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We consider an asymptotically free vectorial gauge theory, with gauge group G and Nf fermions in a
representation R of G, having an infrared fixed point of the renormalization group. We calculate scheme-
independent series expansions for the anomalous dimensions of higher-spin bilinear fermion operators at
this infrared fixed point up toOðΔ3

fÞ, where Δf is an Nf-dependent expansion variable. Our general results

are evaluated for several special cases, including the caseG ¼ SUðNcÞwith R equal to the fundamental and
adjoint representations.
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I. INTRODUCTION

An asymptotically free gauge theory with sufficiently
many massless fermions evolves from the deep ultraviolet
(UV) to an infrared fixed point (IRFP) of the renormaliza-
tion group at a zero of the beta function. The theory at this
IRFP exhibits scale invariance due to the vanishing of the
beta function. The properties of the theory at this IRFP are
of fundamental field-theoretic interest. Among the basic

properties are the anomalous dimensions γðOÞ
IR of various

gauge-invariant operators O.
In this paper we consider an asymptotically free vectorial

gauge theory of this type, with a general gauge groupG and
Nf copies (“flavors”) of massless Dirac fermions ψ i,
i ¼ 1;…; Nf, transforming according to a representation
R of G [1]. We present scheme-independent series expan-
sions of the anomalous dimensions of gauge-invariant
higher-spin operators that are bilinear in the fermion fields,
up toOðΔ3

fÞ inclusive, at the infrared fixed point, whereΔf

is an Nf-dependent expansion variable defined below,
in Eq. (1.8). The operators that we consider are of the
form (suppressing flavor indices) ψ̄γμ1Dμ2…Dμjψ and
ψ̄σλμ1Dμ2…Dμjψ , where Dμ is the covariant derivative
for the gauge theory, and it is understood here and below
that the operators are symmetrized over the Lorentz indices
μi, 1 ≤ i ≤ j and have Lorentz traces subtracted, and σλμ1 is

the commutator of two Dirac matrices [defined in
Eq. (2.3)]. We consider the cases 1 ≤ j ≤ 3.
The operators ψ̄γμ1Dμ2…Dμjψ were considered early on

in the analysis of approximate Bjorken scaling in deep
inelastic lepton scattering and the associated development
of the theory of quantum chromodynamics (QCD). We
briefly review this background [2–13]. In Euclidean quan-
tum field theory, the short-distance operator product
expansion (OPE) expresses the product of two operators
AðxÞ and BðyÞ as a sum of local operatorsOi multiplied by
coefficient functions cOi

,

AðxÞBðyÞ ¼
X
i

cOi
ðx − yÞOiððxþ yÞ=2Þ; ð1:1Þ

in the limit where x − y → 0. Let us denote the Maxwellian
(i.e., free-field) dimension of an operatorO in mass units as
dO. Then the (free-field) dimension of the coefficient
function is dcOi

¼ dA þ dB − dOi
, so

cOi
ðx − yÞ ∼ jx − yjdOi

−dA−dB; ð1:2Þ

where jx − yj refers to the Euclidean distance. Hence, in the
short-distance OPE, the operators with the lowest dimen-
sions dominate, since they are multiplied by the smallest
powers of jx − yj. However, deep inelastic scattering and
the associated Bjorken limit probe the light cone limit,
ðx − yÞ2 → 0 with x − y ≠ 0 in Minkowski space, where
x2 ¼ xμxμ. With the arguments of two illustrative Lorentz-
scalar operators denoted in a symmetric manner as �x=2,
the light-cone OPE for Aðx=2ÞBð−x=2Þ is
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Aðx=2ÞBð−x=2Þ ¼
X
i;n

c̄i;nðx2Þxμ1 � � � xμnOi;n;μ1;…;μnð0Þ

ð1:3Þ

in the limit x2 → 0, where the coefficient functions have
been written in a form that explicitly indicates the factor
xμ1 � � � xμn and the operatorOi;n;μ1;…;μn has spin j ¼ n. Here
(suppressing the Lorentz indices on Oi;n;μ1;…;μn) the
dependence of c̄i;n on x2 is

c̄i;nðx2Þ ∼ ðx2ÞðdOi;n
−n−dA−dBÞ=2 ð1:4Þ

(with logarithmic corrections in QCD due to anomalous
dimensions). Consequently, the operators that have the
strongest singularity in their coefficient function c̄i;nðx2Þ as
x2 → 0 and hence make the dominant contribution to the
right-hand side of the light-cone OPE, Eq. (1.3) are those
with minimal “twist” τ [7], where τ is the dimension minus
the spin j of the operator, i.e.,

