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By combining the Wigner function formalism of relativistic quantum kinetic theory with fundamental
equations of relativistic magnetohydrodynamics (MHD), we present a novel approach to determine the
proper time evolution of the temperature and other thermodynamic quantities in a uniformly expanding hot,
magnetized, and weakly interacting plasma. The aim is to study the contribution of quantum corrections to
this evolution. We first determine the corresponding Wigner function in terms of the solution of the Dirac
equation in the presence of a constant magnetic field. Using this function, we then compute the energy-
momentum tensor of the above-mentioned plasma, which eventually yields its energy density and pressure.
Plugging these quantities in the energy equation of relativistic MHD, we arrive, after choosing an
appropriate coordinate system, at a differential equation for the temperature as a function of the proper time.
The numerical solution of this equation leads finally to the proper time evolution of the temperature. The
latter is then used to determine the evolution of a large number of thermodynamic quantities in this
expanding and magnetized plasma. We compare our results with other existing results from relativistic
MHD. We also comment on the effect of point to point decaying magnetic fields on the thermodynamic
properties of this plasma.
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I. INTRODUCTION

The primary goal of modern heavy-ion collision (HIC)
experiments at the Relativistic Heavy Ion Collider (RHIC)
and Large Hadron Collider (LHC) is to produce a plasma of
quarks and gluons, and to study its evolution from an early
out of equilibrium stage to a late hadronization one. It is
widely believed that at τ0 ∼ 0.2 fm=c after the collision, the
created hot plasma enters a state of local thermal equilib-
rium. There are strong pieces of evidence that at this stage,
the dynamics of the created quark matter is well described
by relativistic hydrodynamics (for a recent review see [1]
and references therein), that, because of extremely large
magnetic fields that are also created in noncentral HIC
experiments [2–5], is to be extended to relativistic MHD
[6]. Assuming first that the plasma expands uniformly in
the longitudinal direction with respect to the beam direc-
tion, and second that the external magnetic field is aligned
perpendicular to the plasma velocity, it was recently

possible to extend the well-known 1þ 1-dimensional
Bjorken solution of relativistic hydrodynamics [7,8] to
the so-called “ideal transverse MHD” [9], and to determine
the proper time evolution of the magnetic field after the
onset of hydrodynamics. In [10], we introduced a more
general framework to study nonideal transverse MHD, and
determined apart from the evolution of electric and mag-
netic fields, the spacetime evolution of the temperature in a
hot, electromagnetized, and uniformly expanding plasma.
In order to explore, in particular, the effect of external
electromagnetic fields on the spacetime evolution of the
plasma’s temperature, the latter is to be compared with the
Bjorken 1þ 1 dimensional solution in the absence of
electromagnetic fields. In a parallel development, we
generalized the method introduced in the framework of
“anisotropic hydrodynamics” [11,12] to anisotropic MHD,
and studied the effect of magnetization on the isotropiza-
tion of a uniformly expanding plasma in and out of
equilibrium [13]. Following the approach introduced in
[11,12], we combined the equations of ideal transverse
MHD with the Boltzmann equation of classical kinetic
theory in a relaxation time approximation, and determined,
in particular, the spacetime evolution of the temperature in
this plasma. The latter is in principle affected by the
evolution of the anisotropy parameter in this model. A
comparison shows, however, no significant difference
between this result and the Bjorken solution for the
temperature [13].
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In the present paper, we introduce a novel approach to
determine the proper time evolution of the temperature and
other thermodynamic quantities in a uniformly expanding,
hot, magnetized, and weakly interacting plasma. To do this,
we combine the Wigner function formalism of relativistic
quantum kinetic theory [14] with the energy equation of
relativistic MHD. The aim is to consider the quantum
corrections arising from Landau levels, that arise in the
presence of constant magnetic fields. In this way, we
determine the proper time evolution of a number of
thermodynamic quantities including the temperature T,
energy density ϵ, transverse and longitudinal pressures
p⊥, and pk, transverse and longitudinal speeds of sound
cs;⊥, and cs;k, and magnetic susceptibility χm, in a uni-
formly expanding hot QED plasma in the presence of
constant and varying magnetic fields B.1 To this purpose,
we go through the following steps:

(i) We first determine the Wigner function of a fer-
mionic hot and magnetized plasma. To do this, we
use the solution of the Dirac equation in a constant
background magnetic field using the Ritus eigen-
function formalism [15]. Our results are comparable
with those presented in [16].

(ii) We then use this Wigner function to analytically
determine the energy-momentum tensor of a hot
plasma in a constant magnetic field. Using this
tensor, we determine ϵ; p⊥, and pk from its diagonal
components as functions of T. We first show that the
resulting expressions (yet in an integral form) are
comparable with the corresponding expressions
arising from an appropriate thermodynamic poten-
tial in the presence of a constant magnetic field. We
then consider two different cases of massless
(m ¼ 0) and massive (m ≠ 0) fermions. In the
massless case, we determine these quantities in
two different limits of eB ≪ T2 (high-temperature
or weak magnetic field limit) and eB ≫ T2 (low-
temperature or strong magnetic field limit). In the
massive case, we determine these quantities only in
the limit M2

n ≪ T2, where M2
n ≡m2 þ 2neB is the

magnetic mass.
(iii) We then consider the energy equation of relativistic

MHD, that is given in terms of ϵ; pk, and p⊥. In a
certain Milne coordinate system, this turns out to be
simply a first order differential equation in the
proper time τ. By plugging the analytical expres-
sions for the above thermodynamic quantities in the
two aforementioned limits into this equation, we
arrive at a differential equation for T as a function of
τ. We solve this equation numerically, and arrive, in

particular, at the proper time evolution of the
temperature.

(iv) By plugging the resulting τ dependence of T into the
analytical expressions for ϵ; p⊥; pk; cs;⊥; cs;k, and
χm for eB ≪ T2 and eB ≫ T2 in the massless case,
and M2

n ≪ T2 in the massive case, we arrive at the
proper time evolution of these quantities in a
constant background magnetic field B in these
two limits. Finally, in order to consider the more
realistic scenario of a decaying magnetic field, we
assume that B is constant at each infinitesimal time
interval δτ, but decays according to a certain profile
B ¼ BðτÞ for B. Using this τ dependent magnetic
field, it is then possible to determine the τ depend-
ence of the temperature in a decaying magnetic field.
We consider a number of profiles for BðτÞ, and
determine the proper time evolution of T corre-
sponding to these point to point varying magnetic
fields.

It is worthwhile to notice that recently the Wigner
function formalism is used to study the kinetic phenomena
of chiral plasma [17,18] and different aspects of QCD
phase transition within the Nambu-Jona-Lasinio model
[19]. The method introduced in the present paper, however,
is a novel application of this formalism, that, once
combined with the main equations of relativistic (mag-
neto)hydrodynamics yields the evolution of thermody-
namic quantities in an expanding plasma.
The organization of this paper is as follows: In Sec. II,

we present a number of review materials: In Sec. II A, we
review the Ritus eigenfunction method, and present, in
particular, an appropriate quantization for the fermionic
fields which is used later to determine the Wigner function.
In Sec. II B, we derive the thermodynamic quantities,
pk; p⊥, and ϵ, using an appropriate thermodynamic poten-
tial. The resulting expressions are later compared with the
corresponding expressions arising from the energy-
momentum tensor constructed in terms of the Wigner
function. In Sec. II C, we present the main equations of
ideal transverse MHD together with the Bjorken solution of
1þ 1 dimensional hydrodynamics. The Gubser temper-
ature is also introduced in a slightly different form than the
original one in [20]. Being interested in the evolution of T
and other thermodynamic quantities in point to point
decaying magnetic fields, we present in Sec. II D, various
solutions for the proper time evolution of B.
Our main analytic results are presented in Sec. III: In

Sec. III A, we derive the Wigner function, the energy-
momentum tensor, and the resulting thermodynamic
quantities, yet in an integral form. In Sec. III B, we perform
high- and low-temperature approximations, and determine
pk; p⊥, and ϵ in these approximations. In Sec. IV, we present
the numerical results for the τ dependence of T in high- and
low-temperature approximations. These data are then used
to determine the τ dependence of other thermodynamic

1Transverse and longitudinal directions are defined with
respect to the external magnetic field.
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quantities. Section V is devoted to concluding remarks.
Comments on Gubser temperature as well as useful formulas
in high- and low-temperature approximations are presented
in Appendices A and B.

II. REVIEW MATERIAL

To be self-content, we present in what follows a number
of review materials. We start by introducing the solutions of
the Dirac equation in the presence of a constant magnetic
field in the Ritus eigenfunction formalism (Sec. II). In
particular, we present the quantization of fermions with a
positive charge. In Sec. III A, we use this quantization to
determine the energy-momentum tensor of a magnetized
plasma via the Wigner function formalism. In Sec. II B, we
use the thermodynamic potential of a hot plasma in a
constant background magnetic field, and present the
corresponding analytical expressions for pk; p⊥, and ϵ.
In Sec. II C, we then briefly introduce the ideal relativistic
transverse MHD. In particular, assuming the plasma to
expand uniformly, we present the energy and Euler
equation of ideal transverse MHD in the Milne coordinate
system, as well as the Bjorken and Gubser solutions for the
temperature. Finally, in Sec. II D, we present a number of
phenomenological and theoretical solutions for the proper
time dependence of the magnetic field. These expressions
are then used in Sec. IV, to determine the proper time
dependence of the temperature for point to point decaying
magnetic fields.

A. Fermions in a constant magnetic field

One of the mostly used methods to solve the Dirac
equation of charged fermions in the presence of a constant
magnetic field is the Ritus eigenfunction method [15]. We
outline it in this section. A complete derivation of this
method in a 3þ 1 dimensional spacetime in a multiflavor
system is previously presented in [21]. In what follows, we
present, in particular, an appropriate quantization for a
positively charged fermion. We use this quantization in
Sec. III A to determine the Wigner function and the energy-
momentum tensor of a QED plasma.
Let us start with the Dirac equation for a charged fermion

with mass mq,

ðγ · ΠðqÞ −mqÞψ ðqÞ ¼ 0: ð2:1Þ

Here, ΠðqÞ
μ ¼ i∂μ þ eqAext

μ , with e > 0 and q the charge of
this fermion. By fixing the gauge field Aext

μ as Aext
μ ¼

ð0; 0; Bx; 0Þ with B > 0, we arrive at a magnetic field B
aligned in the third spatial direction B ¼ Bez. In order to

solve (2.1), we use the ansatz ψ ðqÞ
þ ¼ EðqÞ

n;þuðp̃ðκÞ
q Þ, as the

positive frequency solution and ψ ðqÞ
− ¼ EðqÞ

n;−vðp̃ðκÞ
q Þ, as the

negative frequency solution. Here, EðqÞ
n;κ with κ ¼ �1

satisfies the Ritus eigenfunction relation

ðγ · ΠðqÞÞEðqÞ
n;κ ¼ κEðqÞ

n;κðγ · p̃ðκÞ
q Þ; ð2:2Þ

with κ ¼ þ1 (κ ¼ −1) for positive (negative) frequency

solution. Using the above expressions for ψ ðqÞ
κ and the

relation (2.2), it is possible to show that the spinors u as
well as v are the free Dirac spinors satisfying

ðγ · p̃ðþÞ
q −mqÞuðp̃ðþÞ

q Þ ¼ 0;

as well as

ðγ · p̃ð−Þ
q þmqÞvðp̃ð−Þ

q Þ ¼ 0:

