
 

Gravitational atoms: General framework for the construction of multistate
axially symmetric solutions of the Schrödinger-Poisson system

F. S. Guzmán 1,* and L. Arturo Ureña-López 2,†

1Laboratorio de Inteligencia Artificial y Supercómputo, Instituto de Física y Matemáticas, Universidad
Michoacana de San Nicolás de Hidalgo, Edificio C-3, Cd. Universitaria,

58040 Morelia, Michoacán, México
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We present a general strategy to solve the stationary Schrödinger-Poisson (SP) system of equations for
multistates with axial symmetry. The approach allows us to obtain the well-known single and multistate
solutions with spherical symmetry, Newtonian multistate l-boson stars and axially symmetric multistate
configurations. For each case we construct particular examples that illustrate the method, whose stability
properties are studied by numerically solving the time-dependent SP system. Among the stable
configurations there are the mixed-two-state configurations including spherical and dipolar components,
which might have an important value as potential anisotropic dark matter halos in the context of ultralight
bosonic dark matter scenarios. This is the reason why we also present a possible process of formation of
these mixed-two-state configurations that could open the door to the exploration of more general multistate
structure formation scenarios.
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Systems of self-gravitating scalar bosons have been
widely studied and discussed ever since the appearance
of the seminal work in Ref. [1]. The main feature is the
existence of stable equilibrium configurations, which is
the result of a well-posed eigenvalue problem of the
Einstein-Klein-Gordon system of equations. The stability
of such systems has been studied by both, semi-analytical
and numerical means, see for instance the comprehensive
reviews [2,3] and references therein. Although most of
the studies have focused on spherically symmetric
configurations, there are already some of them that have
tested the properties of the scalar field systems under
general circumstances, e.g., axially symmetric or rotating
solutions, see [3,4], including cases in the Newtonian
regime [5].
Apart from applications in astrophysical situations

involving compact objects, there was a renewed interest
in self-gravitating bosons because of their possible role as
dark matter candidates in the galactic and cosmological
contexts [6–10]. In particular, the appropriate setup for
the formation of galaxies is the nonrelativistic, Newtonian
regime, conditions under which the Einstein-Klein-Gordon
equations become the so-called Schrödinger-Poisson (SP)
system [11,12]. The SP system rules the dynamics of
ultralight bosonic dark matter, and under the assump-
tion that bosons are ultralight with masses of order

ma ≃ 10−22 eV=c2 and occupy one state, the model
shows spectacular advances, including structure forma-
tion simulations indicating attractor density profiles of
structures associated to this model [13–18]. In fact, state
of the art structure formation simulations with this dark
matter now can track the formation of axial structures, their
further dynamics and its interaction with baryonic dark
matter [19].
As suggested already in Ref. [1], there is the possibility

to consider the population of different eigenstates in a
system of self-gravitating bosons, an idea that was in turn
taken for the construction of more general configurations to
model galaxy dark matter halos in [20]. This results in the
so-called multistate system that was studied rigorously in
[21,22], where it was found that the system was gravita-
tionally stable as long as the ground state is the most
populated one. However, the studies have focused on
spherical multistate systems, and are evolving toward more
general scenarios [23]), which is a door open that can
expand the scientific potential of the boson dark mat-
ter model.
In this manuscript, we present a general approach for the

construction of equilibrium configurations with mixed
states of the SP system of equations with axial symmetry.
For that we follow guidance from previous works, espe-
cially for the chosen Ansätze of the scalar wave function
and the gravitational potential [23–26]. The resultant
combination of various states resembles the structure of
the electronic cloud in atoms.
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I. GENERAL FRAMEWORK

The SP system of equations, in variables absorbing the
constants ℏ, G, the boson mass ma and without self-
interaction, for a combination of ortogonal states nlm is

i _Ψnlm ¼ −
1

2
∇2Ψnlm þ VΨnlm; ∇2V ¼

X
nlm

jΨnlmj2:

ð1Þ

Here, Ψnlm ¼ Ψnlmðt;xÞ is an order parameter describ-
ing the macroscopic behavior of the boson gas, so that
jΨnlmj2 is the mass density of the given state, and V ¼
Vðt;xÞ is the gravitational potential sourced by the bosonic
clouds in different states.
We assume the following Ansatz for the wave function

Ψnlmðt;xÞ ¼
ffiffiffiffiffiffi
4π

p
e−iγnlmtrlψnlmðrÞYlmðθ;φÞ; ð2Þ

where γnlm is a frequency to be determined from a well-
posed eigenvalue problem. The quantum numbers that label
each state take the values: n ¼ 1; 2;…, l ¼ 1; 2;…; n − 1
and m ¼ −l;−lþ 1;…;l − 1;l, where the number of
nodes in the radial function ψnlm is given by n − 1 − l.
The gravitational potential is determined from the

following Poisson equation:

∇2V ¼
X
nlm

r2lψ2
nlmYlmY�

lm: ð3Þ

In order to solve Eq. (3), it is convenient to consider an
expansion of the gravitational potential in spherical har-
monics of the form,

VðxÞ ¼
ffiffiffiffiffiffi
4π

p X
lm

VlmðrÞrlYlmðθ;φÞ: ð4Þ

Under the expansion (4), Poisson equation (3) becomes a
set of equations for each radial function Vlm,

∇2
rlVl0 ¼

ffiffiffiffiffiffi
4π

p

rl
X

n1l1m1

ð−1Þm1Gl1 l1 l
m1 − m10

r2l1ψ2
n1l1m1

; ð5Þ

where we have defined the rl-Laplacian operator
∇2

rl ¼ ∂2
r þ ½2ðlþ 1Þ=r�∂r.

Additionally, we have used in Eq. (4) the so-called Gaunt
coefficients G, which are defined as [27]

Gl1l2l
m1m2m ≡

Z
Ω
Yl1m1

Yl2m2
Y�
lmdΩ: ð6Þ

Gaunt coefficients (6) follow the selection rules: m ¼
m1 þm2 and jl1 − l2j ≤ l ≤ l1 þ l2, and are different
from zero only if l1 þ l2 þ l is an even number.

Notice that the magnetic number for all the radial
coefficients in Eq. (5) is zero, which means that the
gravitational potential does not depend on the azimuthal
angle φ. This is a direct consequence of the selection rule
on the magnetic number of the Gaunt coefficients (6),
which requires in this case that m ¼ m1 −m1 ¼ 0.
Additionally, the selection rules also read 0 ≤ l ≤ 2l1

and since the combination 2l1 þ l should be an even
integer, then l can only take even integer values:
l ¼ 0; 2;…; 2l1.
On the other hand, Schrödinger equation for the radial

wave function ψnlm in the Ansatz (2) is

∇2
rlψnlm ¼ 2

� ffiffiffiffiffiffi
4π

p X
l1

Gl1ll
0mmr

l1Vl10 − γnlm

�
ψnlm: ð7Þ

A small note is in turn. To write down the foregoing
equation we required the expansion of the product
Vl10Ψnlm in terms of Yl2m2

, which involves the Gaunt

coefficients Gl1ll2

0mm2
. Selection rules require m2 ¼ m and

jl1 − lj ≤ l2 ≤ l1 þ l. If l1 ¼ 0, corresponding to the
monopole term V00, there is no other option but l2 ¼ l.
However, if l1 ≥ 2, there is the possibility that l2 can also
take on larger values than l, and then the expansion of the
product Vl10ψnlm may have more nonzero terms than
required for Eq. (7). In this respect, the latter should be
considered an approximated expansion of Eq. (1) whenever
l1 ≥ 2 (see also [24] for a similar case).
To finish the description of our general framework,

for the suggested Ansatz (2) we can calculate some
physical quantities of interest. For instance, the total
number of particles in the state nlm is given by Nnlm ¼
ð1=4πÞ R jΨnlmj2d3x, whereas the kinetic and pote-
ntial energies are respectively given by Knlm¼−ð1=2Þ×R
Ψ�

nlm∇2Ψnlmd3x and Wnlm¼ð1=2ÞR jΨnlmj2Vd3x.
One can show from Eq. (7) that for stationary configu-

rations Knlm þ 2Wnlm ¼ γnlmNnlm, a relation that was
first written down for spherically symmetric configu-
rations [1,11,28]. Related quantities that will be useful
below are the total energy ET ¼ KT þWT, and corres-
pondingly the total kinetic and potential energies
KT ¼ P

nlm Knlm and WT ¼ P
nlm Wnlm, respectively.