τOi;n
¼ dOi;n

− jOi;n
; ð1:5Þ

with jOi;n
¼ n here. Thus, among bilinear fermion oper-

ators, in addition to ψ̄γμ1ψ with dimension 3, spin 1, and
hence τ ¼ 2, there are the operators ψ̄γμ1Dμ2 � � �Dμjψ , with
dimension 3þ ðj − 1Þ and spin j, which also have τ ¼ 2.
These are the minimum-twist bilinear fermion operators
that contribute to the light-cone OPE (1.3) [14]. In a similar
manner, twist-2 operators make the dominant contribution
to the right-hand side of the light-cone OPE for the product
of two electromagnetic or weak currents. The other
operators that we consider, namely ψ̄σλμ1Dμ2…Dμjψ, have
been relevant for the study of transversity distributions in
QCD [15].
Our approach here is complementary to these previous

analyses of higher-spin operators, which have focused on
applications to QCD. In contrast, we study the anomalous
dimensions of these operators at an infrared fixed point in a
(deconfined) chirally symmetric non-Abelian Coulomb
phase (NACP), where the theory is scale invariant and is
inferred to be conformally invariant [16], hence the
commonly used term “conformal window.” The goal of
our calculations is to gain information about the properties
of the conformal field theory that is defined at this IRFP.
Let us recall some further relevant background for our

work. The evolution of the running gauge coupling
g ¼ gðμÞ, as a function of the momentum scale, μ, is
described by the renormalization-group (RG) beta function
β ¼ dα=d ln μ, where αðμÞ ¼ gðμÞ2=ð4πÞ. From the one-
loop term in the beta function [10,11], it follows that the
property of asymptotic freedom restricts Nf to be less than
an upper (u) bound, Nu, where [17]

Nu ¼
11CA

4Tf
: ð1:6Þ

Here, CA is the quadratic Casimir invariant for the group G
and Tf is the trace invariant for the representation R [18]. If
Nf is slightly less than Nu, then this theory has an infrared
zero in the (perturbatively calculated) beta function, i.e., an
IR fixed point of the renormalization group, at a value that
we shall denote αIR [19,20]. In the two-loop beta function
(with Nf < Nu as required by asymptotic freedom), this IR
zero is present if Nf is larger than a lower (l) value Nl,
where [19]

Nl ¼ 17C2
A

2Tfð5CA þ 3CfÞ
: ð1:7Þ

As the scale μ decreases from large values in the UV to
small values in the IR, αðμÞ approaches αIR from below as
μ → 0. Here we consider the properties of the theory at this
IRFP in the perturbative beta function. (For a discussion of
an IR zero in a nonperturbatively defined beta function and
its application to QCD, see [21].)
Since the anomalous dimensions of gauge-invariant

operators evaluated at the IRFP are physical, they must
be independent of the scheme used for regularization and
renormalization. In the conventional approach, one first
expresses these anomalous dimensions as series expansions
in powers of α or equivalently a ¼ g2=ð16π2Þ ¼ α=ð4πÞ,
calculated to n-loop order; second, one computes the IR
zero of the beta function, denoted αIR;n, to the same n-loop
order; and third, one sets α ¼ αIR;n in the series expansion
for the given anomalous dimension to obtain its value at the
IR zero of the beta function to this n-loop order. For the
operator ψ̄ψ this conventional approach to calculate
anomalous dimensions at an IR fixed point was carried
out to the four-loop level in [22–24] and to the five-loop
level in [25]. However, these conventional series expan-
sions in powers of α, calculated to a finite order, are
scheme-dependent beyond the leading terms. This is a well-
known property of higher-order QCD calculations used to
fit actual experimental data, which, in turn, has motivated
many studies to reduce scheme dependence [26]. These
studies dealt with the UV fixed point (UVFP) at α ¼ 0, as is
appropriate for QCD. Studies of scheme dependence of
quantities calculated in a conventional manner at an IR
fixed point at αIR were carried out in [27–31]. In particular,
it was shown that many scheme transformations that are
admissible in the vicinity of the UVFP at α ¼ 0 in an
asymptotically free theory are not admissible away from
the origin because of various pathological properties. For
example, the scheme transformation ra ¼ tanhðra0Þ
(depending on a parameter r) is an admissible trans-
formation in the neighborhood of α ¼ α0 ¼ 0. However,
the inverse of this transformation is a0¼ð2rÞ−1 ln½ð1þraÞ=
ð1−raÞ�, which is singular at an IRFP with aIR ≥ 1=r, i.e.,
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αIR ≥ 4π=r, so that the transformation is not admissible at
this IRFP. References [27] derived and studied an explicit
scheme transformation that removes terms of loop order 3
and higher from the beta function in the local vicinity of
α ¼ 0, as is relevant to the UVFP in QCD [32], but also
showed that such a scheme transformation cannot, in
general, be used at an IRFP away from the origin owing
to various pathologies, one of which was illustrated above.
It is thus desirable to use a theoretical framework in

which the series expansions for physical quantities, such as
anomalous dimensions of gauge-invariant operators at the
IRFP, are scheme-independent at any finite order in an
expansion variable. Because αIR → 0 as Nf approaches Nu

from below (where Nf is formally generalized here from a
non-negative integer to a non-negative real number [17]),
one can reexpress the expansions for physical quantities at
the IRFP as power series in the manifestly scheme-
independent quantity [20,33]