Moreover, as it is shown in [22–24], the Ritus momentum
for a particle with charge q is given by

p̃μ
q;κ ¼ ðEðqÞ

n ; 0;−κsq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqeBj

p
; pzÞ; ð2:3Þ

with κ ¼ �1 for positive and negative frequency solutions,
n labeling the Landau levels in the external magnetic field,
and sq ≡ sgnðqeBÞ. In this paper, we assume eB > 0.
Following the method presented in [22–24], the Ritus

eigenfunctions EðqÞ
n;κ ; κ ¼ �1 are given by

EðqÞ
n;κðξsqκ Þ ¼ e−iκp̄·x̄PðqÞ

n;κðξsqκ Þ; ð2:4Þ

with ξ
sq
κ ≡ ðx − κsqpyl2

BÞ=lb and lb ≡ jqeBj−1=2 as well
as p̄μ ≡ ðp0; 0; py; pzÞ as well as x̄μ ≡ ðt; 0; y; zÞ. The
physical, on the mass-shell fermion possesses the following
energy dispersion relation:

EðqÞ
n ¼ ð2njqeBj þ p2

z þm2Þ1=2: ð2:5Þ

Here, EðqÞ
n ≡ p0. In (2.4), PðqÞ

n;κ is defined by

PðqÞ
n ðξsqκ Þ ¼ PðqÞ

þ f
þsq
n ðξsqκ Þ þ ΠnPðqÞ

− f
−sq
n ðξsqκ Þ; ð2:6Þ

with Πn ≡ 1 − δn;0, and the projectors PðqÞ
� given by

PðqÞ
� ≡ 1� isqγ1γ2

2
: ð2:7Þ

As it turns out, PðþÞ
� ¼ P� and Pð−Þ

� ¼ P∓ with

P� ≡ 1
2
ð1� iγ1γ2Þ. The functions f

�sq
n ðξsqκ Þ, appearing in

(2.6) are given by

f
þsq
n ≡Φnðξsqκ Þ; n ¼ 0; 1; 2;…;

f
−sq
n ≡Φn−1ðξsqκ Þ; n ¼ 1; 2;…; ð2:8Þ

with Φn given in terms of Hermite polynomials HnðzÞ
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Φnðξsqκ Þ≡ an exp

�
−
ðξsqκ Þ2
2

�
Hnðξsqκ Þ: ð2:9Þ

Here, an ≡ ð2nn! ffiffiffi
π

p
lbÞ−1=2.

As in [21], we introduce at this stage the following
quantization for a positively charged fermion (q ¼ þ1)
with mass m≡mþ in the presence of a constant magnetic
field:

ψαðxÞ ¼
1

V1=2

X∞
n¼0

X
s¼1;2

Z
dpydpz

ð2πÞ2
1ffiffiffiffiffiffiffiffi
2En

p

× f½PðþÞ
n ðξþÞ�ασus;σðp̃þÞan;sp̄ e−ip̄·x̄

þ ½PðþÞ
n ðξ−Þ�ασvs;σðp̃−Þb†n;sp̄ eþip̄·x̄g;

ψ̄αðxÞ ¼
1

V1=2

X∞
n¼0

X
s¼1;2

Z
dpydpz

ð2πÞ2
1ffiffiffiffiffiffiffiffi
2En

p

× fa†n;sp̄ ūs;ρðp̃þÞ½PðþÞ
n ðξþÞ�ραeþip̄·x̄

þ bn;sp̄ v̄s;ρðp̃−Þ½PðþÞ
n ðξ−Þ�ραe−ip̄·x̄g; ð2:10Þ

with p̄ ¼ ð0; py; pzÞ, En ≡ EðþÞ
n defined in (2.5), p̃κ ≡ p̃þ;κ

and ξκ ≡ ξþκ for κ ¼ �1. Here, an;sp̄ ; a†n;sp̄ and bn;sp̄ ; b†n;sp̄ are
two sets of creation and annihilation operators satisfying
the commutation relations

fan;sp̄ ; a†m;s0
q̄ g ¼ ð2πÞ2Vδ2ðp̄ − q̄Þδs;s0δn;m;

fbn;sp̄ ; b†m;s0
q̄ g ¼ ð2πÞ2Vδ2ðp̄ − q̄Þδs;s0δn;m; ð2:11Þ

and the spinors us;α; ūs;α as well as vs;α; v̄s;α satisfying

X
s

us;αðp̃þÞūs;βðp̃þÞ ¼ ðγ · p̃þ þmÞαβ;
X
s

vs;αðp̃−Þv̄s;βðp̃−Þ ¼ ðγ · p̃− −mÞαβ: ð2:12Þ

In [21], we used the above quantization relations (2.10) to
derive the propagator of a positively charged fermions. In
the present paper, however, we use it to determine the
Wigner function of a hot and magnetized fermionic plasma.

B. Thermodynamic quantities arising from the
thermodynamic potential of a magnetized

QED plasma

As aforementioned, in Sec. III A we use the above
quantization (2.10), and determine the thermodynamic
quantities ϵ; pk; p⊥;… using the Wigner function formal-
ism. We then compare the resulting expressions in the
integral form with the expressions arising from the effective
potential of a magnetized QED plasma at finite temperature
T and zero chemical potential μ. It is given by [22,23]

Ωeff ¼ −
eB
2π

X∞
n¼0

αn

Z
dpz

2π
fEn þ 2T ln ð1þ e−βEnÞg;

ð2:13Þ

with β≡ T−1 and the spin degeneracy factor αn ≡ 2 − δn;0.
It arises from the free fermion determinant Ωeff ¼ − 1

βV lnZ
with V a three-dimensional volume and Z the fermionic
partition function [25]. Let us notice that Ωeff is related to
the canonical free energy F ðT; BÞ through F ¼ VΩeff
[26].2 We use the standard definitions

pk ¼ −Ωeff ; s ¼ −
∂Ωeff

∂T ; M ¼ −
∂Ωeff

∂B ; ð2:14Þ

to determine the parallel pressure pk, the entropy density s,
and the magnetization M. We arrive at

pk ¼
eB
2π2

X∞
n¼0

αn

Z
∞

0

dkzEn

þ eB
π2

X∞
n¼0

αn

Z
∞

0

dkz
En

k2zfFðEnÞ

Ts ¼ eB
π2

X∞
n¼0

αn

Z
∞

0

dkz
En

ðE2
n þ k2zÞfFðEnÞ;

BM ¼ eB
2π2

X∞
n¼0

αn

Z
∞

0

dkz
En

ðE2
n þ neBÞ

þ eB
π2

X∞
n¼0

αn

Z
∞

0

dkz
En

ðk2z − neBÞfFðEnÞ; ð2:15Þ

with the Fermi-Dirac distribution function

fFðEn; kzÞ≡ 1

eβEn þ 1
; ð2:16Þ

and the energy En arising from (2.3) with q ¼ þ1

En ¼ ðm2 þ 2neBþ k2zÞ1=2: ð2:17Þ

For later convenience, we have used an appropriate partial
integration (PI) in (2.5) to reformulate the following
integral:

T
Z þ∞

−∞

dkz
2π

ln ð1þ e−βEnÞ¼PI 1
π

Z þ∞

0

dkz
En

k2z
eβEn þ 1

: ð2:18Þ

2It is also worthwhile to notice that the canonical free energy
F ðT; BÞ is different from the Helmholtz free energy
AðT;MÞ ¼ F ðT; BÞ þ BM. Whereas the former satisfies
F ¼ E − TS, the latter satisfies AðT;MÞ ¼ E − TS þ BM.
Here, E;S and M are related to ϵ, s and M through ϵ ¼ E=V,
s ¼ S=V, and M ¼ M=V [26].
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Combining the expressions for pk, s, and BM, the energy
density ϵ and the transverse pressure p⊥ are given by

ϵ ¼ −pk þ Ts

¼ −
eB
2π2

X∞
n¼0

αn

Z
∞

0

dkzEnð1 − 2fFðEn; kzÞÞ; ð2:19Þ

and

p⊥ ¼ pk − BM

¼ −
ðeBÞ2
2π2

X∞
n¼0

nαn

Z
∞

0

dkz
En

ð1 − 2fFðEn; kzÞÞ: ð2:20Þ

According to the description in footnote 2, ϵ ¼ −pk þ Ts
is nothing than F ¼ E − TS [26]. As concerns p⊥ ¼
pk − BM, it arises from p⊥ ¼ −Ωeff þ ∂Ωeff∂B in combination

with (2.14) (see e.g., [27] p⊥ ¼ −Ωeff þ ∂Ωeff∂B , and also [28]
for a detailed derivation of the pressures in a magnetic
field).
In Sec. IV, we show that the matter (T-dependent) part of

the above expressions for ϵ; pk, and p⊥ in the massless case
coincides with the results arising from the energy-momentum
tensor determined in the Wigner function approach.

C. Bjorken flow and the ideal transverse MHD

The above expressions for the thermodynamic quantities
are, in particular, functions of the temperature T and the
magnetic field eB. Assuming thermodynamic equilibrium
with a fixed temperature, the T dependence of the corre-
sponding integrals to ϵ; pk; p⊥;… can be numerically
determined for a fixed eB and fermion mass m. The goal
of the present paper is, however, to determine the proper
time dependence of these thermodynamic quantities in a
uniformly expanding ideal plasma, where, in particular, the
temperature depends on the space and time. In this case,
because of their dependence on T, all the other thermo-
dynamic quantities become also spacetime dependent.
Hence, to determine their dynamics, it is enough to
determine the evolution of T for a fixed value of eB.
To do this, we use the ideal relativistic MHD. This

turns out to be a useful tool to describe the dynamics of an
ideal and locally equilibrated fluid in the presence of
electromagnetic fields. Let us thus assume our mag-
netized plasma to be in local thermal equilibrium.
Assuming furthermore its electric conductivity to be
infinitely large, we can neglect the electric field, and
concentrate only on the presence of a magnetic field. As
it is described in [9,10,13], relativistic MHD is described by
a set of equations consisting of the energy-momentum
conservation,

∂μTμν ¼ 0; ð2:21Þ

the homogeneous and inhomogeneous Maxwell equations,

∂μF̃μν ¼ 0; ∂μFμν ¼ Jν; ð2:22Þ

with the current

Jν ¼ ρeuν þ ∂μMμν: ð2:23Þ

The total energy-momentum Tμν in (2.21) consists of two
parts

Tμν ¼ Tμν
f þ Tμν

em: ð2:24Þ

In an infinitely conducting fluid with vanishing electric
field, the fluid part of Tμν is given by [10,13]

Tμν
f ¼ ϵuμuν − p⊥Ξμν

B þ pkbμbν: ð2:25Þ

Here, uμ ¼ γð1; vÞ is the fluid four-velocity arising from
uμ ¼ dxμ=dτ with the proper time τ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 − x2
p

and γ the
Lorentz factor. For the metric gμν ¼ diagð1;−1;−1;−1Þ, it
satisfies uμuμ ¼ 1. The transverse projector Ξμν

B in (2.25) is
given by Ξμν

B ≡ gμν − uμuν þ bμbν with bμ ≡ Bμ=B satis-
fying bμbμ ¼ −1. The latter arises from the definition of Bμ

in terms of the field strength tensor Fμν, Bμ ≡ 1
2
ϵμναβFναuβ,

leading to Bμ ¼ ð0;BÞ in the local rest frame of the fluid
uμ ¼ ð1; 0Þ. As concerns the electromagnetic part of Tμν, it
is given by the standard Maxwell tensor [9,10],

