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We consider an asymptotically free vectorial gauge theory, with gauge group G and N, fermions in a

representation R of G, having an infrared fixed point of the renormalization group. We calculate scheme-
independent series expansions for the anomalous dimensions of higher-spin bilinear fermion operators at
this infrared fixed point up to O(A;), where A is an N ;-dependent expansion variable. Our general results

are evaluated for several special cases, including the case G = SU(N,.) with R equal to the fundamental and

adjoint representations.
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I. INTRODUCTION

An asymptotically free gauge theory with sufficiently
many massless fermions evolves from the deep ultraviolet
(UV) to an infrared fixed point (IRFP) of the renormaliza-
tion group at a zero of the beta function. The theory at this
IRFP exhibits scale invariance due to the vanishing of the
beta function. The properties of the theory at this IRFP are
of fundamental field-theoretic interest. Among the basic
properties are the anomalous dimensions yﬁs )
gauge-invariant operators O.

In this paper we consider an asymptotically free vectorial
gauge theory of this type, with a general gauge group G and
Ny copies (“flavors”) of massless Dirac fermions y;,
i=1,...,Ny, transforming according to a representation
R of G [1]. We present scheme-independent series expan-
sions of the anomalous dimensions of gauge-invariant
higher-spin operators that are bilinear in the fermion fields,
up to O(A}) inclusive, at the infrared fixed point, where A,

of various

is an N -dependent expansion variable defined below,
in Eq. (1.8). The operators that we consider are of the
form (suppressing flavor indices) yy, D,,...D, y and
WO, Dy, -
for the gauge theory, and it is understood here and below
that the operators are symmetrized over the Lorentz indices
pi» 1 <1 < jand have Lorentz traces subtracted, and o, is

Dy, where D, is the covariant derivative
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the commutator of two Dirac matrices [defined in
Eq. (2.3)]. We consider the cases 1 < j < 3.

The operators @y, D,, .. .D#jl// were considered early on
in the analysis of approximate Bjorken scaling in deep
inelastic lepton scattering and the associated development
of the theory of quantum chromodynamics (QCD). We
briefly review this background [2—-13]. In Euclidean quan-
tum field theory, the short-distance operator product
expansion (OPE) expresses the product of two operators
A(x) and B(y) as a sum of local operators O; multiplied by
coefficient functions cp,,

AWB(y) =D co,(r=y)O,((x +)/2).  (L1)

in the limit where x — y — 0. Let us denote the Maxwellian
(i.e., free-field) dimension of an operator O in mass units as
dp. Then the (free-field) dimension of the coefficient
function is d.,, = dy +dp — dp,, so

co,(x—y) ~ |x = y|lomhads, (1.2)

where |x — y| refers to the Euclidean distance. Hence, in the
short-distance OPE, the operators with the lowest dimen-
sions dominate, since they are multiplied by the smallest
powers of |x — y|. However, deep inelastic scattering and
the associated Bjorken limit probe the light cone limit,
(x—y)*> = 0 with x —y # 0 in Minkowski space, where
x? = x,x*. With the arguments of two illustrative Lorentz-

scalar operators denoted in a symmetric manner as +x/2,
the light-cone OPE for A(x/2)B(—x/2) is
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A(X/Z)B(—X/Z) = Zz‘i,n<x2)xﬂl o 'xﬂnoi,n;ﬂl,...,ﬂ,, (O)

in

(1.3)

in the limit x2 — 0, where the coefficient functions have
been written in a form that explicitly indicates the factor
xt1 .. x# and the operator O, 4, has spin j = n. Here

[N NI
(suppressing the Lorentz indices on O;,, ., ) the
dependence of ¢;,, on x* is
i (a?) ~ () o T2 (1.4)

(with logarithmic corrections in QCD due to anomalous
dimensions). Consequently, the operators that have the
strongest singularity in their coefficient function ¢; ,(x*) as
x*> = 0 and hence make the dominant contribution to the
right-hand side of the light-cone OPE, Eq. (1.3) are those
with minimal “twist” 7 [7], where 7 is the dimension minus
the spin j of the operator, i.e.,

TO[.U = dOi.n - jO[,n ’ (1 '5)

with jo, = n here. Thus, among bilinear fermion oper-
ators, in addition to yy, w with dimension 3, spin I, and
hence 7 = 2, there are the operators yy, D,, - - - D, y, with

dimension 3 + (j — 1) and spin j, which also have 7 = 2.
These are the minimum-twist bilinear fermion operators
that contribute to the light-cone OPE (1.3) [14]. In a similar
manner, twist-2 operators make the dominant contribution
to the right-hand side of the light-cone OPE for the product
of two electromagnetic or weak currents. The other
operators that we consider, namely wo,, D,, .. D, w, have

been relevant for the study of transversity distributions in
QCD [15].

Our approach here is complementary to these previous
analyses of higher-spin operators, which have focused on
applications to QCD. In contrast, we study the anomalous
dimensions of these operators at an infrared fixed point in a
(deconfined) chirally symmetric non-Abelian Coulomb
phase (NACP), where the theory is scale invariant and is
inferred to be conformally invariant [16], hence the
commonly used term “conformal window.” The goal of
our calculations is to gain information about the properties
of the conformal field theory that is defined at this IRFP.

Let us recall some further relevant background for our
work. The evolution of the running gauge coupling
g =g(u), as a function of the momentum scale, u, is
described by the renormalization-group (RG) beta function
B =da/dlny, where a(u) = g(u)?/(4x). From the one-
loop term in the beta function [10,11], it follows that the
property of asymptotic freedom restricts Ny to be less than
an upper (u) bound, N,, where [17]

e
"7 4Ty

(1.6)

Here, C, is the quadratic Casimir invariant for the group G
and T'; is the trace invariant for the representation R [18]. If
Ny is slightly less than N, then this theory has an infrared
zero in the (perturbatively calculated) beta function, i.e., an
IR fixed point of the renormalization group, at a value that
we shall denote o [19,20]. In the two-loop beta function
(with Ny < N, as required by asymptotic freedom), this IR
zero is present if N is larger than a lower (£) value N,
where [19]

N, — 17C3
© 2T (5C, +3C))

(1.7)

As the scale p decreases from large values in the UV to
small values in the IR, a(u) approaches ar from below as
u — 0. Here we consider the properties of the theory at this
IRFP in the perturbative beta function. (For a discussion of
an IR zero in a nonperturbatively defined beta function and
its application to QCD, see [21].)