Δf ¼ Nu − Nf: ð1:8Þ

In previous work we have calculated scheme-independent
expansions for anomalous dimensions of several types of
gauge-invariant operators at an IRFP in an asymptotically
free gauge theory [34–40]. We have compared the resultant
values for anomalous dimensions with lattice measure-
ments where available [35–37,41,42].
In the present paper we extend these calculations to the

case of the higher-spin operators ψ̄γμ1Dμ2…Dμjψ and
ψ̄σλμ1Dμ2…Dμjψ for 1 ≤ j ≤ 3. In addition to general
formulas, we present results for several different special
cases, including the case where G ¼ SUðNcÞ and the
fermions are in the fundamental (F) and adjoint (Adj)
representations. We also give results for the limit Nc → ∞
and Nf → ∞ with the ratio Nf=Nc fixed and finite. Our
calculations show that these scheme-independent expan-
sions of the anomalous dimensions of the operators are
reasonably accurate throughout much of the non-Abelian
Coulomb phase. Our results give further insight into the
properties of a theory at an IRFP and should be useful to
compare with lattice measurements of the anomalous
dimensions of these higher-spin operators when such
measurements will be performed [43].
This paper is organized as follows. Some relevant

background and methods are discussed in Sec. II.
General structural forms for the anomalous dimensions
of higher-spin bilinear fermion operators are given in
Sec. III. In Sec. IV we present our scheme-independent
calculations of the anomalous dimensions of these higher-
spin Wilson operators for a general gauge group G and
fermion representation R. In Sec. V we give results for the
case where G ¼ SUðNcÞ and R is the fundamental repre-
sentation, and in Sec. VI we present the special case of
these results for the limit Nc → ∞ and Nf → ∞ with
Nf=Nc fixed and finite. Anomalous dimension calculations

for the case where G ¼ SUðNcÞ and R is the adjoint
representation are presented in Sec. VII. Our conclusions
are given in Sec. VIII and some auxiliary results are
included in Appendix.

II. CALCULATIONAL METHODS

Let us consider a (gauge-invariant) operator O. Because
of the interactions, the full scaling dimension of this
operator, denoted DO, differs from its free-field value,
DO;free ≡ dO:

DO ¼ DO;free − γO; ð2:1Þ

where γO is the anomalous dimension of the operator [44].
Since γO arises from the gauge interaction, it can be
expressed as the power series

γðOÞ ¼
X∞
l¼1

cðOÞ
γ;l a

l; ð2:2Þ

where cOγ;l is the l-loop coefficient.
As stated in the introduction, we shall consider the

gauge-invariant operators Oμ1…μj ¼ ψ̄γμ1Dμ2…Dμjψ and
Oλμ1…μj ¼ ψ̄σλμ1Dμ2…Dμjψ , where

σλμ1 ¼
i
2
½γλ; γμ1 �: ð2:3Þ

We focus on the operators with 1 ≤ j ≤ 3. We introduce the
following compact notation for these operators:

OðγDÞ
μ1μ2 ≡ ψ̄γμ1Dμ2ψ ; ð2:4Þ

OðγDDÞ
μ1μ2μ3 ≡ ψ̄γμ1Dμ2Dμ3ψ ; ð2:5Þ

OðγDDDÞ
μ1μ2μ3μ4 ≡ ψ̄γμ1Dμ2Dμ3Dμ4ψ ; ð2:6Þ

OðσDÞ
λμ1μ2

≡ ψ̄σλμ1Dμ2ψ ; ð2:7Þ

OðσDDÞ
λμ1μ2μ3

≡ ψ̄σλμ1Dμ2Dμ3ψ ; ð2:8Þ

and

OðσDDDÞ
λμ1μ2μ3

≡ ψ̄σλμ1Dμ2Dμ3Dμ4ψ : ð2:9Þ

For brevity of notation, we suppress the flavor indices on
the fields ψ .
For a given operator O, we write the scheme-

independent expansion of its anomalous dimension γðOÞ

evaluated at the IRFP, denoted γðOÞ
IR , as
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γðOÞ
IR ¼

X∞
n¼1

κðOÞ
n Δf

n: ð2:10Þ

The truncation of right-hand side of Eq. (2.10) to maximal
power p is denoted

γðOÞ
IR;Δp

f
¼

Xp
n¼1

κðOÞ
n Δf

n: ð2:11Þ

We use a further shorthand notation for the anomalous

dimensions in which the superscript in γðOÞ
IR is replaced by a

symbol for the quantity standing between ψ̄ and ψ in the

operator O. These shorthand symbols are as follows: γðγDÞ
IR

for the anomalous dimension of the operator OðγDÞ
μ1μ2 ¼

ψ̄γμ1Dμ2ψ at the IRFP, and so forth for the other operators.
In comparing with our previous calculations in [34–39], we
also use the notation γð1ÞIR and γðσÞIR for the anomalous
dimensions of ψ̄ψ and ψ̄σλμ1ψ at the IRFP. (The anomalous

dimension γðσÞIR was denoted γT;IR in [36], where the
subscript T referred to the Dirac tensor σμν.)
As discussed in [34,36], the calculation of the coefficient

κðOÞ
n in Eq. (2.10) requires, as inputs, the beta function
coefficients at loop order 1 ≤ l ≤ nþ 1 and the anomalous

dimension coefficients cðOÞ
γ;l at loop order 1 ≤ l ≤ n. The

method of calculation requires that the IR fixed point must
be exact, which is the case in the non-Abelian Coulomb
phase. As in our earlier work [34–39], we thus restrict our
consideration to the non-Abelian Coulomb phase (con-
formal window) [45]. For a given gauge group G and
fermion representation R, the conformal window extends
from an upper end at Nf ¼ Nu to a lower end at a value that
is commonly denoted Nf;cr. In contrast to the exactly
known value of Nu [given in Eq. (1.6)], the value of Nf;cr is
not precisely known and has been investigated extensively
for several groups G and fermion representations R
[41,42,45]. For values of Nf in the non-Abelian
Coulomb phase such that Δf is not too large, one may

expect the expansion (2.10) of γðOÞ
IR in a series in powers of

Δf to yield reasonably accurate perturbative calculations of
the anomalous dimension. In our earlier works, using our
explicit calculations, we have shown that this is, in fact,
the case.
We recall some relevant properties of the theory regard-

ing global flavor symmetries. Because the Nf fermions are
massless, the Lagrangian is invariant under the classical
global flavor (fl) symmetry Gfl;cl ¼ UðNfÞL ⊗ UðNfÞR,
or equivalently,