Tμν
em ¼ FμλFλ

ν þ 1

4
gμνFρσFρσ: ð2:26Þ

Using Fμν ¼ −Bbμν with bμν ≡ ϵμναβbαuβ, T
μν
em is equiv-

alently given by

Tμν
em ¼ 1

2
B2ðuμuν − Ξμν

B − bμbνÞ: ð2:27Þ

In (2.22), the dual field strength tensor is given by

F̃μν ¼ Bμuν − Bνuμ: ð2:28Þ

Moreover, the magnetization tensor Mμν in (2.23) is given
by Mμν ≡ −Mbμν. Contracting (3.21) with uν and
Δαν ¼ gαν − uαuν, and assuming that the fluid velocity v
is perpendicular to the direction of the magnetic field B, we
arrive at the energy and Euler equations in transverse ideal
MHD, respectively,

Dϵþ θðϵþ p⊥Þ ¼ 0; ð2:29Þ

and

ðϵþ p⊥ þ B2ÞDuρ −∇ρ

�
p⊥ þ 1

2
B2

�
¼ 0: ð2:30Þ
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Here, with p⊥ ¼ pk − BM, D≡ uμ∂μ, θ≡ ∂ρuρ, and
∇μ ≡ Δμν∂ν with Δμν ≡ gμν − uμuν. For the plasma under
consideration, we make a number of other assumptions.
First, we assume that the magnetic field B is aligned in the
z-direction, and that the fluid velocity v, being
perpendicular to the direction of the magnetic field, is
directed in the y direction (see Fig. 1).
Then, assuming
(i) translational invariance in the x-z plane,
(ii) a uniform expansion of the fluid in the y direc-

tion, and
(iii) boost invariance along the y direction,
(iv) boost invariance of ϵ, p and B,

and replacing vy in uμ ¼ γð1; 0; vy; 0Þ with vy ¼ y=t, we
arrive at the Bjorken flow [7,8]

uμ ¼ ðcosh η; 0; sinh η; 0Þ: ð2:31Þ

Here η≡ 1
2
ln tþy

t−y is the boost variable in the Milne coor-
dinates. In these coordinates, and for a plasma expanding in
the y-direction, the proper time reads τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − y2

p
. Using

this parametrization, we also obtain

∂
∂t ¼ þ cosh η

∂
∂τ −

1

τ
sinh η

∂
∂η ;

∂
∂y ¼ − sinh η

∂
∂τ þ

1

τ
cosh η

∂
∂η : ð2:32Þ

In these coordinates, the energy equation (2.29) is a first
order differential equation in τ,

∂ϵ
∂τ þ

1

τ
ðϵþ pk − BMÞ ¼ 0: ð2:33Þ

In Sec. III B, we determine the thermodynamic quantities
pk; p⊥, and ϵ as functions of T in an integral form, and show
that for massless fermions they coincide with those pre-
sented in (2.15). Plugging the corresponding expressions to
these quantities into the energy equation (2.33) of the ideal
relativistic MHD, it becomes a first order differential
equation forT. In Sec. IV,we numerically solve this equation
for a fixed value of B, and determine the proper time
evolution of the temperature T. Plugging this numerical
result back into pk; p⊥, and ϵ, the proper time evolution of
these and a number of other thermodynamic quantities are
determined. The numerical results arisen in this approach is
then compared with the 1þ 1 Bjorken solution [8]

T ¼ T0

�
τ0
τ

�
1=κ

; ð2:34Þ

with T0 the temperature at the initial time τ0, and κ ¼ 3
appearing in the equation of state ϵ ¼ κp of an ideal gas. The
coefficient κ is related to the sound velocity cs by κ ¼ c−2s .
Generalizing this result to a 3þ 1 dimensional flow, which
describes a fluid expanding in both transverse and longi-
tudinal directions, we get

T ¼ T0

�
τ0
τ

�
: ð2:35Þ

Let us notice that this result is only valid at r ¼ 0, with r the
distance to the center of the collision. In general, it is to be
replaced by T ¼ T0ðρ0ρ Þ, where ρ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ2 − r2
p

and T0 the
temperature at ρ0. In Sec. IV, we refer to this solution as the
Hubble solution at r ¼ 0.
Another useful comparison is made with the temperature

arisen from the 3þ 1 dimensional Gubser flow [20],3

which describes a fluid expanding not only in the transverse
y-direction but also in the x-z plane,

T ¼ T0

�
τ0
τ

�
1=κ

Gðr; r;τ; τ0Þ; ð2:36Þ

with

Gðr;r;τ;τ0Þ≡
�
1þq4ðτ20−r20Þ4þ2q2ðτ20þr20Þ
1þq4ðτ2−r2Þ2þ2q2ðτ2þr2Þ

�
: ð2:37Þ

The factor q that characterizes the Gubser temperature is
typically given by q ¼ 1=4.3 fm−1. The parameter r is the
radial distance from the origin in the x-z plane, and T0 is the

FIG. 1. The magnetic field created in HIC experiments is
assumed to be aligned in the z direction, perpendicular to the
x-y reaction plane. The created QGP (the fluid droplet) expands
uniformly in the y direction. This system is described by a 1þ 1
dimensional transverse MHD [13]. According to statements
in footnote 1 and in the main text, transverse (x and y) and
longitudinal (z) directions are defined with respect to the B field.

3The result originally presented by S. Gubser in [20] has a
different form. In Appendix A, we show that (2.36) is equivalent
with T from [20].
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initial temperature at τ0 and r0. Moreover, in
(2.37), Gðr0; τ0; r0; τ0Þ ¼ 1.

D. Proper time evolution of the magnetic field in an
expanding relativistic plasma

In this paper, for the sake of simplicity, we consider a
plasma consisting of only one flavor with electric charge
q ¼ þ1. It is not difficult to generalize our results to the
more realistic case of an expanding plasma of quarks and
gluons consisting of various quark flavors. This is the
plasma that is created in the early stages of heavy-ion
collisions. Very strong and short-living magnetic fields are
also believed to be generated in the same stage of these
collisions. As it turns out, after a few fm=c, they become too
weak to be able to affect the dynamics of the QGP. The
proper time dependence of the electromagnetic field
created in HICs was indeed the subject of intensive
theoretical and experimental studies in the last few years
(see e.g., [2–5,10]). The question about the effect of
spacetime dependent magnetic fields on the evolution of
thermodynamic quantities is still open. One of the main
purposes of this paper is to answer this question. The Ritus
eigenfunction method, described in Sec. II A is however
only valid for constant magnetic fields. Consequently, the
proper time dependence of the temperature and other
thermodynamic quantities are only valid for constant
magnetic fields.
In Sec. IV, we show that it is possible to generalize the

results arisen from our numerical approach for the case of a
constant magnetic field to the case of a spacetime depen-
dent magnetic field in an expanding plasma. To do this, we
divide the time interval under study into a large number of
infinitesimal time slices. We then assume the magnetic field
to be constant in each infinitesimal time slice. Solving the
aforementioned differential equation in this time slice, and
then varying the magnetic field according to a given
phenomenological or theoretical ansatz, we repeat the same
computation for the next time slice. Repeating this pro-
cedure for all infinitesimal time interval, we arrive at the
proper time dependence of the temperature for a point to
point varying magnetic field (see Sec. IV for more details).
In what follows, we present a number of solutions for the
spacetime dependence of the magnetic field.
As it is argued in [4], the early time dynamics of the

magnetic field is described by

eBðτÞ ¼ eBð0Þ
ð1þ τ2=t2BÞ3=2

; ð2:38Þ

where eBð0Þ is some constant initial value for the magnetic
field at τ ¼ 0 fm=c and tB ∼ 0.065 fm=c at RHIC top
energies. In Sec. IV, we refer to this solution as the early
time (E-time) solution. Another phenomenological expres-
sion, that describes the evolution of the magnetic field in
near-central collisions is

eBðr; τÞ ¼ m2
π

aþ bτ
exp

�
−
r2

σ2r

�
: ð2:39Þ

Here, r is the distance to the center of the collision,
mπ ∼ 140 MeV is the pion mass, a and b are two
phenomenological parameters given by a ¼ 78.2658 and
b ¼ 79.5457 fm−1, and σr ¼ 3.5 fm for a zero impact
parameter [29]. In Sec. IV, we refer to this solution as
the phenomenological Gaussian (Pheno) solution.
Apart from these phenomenological expressions, the

evolution of the electromagnetic fields is derived from
relativistic MHD. These kinds of derivation are based on a
number of assumptions, including those listed in Sec. II C.
In [9,10], it is also assumed that the magnetic field is
perpendicular to its velocity, v. As it turns out, the
expansion of the QGP plays a crucial role in the proper
time evolution of the magnetic field. In the simplest case of
ideal MHD described by 1þ 1 dimensional transverse
MHD, and based on the Bjorken flow (2.31), the evolution
of B is given by

B ¼ B0

�
τ0
τ

�
; ð2:40Þ

where B0 is the magnetic field strength at the initial time τ0.
In [30], we extended this ideal MHD result to a 3þ 1
dimensional Gubser flow [20]. To do this we solve the
MHD equation in a conformally flat dS3 × E1 spacetime.
Performing an appropriate Weyl transformation back into
the Minkowski spacetime, we arrive at

Bðr; τÞ ¼ B0Hðr; r0; τ; τ0Þ; ð2:41Þ

with

Hðr; r0; τ; τ0Þ≡
� 1

r2τ2 þ
α2
0

r2
0
τ2
0

Gðr; r0; τ; τ0Þ
1þα2

0

r0τ0

�1=2

: ð2:42Þ

Here, similar to Gðr; r0; τ; τ0Þ from (2.37), Hðr0; τ0;
r0; τ0Þ ¼ 1. Moreover, according to [30], the factor α0 is
the ratio of the longitudinal and transverse components of
the magnetic field α≡ By=Bx.

4 In Sec. IV, we refer to this
solution as the conformal MHD (CMHD) solution. In
Fig. 2, a comparison is made between the τ dependence
of the most simple IdMHD solution (2.40) and the other
solutions introduced in this section, including the E-time,
Pheno and CMHD solutions for α0 ¼ 0.1 and α0 ¼ 1 from
(2.38), (2.39), and (2.41) in the first few femtoseconds after
the collision, Δτ ¼ 4 fm=c. Assuming the background
magnetic field to be τ dependent, it is possible to determine
the τ dependence of the temperature following the

4In the more realistic case of relativistic HIC, α0 is the
cotangent of the angle between B and the beamline.
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procedure described before. It turns out that despite
obvious difference between the τ dependence of various
solutions for BðτÞ, the temperature arisen from these
solutions are similar (see Sec. IV for more details).

III. THERMODYNAMIC QUANTITIES IN AN
EXPANDING MAGNETIZED PLASMA: THE

WIGNER FUNCTION APPROACH

In this section, we first derive in Sec. III A 1 the Wigner
function of a fermionic system consisting of a positive
charge (q ¼ þ1) in the presence of a constant magnetic
field using the quantization given in (2.10). Using this
result, we then derive the corresponding energy-momentum
tensor to this system in Sec. III A 2. In Sec. III B, we
present the corresponding expressions to a number of
thermodynamic quantities including, among others,
pk; p⊥, and ϵ, and compare the resulting expressions, all
in integral forms, with the results presented in (2.15), (2.19)
and (2.20). To evaluate these integrals in high and low-
temperature approximations in Sec. III B, and present
separately the analytical results corresponding to the
massive and massless case.