Likewise, we define the (total) effective eigenfrequency
as γTNT ¼ P

nlm γnlmNnlm, where NT ¼ P
nlm Nnlm.

There are various interesting scenarios enclosed into this
general framework that we are to describe now. We start
first with a presentation of spherically symmetric cases, and
then we continue with examples that incorporate axially
symmetric features. For all the cases we solve the equations
of motion (5) and (7) to find the equilibrium configurations
and their particular properties. We have summarized differ-
ent scenarios in Table I, together with selected examples
and the respective values of different quantities of interest.
Likewise, we show in Fig. 1 the radial profiles of wave
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functions and gravitational terms for some of the afore-
mentioned examples.

A. Single state spherical configurations

The first case is the single state solution with spherical
symmetry, in which the wave function is ψn00, with n ≥ 1.
For the Gaunt coefficients in Poisson equation (5) we find
G00l
000 ¼ δl0=

ffiffiffiffiffiffi
4π

p
, and then high multipole terms of the

gravitational potential beyond the monopole satisfy an
homogeneous equation ∇2

rlVl0 ¼ 0. From this we can
consider, without loss of generality, that Vl0 ¼ 0 for
l ≥ 2. Also, the only nonzero Gaunt coefficient for the
Schrödinger equation (7) is G000

000 ¼ 1=
ffiffiffiffiffiffi
4π

p
. Thus, the

equations of motion for spherically symmetric configura-
tions are

∇2
r0ψn00 ¼ 2ðV00 − γn00Þψn00; ∇2

r0V00 ¼ ψ2
n00: ð8Þ

Equation (8) conforms a closed, self-contained system.
Its solutions constitute a one parameter family of equilib-
rium configurations characterized by the central value of
the wave function ψn00ð0Þ. They have been widely studied
and their stability properties are well established. Ground
state equilibrium configurations (n ¼ 1) are stable, whereas
excited configurations with nodes (n ≥ 2) are unstable,
even though all configurations are virialized, that is, the
kinetic to potential energy ratio is Kn00=jWn00j ¼ 1=2
[1,11,12,28].

B. Multistate spherical configurations

In this case the equations of motion are

∇2
r0ψn00 ¼ 2ðV00− γn00Þψn00; ∇2

r0V00 ¼
X
n

ψ2
n00: ð9Þ

These multistate configurations conform a multiparameter
family of solutions characterized by the central value of
each wave function: ψ100ð0Þ;ψ200ð0Þ;… It was found in
Ref. [22] that in the case of two-state configurations, sta-
bility is granted for N100=N200 < 1.1. Although the states
are not virialized separately, that is 2Kn00 þWn00 ≠ 0, the
total kinetic and potential energies satisfy the virial relationP

nð2Kn00þWn00Þ¼2KTþWT ¼0. This means that, coll-
ectively, multistate configurations also satisfy the energy
relations found for single configurations, in particular that
their total energy is related to the potential and number of
particles in the form: ET ¼ ð1=2ÞWT ¼ ð1=3ÞγTNT .

C. Nonrelativistic l-boson stars

Our approach includes also the so-called l-boson stars
[29–31] in the Newtonian limit. For this case, the radial
functions are the same for all possible values of the
magnetic number, that is, ψnlm ¼ ψnl0. The hierarchy of
equations (5) under this particular assumption reads