Since the anomalous dimensions of gauge-invariant
operators evaluated at the IRFP are physical, they must
be independent of the scheme used for regularization and
renormalization. In the conventional approach, one first
expresses these anomalous dimensions as series expansions
in powers of a or equivalently a = ¢*/(167°*) = a/(4n),
calculated to n-loop order; second, one computes the IR
zero of the beta function, denoted ayg ,,, to the same n-loop
order; and third, one sets @ = apg ,, in the series expansion
for the given anomalous dimension to obtain its value at the
IR zero of the beta function to this n-loop order. For the
operator yy this conventional approach to calculate
anomalous dimensions at an IR fixed point was carried
out to the four-loop level in [22-24] and to the five-loop
level in [25]. However, these conventional series expan-
sions in powers of a, calculated to a finite order, are
scheme-dependent beyond the leading terms. This is a well-
known property of higher-order QCD calculations used to
fit actual experimental data, which, in turn, has motivated
many studies to reduce scheme dependence [26]. These
studies dealt with the UV fixed point (UVFP) ata = 0, as is
appropriate for QCD. Studies of scheme dependence of
quantities calculated in a conventional manner at an IR
fixed point at a1y were carried out in [27-31]. In particular,
it was shown that many scheme transformations that are
admissible in the vicinity of the UVFP at a =0 in an
asymptotically free theory are not admissible away from
the origin because of various pathological properties. For
example, the scheme transformation ra = tanh(ra’)
(depending on a parameter r) is an admissible trans-
formation in the neighborhood of a = ¢ = 0. However,
the inverse of this transformation is @' = (2r)~'In[(1+ra)/
(1—ra)], which is singular at an IRFP with ag > 1/r, i.e.,
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ag > 4x/r, so that the transformation is not admissible at
this IRFP. References [27] derived and studied an explicit
scheme transformation that removes terms of loop order 3
and higher from the beta function in the local vicinity of
a =0, as is relevant to the UVFP in QCD [32], but also
showed that such a scheme transformation cannot, in
general, be used at an IRFP away from the origin owing
to various pathologies, one of which was illustrated above.

It is thus desirable to use a theoretical framework in

which the series expansions for physical quantities, such as
anomalous dimensions of gauge-invariant operators at the
IRFP, are scheme-independent at any finite order in an
expansion variable. Because ajg — 0 as N approaches N,
from below (where N is formally generalized here from a
non-negative integer to a non-negative real number [17]),
one can reexpress the expansions for physical quantities at
the IRFP as power series in the manifestly scheme-
independent quantity [20,33]
In previous work we have calculated scheme-independent
expansions for anomalous dimensions of several types of
gauge-invariant operators at an IRFP in an asymptotically
free gauge theory [34—40]. We have compared the resultant
values for anomalous dimensions with lattice measure-
ments where available [35-37,41,42].

In the present paper we extend these calculations to the
case of the higher-spin operators WY Dy, Dy and
W, Dy, Dy y for 1 < j<3. In addition to general
formulas, we present results for several different special
cases, including the case where G = SU(N,) and the
fermions are in the fundamental (F) and adjoint (Adj)
representations. We also give results for the limit N, — oo
and N, — oo with the ratio N;/N, fixed and finite. Our
calculations show that these scheme-independent expan-
sions of the anomalous dimensions of the operators are
reasonably accurate throughout much of the non-Abelian
Coulomb phase. Our results give further insight into the
properties of a theory at an IRFP and should be useful to
compare with lattice measurements of the anomalous
dimensions of these higher-spin operators when such
measurements will be performed [43].

This paper is organized as follows. Some relevant
background and methods are discussed in Sec. IL
General structural forms for the anomalous dimensions
of higher-spin bilinear fermion operators are given in
Sec. III. In Sec. IV we present our scheme-independent
calculations of the anomalous dimensions of these higher-
spin Wilson operators for a general gauge group G and
fermion representation R. In Sec. V we give results for the
case where G = SU(N,) and R is the fundamental repre-
sentation, and in Sec. VI we present the special case of
these results for the limit N, — co and N, — oo with
Ny /N, fixed and finite. Anomalous dimension calculations

for the case where G = SU(N,) and R is the adjoint
representation are presented in Sec. VII. Our conclusions
are given in Sec. VIII and some auxiliary results are
included in Appendix.

II. CALCULATIONAL METHODS

Let us consider a (gauge-invariant) operator O. Because
of the interactions, the full scaling dimension of this
operator, denoted D, differs from its free-field value,
D O free = d(’):

Do = Do free — 70> (21)
where y is the anomalous dimension of the operator [44].

Since yp arises from the gauge interaction, it can be
expressed as the power series

(O
y O = z c](,f)af, (2.2)
/=1

where cff is the Z-loop coefficient.

As stated in the introduction, we shall consider the
gauge-invariant operators Oﬂ]...ﬂ/ =9y, Dy,...Dyw and
Owir..ny = W03, Dy, ...Dy y, where

i
% = 5 V2 Vi) (2.3)
We focus on the operators with 1 < j < 3. We introduce the
following compact notation for these operators:

Ol = 7, Dy (24)
03.'331 =WV Dy, Dy (2.5)
Ol ot = 7, D1y D D (2.6)
Oﬁ;’?ﬂ)z =yo,, Dy, (2.7)
OS:“D,ZL =yo,, D,,D,w, (2.8)
and
OYPPY) = 56, D, D, Dy (2.9)

For brevity of notation, we suppress the flavor indices on
the fields .
For a given operator O, we write the scheme-

independent expansion of its anomalous dimension y(©)

evaluated at the IRFP, denoted yﬁ? ), as
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o N (O) s g
e =D KA (2.10)
n=1

The truncation of right-hand side of Eq. (2.10) to maximal
power p is denoted

)4
9 O
7§R,)A¢ = ZK’(I )Afn‘
n=1

We use a further shorthand notation for the anomalous
dimensions in which the superscript in yﬂ? Vis replaced by a
symbol for the quantity standing between  and y in the

operator O. These shorthand symbols are as follows: y&m

(2.11)

for the anomalous dimension of the operator (9,(]:57) =
vy, D,y at the IRFP, and so forth for the other operators.
In comparing with our previous calculations in [34-39], we
also use the notation ygg and yﬁi) for the anomalous
dimensions of yy and yo,, y at the IRFP. (The anomalous

dimension yﬁ? was denoted yrjr in [36], where the

subscript T referred to the Dirac tensor 6,,.)

