2) mode’s amplitude, jh22j, and (ii) all the
modes’ phases are aligned by performing a frame rotation
about the z axis such that at the start of the waveform ϕ22¼0

and ϕ21 ∈ ð−π; 0�, where ϕ22 and ϕ21 are the phases of the
complex h2;2 and h2;1 modes, respectively. This prepro-
cessing alignment step ensures that all of the training-set
waveforms now depend smoothly on the parameter q.
After alignment we decompose the waveform into data

pieces which are simpler to model. In our case, we choose
thewaveformmodes’ amplitude and phase as our data pieces
and interpolate these onto a time grid ½−13404; 94� M with
Δt ¼ 0.05 M. Following Refs. [47,51], we construct an
empirical interpolant (EI) [88,89] (an interpolant whose
basis and nodes are learned by applying optimization
methods to the training set) for each data piece; there are
11 modes provided by the ppBHPT solver and so we
construct 22 empirical interpolants in total [cf. Eq. (3) of

Ref. [51]]. Note that we modelm > 0modes only since the
negative modes, hl;−m ¼ ð−1Þlhl;m�, are related to the
positive modes due to symmetry of the system under
reflections about the orbital plane.
The empirical interpolant gives a compact representa-

tion for each data piece (and hence the full waveform) in
the training set by permitting the full time series to be
reconstructed through a significantly sparser sampling
defined by the EI nodes. To predict new waveforms not
in the training set, at each EI node we model the data
pieces’ parametric dependence on q with a spline [48].
Two examples are given in Fig. 2, where we show the

training data and model for the (2,2) mode’s amplitude and

FIG. 1. The bottom subfigure depicts each mode’s relative error
by comparing the surrogate model and the training data. The
relative error is computed from Eq. (3) with α ¼ 1 and using the
appropriate mode in place of where it says “h22.” The penultimate
subfigure shows the numerical truncation errors (orange plus)
estimate the quality of the training waveform data by comparing
two numerical simulations of increasing resolution. We also
compared the full surrogate (including all 11 harmonic modes)
and the training data (black circles) and a leave-one-out cross-
validation (LOOCV) trial surrogate and the training data (blue
triangles). The largest LOOCVerror is for q ¼ 150, for which the
hþ polarization’s quadrupole mode is shown in the top subfigure.
The second subfigure reports on the error in the amplitude and
phase for this case; our full surrogate, trained on the entire dataset
of 37 waveforms, is more accurate than the LOOCV diagnostics
shown.

SURROGATE MODEL FOR GRAVITATIONAL WAVE … PHYS. REV. D 101, 081502 (2020)

081502-3



phase at some randomly selected EI node; by fixing the
time these data are a function of q only. Our data-piece
models are built using degree 2 interpolating splines
without any smoothing factors. As shown in Fig. 2 we
find significantly better accuracy when modeling the data
after performing a logarithmic transformation of the inde-
pendent variable. This was first used in Refs. [59,60], and
we suspect this will be important for any model seeking to
cover large ranges of the mass ratio. The remaining ten
subdominant modes follow the same approach.
When evaluating the surrogate waveform, we first

evaluate each surrogate waveform data piece at the
requested value of q and use the EI representation to

reconstruct the surrogate prediction for the waveform as a
dense time series. The full surrogate hS can be written as

hSðt; θ;ϕ; qÞ ¼
X

l;m

hl;mS ðt; qÞ−2Ylmðθ;ϕÞ; ð1Þ

where−2Ylm are the spin (−2) weighted spherical harmonics
and models for each harmonic mode (a single complex
function), hl;mS ðt; qÞ ¼ Al;m