A. The Wigner function, the energy-momentum tensor,
and the resulting thermodynamic quantities

1. The Wigner function

In quantum statistical mechanics, the Wigner function
Wðr; kÞ is given by the thermal average of the normal
ordered Wigner operator Ŵ as [8],

Wαβ ¼ h∶Ŵαβ∶i; ð3:1Þ

where

Ŵαβðr; kÞ ¼
Z

d4r0e−ik·r0 ψ̄β

�
rþ r0

2

�
Uðþ;−Þψα

�
r −

r0

2

�
:

ð3:2Þ

Here, ψ and ψ̄ are fermionic field operators, and Uðþ;−Þ,
defined by

Uðþ;−Þ ¼ exp

�
þier0μ

Z
1

0

dsAμ

�
r −

r0

2
þ sr0

��
; ð3:3Þ

is the Wilson line that guarantees the gauge invariance of
the product ψ̄ψ , once the point-splitting is performed. The
latter is characterized by r0. In (3.2) and (3.3), rμ ¼
ðt; x; y; zÞ and r0μ ¼ ðt0; x0; y0; z0Þ. In the presence of a
constant magnetic field, aligned in the z-direction, i.e.,
for Aμ ¼ Bxey, Uðþ;−Þ reads

Uðþ;−Þ ¼ eieBxy
0
: ð3:4Þ

Plugging, apart from Uðþ;−Þ from (3.4), the quantization
(2.10) of the field operators ψ and ψ̄ into (3.2), and using
(2.12) as well as

ha†n0;s0p̄0 an;sp̄ i ¼ hb†n0;s0p̄0 bn;sp̄ i
¼ ð2πÞ2Vδ2ðp̄0 − p̄Þδnn0δss0fFðEn; pzÞ; ð3:5Þ

with p̄ ¼ ð0; py; pzÞ and fFðEn; pzÞ defined in (2.16), we
arrive first at

FIG. 2. Comparison of the τ dependence of eB=m2
π arising from E-time (dashed blue), Pheno (dotted-dashed orange), and CMHD for

α0 ¼ 0.1 (solid red) and α0 ¼ 1 (dashed magenta) with the τ dependence of eB=m2
π arising from IdMHD for the initial magnetic field a)

eB0 ¼ 5m2
π and b) eB0 ¼ 15m2

π . As it is shown, the magnetic field arising from CMHD for α0 ¼ 0.1 is very similar to the Bjorken
expansion. Later, we will show that despite the difference between these curves, the temperature T⋆ arising from these magnetic fields
are similar (see Sec. IV).
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Wαβðr; kÞ ¼
X
n¼0

Z
d4r0d2p̄
ð2πÞ2

e−iðk·r0−eBxy0Þ

2En
fFðEn; pzÞ

× f½PðþÞ
n ðζ−Þ�ασðγ · p̃þ þmÞσρ½PðþÞ

n ðζþÞ�ρβ
× eiðEnt0−pyy0−pzz0Þ

− ½PðþÞ
n ðζ̄−Þ�ασðγ · p̃− −mÞσρ½PðþÞ

n ðζ̄þÞ�ρβ
× e−iðEnt0−pyy0−pzz0Þg: ð3:6Þ

Here, ζ� ≡ ξþ � x0
2lb

and ζ̄� ≡ ξ− � x0
2lb

with ξκ ¼ ξκþ, κ ¼
� for positively charged particles, as defined in Sec. II A.

Moreover, the projector PðnÞ
n is in general defined by

PðþÞ
n ¼ Pþfþn þ ΠnP−f−n from (2.6). Plugging f�n from

(2.8) into (3.6), performing the integration over r0μ ¼
ðt0x0; y0; z0Þ by making, in particular, use of

Z
dxe−x

2

HmðxþyÞHnðxþzÞ¼2n
ffiffiffi
π

p
m!zn−mLn−m

m ð−2yzÞ;

n≥m; ð3:7Þ

where Lk
mðuÞ is the associated Laguerre polynomial, and

eventually performing the integral over py and pz, we
arrive after a lengthy but straightforward computation at the
Wigner function for a hot and magnetized QED plasma,

Wðr; kÞ ¼ fFðE0; kzÞ
E0

e−
k2⊥
eBL0

�
2k2⊥
eB

�
½δðk0 − E0Þðγk · p̃ð0Þ

k;þðkzÞ þmÞ − δðk0 þ E0Þðγk · p̃ð0Þ
k;−ð−kzÞ −mÞ�Pþ

þ e−
k2⊥
eB

X
n¼1

fFðEn; kzÞ
En

ð−1ÞnLn

�
2k2⊥
eB

�
½δðk0 − EnÞðγk · p̃ðnÞ

k;þðkzÞ þmÞ − δðk0 þ EnÞðγk · p̃ðnÞ
k;−ð−kzÞ −mÞ�Pþ

− e−
k2⊥
eB

X
n¼1

fFðEn; kzÞ
En

ð−1ÞnLn−1

�
2k2⊥
eB

�
½δðk0 − EnÞðγk · p̃ðnÞ

k;þðkzÞ þmÞ − δðk0 þ EnÞðγk · p̃ðnÞ
k;−ð−kzÞ −mÞ�P−

þ e−
k2⊥
eB

X
n¼1

fFðEn; kzÞ
En

ð−1ÞnL1
n−1

�
2k2⊥
eB

�

×

ffiffiffi
2

n

r �ðky þ ikxÞffiffiffiffiffiffi
eB

p ½δðk0 − EnÞðγ⊥ · p̃ðnÞ
⊥;þðkzÞÞ − δðk0 þ EnÞðγ⊥ · p̃ðnÞ

⊥;−ð−kzÞÞ�P−

þðky − ikxÞffiffiffiffiffiffi
eB

p ½δðk0 − EnÞðγ⊥ · p̃ðnÞ
⊥;þðkzÞÞ − δðk0 þ EnÞðγ⊥ · p̃ðnÞ

⊥;−ð−kzÞÞ�Pþ

�
: ð3:8Þ

Here, k⊥≡ð0;kx;ky;0Þ, γk≡ðγ0;0;0;γ3Þ, γ⊥≡ð0;γ1;γ2;0Þ,
p̃μðnÞ
� ðkzÞ ≡ ðEn; 0; ∓

ffiffiffiffiffiffiffiffiffiffiffi
2neB

p
; kzÞ, p̃μðnÞ

k;� ðkzÞ ≡ ðEn; 0;

0; kzÞ with En ¼ EðþÞ
n defined in (2.5), p̃μðnÞ

⊥;�ðkzÞ≡
ð0; 0;∓ ffiffiffiffiffiffiffiffiffiffiffi

2neB
p

; 0Þ, and LmðuÞ≡ L0
mðuÞ. To simplify the

combinations P�ðγ · p̃ðnÞ
� �mÞP� or P�ðγ · p̃ðnÞ

� �mÞP∓,
we used P�γμk ¼ γμkP�, and P�γμ⊥ ¼ γμ⊥P∓, and P2

� ¼
P� as well as P�P∓ ¼ 0 [31]. Let us notice that the
expression on the first line of (3.8) including L0ðuÞ ¼ 1 is
the contribution from the lowest Landau level (LLL) while
the remaining terms are those from higher Landau levels
(HLL). In what follows, we use the above Wigner function
to determine the energy-momentum tensor of this hot and
magnetized QED plasma.

2. The energy-momentum tensor and thermodynamic
quantities pk; p⊥, and ϵ

The energy-momentum tensor of a fermionic system is
given by [32]

T μν ¼ i
4
ψ̄ðγμD⃗ν þ γνD⃗μ − γμD⃖ν − γνD⃖μÞψ − gμνL; ð3:9Þ

with the Lagrangian density

L ¼ 1

2
ψ̄ðiγμD⃗μ −mÞψ −

1

2
ψ̄ðiγμD⃖μ −mÞψ : ð3:10Þ

Here, D⃗μ ¼ ∂⃗μ − ieAμ and D⃖μ ¼ ∂⃖μ þ ieAμ denote the
right (→) and left (←) covariant derivatives. As it turns
out, the thermal average of this operator leads to

Tμν ¼ h∶T μν∶i

¼
�
1

2
ðδμλδνσ þ δνλδ

μ
σÞ − gμνgλσ

� Z
d4k
ð2πÞ4 k

σtrðγλWÞ:

ð3:11Þ

Plugging the Wigner function (3.8) into (3.11), and using
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trðγλ½δðk0 − EnÞðγk · p̃ðnÞ
k;þðkzÞ þmÞ − δðk0 þ EnÞðγk · p̃ðnÞ

k;−ð−kzÞ −mÞ�P�Þ
¼ 2½δðk0 − EnÞðgλ0En − gλ3kzÞ − δðk0 þ EnÞðgλ0En þ gλ3kzÞ�;

trðγλ½δðk0 − EnÞðγ⊥ · p̃ðnÞ
⊥;þðkzÞÞ − δðk0 þ EnÞðγ⊥ · p̃ðnÞ

⊥;−ð−kzÞÞ�P∓Þ
¼ 2½δðk0 − EnÞðgλ2 ∓ igλ1Þ þ δðk0 þ EnÞðgλ2 ∓ igλ1Þ�

ffiffiffiffiffiffiffiffiffiffiffi
2neB

p
; ð3:12Þ

to perform the trace over Dirac matrices, we arrive after some works first at

Tμν ¼ 4

Z þ∞

−∞

dkz
2π

fFðE0; kzÞ
E0

��
1

2
ðgμ0δν0 þ δμ0gν0Þ − gμν

�
E2
0 −

�
1

2
ðgμ3δν3 þ δμ3gν3Þ − gμν

�
k2z

�Z þ∞

−∞

d2k⊥
ð2πÞ2 e

−
k2⊥
eB

þ 4
X∞
n¼1

ð−1Þn
Z þ∞

−∞

dkz
2π

fFðEn; kzÞ
En

��
1

2
ðgμ0δν0 þ δμ0gν0Þ − gμν

�
E2
n −

�
1

2
ðgμ3δν3 þ δμ3gν3Þ − gμν

�
k2z

�

×
Z þ∞

−∞

d2k⊥
ð2πÞ2 e

−
k2⊥
eB

�
Ln

�
2k2⊥
eB

�
− Ln−1

�
2k2⊥
eB

��
þ 8

X∞
n¼1

ð−1Þn
Z þ∞

−∞

dkz
2π

fFðEn; kzÞ
En

×
Z þ∞

−∞

d2k⊥
ð2πÞ2 e

−
k2⊥
eBL1

n−1

�
2k2⊥
eB

�
½k2xðgμ1δν1 þ δμ1gν1Þ þ k2yðgμ2δν2 þ δμ2gν2Þ�

− 16gμν
X∞
n¼1

ð−1Þn
Z þ∞

−∞

dkz
2π

fFðEn; kzÞ
En

Z þ∞

−∞

d2k⊥
ð2πÞ2 k

2⊥e−
k2⊥
eBL1

n−1

�
2k2⊥
eB

�
: ð3:13Þ

To perform the integration over k⊥, we use
Z þ∞

−∞

d2k⊥
ð2πÞ2 e

−
k2⊥
eB ¼ eB

4π
; ð3:14Þ

as well as
Z þ∞

−∞

d2k⊥
ð2πÞ2 e

−
k2⊥
eBLn

�
2k2⊥
eB

�
¼ ð−1Þn eB

4π
;