As discussed in [34,36], the calculation of the coefficient

Kﬂo) in Eq. (2.10) requires, as inputs, the beta function

coefficients at loop order 1 < # < n + 1 and the anomalous

dimension coefficients cﬁ) at loop order 1 < < n. The

method of calculation requires that the IR fixed point must
be exact, which is the case in the non-Abelian Coulomb
phase. As in our earlier work [34-39], we thus restrict our
consideration to the non-Abelian Coulomb phase (con-
formal window) [45]. For a given gauge group G and
fermion representation R, the conformal window extends
from an upperend at Ny = N, to a lower end at a value that
is commonly denoted Nj ... In contrast to the exactly
known value of N, [given in Eq. (1.6)], the value of N ., is
not precisely known and has been investigated extensively
for several groups G and fermion representations R
[41,42,45]. For values of N, in the non-Abelian
Coulomb phase such that Ay is not too large, one may

expect the expansion (2.10) of yfs )i a series in powers of

A to yield reasonably accurate perturbative calculations of
the anomalous dimension. In our earlier works, using our
explicit calculations, we have shown that this is, in fact,
the case.

We recall some relevant properties of the theory regard-
ing global flavor symmetries. Because the N fermions are
massless, the Lagrangian is invariant under the classical
global flavor (f1) symmetry G, = U(Ns), @ U(Ny)p,
or equivalently,

Gfl,cl = SU(Nf)L ® SU(Nf)R ® U(l)v ® U<1)A (2-12)

(where V and A denote vector and axial-vector). The U(1),,
represents fermion number, which is conserved by the

bilinear operators that we consider. The U(1), symmetry is
broken by instantons, so the actual nonanomalous global
flavor symmetry is

Gy =SUN,), ® SUN g ® U(L)y.  (2.13)
This Gy, symmetry is respected in the non-Abelian
Coulomb phase, since there is no spontaneous chiral
symmetry breaking in this phase [41,42]. For our operators,
the flavor matrix between i and y is either the identity or
the operator T,, a generator of SU(N,), which can be
viewed as acting either to the right on y or to the left on .
These yield the same anomalous dimensions [46]. As a
consequence of the unbroken global flavor symmetry, our
operators transform as representations of the global flavor
group Gy;. The invariance under the full G, in the non-
Abelian Coulomb phase is different from the situation in
the QCD-like phase at smaller N, where the chiral part of
Gy, is spontaneously broken by the QCD bilinear quark
condensate to the vectorial subgroup SU(N) and oper-
ators are classified according to whether they are singlet or
nonsinglet (adjoint) under this vectorial SU(N ;) symmetry.
In particular, in the consideration of flavor-singlet oper-
ators, in QCD, one must take into account mixing with
gluonic operators. Here, in contrast, there is no mixing
between any of our bilinear fermion operators and gluonic
operators, since the latter are singlets under Gy;.

The operators O with an even number of Dirac y
matrices, symbolically denoted I',, link left with right
chiral components of y, while the operators O with an odd
number of Dirac y matrices, I",, link left with left and right
with right components:

vl =y lyr +wrleyy, (2.14)

wlow =wilowr +wrlyk, (2.15)
where 7 = y'y,. In the non-Abelian Coulomb phase where
the flavor symmetry is (2.13), one may regard the 7', in the
term g, T,y g acting to the right as an element of SU(N ),
and acting to the left as an element of SU(N/); .

Given that the theory at the IR fixed point is conformally
invariant [16], there is an important lower bound on the full
dimension of an operator O and hence, with our definition
(2.1), an upper bound on the anomalous dimension 7(©) that
follows from the conformal invariance. To state this, we
first recall that a (finite-dimensional) representation of the
Lorentz group is specified by the set (j;, j,), where j; and
J» take on non-negative integral or half-integral values [47].
A Lorentz scalar operator thus transforms as (0, 0), a
Lorentz vector as (1/2,1/2), an antisymmetric tensor like
the field-strength tensor Fj, as (1,0) & (0, 1), etc. Then
the requirement of unitarity in a conformally invariant
theory implies the lower bound [48]
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Do = ji+j+1, (2.16)
i.e., the upper bound
70 £ Do — (J1 + j2 + 1) (2.17)

We have studied the constraints from the upper bound
(2.17) in our previous calculations of anomalous dimen-
sions in [22,25,36-39]. Anticipating the results given
below, since our calculations yield negative values for
the anomalous dimensions of higher-spin Wilson operators,
they obviously satisfy these conformality upper bounds.

III. SOME GENERAL STRUCTURAL
PROPERTIES OF 7{)

From our previous calculations [34—39] for the anoma-

lous dimensions of yy and w6, , in conjunction with our
new results on the anomalous dimensions ;4{3 ) of higher-
spin twist-2 bilinear fermion operators O, we find some

general structural properties of the coefficients K£,O> in the

scheme-independent series expansions of the anomalous

dimensions (), invol i i iant
71 - These involve various group invariants,

L0 _ Gy ©
oD

dabcddabcd

o @
+asg CATH A a3y
A

dabcddabcd
+ ag%Ci kR v R
A

C-T2 A
rr d,

abced jJabed
dR dR
da

0
+ a<3,1)1 CiCy

IV. ANOMALOUS DIMENSIONS {9
OF HIGHER-SPIN OPERATORS

A. General

In this section we present the results of our calculations
of the coefficients in the scheme-independent series expan-
sions up to O(A}) for the various higher-spin operators

considered here. As was noted above, the calculation of the

O(A?}) coefficient, K‘S,O), for the anomalous dimension of an

operator O at the IRFP requires, as inputs, the beta function

coefficients at loop order 1 < # < n + 1 and the anomalous
dimension coefficients c(fo> atloop order 1 < #Z < n. Hence,
we use the beta function coefficients from one-loop up to
the four-loop level [10,19,50,51], together with the anoma-
lous dimension coefficients calculated in the conventional
series expansion in powers of a up to the three-loop level
[11,46,52-57]. The higher-order terms in the beta function

dabcddabcd
A—A— t+ay 3T,

including the quadratic Casimir invariants C4 = C,(G),
C; = C,(R), the trace invariant T(R), and the quartic trace
invariants d4>*d%><¢/d,, where d, denotes the dimension
of the adjoint representation [18,49]. For compact notation,

it is convenient to define a factor that occurs in the
(0)

denominators of these x;, ' coefficients, namely.

D =7C, + 11C; (3.1)

(not to be confused with covariant derivative). We exhibit

(0)
x

this general form here, using ;" for various (constant)

numerical coefficients:

(3.2)

O O
C% + ab) CaCy + a3 C3)

D3 ’

(0)
) Cij%(all
Ky | =

(3.3)

and

o o o o
@ CAT} + a3 CAC/T] + a3/ CRCHTT + i CLCITS + a3 Cu YT

dabcddabcd
R_A | a9

abced jabed
A A A di
dA 39

dy

¥ CAC/T,

(3.4)

[
and anomalous dimensions that we use have been calcu-
lated in the MS scheme [58], but our results are indepen-
dent of this since they are scheme-independent. (The beta
function has actually been calculated up to five-loop order
[59,60], but these results will not be needed here.)