S ðt;qÞ expð−iϕl;m
S ðt; qÞÞ, are

defined in terms of models of the amplitude and phases
(two real functions).
To assess the surrogate model’s error, we perform some

of the tests described in Ref. [90] using a relative L2-type
norm (we compute the norm of the error through a time-
domain overlap integral with a white-noise curve) given
exactly by Eq. (21) in Ref. [90]. This measures the full
waveform Eq. (1) error over the sphere and automatically
includes error contributions from all of the harmonic
modes. In Fig. 1 we (i) check that the surrogate model
can reproduce all 37 ppBHPT waveforms used to train the
surrogate (black circles), (ii) perform a leave-one-out cross-
validation study to assess the model’s ability to predict new
waveforms it was not trained on (blue triangles), and
(iii) compare both errors to the numerical truncation error
of the Teukolsky solver used to produce the training data
(orange plus). We find that the model errors remain
extremely small over the range of mass ratios q ¼ 3 to
104, although a they are a bit larger than the errors in the
training data itself. We remind the reader that these
comparisons are between the model EMRISur1dq1e4
and the output of the Teukolsky solver. Waveforms gen-
erated within the ppBHPT framework are expected to
become more accurate as q becomes large. Next we provide
evidence for using ppBHPTwaveforms even at small mass
ratios.

IV. WAVEFORMS FROM COMPARABLE MASS
BINARIES USING PERTURBATION THEORY

We now proceed to compare the model output with full
NR data. This comparison is naturally restricted to low
mass ratios q ≤ 10. For the high-mass-ratio cases, exten-
sive comparisons with effective one body have been
performed previously in the context of the EMRI data
itself [91], so we do not focus on those cases. Additionally,
there is a lack of models and data for the intermediate
ranges, say, from q ¼ 10 to q ¼ 104, so we leave that
domain open for future comparisons.
One complication that appears when we attempt to

perform a careful comparison with NR is how to set an
overall mass scale for the comparison and, more generally,
identify parameters. Indeed, all dimensioned quantities in
both ppBHPT and NR frameworks are written in terms of a
freely specifiable mass scale. For ppBHPT this scale is
selected to be the background black hole space-time’s mass
parameter, while the sum of the Christodoulou masses of

FIG. 2. At each empirical interpolation node we build surrogate
models for amplitude, A2;2ðqÞ ≈ A2;2

S ðqÞ, and phase ϕ2;2ðqÞ≈
ϕ2;2
S ðqÞ, across the training region. One of the key methodological

improvements pursued here is modeling the training data after
performing a logarithmic transformation (red asterisk) of the
independent variable flnðqÞ; A2;2ðqÞg and flnðqÞ;ϕ2;2ðqÞg.
Here we show the LOOCV model error at q ¼ 100, which leads
to nearly 2 orders of magnitude improvement as compared with
no transformation (blue triangle). Data for the other harmonic
modes and empirical interpolation node data show similar
improvement.
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each black hole is the choice implemented in the NR code
[92,93]. If the background black hole’s mass is set to 1,
naively we might expect the corresponding NR simula-
tion’s total mass (its mass scale) to be 1þ 1=q. This
straightforward identification works well when comparing
post-Newtonian and NR waveforms [92], while only in the
limit of large q does the ppBHPT mass scale seem to
approach the naive one.
To address this uncertainty, we perform a rescaling of our

surrogate model data (t → αt, r → αr) using a single
parameter, α, which, due to coordinate invariance of
general relativity, describes a physically equivalent solu-
tion. This simultaneous rescaling of r and t may also be
interpreted as keeping the coordinates fixed while modi-
fying the total mass parameter as M → M=α. In particular,
we propose modifying the ppBHPT surrogate model
presented above according to the formula

hl;mS;α ðt; qÞ ¼ αhl;mS ðtα; qÞ; ð2Þ

where α is set by minimizing the difference

min
α

R jh22S;αðt; qÞ − h22NRðt; qÞj2dtR jh22NRðt; qÞj2dt
; ð3Þ

between our model and a handful of nonspinning NR
waveform datasets [93–95] for the (2,2) harmonic mode.
We then fit αðνÞ