Z þ∞

−∞

d2k⊥
ð2πÞ2 e

−
k2⊥
eBk2⊥L1

n

�
2k2⊥
eB

�
¼ ð−1Þn ðeBÞ

2ðnþ 1Þ
4π

:

ð3:15Þ
Moreover, we use symmetry arguments5 to perform the following integral for i ¼ x, y:

Z þ∞

−∞

d2k⊥
ð2πÞ2 e

−
k2⊥
eBk2i L

1
n

�
2k2⊥
eB

�
¼ ð−1Þn ðeBÞ

2ðnþ 1Þ
8π

:

ð3:16Þ
We finally arrive at

Tμν ¼ m2eB
4π2

ðgμ0δν0 þ δμ0gν0 − 2gμνÞ
X∞
n¼0

αn

Z þ∞

−∞

dkz
En

fFðEn; kzÞ

þ eB
4π2

ðgμ0δν0 þ δμ0gν0 − gμ3δν3 − δμ3gν3Þ
X∞
n¼0

αn

Z þ∞

−∞

dkz
En

k2zfFðEn; kzÞ

þ ðeBÞ2
4π2

½2ðgμ0δν0 þ δμ0gν0Þ − ðgμ1δν1 þ δμ1gν1 þ gμ2δν2 þ δμ2gν2Þ�
X∞
n¼0

nαn

Z þ∞

−∞

dkz
En

fFðEn; kzÞ: ð3:17Þ

Here, αn ¼ 2 − δn;0, as introduced previously in Sec. II B. The energy-momentum tensor presented in (3.17) is symmetric
and diagonal. Its diagonal elements are given by

5Here, k2i ; i ¼ x, y is first replaced by 1
2
k2⊥, and then (2.16) is used.
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T00 ¼ eB
π2

X∞
n¼0

αn

Z
∞

0

dkz
En

ðE2
n −m2ÞfFðEn; kzÞ;

T11 ¼ eB
π2

X∞
n¼0

αn

Z
∞

0

dkz
En

ðneBþm2ÞfFðEn; kzÞ;

T22 ¼ eB
π2

X∞
n¼0

αn

Z
∞

0

dkz
En

ðneBþm2ÞfFðEn; kzÞ;

T33 ¼ eB
π2

X∞
n¼0

αn

Z
∞

0

dkz
En

ðk2z þm2ÞfFðEn; kzÞ: ð3:18Þ

Here, as expected, the trace of the energy-momentum
tensor is proportional to the fermion mass, and reads

Tμ
μ ¼ −

3eBm2

π2
X∞
n¼0

αn

Z
∞

0

dkz
En

fFðEn; kzÞ: ð3:19Þ

It vanishes for m ¼ 0, as expected from conformal sym-
metry for massless fermions. Identifying, at this stage, T00

with the energy density ϵ, T11 ¼ T22 with the transverse
pressure p⊥, and T33 with the longitudinal pressure pk, it
turns out that the results for these quantities in the massless
case coincide, as aforementioned, with the matter (T
dependent) part of ϵ; pk, and p⊥ from (2.15), (2.19) and
(2.20), respectively. The quantity BM, including the mag-
netization M, is given by BM ¼ pk − p⊥, or

T33 − T11 ¼ eB
π2

X∞
n¼0

αn

Z
∞

0

dkz
En

ðk2z − neBÞfFðEn; kzÞ;

ð3:20Þ

that is comparable with BM from (2.15). Assuming the
fermions to be massless, the transverse pressure vanishes in
the LLL approximation (n ¼ 0), while, according to (3.18),
we have

pk;LLL ¼ ϵLLL ¼ eBT2

12
: ð3:21Þ

This result arises from

Z þ∞

−∞
dkz

jkzj
eβjkzj þ 1

¼ π2T2

6
; ð3:22Þ

and indicates a sound speed equal to the light
speed cs ¼ c ¼ 1.

B. Thermodynamic quantities in the high
and low-temperature approximations

To present the analytic results for pk; p⊥, and ϵ in the
high- and low-temperature approximations, let us introduce
first the following integral [25]:

hlðyÞ ¼
1

ΓðlÞ
Z

∞

0

dxxl−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p 1

expð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ þ 1

; ð3:23Þ

with x≡ kz=T, y≡M2, and M a generic mass. According
to our results from previous section, pk; p⊥, and ϵ are then
given by

pk ¼
eB
π2

X∞
n¼0

αn½2T2h3ðynÞ þm2h1ðynÞ�;

p⊥ ¼ eB
π2

X∞
n¼0

αnðneBþm2Þh1ðynÞ;

ϵ ¼ eB
π2

X∞
n¼0

αn½2T2h3ðynÞ þ 2neBh1ðynÞ�; ð3:24Þ

where yn ≡ βMn with β ¼ T−1 is defined in terms of the
magnetic massMn ≡ ðm2 þ 2neBÞ1=2. In what follows, we
present the results for pk; p⊥, and ϵ in the high- and low-
temperature approximations in the massive and massive
cases separately.

1. High temperature approximation
for the massive and massless fermions

In the high-temperature expansion, hl-integrals in (3.23)
are evaluated according to [33], (see also Appendix B for
more details),

h2lþ1ðyÞ ¼
1

2Γðlþ 1Þ
Xl−1
k¼0

�
ð1 − 21−2l−2kÞ

�
y
2

�
2k ð−1ÞkΓðl − kÞζð2l − 2kÞ

Γðkþ 1Þ
�

−
ð−1Þl

2Γ2ðlþ 1Þ
�
y
2

�
2l
�
1

2
γE −

1

2
ψð1þ lÞ þ ln

�
y
π

��

þ 1

2Γðlþ 1Þ
�
y
2

�
2lX∞

k¼1

�
ð1 − 21þ2kÞ

�
y
4π

�
2k ð−1ÞlþkΓð2kþ 1Þζð2kþ 1Þ

Γðkþ 1ÞΓðlþ kþ 1Þ
�
: ð3:25Þ
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This leads in particular to (see also [25])

h1ðyÞ ≃ −
1

2
ln

�
y
π

�
−
1

2
γE þO

��
y
2

�
2
�
:

h3ðyÞ ≃
π2

24
þO

��
y
2

�
2
�
: ð3:26Þ

In (3.25), ΓðzÞ ¼ ðz − 1Þ!,

ζðsÞ ¼
X∞
n¼1

1

ns
; and ψðzÞ ¼ Γ0ðzÞ

ΓðzÞ ;

are the gamma-, Riemann zeta-, and digamma functions,
respectively. Moreover, γE is the Euler-Mascheroni con-
stant,

γE ¼ lim
n→∞

�
− ln nþ

Xn
k¼1

1

k

�
≈ 0.577:

Assuming the summation over Landau levels n in (3.24) is
limited to N, the corresponding results to pk; p⊥, and ϵ for
nonvanishing fermion mass read

pk ≃
eBð1þ 2NÞT2

12
−
eBm2

2π2
XN
n¼0

αn

�
ln

�
yn
π

�
þ γE

�
;

p⊥ ≃ −
eB
2π2

XN
n¼0

αnðm2 þ neBÞ
�
ln

�
yn
π

�
þ γE

�
;

ϵ ≃
eBT2ð1þ 2NÞ

12
−
2ðeBÞ2
π2

XN
n¼1

n

�
ln

�
yn
π

�
þ γE

�
;

ð3:27Þ

with yn ¼ βMn, as before. Here,
P

N
n¼0 αn ¼ 1þ 2N is

used. In the massless case, for eB ≪ T2, we arrive, in
particular, at

pk ≃
eBð1þ 2NÞT2

12
;

p⊥ ≃ −
ðeBÞ2
π2

XN
n¼1

n
�
ln
�
zn
π

�
þ γE

�
;

ϵ ≃
eBð1þ 2NÞT2

12
−
2ðeBÞ2
π2

XN
n¼1

n

�
ln

�
zn
π

�
þ γE

�
;

ð3:28Þ

with zn ≡ β
ffiffiffiffiffiffiffiffiffiffiffi
2neB

p
. Setting, N ¼ 0 in (3.28), we obtain

p⊥ ¼ 0, and ϵ ¼ pk ¼ eBT2

12
, as expected from (3.21).6 The

results presented in (3.28) can be in particular regarded as

the high-temperature approximation of the T dependent
part of pk; p⊥, and ϵ arising from the effective action (2.13)
[see (2.15), (2.19) and (2.20) for details].

2. Low temperature approximation for massless fermions

In the low-temperature expansion, hl-integrals in (3.24)
are evaluated according to [33], (see also Appendix B for
more details)

hnðyÞ ¼
Γðn

2
Þ

ΓðnÞ
X∞
k¼0

Γðkþ n
2
Þ

Γðn
2
− kÞk!

��
1

2y

�
k−n

2
þ1

Likþn
2
ðe−yÞ

−
1

22k

�
1

y

�
k−n

2
þ1

Likþn
2
ðe−2yÞ

�
; ð3:29Þ

that leads in particular to

h1ðyÞ ≃
ffiffiffiffiffi
π

2y

r
U1=2ðyÞ;

h3ðyÞ ≃
ffiffiffiffiffi
πy

p
4

U3=2ðyÞ; ð3:30Þ

with

U3=2ðyÞ≡ ½
ffiffiffi
2

p
Li3=2ðe−yÞ − Li3=2ðe−2yÞ�;

U1=2ðyÞ≡ ½Li1=2ðe−yÞ −
ffiffiffi
2

p
Li1=2ðe−2yÞ�: ð3:31Þ

Here, LisðzÞ is the polylogarithm function,

LisðzÞ ¼
X∞
k¼1

zk

ks
:

Plugging these expressions into (3.24), and setting m ¼ 0,
pk; p⊥, and ϵ in the low-temperature (large magnetic field)
approximation in the massless case read

pk ≃
eBT2

12
þ 21=4ðeBÞ5=4T3=2

π
ffiffiffi
π

p
XN
n¼1

n1=4U3=2ðznÞ

p⊥ ≃
21=4ðeBÞ7=4T1=2

π
ffiffiffi
π

p
XN
n¼1

n3=4U1=2ðznÞ;

ϵ ≃
eBT2

12
þ 21=4ðeBÞ5=4T3=2

π
ffiffiffi
π

p
XN
n¼1

n1=4U3=2ðznÞ

þ 25=4ðeBÞ7=4T1=2

π
ffiffiffi
π

p
XN
n¼1

n3=4U1=2ðznÞ; ð3:32Þ

with U3=2ðznÞ and U3=2ðznÞ from (3.31). Here,

zn ¼ β
ffiffiffiffiffiffiffiffiffiffiffi
2neB

p
. Moreover, as in (3.27) and (3.28), the

summation over Landau levels is limited to N.
In the next section, we use these quantities to determine

the proper time evolution of the temperature. Plugging the

6We notice that the LLL approximation is only valid in the
low-temperature approximation eB ≫ T2.
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corresponding numerical results for T back into (3.27),
(3.28) and (3.32), we arrive at the proper time evolution of
pk; p⊥, and ϵ in the high- and low-temperature approx-
imations in the massless and massive cases for a constant
magnetic field.