Gfl;cl ¼ SUðNfÞL ⊗ SUðNfÞR ⊗ Uð1ÞV ⊗ Uð1ÞA ð2:12Þ
(where V and A denote vector and axial-vector). The Uð1ÞV
represents fermion number, which is conserved by the

bilinear operators that we consider. The Uð1ÞA symmetry is
broken by instantons, so the actual nonanomalous global
flavor symmetry is

Gfl ¼ SUðNfÞL ⊗ SUðNfÞR ⊗ Uð1ÞV: ð2:13Þ

This Gfl symmetry is respected in the non-Abelian
Coulomb phase, since there is no spontaneous chiral
symmetry breaking in this phase [41,42]. For our operators,
the flavor matrix between ψ̄ and ψ is either the identity or
the operator Ta, a generator of SUðNfÞ, which can be
viewed as acting either to the right on ψ or to the left on ψ̄ .
These yield the same anomalous dimensions [46]. As a
consequence of the unbroken global flavor symmetry, our
operators transform as representations of the global flavor
group Gfl. The invariance under the full Gfl in the non-
Abelian Coulomb phase is different from the situation in
the QCD-like phase at smaller Nf, where the chiral part of
Gfl is spontaneously broken by the QCD bilinear quark
condensate to the vectorial subgroup SUðNfÞV and oper-
ators are classified according to whether they are singlet or
nonsinglet (adjoint) under this vectorial SUðNfÞ symmetry.
In particular, in the consideration of flavor-singlet oper-
ators, in QCD, one must take into account mixing with
gluonic operators. Here, in contrast, there is no mixing
between any of our bilinear fermion operators and gluonic
operators, since the latter are singlets under Gfl.
The operators O with an even number of Dirac γ

matrices, symbolically denoted Γe, link left with right
chiral components of ψ , while the operators O with an odd
number of Dirac γ matrices, Γo, link left with left and right
with right components:

ψ̄Γeψ ¼ ψ̄LΓeψR þ ψ̄RΓeψL; ð2:14Þ

ψ̄Γoψ ¼ ψ̄LΓoψL þ ψ̄RΓoψR; ð2:15Þ

where ψ̄ ¼ ψ†γ0. In the non-Abelian Coulomb phase where
the flavor symmetry is (2.13), one may regard the Tb in the
term ψ̄LTbψR acting to the right as an element of SUðNfÞR
and acting to the left as an element of SUðNfÞL.
Given that the theory at the IR fixed point is conformally

invariant [16], there is an important lower bound on the full
dimension of an operator O and hence, with our definition
(2.1), an upper bound on the anomalous dimension γðOÞ that
follows from the conformal invariance. To state this, we
first recall that a (finite-dimensional) representation of the
Lorentz group is specified by the set ðj1; j2Þ, where j1 and
j2 take on non-negative integral or half-integral values [47].
A Lorentz scalar operator thus transforms as (0, 0), a
Lorentz vector as ð1=2; 1=2Þ, an antisymmetric tensor like
the field-strength tensor Fa

μν as ð1; 0Þ ⊕ ð0; 1Þ, etc. Then
the requirement of unitarity in a conformally invariant
theory implies the lower bound [48]
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DO ≥ j1 þ j2 þ 1; ð2:16Þ

i.e., the upper bound

γO ≤ DO;free − ðj1 þ j2 þ 1Þ: ð2:17Þ

We have studied the constraints from the upper bound
(2.17) in our previous calculations of anomalous dimen-
sions in [22,25,36–39]. Anticipating the results given
below, since our calculations yield negative values for
the anomalous dimensions of higher-spin Wilson operators,
they obviously satisfy these conformality upper bounds.

III. SOME GENERAL STRUCTURAL
PROPERTIES OF γ(O)

IR

From our previous calculations [34–39] for the anoma-
lous dimensions of ψ̄ψ and ψ̄σμνψ , in conjunction with our

new results on the anomalous dimensions γðOÞ
IR of higher-

spin twist-2 bilinear fermion operators O, we find some

general structural properties of the coefficients κðOÞ
n in the

scheme-independent series expansions of the anomalous

dimensions γðOÞ
IR . These involve various group invariants,

including the quadratic Casimir invariants CA ≡ C2ðGÞ,
Cf ≡ C2ðRÞ, the trace invariant TðRÞ, and the quartic trace
invariants dabcdR dabcdR0 =dA, where dA denotes the dimension
of the adjoint representation [18,49]. For compact notation,
it is convenient to define a factor that occurs in the

denominators of these κðOÞ
n coefficients, namely.