αðνÞ ¼ 1 − 1.352854ν − 1.223006ν2

þ 8.601968ν3 − 46.74562ν4 ð4Þ

to a polynomial in ν, which is the symmetric mass
ν ¼ q=ð1þ qÞ2. Details of this parameter are presented
in Fig. 3 alongside the error [computed as Eq. (3)] between
the rescaled surrogate model and NR waveforms. As
expected the rescaling parameter approaches unity as the
mass ratio increases, and the error decreases according
to the trend ϵðνÞ ¼ 0.082111353ν þ 0.2698017ν2þ
0.7116969ν3. We conjecture that these fitting formula will
continue to be applicable for values q > 10. To test our
conjecture, we compare our model against a new q ¼ 15
NR simulation performed using the SpEC code with recent
algorithmic improvements [96,97]. We find the (2,2) modes
agree to 6.1 × 10−3, which is consistent with our predicted
accuracy formula’s value of 5.8 × 10−3.
Note that we use precisely the same α parameter to enact

an analogous rescaling for all the higher modes too. Since α
has been optimized using the (2,2) mode data, the
subdominant modes do not achieve relative errors as low
as the (2,2) mode. Nevertheless, these higher modes are still
well modeled, and the overall error, including error

contributions from all modes, is nearly the same as the
(2,2)-mode-only error (cf. Fig. 3).
As a final test, in Fig. 4 we show a noise-weighted

mismatch [cf. Eq. (22) of Ref. [52]] between NR and the
ppBHPT waveforms using all available modes. We con-
tinue to find good agreement and, as expected, as the mass
ratio increases the mismatch decreases. Finally, the mis-
match between our model and the new q ¼ 15 NR
simulation (not shown) is around 0.01 for the range of
total masses considered.

FIG. 3. Waveform difference between numerical relativity and
ppBHPT waveforms before and after rescaling the ppBHPT’s
total mass parameter. Bottom panel: These two figures focus on
the case q ¼ 8. Before rescaling the NR (solid blue curve) and
ppBHPT (dashed red curve) waveforms are noticeably different
in both their amplitude and phasing and have an L2 difference of
7.03 × 10−1. We find the optimum value of the rescaling
parameter to be α ¼ 0.85837 and modify the ppBHPTwaveform
according to Eq. (2). After rescaling the NR and modified
ppBHPT waveforms demonstrate remarkable agreement with
one another. Top panel: We repeat this comparison procedure
for mass ratios 3 ≤ q ≤ 10, where NR data are available, and
compute both the optimal scaling factor and the L2 difference
between waveforms (NR vs scaled ppBHPT) for each case. In all
cases the differences before rescaling are order unity, while the
agreement between the rescaled ppBHPT and NR waveforms is
≈1%. The dotted line refers to a naive value of α ¼ 1=ð1þ 1=qÞ
set by including the mass of the smaller black hole as part of the
background space-time.
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V. SUMMARY

In this paper we present the first surrogate model,
EMRISur1dq1e4, for gravitational wave signals (including
higher-order modes) from black hole binary systems over a
wide range of mass ratios. EMRISur1dq1e4 can be used to
extend the banks of signal templates for LIGO/Virgo data
analysis into larger mass ratios and also serve as a useful
tool for mock data analyses for future observatories. This
model is publicly available as part of both the Black Hole
Perturbation Toolkit [99] and GWSurrogate [100]. Future
work should include obvious extensions to the model such
as spin, effects of eccentricity, and spin-orbit precession.
We also perform the first comparison between ppBHPTand

NRwaveforms and find that after a rescaling of the ppBHPT’s
total mass parameter there is surprisingly remarkable

agreement even in the comparable mass-ratio regime. Note
that the ppBHPT calculation does not incorporate any aspect
of the dynamics of the background geometrywithinwhich the
waves travel and nonlinearities beyond radiative corrections to
the orbit. This study, which may offer some insight into the
dynamics of a black hole binary system itself, is part of a
growing bodyof evidence, initiated byLeTiec et al. [101] (see
also Refs. [102–104]), that suggests perturbation theory with
self-force corrections is applicable to nearly equal mass
systems [101,105–109] despite there being no a priori reason
to expect this should be the case. As a practical matter, our
results suggest that perturbation theory with (post)adiabatic
orbital corrections may be used to generate accurate late
inspiral, merger, and ringdown waveforms in the q > 10
regime that is especially challenging for NR.
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