IV. NUMERICAL RESULTS

In this section, we present a number of numerical results
arising from the analytical ones in the previous sections. In
Sec. IVA, we determine the τ dependence of T by numeri-
cally solving the energy equation arising from the relativistic
MHD. The necessary inputs are the pressures pk and p⊥ as
well as the energy density ϵ, which were determined
analytically in theWigner quantum kinetic theory approach.
We also present a number of comparisons between our
results with the τ dependence of T arising from relativistic
hydrodynamics (Bjorken, Hubble, and Gubser flow) for
zero magnetic fields. The corresponding results are also
comparedwith the resulting temperatures for a point to point
varying magnetic field. Since our results may be relevant for
the physics of heavy-ion experiments, weworkwith realistic
values of eB. For the high temperature (weakmagnetic field)
and low temperature (large magnetic field) approximations,
we choose eB ¼ 0.5; 5m2

π and eB ¼ 5; 15m2
π , respectively.

7

Let us notice that the current estimates for the magnetic field
produced in heavy-ion collisions arises from different
numerical simulations [2,3,34]. According to [34], for
instance, for a collision with the impact factor b ¼ 4 fm
and the center of mass energy

ffiffiffi
s

p ¼ 200 AGeV at RHIC,
eB is in the order eB ≈ 1–3m2

π at about 0.1–0.2 fm=c after
the collision. At LHC collisions with

ffiffiffi
s

p ¼ 2.76 ATeV, eB

is even larger of about eB ≈ 10–15m2
π at some even earlier

time after the collision.
In Sec. IV B, we use our results for the τ dependence of T

to determine the τ dependence of pk; p⊥, and ϵ. To answer
the question of whether a constant magnetic field has a
significant impact on the τ dependence of these quantities is
answered by comparing our results with the corresponding
results to a 1þ 1 dimensional Bjorken flow. The τ depend-
ence of other thermodynamic quantities that are particularly
defined in terms of pk, p⊥, and ϵ is presented in Sec. IV C.
These quantities include χm; cs;k and cs;⊥. In Sec. IV D, we
combine the τ dependence of these quantities and that of T,
and determine the T dependence of these quantities in the
high- and low-temperature approximations.

A. The τ dependence of T in constant and decaying
magnetic fields

In Sec. III, we determined the analytical T dependence of
pk; p⊥, and ϵ in high- and low-temperature approximations
in the massless [(3.28) and (3.32)] and massive cases
[(3.27)]. Plugging the corresponding expressions into the
energy equation (2.33), and solving the resulting first order
differential equation numerically, we arrive at the τ
dependence of the temperature T in these approximations.
The fermion massm appearing in (3.27), is chosen to be the
thermal mass of the electron [35],

mðTÞ ¼
�
m2

0 þ
e2T2

8

�
1=2

: ð4:1Þ

Here, m0 ¼ 0.5 MeV is the electron’s rest mass, and e its
electric charge. It is given by e≡ ffiffiffiffiffiffiffiffi

4πα
p

with the fine
structure constant α ¼ 1=137. As concerns the initial value
of the proper time, τ0 and Tðτ0Þ, we choose τ0 ¼ 0.2 fm=c

(a) (b)

FIG. 3. The τ dependence of T arising from the solution of the energy equation (2.33) is plotted for high-temperature (panel a) and
low-temperature (panel b) approximations. The decay of T is then compared with TðτÞ from (2.34) arising from the 1þ 1 dimensional
Bjorken flow. The latter is demonstrated with the dashed and solid curves. A comparison is also made with the τ dependence of T arising
from point to point varying magnetic fields. Here, we choose BðτÞ from (2.40) (Ideal MHD). The resulting temperature for varying
magnetic fields, denoted with black crosses, are computed for the initial magnetic field eB0 ¼ 2.5m2

π and eB0 ¼ 15m2
π for the high

(δBHI) and low (δBLI) temperature approximations in panel a and b, respectively.

7For mπ ¼ 0.140 GeV, eB ¼ m2
π ≈ 0.02 GeV2. Let us recall

that eB ¼ 1 GeV2 corresponds to B ≈ 1.7 × 1020 Gauß.
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and T0 ≡ Tðτ0Þ ¼ 600 MeV. The summation over Landau

levels are truncated at N ¼ bT2
0

eBc for T0 ¼ 600 MeV and
fixed eB. In Figs. 3(a) and (b), we compare the τ
dependence of T arising from Bjorken flow (2.34) [blue
curves in Figs. 3(a) and 3(b)] with the τ dependence of T
arising from the solution of the aforementioned differential
equation in the high- and low-temperature approximations.
In Fig. 3(a), corresponding to eB ≪ T2, the initial value of
the magnetic field is chosen to be eB0 ¼ 0.5; 5m2

π and in
Fig. 3(b), corresponding to eB ≫ T2, the initial value of the

magnetic field is chosen to be eB0 ¼ 5; 15m2
π. The results

demonstrated in Fig. 3 are for massless fermions. We
repeated the same computation for massive fermions by
plugging (3.27) for eB ≪ T2 into (2.33), and arrived at the
same result as presented in Fig. 3(a). We thus conclude that
once the magnetic field is chosen to be constant, the
fermion thermal mass has not a crucial effect on the τ
dependence of T.
At this stage, following the procedure described in

Sec. II D, we determined the proper time dependence of
T for a point to point decaying magnetic field. For
simplicity, we choose BðτÞ from (2.40) arising in the ideal
transverse MHD (IdMHD). The corresponding results are
denoted by δBHI for the high-temperature expansion with
the initial magnetic field eB0 ¼ 2.5m2

π [see black crosses in
Fig. 3(a)] and δBLI for low-temperature expansion with the
initial magnetic field eB0 ¼ 15m2

π [see black crosses in
Fig. 3(b)]. We repeat the same computation for magnetic
fields varying according to (2.38) (E-time), (2.39) (Pheno),
and (2.41) (CMHD) with α0 ¼ 0.1 and α0 ¼ 1. The results
for the τ dependence of T are plotted in Fig. 4.

(a) (b)

FIG. 4. The τ dependence of T arising from a constant magnetic field eB ¼ 5m2
π (red diamond) is compared with the τ dependence of

T arising from the energy equation with point to point varying magnetic fields. The initial magnetic fields for different solutions are
eB0 ¼ 5m2

π and eB0 ¼ 15m2
π for eB ≪ T2 and eB ≫ T2, respectively. According to Fig. 2, the B field arising from CMHD for α0 ¼ 0.1

almost coincides with the B field arising from IdMHD. Although in eB ≪ T2 the τ dependence of T arising from CMHD with α0 ¼ 0.1,
1 almost coincides with the τ dependence of T arising from IdMHD, this is not the case in eB ≫ T2. Small oscillations appearing for the
CMHD solution in the low-temperature approximation sustain once smaller intervals are chosen during which the magnetic field is
assumed to be constant.

FIG. 5. The τ dependence of the temperature for the high- and
low-temperature approximations with constant magnetic fields
eBH ¼ 5m2

π and eBL ¼ 15m2
π , as well as δBHI and δBLI results

for point to point varying magnetic fields according to IdMHD
solution for the B field are compared with the τ dependence of the
1þ 1 dimensional Bjorken, 3þ 1 dimensional Hubble, and
Gubser flows at r ¼ 0. According to this result, large magnetic
fields slow up the fast decay of the temperature in the early time.

TABLE I. ηi; i ¼ H;L from (4.2) is given from τ ¼ 0.2;…;
3.7 fm=c.

τ in fm=c ηH in % ηL in %

0.2 0 0
0.7 9.4 20.3
1.2 2.5 24.5
1.7 4.9 26.4
2.2 11.9 27.5
1.7 18.2 28.3
3.2 24.0 28.9
3.7 29.3 29.5
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Let us notice that according to the above results for the
high-temperature approximation, after an abrupt decay
within 1 fm=c, the temperature remains almost constant
around 300 MeV. Changing the initial magnetic field up to
one order of magnitude does not affect this result. As
concerns the low-temperature expansion, there is almost no
difference between the τ dependence of T for constant (red
curves) and varying (black crosses) magnetic fields. In the
low-temperature approximation, however, the temperature
decays fast, the result for eB ¼ 5m2

π and eB ¼ 15m2
π are

different, while the results for constant eB ¼ 15m2
π and a

point to point varying magnetic field with the initial
magnetic field eB0 ¼ 15mπ2 almost coincide [see
Fig. 4(b)].
In Fig. 5, the τ dependence of the temperature T is

plotted for different solutions: eBH and eBL denote the
results arising from the solution of the energy equation for
constant magnetic fields eB ¼ 5m2

π and eB ¼ 15m2
π in the

high- (H) and low- (L) temperature approximations,
respectively. The solutions presented in (2.34), (2.35),

(a) (b)

(c)

(e) (f)

(d)

FIG. 6. The τ dependence of pkðτÞ=pk;0 (panels a and b), p⊥ðτÞ=p⊥;0 (panels c and d), and ϵðτÞ=ϵ0 (panels e and f) from (3.28) and
(3.32) with T arising from the numerical solution of the energy equation (2.33) is compared with the corresponding data from point to
point decaying magnetic fields δBHI and δBLI, and the expressions from (4.3) in a 1þ 1 dimensional Bjorken solution of relativistic
hydrodynamics. In the low-temperature (large magnetic field) approximation, these results almost coincide. At high-temperature (weak
magnetic field), the magnetic field slows up the decay of ϵ and p⊥, once compared with the Bjorken solutions (4.3) (blue solid lines for
eB ¼ 0 in panels a,b,e, and f).
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and (2.36) for vanishing magnetic fields are denoted by
“Bjorken,” “Hubble at r ¼ 0” and “Gubser at r ¼ 0”,
respectively. The results corresponding to the solution of
the energy equation with point to point varying magnetic
fields are denoted by δBHI and δBLI in the high- and low-
temperature approximations. In this case, the subscript “I”
indicates the decay of the magnetic field according to (2.40)
in the 1þ 1 dimensional ideal MHD. As demonstrated in
Fig. 5, the temperature decays very fast for the 3þ 1
dimensional Hubble solution. Weak magnetic fields slow
up this decay significantly, and keep the temperature almost
constant in a relatively large proper time interval. As
concerns the Gubser solution, it interpolates between the
B ¼ 0 Bjorken solution in the early times and the low-
temperature (large magnetic field) approximation in the late
time, as is also denoted in [30].
At this stage, it is useful to determine quantitatively the

effect of the magnetic field on the proper time evolution of
the temperature by comparing the results for eBH ¼ 5m2

π

(red solid curve) and eBL ¼ 15m2
π (blue dashed curve) with

the evolution of Bjorken temperature TðτÞ from (2.34)
(orange dotted curve) in Fig. 5. To do this we define the
quantity ηi with i ¼ H; I indicating the high and low
temperature expansion,

ηi≡
				TBjorkenðτÞ − TiðτÞ

TBjorkenðτÞ
				 × 100; i ¼ H; I; in %; ð4:2Þ

where TBjorkenðτÞ arises from (2.34) and Ti; i ¼ H; I
is the temperature corresponding to eBH ¼ 5m2

π and
eBL ¼ 15m2

π from Fig. 5. In Table I, we present
ηi; i ¼ H;L. According to these results ηH ≈ 10–30%,
while ηL ≈ 20–30%. In both cases, ηi; i ¼ H;L growths
with increasing τ.