D ¼ 7CA þ 11Cf ð3:1Þ

(not to be confused with covariant derivative). We exhibit

this general form here, using aðOÞ
j;k for various (constant)

numerical coefficients:

κðOÞ
1 ¼ cðOÞ

1

CfTf

CAD
; ð3:2Þ

κðOÞ
2 ¼ CfT2

fðaðOÞ
2;1 C

2
A þ aðOÞ

2;2 CACf þ aðOÞ
2;3 C

2
fÞ

C2
AD

3
; ð3:3Þ

and

κðOÞ
3 ¼ CfTf

C4
AD

5

�
aðOÞ
3;1 C

5
AT

2
f þ aðOÞ

3;2 C
4
ACfT2

f þ aðOÞ
3;3 C

3
AC

2
fT

2
f þ aðOÞ

3;4 C
2
AC

3
fT

2
f þ aðOÞ

3;5 CAC4
fTf

þ aðOÞ
3;6 CAT2

f
dabcdA dabcdA

dA
þ aðOÞ

3;7 CfT2
f
dabcdA dabcdA

dA
þ aðOÞ

3;8 C
2
ATf

dabcdR dabcdA

dA
þ aðOÞ

3;9 CACfTf
dabcdR dabcdA

dA

þ aðOÞ
3;10C

3
A
dabcdR dabcdR

dA
þ aðOÞ

3;11C
2
ACf

dabcdR dabcdR

dA

�
: ð3:4Þ

IV. ANOMALOUS DIMENSIONS γ(O)
IR

OF HIGHER-SPIN OPERATORS

A. General

In this section we present the results of our calculations
of the coefficients in the scheme-independent series expan-
sions up to OðΔ3

fÞ for the various higher-spin operators
considered here. As was noted above, the calculation of the

OðΔn
fÞ coefficient, κðOÞ

n , for the anomalous dimension of an
operatorO at the IRFP requires, as inputs, the beta function
coefficients at loop order 1 ≤ l ≤ nþ 1 and the anomalous

dimension coefficients cðOÞ
l at loop order 1 ≤ l ≤ n. Hence,

we use the beta function coefficients from one-loop up to
the four-loop level [10,19,50,51], together with the anoma-
lous dimension coefficients calculated in the conventional
series expansion in powers of a up to the three-loop level
[11,46,52–57]. The higher-order terms in the beta function

and anomalous dimensions that we use have been calcu-
lated in the MS scheme [58], but our results are indepen-
dent of this since they are scheme-independent. (The beta
function has actually been calculated up to five-loop order
[59,60], but these results will not be needed here.)

B. γ(γD)IR

For the anomalous dimension γðγDÞ
IR of the operator

ψ̄γμ1Dμ2ψ at the IRFP, we calculate

κðγDÞ
1 ¼ −

26CfTf

32CAD
; ð4:1Þ

κðγDÞ
2 ¼ 25CfT2

fð693C2
A − 3104CACf − 1540C2

fÞ
35C2

AD
3

; ð4:2Þ

and
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κðγDÞ
3 ¼ −

25CfTf

38C4
AD

5

�
C5
AT

2
fð−202419þ 1016064ζ3Þ þ C4

ACfT2
fð2764440þ 145152ζ3Þ

þ C3
AC

2
fT

2
fð8940028 − 5038848ζ3Þ þ C2

AC
3
fT

2
fð−7341488 − 1140480ζ3Þ þ CAC4

fT
2
fð3841024þ 5018112ζ3Þ

þ CAT2
f
dabcdA dabcdA

dA
ð−161280þ 4257792ζ3Þ þ CfT2

f
dabcdA dabcdA

dA
ð−253440þ 6690816ζ3Þ

þ C2
ATf

dabcdR dabcdA

dA
ð2838528 − 27675648ζ3Þ þ CACfTf

dabcdR dabcdA

dA
ð4460544 − 43490304ζ3Þ

þ C3
A
dabcdR dabcdR

dA
ð−10733184þ 23417856ζ3Þ þ C2

ACf
dabcdR dabcdR

dA
ð−16866432þ 36799488ζ3Þ

�
: ð4:3Þ

In these expressions and the following ones, we have
indicated the factorizations of the numbers in the denom-
inators, since they are rather simple. In general, the
numbers in the numerators do not have such simple
factorizations.

With these coefficients, the anomalous dimension γðγDÞ
IR

calculated to order OðΔp
f Þ, denoted γðγDÞ

IR;F;Δp
f
, is given by

Eq. (2.11) with O ¼ ψ̄γμ1Dμ2ψ . Our results here yield

γðγDÞ
IR;F;Δp

f
with p ¼ 1, 2, 3. Analogous statements apply to the

anomalous dimensions of the other operators for which we
have performed calculations, and we proceed to present the
coefficients for these next.

C. γ(γDDÞIR

For the anomalous dimension γðγDDÞ
IR of the operator

ψ̄γμ1Dμ2Dμ3ψ at the IRFP, we calculate

κðγDDÞ
1 ¼ −

100CfTf

32CAD
; ð4:4Þ

κðγDDÞ
2 ¼ 10CfT2

fð5103C2
A − 14017CACf − 9383C2

fÞ
35C2

AD
3

;