B. 7{%)

L D
For the anomalous dimension y{”’

wy,, D,y at the IRFP, we calculate

of the operator

2°C,T,
ki = - (4.1)
32C,D
25C,T%(693C% —3104C,C; — 1540C>
KgyD) _ f f( A A~ f)’ (4.2)

3C2D?

and
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D) 2CTy
P BeiD’

CgT}(—202419 +1016064¢5) + CijT.)Zc(276444O + 145152¢3)

+ CgC2~T2(8940028 —5038848¢3) + Cf‘C}T%(—7341488 —1140480¢5) + CAC}T]%(3841024 +5018112¢3)

5 dabcd abcd
+C,uT?

) dabcd abcd
+ AT, R

dabcd abcd
3
+ C;
A

In these expressions and the following ones, we have
indicated the factorizations of the numbers in the denom-
inators, since they are rather simple. In general, the
numbers in the numerators do not have such simple

factorizations.

With these coefficients, the anomalous dimension y&D)

D
calculated to order O(A}’), denoted yfg, F> Az

Eq. (2.11) with O =y, D, w. Our results here yield

(rD)
yIRFA”

anomalous dimensions of the other operators for which we
have performed calculations, and we proceed to present the
coefficients for these next.

is given by

with p = 1, 2, 3. Analogous statements apply to the

ooy __10C, Ty
P 3B

(~161280 + 425779283) + C; T34
(2838528 — 27675648(3) + CoC,T ;=K

(—10733184 + 23417856¢3) + C3 Cf

abcd abcd
(—253440 + 6690816 5)

abcd abed
(4460544 — 43490304¢5)
A
abcd abed

(—16866432 + 36799488¢5) |. (4.3)

C y(yDD)
For the anomalous dimension y&DD)

WY, Dy, D,y at the IRFP, we calculate

of the operator

100C,T

(yDD)
=-— L 4.4
! 3C,D (4.4)
yop) _ 10C,T3(S103C; — 14017C,C; - 9383C3)
’ 3D ’
(4.5)
and

CgT}(1538649 +2794176¢5) + CinTJ%(14860881 +399168¢3)

+C3 C2T2v(40821518 —13856832¢;) + Cf‘C}T%(—35403412 —3136320¢5) + CAC?-T}(19308575 +13799808¢5)

dabcd dabcd
da

dabcd dabcd
da

dabcd dabcd
da

+Cy T34
+C3T 2

+C3-E

(~806400+21288960¢3) + C; T34
(14192640 — 138378240 3) + C4C;T 24—

(—53665920+117089280¢5) + C5C;

dabcddabcd
da

(—1267200+ 33454080¢5)

dabcddabcd

7 (22302720-217451520¢3)
A

dabcddabcd

T( 84332160+ 183997440(3) | .
A

(4.6)

D. 7{20P)

(yDDD)

Proceeding to the anomalous dimension y of the operator yy, D, D, D, v at the IRFP, we find

H2™" M3

K(yDDD) _ 628Cfo

= 4.7
! 32.5C,D (47)

2CfT]2r(4550175Ci —10373329C,C — 7719767C]2c)

K_gyDDD) _ ,
35.53C2 D3
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and

(roop) _ 26Ty
P 3o’
+CCETH(~720947009518 +226590696000¢ ;) + C3 C3T% (709569531572 + 512859600004 )

+C,C} T2.(—433 168554247 — 2256582240005 )

dabcd abcd abced jabed

+Cy T2 T (15825600000 —417795840000¢5) +C/ T2 d—A (24868800000 — 6565363200000 3)
A A

dabcd abcd
+C% Tf T (—278530560000 4 2715672960000 3)
A

Cf‘T]%(—67 181774625 —45691128000¢3) + C4 Cij%(—3187061 12025 —6527304000¢3)

abcddabcd
+Cy CfoT (—437690880000 +4267486080000¢3)
A

dabcd abcd

—l—C3 (1053193680000 —2297877120000¢3)
A
dabcd abed
+C2 Cfd—(1655018640000 3610949760000¢5) | . (4.9)
A

E. J,(‘TD)

For the anomalous dimension yg{D) of the operator yo,, D, y at the IRFP, we calculate

) 8CT
K = - c:Df’ (4.10)

on) _ 4G THTTCE = 348C,C; — 176CF)

= , 4.11
? 3CiD? @.11)
) 2GS 130830572 _ 24049204 €72 — 819408C3 C2T2 + 738144C2 C3T2 — 662112C, C4T
3_34CiD5 AT f ASfES AR f AXfESf AL
abed jqabed abcd jabcd
+ CuT? ATA (17920 — 473088¢3) + C,T7 ATA (28160 — 743424¢5)
A A
dahcd abed dabcddahcd
+ C2 TfT( —315392 + 3075072¢5) + CACfod—A( —495616 + 4832256(3)
dabcd abced abed jabed
+C3 T(l 192576 — 2601984¢5) + C? Cfd—R (1874048 — 4088832¢3) | . (4.12)
A A
F. y(o'DD)
For the anomalous dimension y%ﬁDD) we calculate
104C,T
K(IGDD) =-— f f’ (413)
3°C4D
4C,T%(12537C% — 36292C,C; — 22352C%
K(erD) s f( A A-f f) (4'14)

P PCD? ’
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and
Joon) __2CTy
3 38C4 D3
+ CLCT7(107242456 — 20155392(5) + C5CT7(—102128048 — 456192043)
+ C4C}T7(43045024 + 20072448¢5)

3 T}(2935737 +4064256¢5) + CinT}(39906468 + 580608¢3)

abcd jabed abcd jabed
+3C,T % (—698880 + 18450432¢3) 4 3C,T3 % (—1098240 + 28993536¢ )
A A
abced jabced abcd jabcd
+3C3T; % (12300288 — 119927808¢5) + 3cAchf% (19329024 — 188457984¢5)
A A
duhcd abcd abcd jabcd
+3C3 % (—46510464 + 101477376¢5) + 3@,@% (=73087872 + 159464448(5)|.  (4.15)
G. 1™

DD)

Finally, for the anomalous dimension yflf we obtain

Jooop) __2'CyTy
! 32¢,D’

(4.16)

(eDDD) _ 23C,T3(9219C3 - 21185C,Cy — 15664C%) @17)
? B 3D} ’ '

and

@oop) __ 2C,Ty
3 ~ D
+ CCIT3(58268711 — 13226976L3) + C3C3T2(~56962840 — 2993760¢3)

+ CAC;‘CT%(36476660 + 13172544¢5)

dahcd abced abced jJabed

- CAT]%ATA (—=1290240 + 340623365) + ch}ATA (=2027520 + 53526528¢3)
A A

abced jJabed abced jJabcd

+ cinRd—AA (22708224 — 221405184¢3) + CACfoRTA (35684352 — 347922432¢5)