B. The τ dependence of pk; p⊥, and ϵ in constant
and decaying magnetic fields

Once the τ dependence of the temperature is determined
by solving the energy equation either with constant or with
a point to point varying magnetic field, it is possible to plug
the corresponding results back into the analytical expres-
sions for pk; p⊥, and ϵ from (3.28) and (3.32) in the high-
and low-temperature approximations, eB ≪ T2 and
eB ≫ T2, for massless fermions, and (3.27) in the eB ≪
T2 approximation for massive fermions. In Fig. 6, we
plotted the ratios pkðτÞ=pk;0; p⊥ðτÞ=p⊥;0 and ϵðτÞ=ϵ0
arising from this computation. Here, pk;0; p⊥;0 and ϵ0
are the corresponding quantities at the initial proper time
τ0 ¼ 0.2 fm=c. In Figs. 6(a), 6(b), 6(e), and 6(f), we have
compared the results arising from the numerical computa-
tion of pkðτÞ=pk;0 and ϵðτÞ=ϵ0 with the corresponding
quantities arising in 1þ 1 dimensional relativistic hydro-
dynamics (Bjorken solutions) in the absence of magnetic
fields [8]. They are given by

pðτÞ ¼ p0

�
τ0
τ

�
1þ1=κ

; ϵðτÞ ¼ ϵ0

�
τ0
τ

�
1þ1=κ

: ð4:3Þ

For an ideal gas with ϵ ¼ 3p, κ ¼ 3. According to these
results, the data arising in the low-temperature (large
magnetic field) approximation, eB ≫ T2, almost coincide
with the corresponding results from (4.3) from Bjorken
flow [see Figs. 6(b) and 6(f)]. In the high-temperature
(weak magnetic field) limit eB ≪ T2, however, magnetic
field slows up the decay of pk, and ϵ [see Figs. 6(a) and
6(e)]. As concerns the results for the point to point varying
magnetic field, once the decay is given by (2.40) for 1þ 1
dimensional ideal MHD, the results coincide with the
numerical data from high- and low-temperature approx-
imations. In Fig. 6, these results are denoted by black
crosses. In the eB ≪ T2 and eB ≫ T2 cases, the initial
magnetic field are chosen to be eB0 ¼ 2.5m2

π and
eB0 ¼ 15m2

π, respectively.

(a)

(b)

FIG. 7. The τ dependence of χm arising from χm ¼ M=B with
BM ¼ pk − p⊥ is plotted in the high (panel a) and low (panel b)
temperature approximations. To do this, we use the results of pk,
and p⊥ from Fig. 5(a)–5(d) for the high- and low-temperature
approximations with a constant background magnetic field as
well as for a point to point decaying magnetic field. As it turns
out, whereas for constant magnetic fields χm decreases with τ (red
curves), it increases with increasing τ for a decaying magnetic
field according to (2.40). The latter result is expected from [13],
arising in a classical kinetic theory approach.
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C. The τ dependence of χm;cs;k, and cs;⊥ in constant
and decaying magnetic fields

Using the numerical results for T; pk; p⊥, and ϵ from the
previous section, it is possible to compute a number of
other thermodynamic quantities. Let us start with the
magnetic susceptibility χm, that is defined by the ratio
χm ¼ M=B. Here, M is the magnetization of the medium,
and is determined by the difference between the longi-
tudinal and transverse pressure, BM ¼ pk − p⊥, as defined
also in Sec. II B. Using the results for pk, and p⊥, that are
plotted in Figs. 6(a)–6(d), we plotted the τ dependence of
χm ¼ BM=B2 ¼ ðpk − p⊥Þ=B2 in Fig. 7. The red curves in
7(a) and 7(b) correspond to χm in a background constant
magnetic field eB ¼ 0.5m2

π in the high-T and eB ¼ 15m2
π

in the low-T approximations. The blue crosses correspond
to the results arising from a point to point decaying
magnetic field according to (2.40). Whereas in the constant
magnetic field χm decreases with increasing τ, it increases
abruptly once the magnetic field decreases from point to
point. These results coincide with the results demonstrated
in [13], where the τ dependence of χm in a uniformly
expanding plasma is studied using the classical kinetic
theory methods of anisotropic MHD. Assuming that the
magnetic field decreases with τ according to (2.40), it is

shown that within the first few fm=c χm increases. Later on,
after reaching a maximum, it decreases in the late time
τ ≃ 10 fm=c. Apart from this, χm turns out to be positive.
This indicates that the plasma under investigation is a

(a) (b)

(c) (d)

FIG. 8. The τ dependence of the longitudinal and transverse speed of sound is plotted in the high (panels a and c) and low (panel b and
d) temperature approximations. The curves correspond to the results for constant magnetic fields, while the crosses denote the results for
a point to point varying magnetic field according to (2.40). The qualitative difference between c2s;k and c

2
s;⊥ is similar to that presented in

[13], arising in a classical kinetic theory approach.

FIG. 9. The T dependence of χmðTÞ=χm;0 is plotted in the high
(orange circles) and low (blue squares) temperature approxima-
tions. Here, we used the τ dependence of T and χm. The proper
time interval between two successive points in each curve is
δτ ¼ 0.05 fm=c. According to these results, larger magnetic
fields have a larger impact on the decay (increase) of χm within
a fixed τ (T) interval.
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paramagnet. Comparing the values of χm in the high- and
low-T cases, it turns out that χm for eB ¼ 15m2

π is two order
of magnitude smaller than χm for eB ¼ 5m2

π.
Let us now turn to the numerical results arising for

longitudinal and transverse speed of sound, cs;k and cs;⊥.
They are defined by [36],8

c2s;i ¼
dp
dϵ

¼ p0
iðTÞ

ϵ0ðTÞ ; i ¼ k;⊥: ð4:4Þ

Here, the primes denote the derivative with respect to the
temperature T. In Fig. 8, the τ dependence of c2s;k and c2s;⊥
are plotted in the high- and low-temperature approxima-
tions [see Figs. 8(a) and 8(c) for the high-T and 8(a) and
8(c) for the low-T approximations]. They are determined by
making use of the corresponding numerical data to pk; p⊥,
and ϵ fromFig. 5.As it is shown in these plots,whereas in the
high-temperature (weak magnetic field) approximation, the

results corresponding to a point to point decaying magnetic
field (almost) coincides with those corresponding to con-
stantmagnetic fields, in the low-temperature (largemagnetic
field) approximation the corresponding results to a point to
point decaying magnetic field is quite different from those
corresponding to constant magnetic fields. The qualitative
difference between the τ dependence of cs;k, and cs;⊥ is also
observed in the results presented in [13], arising from a
classical kinetic theory approach.

D. The T dependence of χm;cs;k, and cs;⊥ in constant
magnetic fields

The T dependence of thermodynamic quantities is of
particular interest in the thermal field theory. Among
others, lattice QCD is one of the most prominent numerical
methods to compute this dependence. In order to have a
comparison with lattice data, we present, in this section, the
T dependence of χm; cs;k, and cs;⊥ arisen from our previous
numerical results. Using the τ dependence of T demon-
strated in Sec. IVA, and combining the resulting data with
the data arisen from the τ dependence of χm; cs;k, and cs;⊥,
the T dependence of these quantities are determined. In
Fig. 9, the T dependence of χmðTÞ=χm;0 is presented in the

(a) (b)

(d)(c)

FIG. 10. The T dependence of the longitudinal and transverse speed of sound c2s;k and c
2
s;perp is plotted in the high (panels a and c) and

low (panels b and d) temperature approximations. Increasing the magnetic field up to one order of magnitude does not affect the results
in the high-temperature (weak magnetic field) limit. In contrast, in the low-temperature (strong magnetic field) limit the qualitative
behavior of c2s;k and c2s;perp is strongly affected by increasing the magnetic field up to a factor of three, especially in the low-T regime,

T ≤ 300 MeV.

8In [37] an alternative definition of the equation of state is
introduced for a conformal fluid ϵ ¼ 3pk − 2BM. Another
alternative definition for c2s is presented in [9,13], and reads c2s;i ¼
pi=ϵ with i ¼ k;⊥.
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high- (orange circles) and low- (blue squares) temperature
approximations. Here, χm;0 is the value of χm at τ ¼ τ0. The
proper time interval between two successive points in each
curve is δτ ¼ 0.05 fm=c. As it turns out, for a given
temperature, the value of χm arising from the high-T
approximation is 10–30% larger than the corresponding
value arising from the low-T approximation. Moreover,
according to these results, χm decreases with decreasing
temperature. Larger magnetic fields have a larger impact on
the decay of χm within a fixed proper time interval. Here,
this interval is chosen to be Δτ ¼ 4 fm=c.
As concerns the T dependence of the longitudinal and

transverse speed of sound, c2s;k and c2s;⊥, we combined the

data corresponding to the τ dependence of T from Fig. 3
and those from c2s;k and c2s;⊥ from Fig. 8, and arrived at the
plots demonstrated in Fig. 10. According to these results, in
the high-temperature approximation c2s;k (c2s;⊥) decreases
(increases) monotonically with decreasing temperature, and
increasing the magnetic field up to one order of magnitude
(from 0.5m2

π to 5m2
π) does not significantly affect them. In

contrast, the T dependence of c2s;k (c2s;⊥) exhibits a non-
monotonic decrease (increase) with decreasing T in the
low-temperature (large magnetic field) limit. Increasing the
magnetic field up to one order of magnitude affects this
behavior significantly, in particular in the late time (low-T).

V. CONCLUDING REMARKS

In this paper, we combined the Wigner function formal-
ism of relativistic quantum kinetic theory with the energy
equations of relativistic MHD to determine the proper time
evolution of the temperature in an expanding hot and
magnetized QED plasma. This novel approach takes, in
particular, important quantum corrections, including the
contribution of Landau levels in the distribution function of
this fermionic system, into account. Using the correspond-
ing numerical results for the proper time dependence of the
temperature, we also determined the evolution of a number
of other thermodynamic quantities in this plasma.
We used the solution of the Dirac equation to explicitly

determine the Wigner function of this plasma. This leads to
the corresponding energy-momentum tensor, which, for its
part, gives rise to the longitudinal and transverse pressures
with respect to the external magnetic fields, pk and p⊥, as
well as the energy density of this plasma, ϵ. For further use,
we determined these quantities in a high and low-temper-
ature approximation. For massless fermions, these approx-
imations are characterized by eB ≪ T2 and eB ≫ T2. They
can also be interpreted as weak and strong magnetic field
approximations, respectively. Plugging these expressions in
the energy equation of relativistic MHD, and solving the
resulting first order differential equation numerically, we
arrived at the proper time evolution of the temperature in
these high- and low-temperature approximations. It is in

particular shown that, depending on the strength of the
magnetic field, the effect of B on the evolution of the
temperature is up to 20–30% in the interval τ ∈
½0.2; 4� fm=c (see Fig. 5 and Table I).
Plugging these numerical results for T in the analytical

expressions for pk; p⊥ and ϵ, the proper time evolution of
these quantities were determined. We compared our results
with the proper time evolution of T; pk; p⊥, and ϵ arising
from the well-known Bjorken solution of relativistic hydro-
dynamics. As concerns the τ dependence of the temper-
ature, we showed that weak (strong) magnetic field
decreases (increases) the slope of the decay of T [see
Figs. 3(a) and 3(b)]. A point to point decaying magnetic
field does not change this picture significantly. In the case
of pressures and energy density, weak magnetic fields
(large T) decreases the slope of the decay of pk and ϵ, while
strong magnetic field does not affect the decay of these
quantities too much.
We notice that the Bjorken solution is in particular based

on the equation of state of a noninteracting ideal gas,
ϵ ¼ c2sp, where cs ¼ 1=

ffiffiffi
3

p
is the speed of sound. To

analogously determine the relation between the pressure
and energy density in this model, we plotted the proper time
evolution of the longitudinal and transverse speed of sound
with our own data for pk; p⊥, and ϵ. The results demon-
strated in Fig. 8 show that the proper time evolution of
c2s;i; i ¼ k;⊥ is strongly affected by strong magnetic fields
eB ≫ T2. The effect of point to point decaying magnetic
fields on the evolution of these quantities is also noticeable
only in the case of strong magnetic fields.
We finally eliminated the parameter τ in the data