∇2
rlVl0 ¼

ffiffiffiffiffiffi
4π

p

rl
X
n1;l1

r2l1ψ2
n1l10

� Xl1
m1¼−l1

ð−1Þm1Gl1 l1 l
m1 − m10

�

¼ δl0
rl

X
n1;l1

ð2l1 þ 1Þr2l1ψ2
n1l10

; ð10aÞ

TABLE I. Different physical quantities of the states described in the text. In order of appearance from left to right: effective
eigenfrequency γT, total number of particles NT , 95% radius r95, kinetic and potential energies KT andWT , respectively, and their virial
ratio KT=jWT j. The values reported correspond to solutions of the equations in each case, using the central values ψ100ð0Þ ¼ 1 and
ψ210ð0Þ½ψ21�1ð0Þ� ¼ 0.5. The boundary conditions used at r → ∞ were ψnlm ¼ 0, V00 ¼ −NT=r and V20 ¼ 0, which in turn allowed
the determination of the eigenvalues γnlm, V00ð0Þ and V20ð0Þ. The stability was determined by numerically solving Eq. (1), verifying
that the oscillation frequencies are consistent with the eigenvalue problem and that unitarity is preserved. We must recall that the
superposition of the various wave functions assumes the states they represent are independent.

State ψnlm γT NT r95 KT WT KT=jWT j Stability

1. Single spherical [Eqs. (8)]
ψ100 −0.69 2.06 3.93 0.476 −0.952 1=2 Stable
ψ200 −0.65 4.59 8.04 0.990 −1.981 1=2 Unstable
� � � Unstable
2. Multistate spherical [Eqs. (9)]
ðψ100;ψ200Þ −0.72 2.82 6.60 0.681 −1.353 1=2 Stable if N200=N100 < 1.1 [22]
3. l-boson star [Eqs. (10)]
ðψ210;ψ211;ψ21−1Þ −0.96 4.22 4.80 1.360 −2.719 1=2 Stable
ðψ100;ψ210;ψ211;ψ21−1Þ −1.05 3.55 4.31 1.239 −2.478 1=2 Stable
4. Single axial [Eqs. (11)]
ψ210 −1.04 4.04 4.70 1.408 −2.815 1=2 Unstable
ψ211½ψ21−1� −0.99 4.18 4.88 1.373 −2.745 1=2 Unstable
5. Multistate [Eqs. (12)]
ðψ100;ψ210Þ −1.07 3.51 4.20 1.254 −2.506 1=2 Stable
ðψ100;ψ211Þ½ðψ100;ψ21−1Þ� −1.05 3.54 4.28 1.243 −2.485 1=2 Stable
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where we have used the standard addition theorem of
spherical harmonics. The Kronecker delta in Eq. (10a)
implies that the only surviving multipole term of the
gravitational potential is the monopolar one, V00. The
complete set of equations in this case is complemented by
the hierarchy of Schrödinger equations in the form

∇2
rlψnl0 ¼ 2ðV00 − γnl0Þψnl0: ð10bÞ

Equation (10) confirms, first, that the Newtonian gravi-
tational potential of l-boson stars is spherically symmetric,
just as their relativistic counterparts [29–31]; and, second,
that one can also consider multistate l-boson stars. Notice
the resemblance of Eq. (10) with Eq. (9): multistate l-
boson stars become a generalization of the multistate

spherical configurations, but now with the involvement
of axially symmetric density profiles.

D. Single axially symmetric configurations

These are a different generalization from single state
spherical solutions. We illustrate the solution with the
single dipolar ψ210Y10 term in Eq. (2). For the right-
hand side of Poisson equation (5) we require the Gaunt
coefficients G110

000 ¼ 1=
ffiffiffiffiffiffi
4π

p
and G112

000 ¼ 1=ð ffiffiffiffiffiffi
5π

p Þ, which
implies that the gravitational potential must be represented
by the monopolar V00 and quadrupololar V20 terms only.
For Schrödinger equation (7) we need the Gaunt coef-
ficients G011

000 ¼ 1=
ffiffiffiffiffiffi
4π

p
and G211

000 ¼ 1=ð ffiffiffiffiffiffi
5π

p Þ. Thus, the SP
system splits into the following system of equations1:

∇2
r1ψ210 ¼ 2

�
V00 þ

2ffiffiffi
5

p r2V20 − γ210

�
ψ210; ð11aÞ

∇2
r0V00 ¼ r2ψ2

210; ∇2
r2V20 ¼

2ffiffiffi
5

p ψ2
210: ð11bÞ

We can include angular momentum by considering the
single wave function ψ211. The required Gaunt coefficients
now are G1 10

1−10 ¼ −1=
ffiffiffiffiffiffi
4π

p
and G1 12

1−10 ¼ 1=ð2 ffiffiffiffiffiffi
5π

p Þ for
Poisson equation (5); and G011

011 ¼ 1=
ffiffiffiffiffiffi
4π

p
and G211

011 ¼
−1=ð2 ffiffiffiffiffiffi

5π
p Þ for Schrödinger equation (7). Hence, the

resulting equations of motion for a rotating dipole are
obtained from Eq. (11) by the mere replacements
ψ210 → ψ211, and 2=

ffiffiffi
5

p
→ −1=

ffiffiffi
5

p
for the terms involving

V20. The change of sign means that the inclusion of angular
momentum in the dipole configuration has the effect to
make the (quadrupole) gravitational potential V20

repulsive.2

E. Multistate axial configurations

We are in position to construct configurations with
arbitrary combinations of wave functions, either spherically
or axially symmetric. As a representative example, we
consider a mixed configuration composed of monopole and
dipole components. Taking into account the previously
calculated Gaunt coefficients, Eqs. (5) and (7) become now
four equations,
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FIG. 1. (Top left) Double-state spherical configuration from
Eqs. (9). Shown are the radial profiles of ψ2

100, ψ200 and V00. (Top
right) Dipole l-boson star from Eq. (10), corresponding to the
single state ψ210. (Middle left) Mixed l-boson star from Eq. (10),
corresponding to the states ψ100 and ψ210. In both instances of l-
boson stars we also show the respective (monopole) gravitational
potential V00. (Middle right) Dipole equilibrium configuration
from Eq. (11). Shown are the radial profiles of r2ψ2

210, V00 and
r2V20. (Bottom left) Dipole equilibrium configuration with
angular momentum from Eq. (11). Shown are the radial profiles
of r2ψ2

211, V00 and r2V20. (Bottom right) Mixed state with a
monopole-dipole combination from Eq. (12). Shown are the
radial profiles of ψ2

100, ψ
2
210, V00 and V20. For comparison in all

cases, we show the radial profiles of ψ2
100 and V00 for a ground

state equilibrium configuration, see Eq. (8) (black solid and black
dashed curves, respectively). See the text for more details.

1Following the small note after Eq. (7), another nonzero Gaunt
coefficient that arises in the expansion of Eq. (11a) is
G213
000 ¼ ð3=2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

3=35π
p

. This coefficient implies the presence of
a term of the form V20ψ210Y30 that could not be included in
Eq. (11a), and then the latter must be seen as an approximated
representation of Eq. (1) for the dipole wave function Ψ210.

2The inclusion of angular momentum may allow the formation
of vortices in equilibrium configurations, which in turn can be
useful in studies of dark matter with Bose-Einstein condensates,
see for instance [32].
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∇2
r0ψ100 ¼ 2ðV00 − γ100Þψ100; ð12aÞ

∇2
r1ψ210 ¼ 2

�
V00 þ

2ffiffiffi
5

p r2V20 − γ210

�
ψ210; ð12bÞ

∇2
r0V00 ¼ ψ2

100 þ r2ψ2
210; ∇2

r2V20 ¼
2ffiffiffi
5

p ψ2
210: ð12cÞ

If we were to consider the mixed state with angular
momentum, e.g., ψ100 and ψ211, we only need to replace
2=

ffiffiffi
5

p
→ −1=

ffiffiffi
5

p
for the terms involving V20 in Eq. (12).

The solution is parametrized by the central values ψ100ð0Þ
and ψ210ð0Þ and in general on the central value of the wave
functions associated to each state.