C5T3(5213502 + 2667168¢5) + CC,T3(25185069 + 3810245)

daRbcd abed d%bcd abcd

TR (—85865472 + 187342848(3) + C},cfdi’* (—134931456 + 294395904%5) . (4.18)
A A

+C3

SN2 _
V. EVALUATION OF «\© D) _ W1 s
1,.SU(N,),F 2 2 ’ (5.1)
FOR G=SU(N,) AND R=F SUN). 32N, (25N% — 11)

In this section we evaluate our general results for these

. . ) . . .
anomalous dimensions y;z’ in the important special case
where the gauge group is G = SU(N,.) and the N ; fermions
sange Sronp (Ne) / 25(N2? — 1)(1244N* — 2322N? + 385)

are in the fundamental representation of this group, R = F. /D) -
2,SU(N,),F 35N%(25N3 -1 1)3
(vD)
A- iR SUW,).F (5.2)

Substituting G = SU(N,.) and R = F in our general

results (4.1)-(4.3), we obtain
and
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o 2(Ne-1)
ISUNO-F = 38N3(25N2 — 11)°
+ (—15928259 + 36575712¢3)N* + (6282342 — 149117763)N2 + 240064 + 3136325].  (5.3)

[2137786N% + (1831104 — 9784800¢5)N®

Then, for this case G = SU(3), R = F, the anomalous dimension y&D) calculated to order O(Af- ), denoted y&DF) IR
F.A7

given by Eq. (2.11) with O =wy, D,,w.

(D)
B. yl}i{,SU(N‘. )F

Substituting G = SU(N,.) and R = F in our general results (4.4)—(4.6), we obtain

2
BN =~ T T (5.4
(DD) 5(N2 — 1)(17005N* — 46800N2 + 9383)
Ko suv) P = 2 3NN - 1) , (5.5)
and
(rDD) 5(Ne-1)

_ 8 6
SN = T NIV < 1T [207341255N8 + (160969860 — 841104000 3) N

+ (=1281330310 + 2919058560¢3)N% + (499565484 — 1152911232¢3)N2 + 19308575 + 13799808¢5).

(5.6)
(yDDD)
C. 71111.SU(N‘.),F
In a similar manner, from our general formulas (4.7)—(4.9), we find
goop) _ _ 3l4(NZ-1)
FLsuwo.r T T3USN (252 - 11) S
4DDD) (N2 —1)(10265725N% — 36186192N? + 7719767) 5.3
fasuwoF = 7 237 53N2(25N2 - 11)3 ’ 58
and

(rpDD) (N% - 1) 8 _ 6

K3 SUN,)F = 73 SNIBN 1) [4581316819375N¢ + (3455659520100 — 16739946000000¢3) N2

+ (=25230047265878 + 57258530640000¢3)N¢ + (9616576686156 — 224657595360008 3 ) N
+ 433168554247 + 225658224000¢5)]. (5.9)

(D)
D. 7ir suw,) F
From our general results (4.10)—(4.12), we obtain
)  __ 4WNZI-1)
“Lsuvo.r = TN (25N - 1) (5.10)
(oD) _ 4(NZ—1)(141N? - 262N2 + 44) -

Fasuwor T T 3NZ(25N2 = 11)3 ’ G-11)
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and

(6D) 23(N% - 1)

K3 SUN,).F = [64843N8 + (78610 — 422400¢3)N®

T BN3(25N2 - 11)°

+ (=565316 + 1347456¢3)N* + (209836 — 511104¢5)N? + 13794].

E (eDD)

(5.12)

- VIR SUWN,).F

From our general results (4.13)—(4.15), we obtain

(eDD) .
Kysuw,).F =

(eDD)

52(N2 1)

32N, (25N - 11)°

(5.13)

4(N? = 1)(11197N% — 29322N? + 5588)

2SU(N.).F —

and (oDD) 2)(N7 - 1)
3.SU(N,).F

3N3(25N2 — 11)°

39N2(25N%2 - 11)3 '

(5.14)

= [31831693N8 + (30539268 — 141782400¢;)N®

+ (214403216 + 473734656¢3) N + (84228606 — 183845376 3)N>

+ 2690314 + 1254528¢5].

(5.15)

(6DDD)
F. ylol-{,SU(NC),F

For this case we have

(6sDDD)
1.SU(N,).F —

(6DDD)

25(N2 - 1)

~ 32N, (25N —11)°

22(N2 — 1)(10579N? — 36849N? + 7832)

(5.16)

Ksuw)F =
and

(6DDD) 22(NZ—-1)

K3 suw,).F

T 3N3(25N2 — 1)

39N2(25N2 - 11)3 '

(5.17)

= [(90949802N8 + (70557192 — 3479436003)N®

+ (=511679503 + 11662431843 N + (194401944 — 453269520¢3)N?2

+ 9119165 + 3293136¢3].

(5.18)

Below, where the meaning is clear, we will often omit the SU(3) in the subscript.

We remark on the signs of these coefficients. It is evident

from Eqgs. (4.1), (4.4), (4.7), (4.10), (4.13), and (4.16) that

K(lyD), KYDD), KYDDD), K(IO-D)a K_(laDD), and K_EUDDD) are all

negative for any G and R. We find that the O(A%) and

O(A}) coefficients, K'go) and K§O>, for these operators are

also negative for the theory with G = SU(N,.) and fermions
in the fundamental representation, R = F, in the full range
N, > 2 of relevance here. In Table I we list the signs of

(0)

these coefficients «;, ’ for the operators in this theory. For

comparison, we also include the signs of K

)

for yy and

for yo,,y that we obtained in our earlier calculations
(which hold for all N,).
It is interesting to note that for all of the higher-spin

operators O that we consider, the anomalous dimensions

yfg) that we calculate are negative (with our sign con-

vention in (2.1) [44]). They thus have the same sign as the
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TABLE L

\?) for gauge group G = SU(N,) with N.>2 and fermion

representation R = F (fundamental).

Signs of scheme-independent expansion coefficients

(0) (0) (0)
o Kisuw,).F Ky suw,).r K3 suw,).F
oy - - -
lpo_/lﬂl "8 - - +
WY Dy - - -

l/_/yMIDﬂzDﬂzw - - -
WYy Dy, Dy Dy - - -
#0 Dy - : :
W0, Dy, Dyt - - -
Wi, Dy, Dy Dy — — —

TABLEII.  Values of the anomalous dimension yﬁf} calculated
to O(Ajf-), denoted yﬁlyfp)_A;,, with 1 < p <3, for G =SU(3),as a
function of N .