corresponding to TðτÞ and χmðτÞ as well as c2s;iðτÞ; i ¼
k;⊥, and arrived at the T dependence of these quantities.
The results are plotted in Figs. 9 and 10. They indicate that
χm decreases with decreasing T, and, as concerns the T
dependence of c2s;i; i ¼ k;⊥, that strong magnetic fields
significantly affect the T dependence of these quantities.
We emphasize that the T dependence of c2s;k and c2s;⊥ are

totally different: Whereas c2s;k increases, c
2
s;⊥ decreases with

increasing T. It would be interesting to confirm these
results using lattice QCD at finite T and in the presence of
constant magnetic fields. As we have noticed before, in [13]
we used the classical kinetic theory in combination with
anisotropic MHD, and studied the proper time as well as the
temperature dependence of the same thermodynamic quan-
tities that are studied in the present paper. A comparison of
the τ and T dependence of these quantities here with those
presented in [13] shows the effect of the quantum correc-
tions, included in the Wigner function, on the evolution of
these quantities. It would be interesting to combine these
two approaches to find a method where the Fermi-Dirac
distribution function appearing in the nonvanishing com-
ponents of Tμν in (3.18) is replaced with the anisotropic
distribution function appearing in [13], and to take, in this
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way, the effects of plasma viscosities and quantum cor-
rections on the thermodynamic properties of the plasma
into account. To do this, it is necessary to appropriately
revise (3.5), in order to incorporate the anisotropy param-
eter appearing in [13] in the partition function on the right-
hand side of this relation. It is worthwhile to emphasize that
the method presented in [13] is a phenomenological
method. It is, in particular, engineered according to the
recipe introduced in [11,12] to consider, apart from the
effect of plasma viscosities [11,12], the effect of its
magnetization (net spin) on (1) its isotropization (2) its
thermodynamic properties. In contrast, the approach intro-
duced in the present paper considers the interplay between
the spin and the magnetic field from first principles, as the
Wigner function is built from quantized fermions that
satisfy the Dirac equation in which the spin of the fermions
is inherently included.
Recently, the Wigner function approach is used in many

areas of the QGP physics, including, among others in the
spin hydrodynamics [38]. It would be interesting to study
the coupling of the magnetic field and spin in this context.
An attempt in this direction is made in [18]. The analytical
result for the Wigner function in the presence of a constant
magnetic field, which is presented in this paper may be
used in this framework. In particular, it would be interesting
to study the effect of the spin-magnetic field coupling on
the proper time evolution of the temperature and other
thermodynamic quantities, using the method presented in
this paper.
Another way to extend the results of this paper is to

consider a rotating plasma in a constant magnetic field. As
it is shown in [39], the Dirac equation, in this case, has an
analytical solution, that can be used to determine the
corresponding Wigner function. The latter can then be
used to determine the proper time dependence of the
temperature and other thermodynamic quantities by carry-
ing out the method presented in this paper.
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APPENDIX A: THE GUBSER
TEMPERATURE (2.36)

The original expression for the temperature by Gubser is
given by [20]

T ¼ T̂0

τ1=3
ð2qÞ2=3

½1þ q4ðτ2 − r2Þ2 þ 2q2ðτ2 þ r2Þ�1=3 : ðA1Þ

In what follows, we show how (2.36) with κ ¼ 3 is
equivalent with (A1).

Let us first notice that T̂0 in (A1) is a dimensionless
constant which is fixed by choosing an appropriate initial
value for the temperature at some initial point ðτ0; r0Þ.
Moreover, q is a dimensionful quantity in fm−1, and the
proper time τ is in fm. Hence T, as given in (A1), is in fm−1.
In order to convert it into MeV, we multiply it with a factor
α0 ¼ 200, arising from the fact that 1 fm−1 is equivalent to
200 MeV.9 We thus get

T ¼ α0T̂0

τ1=3
ð2qÞ2=3

½1þ q4ðτ2 − r2Þ2 þ 2q2ðτ2 þ r2Þ�1=3 ; ðA2Þ

that is in MeV. To reformulate (A2) in terms of an initial
temperature T0, given by T0 ≡ Tðτ0Þ and similar to T0

appearing in the Bjorken temperature (2.34), we define

T̃0 ≡ T̂0

½1þ q4ðτ20 − r20Þ2 þ 2q2ðτ20 þ r20Þ�1=3τ1=30

: ðA3Þ

The above quantity is in fm−1=3. Plugging this expression
into (A2), we get the temperature T in MeV,

T ¼ α0T̃0ð2qÞ2=3
�
τ0
τ

�
1=3

½Gðr; τ; r0; τ0Þ�1=3; ðA4Þ

with Gðr; τ; r0; τ0Þ defined in (2.37). Here, α0T̃0ð2qÞ2=3 is
in MeV. At this stage, we use the fact that in the limit q → 0

and for fixed T̃0ð2qÞ2=3,10 (A4) must be equal to the
Bjorken temperature (2.34). At τ ¼ τ0, we thus require

lim
q→0

α0T̃0ð2qÞ2=3
�
τ0
τ

�
1=3

				
τ¼τ0

¼ T0: ðA5Þ

Here, limq→0 Gðr; τ; r0; τ0Þ ¼ 1 is used. This leads to

T̃0 ¼
T0

α0ð2qÞ2=3
in fm−1=3: ðA6Þ

Plugging eventually this expression into (A4) yields (2.36)
with κ ¼ 3, as expected.

APPENDIX B: HIGH AND LOW-TEMPERATURE
EXPANSIONS

In this Appendix, we show that the high- and low-
temperature expansions of the hl-integrals (3.23) are
given by (3.25) and (3.29), respectively. To this purpose,
we generalize the method introduced in [33] to the
fermionic case.

9This arises from ℏc ∼ 200 MeV fm. Setting ℏ ¼ c ¼ 1, we
have fm−1 ¼ 200 MeV.

10See the paragraph below Eq. (22) in the first reference of [20]
for a similar argument for ϵ.
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Let us first consider (3.23). Plugging

1

ea þ 1
¼

X∞
l¼1

e−la − 2
X∞
l¼1

e−2la; ðB1Þ

into (3.23), and using

Z
∞

0

dx
x2le−a

ffiffiffiffiffiffiffiffiffi
x2þy2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ¼ Γðlþ 1
2
Þffiffiffi

π
p

�
2y
a

�
l
KlðayÞ; ðB2Þ

with ReðaÞ > 0;ReðbÞ > 0, as well as

Γ−1
�
lþ 1

2

�
¼ 2l−1Γðl

2
Þffiffiffi

π
p

ΓðlÞ ; ðB3Þ

we arrive after some computations at

hlðyÞ ¼
1

Γðlþ1
2
Þ
�
y
2

�l−1
2 X∞

p¼1

½pð1−lÞ=2Kðl−1Þ=2ðpyÞ

− 2
3−l
2 pð1−lÞ=2Kðl−1Þ=2ð2pyÞ�: ðB4Þ

In the above relations KlðzÞ is the modified Bessel
function. To perform the summation over p, we use the
Mellin transformation technique [33,40]. This technique is
mainly used to perform the summation [40]

I ¼
X∞
n¼1

fðnÞ: ðB5Þ

Using the Mellin transform of fðnÞ

fðnÞ ¼ 1

2πi

Z
Cþi∞

C−i∞
dpn−pFðpÞ; ðB6Þ

and the definition of the ζ-function, ζðpÞ≡P∞
n¼1 n

−p, we
obtain

I ¼ 1

2πi

Z
Cþi∞

C−i∞
dpFðpÞζðpÞ: ðB7Þ

According to this method, the Mellin transform of (B4) is
given by

hlðyÞ ¼
1

4Γðlþ1
2
Þ
�
y
2

�
l−1 1

2πi

Z
Cþi∞

C−i∞
dsð1 − 21−sÞ

×

�
y
2

�
−s
Γ
�
s − lþ 1

2

�
Γ
�
s
2

�
ζðsÞ: ðB8Þ

To arrive at (B8), we also use [41]Z
∞

0

dppμKνðpzÞ

¼ 1

4

�
2

z

�
μþ1

Γ
�
μ − νþ 1

2

�
Γ
�
μþ νþ 1

2

�
; ðB9Þ

where ReðzÞ > 0 and Reðμþ 1� νÞ > 0 is assumed.
For our purpose, it is enough to concentrate on h2lþ1.

To performing the contour integral appearing in (B9), we
shall have in mind that the integrand has double poles in
s ¼ 0;−2;−4;…;−2n and single poles in s ¼ 1 and
s ¼ 2; 4; 6;…; 2n. Hence, using

lim
s→s0

Res½fðsÞ� ¼ lim
s→s0

1

ðm − 1Þ!
dm−1

dsm−1 ½fðsÞðs − s0Þm�;

ðB10Þ

we obtain first

lim
s→1

fðsÞ ¼ 0;

lim
s→2k

fðsÞ ¼ ð1 − 21−2kÞ
�
y
2

�
−2k

ΓðkÞζð2kÞ

×
2ð−1Þl−k

Γðl − kþ 1Þ ;

lim
s→0

fðsÞ ¼ −
ð−1Þl

Γðlþ 1Þ
�
γE − ψð1þ lÞ þ 2 ln

�
y
π

��
;

lim
s→−2k

fðsÞ ¼ 4ð−1Þl
Γðkþ 1ÞΓðlþ kþ 1Þ ð1 − 21þ2kÞ

×

�
y
2

�
2k
ζ0ð−2kÞ: ðB11Þ

Here, γE and the digamma function ψðzÞ are defined in
Sec. III [see the paragraph below (3.26)]. Using then

ζ0ð−2kÞ ¼ 1

2
ð−1Þkð2πÞ−2kΓð2kþ 1Þζð2kþ 1Þ; ðB12Þ

we finally arrive at (3.25), as claimed. This result is used to
determine h1 and h3 in the high-temperature approximation
(eB ≪ T2 for massless fermions).
As concerns the low-temperature approximation

(eB ≫ T2 for massless fermions), let us consider (3.23)
again. Using

1

ea þ 1
¼ 1

ea − 1
−

2

e2a − 1
; ðB13Þ

as well as w≡ exp ðy −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ, and v≡

exp ð2y − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ, we arrive first at

hlðyÞ ¼
1

ΓðlÞ
�
1

2y

�
1−l

2

×

�Z
1

0

dw
ð1 − lnw

2y Þ
l
2
−1ð− lnwÞl2−1

ey − w

−
Z

1

0

dv
ð1 − ln v

4y Þ
l
2
−1ð− ln vÞl2−1

e2y − v

�
: ðB14Þ

Assuming then j lnw
2y j ≪ 1 as well as j ln v

4y j ≪ 1, and using
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ð1 − xÞa−1 ¼ ΓðaÞ
X∞
k¼0

ð−xÞk
Γða − kÞΓðkþ 1Þ ; ðB15Þ

as well as the integral representation of the polylogarithm
function LinðxÞ for n > 0 [33],

LinðxÞ ¼ −
1

ΓðnÞ
Z

1

0

dt
ð− ln tÞn−1
t − x−1

; ðB16Þ

we arrive at (3.29), which is used for the low-temperature
approximation in Sec. III.
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