ð4:5Þ

and

κðγDDÞ
3 ¼−

10CfTf

38C4
AD

5

�
C5
AT

2
fð1538649þ2794176ζ3ÞþC4

ACfT2
fð14860881þ399168ζ3Þ

þC3
AC

2
fT

2
fð40821518−13856832ζ3ÞþC2

AC
3
fT

2
fð−35403412−3136320ζ3ÞþCAC4

fT
2
fð19308575þ13799808ζ3Þ

þCAT2
f
dabcdA dabcdA

dA
ð−806400þ21288960ζ3ÞþCfT2

f
dabcdA dabcdA

dA
ð−1267200þ33454080ζ3Þ

þC2
ATf

dabcdR dabcdA

dA
ð14192640−138378240ζ3ÞþCACfTf

dabcdR dabcdA

dA
ð22302720−217451520ζ3Þ

þC3
A
dabcdR dabcdR

dA
ð−53665920þ117089280ζ3ÞþC2

ACf
dabcdR dabcdR

dA
ð−84332160þ183997440ζ3Þ

�
: ð4:6Þ

D. γ(γDDD)IR

Proceeding to the anomalous dimension γðγDDDÞ
IR of the operator ψ̄γμ1Dμ2Dμ3Dμ4ψ at the IRFP, we find

κðγDDDÞ
1 ¼ −

628CfTf

32 · 5CAD
; ð4:7Þ

κðγDDDÞ
2 ¼ 2CfT2

fð4550175C2
A − 10373329CACf − 7719767C2

fÞ
35 · 53C2

AD
3

; ð4:8Þ
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and

κðγDDDÞ
3 ¼ 2CfTf

38 ·55C4
AD

5

�
C5
AT

2
fð−67181774625−45691128000ζ3ÞþC4

ACfT2
fð−318706112025−6527304000ζ3Þ

þC3
AC

2
fT

2
fð−720947009518þ226590696000ζ3ÞþC2

AC
3
fT

2
fð709569531572þ51285960000ζ3Þ

þCAC4
fT

2
fð−433168554247−225658224000ζ3Þ

þCAT2
f
dabcdA dabcdA

dA
ð15825600000−417795840000ζ3ÞþCfT2

f
dabcdA dabcdA

dA
ð24868800000−6565363200000ζ3Þ

þC2
ATf

dabcdR dabcdA

dA
ð−278530560000þ2715672960000ζ3Þ

þCACfTf
dabcdR dabcdA

dA
ð−437690880000þ4267486080000ζ3Þ

þC3
A
dabcdR dabcdR

dA
ð1053193680000−2297877120000ζ3Þ

þC2
ACf

dabcdR dabcdR

dA
ð1655018640000−3610949760000ζ3Þ

�
: ð4:9Þ

E. γ(σD)IR

For the anomalous dimension γðσDÞ
IR of the operator ψ̄σλμ1Dμ2ψ at the IRFP, we calculate