II. STABILITY

In order to check the stability of the configurations we
solve the full time-dependent system (1) for the various
configurations, using an enhanced version of the 3D code
in Ref. [33] that evolves now multiple states. Should a
configuration be long lived with diagnostics evolving
around equilibrium values is our criteria to determine
stability/instability of the cases shown in Table I.
As a representative case, we show the evolution of a two-

state axial configuration of the form ψ100 þ ψ210 in Fig. 2.
The time window used for the evolution is t ∈ ½0; 300�
which includes about sixty cycles of the spherical wave
function ψ100. Two important quantities of the evolution are
shown in the top left panel of Fig. 2, which correspond to
the energy combinations 2K100 þW100 and 2K210 þW210.
They are not zero, but the total quantity 2KT þWT
oscillates around zero as expected for (nearly) virialized

systems. Another important diagnostics consists in verify-
ing that the wave functions oscillate with their expected
eigenfrequencies. For this calculate the Fourier transform
of the maximum values of ψ100 and ψ210 as functions of
time. We see from the right top panel in Fig. 2 that the
eigenfrequencies are γ100 ≃ 1.25 and γ210 ≃ 0.93, whereas
we measure N100 ¼ 1.537 and N210 ¼ 1.9714. These
results together imply that the effective frequency obtained
from the evolution γT ¼ γ100N100þγ210N210

N100þN210
¼ 1.07 is in agree-

ment with the solution of the eigenvalue problem at initial
time reported in Table I.
We also checked unitarity through the conservation of

the number of particles in each state, namelyN100 andN210.
It can be seen from the bottom left panel in Fig. 2 that the
number of particles in each state, normalized to their initial
value, changes in less than 0.1%. Finally, a sign of
evolution is that the density of the two states oscillate
conspiring to maintain the configuration long lived, as
shown in the bottom right panel in Fig. 2.

III. FORMATION OF MULTISTATE
CONFIGURATIONS

If these configurations are to play a role in astrophysics
and cosmology, it is important to show not only that they
are long-living solutions, but that they can be formed. For
this we think of a simple scenario where two equilibrium
configurations merge, with the condition that they are made
of two different noncoherent fields Ψð1Þ

100 and Ψð2Þ
100, asso-

ciated to equilibrium spherical solutions in the ground state.
Consistently with (1), we assume the system evolves
according to i _ΨðjÞ

100 ¼ − 1
2
∇2ΨðjÞ

100 þ VΨðjÞ
100 with j ¼ 1, 2

and ∇2V ¼ P
2
j¼1 jΨðjÞ

100j2. Snapshots of an unequal mass
head-on merger are shown in Fig. 3 and animations appear
in the Supplemental Material [34]. After the encounter of
the two configurations, the smaller configuration splits into

FIG. 2. Diagnostics of the mixed monopole-dipole configura-
tion. In the top left panel we show separately the quantities 2K100 þ
W100 and 2K210 þW210, so as their addition. In the top right panel
we show the Fourier transform of the central value ofΨ100 and the
maximumofΨ210 as functions of time. Thenwe show in the bottom
left the number of particles in each state varies by less than 0.1%,
and finally snapshots of the density of each state in the bottom right
panel that show how they are genuinely evolving.

FIG. 3. Snapshots of the merger of two spherical equilibrium
configurations in different coherent states that share the gravi-
tational potential. In this case we show the case of mass ratio
Nð1Þ=Nð2Þ ¼ 0.9 and initial head-on momentum along the z axis
of pz ¼ 0.3, using the conventions in Ref. [35].
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two regions along the head-on axis z. The system oscillates
around the center of mass during a time window corre-
sponding to more than 2000 cycles of the wave function.
During the evolution the system does not settle into a nearly
stationary configuration, however the morphology of the
densities, even if time dependent, resembles that in the
bottom right panel of Fig. 2.

IV. FINAL COMMENTS

We presented a general approach for the construction of
axially symmetric multistate solutions of the SP system,
with and without angular momentum. We also sampled the
properties of particular representative configurations of
single and two-state configurations for illustration, whose
stability was studied based on numerical evolutions. We
expect this method to have impact on studies related to

anisotropic halos of bosonic dark matter, since they might
provide an explanation of dwarf galaxy distributions [36], a
reason why a formation process of multistate configura-
tions would be useful.
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