N, (D) (rD) (D)

Y VIR.F.A, TIR.F.A2 VIR F.A3
8 -0.377 —0.446 —0.481
9 —0.332 —0.386 -0.411
10 —0.288 —0.328 —0.344
11 —0.244 —0.273 —0.282
12 -0.199 —0.219 —0.224
13 —0.155 —0.167 —0.169
14 -0.111 —0.117 —0.118
15 —0.0665 —0.0686 —0.0688
16 -0.02215 -0.0224 —0.0224

sign of the anomalous dimension of the operator w6,y and
are opposite in sign relative to the anomalous dimensions
that we calculated for yy in our previous work [22,34-39].

In Tables II-VIII we list values of the anomalous

. . D DD DDD) () _(6D) _(6DD
dimensions yﬁ’{ ). yﬂy{ ), g{ ), 7§R), ﬁR ), },I(R )
yEEDDD) for the theory with G = SU(3) and fermions in the

fundamental representation, R = F, calculated to O(A}’),

, and

TABLE III.  Values of the anomalous dimension ygf)FD ) calcu-

lated to O(Af), denoted y&?ﬁ&, with I < p <3, for G = SU(3),

as a function of Ny.

TABLE IV.  Values of the anomalous dimension y&[_)FD D)

lated to O(AY), denoted y7PPP) with 1 < p < 3, for G = SU(3),

IR F,AP
as a function of N £

calcu-

v, R oo R
8 -0.739 —-0.794 —-0.900
9 —-0.652 —0.695 -0.7675
10 —-0.565 —0.598 —0.645
11 —-0.478 —0.501 —-0.530
12 -0.391 —0.407 —-0.422
13 -0.304 -0.314 -0.321
14 -0.217 -0.222 —-0.225
15 -0.130 —-0.132 -0.133
16 —0.0435 —0.0437 —0.0437

TABLE V. Values of the anomalous dimension yﬁ'g  calculated

to O(AY), denoted Yi}?F are With 1 < p <3, for G = SU(3),as a
FA?
function of Ny.

o o

N f yER?F A 2 E? Fa Y;R? F.AY

8 -0.141 -0.223 -0.207

9 —-0.125 —0.188 -0.1775
10 —0.108 -0.156 —-0.149
11 -0.0914 -0.125 -0.121
12 -0.0748 —-0.0976 —-0.0953
13 —0.05815 —-0.07195 -0.0709
14 —-0.0415 —0.0486 —0.0482
15 —-0.0249 -0.0275 -0.0274
16 —0.00831 —0.00859 —0.00859
denoted y<7D) etc., with p =1, 2, 3, as functions of N

IR,F,A”°
for a relevant rafnge of N values extending downward from
the upper end of the conformal regime at N, = N, (i.e.,
Ay = 0) within this conformal window [61]. The numbers
in Table V are evaluations of our analytic results given in
[36] and are included for comparison.

TABLE VI. Values of the anomalous dimension yg{%) calcu-

lated to O(AF), denoted yigij),A,/{, with I < p <3, for G = SU(3),

as a function of N £

Ny (yDD) (yDD) (rDD)

(eD) (oD) (eD)

VIR F.A, IR.F.A2 IR.F.A] Ny VIR F.A; TIR.F.A2 TIR.F.a
8 —0.588 —-0.654 -0.724 8 -0.424 —-0.503 -0.527
9 -0.519 -0.570 -0.618 9 -0.374 -0.436 —-0.452
10 —-0.450 —0.488 —-0.520 10 -0.324 —-0.3705 —0.381
11 —0.381 —0.408 -0.427 11 -0.274 -0.307 -0.314
12 —-0.3115 —-0.330 —-0.340 12 -0.224 —-0.247 —-0.250
13 -0.242 —-0.253 —-0.258 13 -0.174 —0.188 —-0.190
14 -0.173 -0.179 —0.180 14 —-0.125 —-0.131 -0.132
15 —-0.104 —-0.106 —-0.106 15 —-0.0748 -0.0772 -0.0774
16 —-0.0346 —0.0348 —-0.0349 16 -0.0249 -0.0252 -0.0252
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TABLE VII.  Values of the anomalous dimension yg{?f’)

lated to O(A)Pc), denoted yEEL;DZp, with 1 < p < 3, for G = SU(3),
h i

as a function of N ’

calcu-

ocDD oDD
T
8 —0.612 —0.682 —0.748
9 —0.540 —0.594 —0.640
10 —0.468 —0.509 —0.539
11 —0.396 —0.425 —0.443
12 —0.324 —0.344 —0.353
13 —0.252 —0.264 —0.268
14 —0.180 —0.186 —0.188
15 —0.108 —0.110 —0.111
16 —0.0360 —0.03624 —0.03625

(6DDD)

TABLE VIII. Values of the anomalous dimension yg i

calculated to O(A}’), denoted yigf);)@), with 1< p <3, for
G = SU(3), as a function of N.
(6DDD) . (6DDD)
Ny VIR.F.A, fRf;[.)A? VIR F.A3
8 —0.753 -0.811 -0.913
9 —0.665 —-0.709 -0.779
10 -0.576 —-0.610 —0.655
11 —0.487 -0.511 —0.539
12 -0.399 -0.415 —0.430
13 -0.310 —-0.320 -0.327
14 -0.222 —0.2265 -0.229
15 —0.133 —-0.135 —-0.135
16 —0.0443 —0.0445 —0.0445
SU(3) with fundamentals
0.0
-0.1
-0.2
ViR
-0.3
-0.4
0% 10 12 14 16
Ny
FIG. 1. Plot of the anomalous dimension y&%ﬁ of the operator

WYy, D,,w at the IRFP for the theory with G = SU(3), and N,
fermions in the fundamental representation, calculated to order
O(A?), where p = 1, 2, 3. Denoting the anomalous dimension

calculated to order O(Ap ) (rD)

as yIR FAL the curves, from top to

bottom, refer to yIR F A (red), ;/IR F o (green), and le F N (blue).

0.0 SU(3) with fundamentals

-0.2
ViR —0.4

-0.6

-0.8

8 10 12 14 16
Ny

FIG. 2. Plot of the anomalous dimension yI(}QDFD ) of the operator

#7,,D,, D,y atthe IRFP for G = SU(3), and N, fermions in the
fundamental representation, calculated to order O(Aj‘i), where
p =1, 2, 3. Denoting the anomalous dimension calculated to

order O(AY) as y<yD )

R AL the curves, from top to bottom, refer to

ylﬁDFDAf (red), le r A2 (green), and ylf{DFD Zg (blue).