κðσDÞ
1 ¼ −

8CfTf

CAD
; ð4:10Þ

κðσDÞ
2 ¼ 4CfT2

fð77C2
A − 348CACf − 176C2

fÞ
3C2

AD
3

; ð4:11Þ

κðσDÞ
3 ¼ 4CfTf

34C4
AD

5

�
13083C5

AT
2
f − 240492C4

ACfT2
f − 819408C3

AC
2
fT

2
f þ 738144C2

AC
3
fT

2
f − 662112CAC4

fT
2
f

þ CAT2
f
dabcdA dabcdA

dA
ð17920 − 473088ζ3Þ þ CfT2

f
dabcdA dabcdA

dA
ð28160 − 743424ζ3Þ

þ C2
ATf

dabcdR dabcdA

dA
ð−315392þ 3075072ζ3Þ þ CACfTf

dabcdR dabcdA

dA
ð−495616þ 4832256ζ3Þ

þ C3
A
dabcdR dabcdR

dA
ð1192576 − 2601984ζ3Þ þ C2

ACf
dabcdR dabcdR

dA
ð1874048 − 4088832ζ3Þ

�
: ð4:12Þ

F. γ(σDD)IR

For the anomalous dimension γðσDDÞ
IR we calculate

κðσDDÞ
1 ¼ −

104CfTf

32CAD
; ð4:13Þ

κðσDDÞ
2 ¼ 4CfT2

fð12537C2
A − 36292CACf − 22352C2

fÞ
35C2

AD
3

; ð4:14Þ
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and

κðσDDÞ
3 ¼ −

22CfTf

38C4
AD

5

�
C5
AT

2
fð2935737þ 4064256ζ3Þ þ C4

ACfT2
fð39906468þ 580608ζ3Þ

þ C3
AC

2
fT

2
fð107242456 − 20155392ζ3Þ þ C2

AC
3
fT

2
fð−102128048 − 4561920ζ3Þ

þ CAC4
fT

2
fð43045024þ 20072448ζ3Þ

þ 3CAT2
f
dabcdA dabcdA

dA
ð−698880þ 18450432ζ3Þ þ 3CfT2

f
dabcdA dabcdA

dA
ð−1098240þ 28993536ζ3Þ

þ 3C2
ATf

dabcdR dabcdA

dA
ð12300288 − 119927808ζ3Þ þ 3CACfTf

dabcdR dabcdA

dA
ð19329024 − 188457984ζ3Þ

þ 3C3
A
dabcdR dabcdR

dA
ð−46510464þ 101477376ζ3Þ þ 3C2

ACf
dabcdR dabcdR

dA
ð−73087872þ 159464448ζ3Þ

�
: ð4:15Þ

G. γ(σDDD)IR

Finally, for the anomalous dimension γσDDDÞ
IR we obtain

κðσDDDÞ
1 ¼ −

27CfTf

32CAD
; ð4:16Þ

κðσDDDÞ
2 ¼ 23CfT2

fð9219C2
A − 21185CACf − 15664C2

fÞ
35C2

AD
3

; ð4:17Þ

and

κðσDDDÞ
3 ¼ −

23CfTf

38C4
AD

5

�
C5
AT

2
fð5213502þ 2667168ζ3Þ þ C4

ACfT2
fð25185069þ 381024ζ3Þ

þ C3
AC

2
fT

2
fð58268711 − 13226976ζ3Þ þ C2

AC
3
fT

2
fð−56962840 − 2993760ζ3Þ

þ CAC4
fT

2
fð36476660þ 13172544ζ3Þ

þ CAT2
f
dabcdA dabcdA

dA
ð−1290240þ 34062336ζ3Þ þ CfT2

f
dabcdA dabcdA

dA
ð−2027520þ 53526528ζ3Þ

þ C2
ATf

dabcdR dabcdA

dA
ð22708224 − 221405184ζ3Þ þ CACfTf

dabcdR dabcdA

dA
ð35684352 − 347922432ζ3Þ

þ C3
A
dabcdR dabcdR

dA
ð−85865472þ 187342848ζ3Þ þ C2

ACf
dabcdR dabcdR

dA
ð−134931456þ 294395904ζ3Þ

�
: ð4:18Þ

V. EVALUATION OF κ(O)
n

FOR G=SU(Nc) AND R=F

In this section we evaluate our general results for these

anomalous dimensions γðOÞ
IR in the important special case

where the gauge group isG ¼ SUðNcÞ and theNf fermions
are in the fundamental representation of this group, R ¼ F.

A. γðγDÞIR;SUðNcÞ;F
Substituting G ¼ SUðNcÞ and R ¼ F in our general

results (4.1)–(4.3), we obtain

κðγDÞ
1;SUðNcÞ;F ¼ −

25ðN2
c − 1Þ

32Ncð25N2
c − 11Þ ; ð5:1Þ

κðγDÞ
2;SUðNcÞ;F ¼ −

25ðN2
c − 1Þð1244N4

c − 2322N2
c þ 385Þ

35N2
cð25N2

c − 11Þ3 ;

ð5:2Þ

and
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κðγDÞ
3;SUðNcÞ;F ¼ −

26ðN2
c − 1Þ

38N3
cð25N2

c − 11Þ5 ½2137786N
8
c þ ð1831104 − 9784800ζ3ÞN6

c

þ ð−15928259þ 36575712ζ3ÞN4
c þ ð6282342 − 14911776ζ3ÞN2

c þ 240064þ 313632ζ3�: ð5:3Þ

Then, for this case G ¼ SUð3Þ, R ¼ F, the anomalous dimension γðγDÞ
IR calculated to order OðΔp

f Þ, denoted γðγDÞ
IR;F;Δp

f
, is

given by Eq. (2.11) with O ¼ ψ̄γμ1Dμ2ψ .