In Figs. 1-7 we show plots of these anomalous dimen-
sions for the SU(3) theory with R = F. The plot of the
anomalous dimension for o), v is based on the analytic
results of our earlier paper [36] but was not given there and
is new here. As can be seen from these tables and figures,
the higher-order terms in the A, expansion are sufficiently
small that it is expected to be reliable throughout much of
the non-Abelian Coulomb phase (i.e., conformal window).
As is obvious, since our calculations are finite series
expansions in powers of Ay, they are most accurate in
the upper part of the NACP, where this expansion parameter
Ay is small. This is similar to what we found in our earlier
scheme-independent calculations of anomalous dimensions

SU(3) with fundamentals

0.0

-0.2

-0.4

yDDD
ViR

-0.6

-0.8

-1.0% 10 12 14 16

Ny
FIG. 3. Plot of the anomalous dimension }/%’}D ) of the operator
WYy, Dy, D,y Dy, w at the IRFP for G = SU(3), and N ; fermions in
the fundamental representation, calculated to order O(Ap ), where

p =1, 2, 3. Denoting the calculation to order O(Ap ) as yﬁly{DFDAD,,)
from top to bottom, the colors refer to ylﬁDFD f> (red), Il];DFD f,)

(yDDD)

(green), and YRr, I

(blue).
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SU(3) with fundamentals
0.00

-0.05
-0.10
Y& -0.15
-0.20

-0.25

-0.30

8 10 12 14 16
N

FIG. 4. Plot of the anomalous dimension yﬁ{?  of the operator
wo,, v at the IRFP for G = SU(3), and N, fermions in the
fundamental representation, calculated to order O(AJ’Z), where
(0)

IR F,A?>

(o)
R FA3f

p =1, 2, 3. Denoting the calculation to order O(A}) as y

the colors refer to yl(R>F A (red), yIR FA2 (green), and 7,

(blue).

0.0 SU(3) with fundamentals

-0.1
-0.2
Yy -0.3
-0.4

-0.5

8 10 12 14 16
Ny

FIG. 5. Plot of the anomalous dimension yﬁg}) of the operator

o, D,,w at the IRFP for G = SU(3), and N fermions in the
fundamental representation, calculated to order O(A}’), where
(eD)
as VIR F.a7

from top to bottom, the colors refer to 7|7, s, (red), yg[}? A2
F. FA2

p =1, 2, 3. Denoting the calculation to order O(Af)

(green), and 71(;1;) 4 (blue).
Sy

[34-39]. In the figures, this is evident from the fact that the
curves for the anomalous dimensions calculated to O(A})
are reasonably close to the corresponding curves for
these anomalous dimensions calculated to order O(AJ%).
(0)

IR,F,A7
LAy
listed for the various operators O in Tables II- VIH the

fractional differences Rgg) _(yﬁR)F A yER)F Az) / yIR ra are

~0(107%) for N; values near the upper end of the
conformal window and increase as N [ decreases; at

As is evident from the values of y that we have

SU(3) with fundamentals

0.0
-0.2
vl -0.4
-0.6
-0.8% 10 12 14 16
Ny
(eDD)

FIG. 6. Plot of the anomalous dimension y » ~ of the operator

o, D,,D,w at the IRFP for G = SU(3), and N fermions in

the fundamental representation, calculated to order O(A’f’), where
" (eDD)
A VR F, AP
ﬂDD)
R.F,A2

p =1, 2, 3. Denoting the calculation to order O(Ap )

from top to bottom, the colors refer to yﬁR Fa, (ed), 71

(eDD)

(green), and YRF, 9

(blue).

0.0 SU(3) with fundamentals

-0.2
-0.4
oDDD

VIR
-0.6

-0.8

-1.0

8 10 12 14 16
Ny

FIG. 7. Plot of the anomalous dimension yﬁ'{DFDm of the

operator o, D, D, D,y at the IRFP for G = SU(3), and
Ny fermions in the fundamental representation, calculated to
order O(AY), where p =1, 2, 3. Denoting the calculation to

order O(Af) as y (sDDD)

YRF. A,, , from top to bottom, the colors refer to

(DDD) DDD)
}’r; Fa, ) (red), yIR - A ) (green), and 7’1(; Fa

(blue)
Ny =12, the Rgg) are a few per cent, and at N, =38,

Rgg) ~0.1. For a given N, Rg? increases slightly with the

spin of the operator O; for example, for N, =12,
RYY) =0.024, RYY"'=0.032, and RYY"") = 0.037, while

Ry =0.014, Ry = 0.028, and RYY"” = 0.035.

VL. LNN LIMIT FOR yiﬁ?ww \F

In a theory with gauge group SU(N,.) and fermions in the
fundamental representation, R = F, it is of interest to
consider the limit
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N
r=—L fixed and finite
N,

N, — o0, Np — oo with

and &(u) = a(u)N, is a finite function of .

(6.1)
This limit is denoted as lim; yn [Where “LNN” connotes
“large N, and Njy” with the constraints in Eq. (6.1)
imposed]. It is also often called the 't Hooft-Veneziano
limit. It has the simplifying feature that rather than depend-
ing on N and N, the properties of the theory only depend
on their ratio, r. The scheme-independent expansion
parameter in this LNN limit is

A,E}‘%N—Czj—r (6.2)
N
r, = lim —%, (6.3)
LNN NV,
and
. Ny
ry = I{%N— (6.4)
with values
11
re= (65)
and
34
ry = B = 2.6154. (6.6)

With I igz: Ny < Ny < N,, it follows that the correspond-
ing interval in the ratio r is

34
IIRZ,V: E <r< ?,1 e., 26154 < r<5.5. (67)
Here we evaluate these scheme-independent anomalous
dimension coefficients in a theory with G = SU(N,.) and
R = F, in the LNN limit. The rescaled coefficients that are

finite in the LNN limit are

£ = lim N, (6.8)

— 0
The anomalous dimension yﬁ? ) is also finite in this limit and
is given by

() B o0 B (o] AO
]{%YIRSU( N).F _ZK” ?_ZK" A7

As r decreases from its upper limit, r,, to r,, the expansion
variable A, increases from 0 to

75
26

(6.9)

(A)) oy = — = 2.8846  for r € Iipz,- (6.10)

In this LNN limit, the values of fcﬁ,o) with 1 <n <3 for
the operators O considered here are listed in Table IX. For
comparison, we also include the corresponding values of

TABLEIX. Values of the &\ coefficients for G = SU(N,) and
R = F in the LNN limit. The operators are indicated by their
shorthand symbols, so 1 refers to yy; o refers to wo,, yv; yD to
WYy, D,,w, etc. The notation ae-n means a x 107",

O &\ &7 &

1 0.160000 0.0376320 0.832074e-2
o ~0.0533333  —0.969956¢-2 2.33189¢-4
yD ~0.142222  —1.04844e2  —2.135375e-3
yDD ~0222222  —1.11967e2  —0.404507¢-2
yDDD  —0.279111 ~1.0814%-2  —0.572019¢-2
oD ~0.160000  —0.0120320 ~1.967385¢-3
sDD —0.231111  —1.17960e2  —0.397447¢-2
oDDD  —0284444  —1.114495¢2  —0.567795¢-2

( ) for the operators yy and o
in [36].

W that we had calculated

VII. EVALUATION OF ANOMALOUS
DIMENSIONS 7.% FOR G=SU(N,) AND R =Adj

For the case where G = SU(N,.) and the fermions are in
the adjoint representation, R = Adj, our general results for
the scheme-independent expansion coefficients for the
anomalous dimensions of the operators under consideration
are as follows::

25
K2 = S 0395062,

1.SU(N,).Adj 3 (7.1)
(yD) 1756
szsw NAdj T T T30 T —0.0892140, (7.2)
K<yD) = — M + ﬂ
3.SUWN,).Adj — 314 31052
0.0802046
= —0.0184256 + Tﬁ (7.3)
(yDD) 50
K[Sw VoAl = T 3E = —0.617284, (7.4)
rPD) _ 10165
KIS0 Ad) = ~ 339 = 0129109, (7.5)
K(yDD) _ 2272255 4 7400
3SUWN:)Adj — o4 314 T 3102
0.125320
= —0.0296920 + v (7.6)
(rDDD) 314
KIJTSU(N(,),Adj = —ﬁ = —0775309, (77)
(yDDD) 1504769
KZ},ISU(NC),Adj = —m = —0152900, (78)
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and
(1DDD) _ 9206650603 n 46472
3,SU(N,).Adj — 24 .314 .55 310, SNE
0.1574015
= —0.0384976 + Nz (7.9)
2
(oD) _
K1 SUN,)Adj = —3—2 = —0.444444, (7.10)
(6D) B 149 -
KZ,SU(N(),Adj = _2_—36 = —0102195, (711)
and
(oD) 10801 592
K35U(N)Adj T T3 310 T 38p2
0.0902301
= —0.0228645 + N (7.12)
(eDD) _ 2
LSUN A = ~ 38 = —0.641975, (7.13)
(oDD) 5123
K SUN, ) Adj = 53— —0.130138, (7.14)
(6DD) 984949 7696
K38UN)Adj = T 53 314 + 31072
0.130332
= —0.0257410 + ———, (7.15)
(6DDD) 26
K\ SU(N,) Adj = EThe —0.790123, (7.16)
(6DDD) ~ 3070
K> SUN.) Adj = — 9 = —0.155972, (7.17)
and
(6DDD) 378247 9472
K3sUN)Adj = T 5 31a T 3l0N2
0.160409
= —0.0395410 + N (7.18)
For all of these operators O, the coefficients KE?S)U( N.).Adj
are negative for n =1 and n =2 and for all N.. The
coefficient Kg"f&w_)’ aq; 1 negative for all N, while the

coefficients K';OS)U( N.).Adj for the other operators are positive
for N. =2, i.e., G = SU(2), and are negative for N. > 3.
VIII. CONCLUSIONS

In conclusion, in this paper we have calculated scheme-
independent expansions up to O(A}) inclusive for the

anomalous dimensions of the higher-spin, twist-2 bilinear
fermion operators J/yﬂle...Dﬂjw and WJAMIDM...DMI,W
with j up to 3, evaluated at an IR fixed point in the non-
Abelian Coulomb phase of an asymptotically free gauge
theory with gauge group G and N fermions transforming
according to a representation R of G. Our general results
are evaluated for several special cases, including the case
G = SU(N,.) with R equal to the fundamental and adjoint
representations. We have presented our results in conven-
ient tabular and graphical formats. For fermions in the
fundamental representation, we also analyze the limit N, —
co and Ny — oo with N;/N, fixed and finite. A compari-
son with our previous scheme-independent calculations of
the corresponding anomalous dimensions of yy and o,y
has also been given. Our new results further elucidate the
properties of conformal field theories. With the requisite
inputs, one could extend these scheme-independent calcu-
lations to higher-spin operators and to higher order in
powers of A It is hoped that lattice measurements of these
anomalous dimensions of higher-spin operators in the
conformal window will be performed in the future, and
it will be of interest to compare our calculations with lattice
results when they will become available.
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APPENDIX: PREVIOUS RESULTS ON y() AND
7® FOR G=SU(3) AND R=F

In this appendix, for comparison with our new results,
we list our previous results from [36] (see also [37]) for the

scheme-independent series expansions of the anomalous
dimensions yﬁ? ) for O = yy and O = yo,y. Following
the same shorthand notation as in the text, we denote the
coefficients at order O(A%}) in the scheme-independent
series expansions (2.10) for these anomalous dimensions as

<V and «\”. We calculated

8T C
K =2 (A1)
C,D
4T%C;(5C, + 88C;)(7C4 + 4C
MO £(5C4 ) (7Cs f)’ (A2)

3C3D3

and
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4T, C,
s At [—55419T}C§+432012T}ngcf+5632T}cfAA

RN
abced jJabed
+16C3 <122043T}c} + 6776%
abcddabcd
+704C3% <1521T§C} + 112Tf%

. d%bcd thd
+327,C,y (53361Tfo ~3872C,~—A—

A

(4 —39¢3) +242C, RT

(=4 +39¢3) + 112Tf%

abced jJabed

7 (=54 13243)

(—11 +24Z_,’3))

abcddabcd
R

(=11 + 24«,3))

abcddabcd

A

(=5 + 132@))] (A3)

A

where the denominator factor D was defined in Eq. (3.1)]. In [37,39] we presented results for the next-higher order

coefficient, Kil), but these are not needed here.

For the «\”) we found

(0)

_8C,T;

- A4
AN TON (A4)
o) AC;TH(259C3 +428C,C; — 528C%) A5
K =-— 27y’ (A5)
9C2D
and
. 4C,T
k) = 35c€§DfS 3CATH{C4(=11319 + 188160C3) + C3C;(~=337204 + 64512¢5) + C5CH(83616 — 890112¢3)
dabcddabcd
+ C4CH(1385472 — 3548163) + C}(—212960 + 743424¢3)} — 512T7D(=5 + 13243) %
A
abced jabed dabcddabcd
— 15488C3D(—11 + 24¢3) % + 11264C, T D (-4 + 39¢3) % : (A6)
A A
For G = SU(N,.) and R = F, in the LNN limit, these A(6) -
yield the rescaled coefficients Kl =737~ —0.053333, (A10)
Ly 4 (o 1364 ~
ki =5 = 0.1600, (A7) &) = g5 = ~(0.969956 X 102).  (Al1)
1) 588
&Y = T = 0.037632, (A8) and
184456
2193944 o(o) _ 184456 4

R = — 0.83207 x 102, (A9) R = 2o = 23319 x 107, (A12)
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