B. γðγDDÞIR;SUðNcÞ;F
Substituting G ¼ SUðNcÞ and R ¼ F in our general results (4.4)–(4.6), we obtain

κðγDDÞ
1;SUðNcÞ;F ¼ −

50ðN2
c − 1Þ

32Ncð25N2
c − 11Þ ; ð5:4Þ

κðγDDÞ
2;SUðNcÞ;F ¼ −

5ðN2
c − 1Þð17005N4

c − 46800N2
c þ 9383Þ

2 · 35N2
cð25N2

c − 11Þ3 ; ð5:5Þ

and

κðγDDÞ
3;SUðNcÞ;F ¼ −

5ðN2
c − 1Þ

22 · 38N3
cð25N2

c − 11Þ5 ½207341255N
8
c þ ð160969860 − 841104000ζ3ÞN6

c

þ ð−1281330310þ 2919058560ζ3ÞN4
c þ ð499565484 − 1152911232ζ3ÞN2

c þ 19308575þ 13799808ζ3�:
ð5:6Þ

C. γðγDDDÞIR;SUðNcÞ;F
In a similar manner, from our general formulas (4.7)–(4.9), we find

κðγDDDÞ
1;SUðNcÞ;F ¼ −

314ðN2
c − 1Þ

32 · 5Ncð25N2
c − 11Þ ; ð5:7Þ

κðγDDDÞ
2;SUðNcÞ;F ¼ −

ðN2
c − 1Þð10265725N4

c − 36186192N2
c þ 7719767Þ

2 · 35 · 53N2
cð25N2

c − 11Þ3 ; ð5:8Þ

and

κðγDDDÞ
3;SUðNcÞ;F ¼ −

ðN2
c − 1Þ

22 · 38 · 55N3
cð25N2

c − 11Þ5 ½4581316819375N
8
c þ ð3455659520100 − 16739946000000ζ3ÞN6

c

þ ð−25230047265878þ 57258530640000ζ3ÞN4
c þ ð9616576686156 − 22465759536000ζ3ÞN2

c

þ 433168554247þ 225658224000ζ3Þ�: ð5:9Þ

D. γðσDÞIR;SUðNcÞ;F
From our general results (4.10)–(4.12), we obtain

κðσDÞ
1;SUðNcÞ;F ¼ −

4ðN2
c − 1Þ

Ncð25N2
c − 11Þ ; ð5:10Þ

κðσDÞ
2;SUðNcÞ;F ¼ −

4ðN2
c − 1Þð141N4

c − 262N2
c þ 44Þ

3N2
cð25N2

c − 11Þ3 ; ð5:11Þ
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and

κðσDÞ
3;SUðNcÞ;F ¼ −

23ðN2
c − 1Þ

33N3
cð25N2

c − 11Þ5 ½64843N
8
c þ ð78610 − 422400ζ3ÞN6

c

þ ð−565316þ 1347456ζ3ÞN4
c þ ð209836 − 511104ζ3ÞN2

c þ 13794�: ð5:12Þ

E. γðσDDÞIR;SUðNcÞ;F
From our general results (4.13)–(4.15), we obtain

κðσDDÞ
1;SUðNcÞ;F ¼ −

52ðN2
c − 1Þ

32Ncð25N2
c − 11Þ ; ð5:13Þ

κðσDDÞ
2;SUðNcÞ;F ¼ −

4ðN2
c − 1Þð11197N4

c − 29322N2
c þ 5588Þ

35N2
cð25N2

c − 11Þ3 ;

ð5:14Þ

and
κðσDDÞ
3;SUðNcÞ;F ¼ −

23ðN2
c − 1Þ

38N3
cð25N2

c − 11Þ5 ½31831693N
8
c þ ð30539268 − 141782400ζ3ÞN6

c

þ ð−214403216þ 473734656ζ3ÞN4
c þ ð84228606 − 183845376ζ3ÞN2

c

þ 2690314þ 1254528ζ3�: ð5:15Þ

F. γðσDDDÞIR;SUðNcÞ;F
For this case we have

κðσDDDÞ
1;SUðNcÞ;F ¼ −

26ðN2
c − 1Þ

32Ncð25N2
c − 11Þ ; ð5:16Þ

κðσDDDÞ
2;SUðNcÞ;F ¼ −

22ðN2
c − 1Þð10579N4

c − 36849N2
c þ 7832Þ

35N2
cð25N2

c − 11Þ3 ; ð5:17Þ

and

κðσDDDÞ
3;SUðNcÞ;F ¼ −

22ðN2
c − 1Þ

38N3
cð25N2

c − 11Þ5 ½ð90949802N
8
c þ ð70557192 − 347943600ζ3ÞN6

c

þ ð−511679503þ 1166243184ζ3ÞN4
c þ ð194401944 − 453269520ζ3ÞN2

c

þ 9119165þ 3293136ζ3�: ð5:18Þ

Below, where the meaning is clear, we will often omit the SU(3) in the subscript.

We remark on the signs of these coefficients. It is evident
from Eqs. (4.1), (4.4), (4.7), (4.10), (4.13), and (4.16) that

κðγDÞ
1 , κðγDDÞ

1 , κðγDDDÞ
1 , κðσDÞ

1 , κðσDDÞ
1 , and κðσDDDÞ

1 are all
negative for any G and R. We find that the OðΔ2

fÞ and

OðΔ3
fÞ coefficients, κðOÞ

2 and κðOÞ
3 , for these operators are

also negative for the theory withG ¼ SUðNcÞ and fermions
in the fundamental representation, R ¼ F, in the full range
Nc ≥ 2 of relevance here. In Table I we list the signs of

these coefficients κðOÞ
n for the operators in this theory. For

comparison, we also include the signs of κð1Þn for ψ̄ψ and

κðσÞn for ψ̄σμνψ that we obtained in our earlier calculations
(which hold for all Nc).
It is interesting to note that for all of the higher-spin

operators O that we consider, the anomalous dimensions

γðOÞ
IR that we calculate are negative (with our sign con-
vention in (2.1) [44]). They thus have the same sign as the
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sign of the anomalous dimension of the operator ψ̄σμνψ and
are opposite in sign relative to the anomalous dimensions
that we calculated for ψ̄ψ in our previous work [22,34–39].
In Tables II–VIII we list values of the anomalous

dimensions γðγDÞ
IR , γðγDDÞ

IR , γðγDDDÞ
IR , γðσÞIR , γðσDÞ

IR , γðσDDÞ
IR , and

γðσDDDÞ
IR for the theory with G ¼ SUð3Þ and fermions in the
fundamental representation, R ¼ F, calculated to OðΔp

f Þ,

denoted γðγDÞ
IR;F;Δp

f
, etc., with p ¼ 1, 2, 3, as functions of Nf

for a relevant range of Nf values extending downward from
the upper end of the conformal regime at Nf ¼ Nu (i.e.,
Δf ¼ 0) within this conformal window [61]. The numbers
in Table V are evaluations of our analytic results given in
[36] and are included for comparison.

TABLE I. Signs of scheme-independent expansion coefficients

κðOÞ
n for gauge group G ¼ SUðNcÞ with Nc ≥ 2 and fermion
representation R ¼ F (fundamental).

O κðOÞ
1;SUðNcÞ;F κðOÞ

2;SUðNcÞ;F κðOÞ
3;SUðNcÞ;F

ψ̄ψ þ þ þ
ψ̄σλμ1ψ − − þ
ψ̄γμ1Dμ2ψ − − −
ψ̄γμ1Dμ2Dμ3ψ − − −
ψ̄γμ1Dμ2Dμ3Dμ4ψ − − −
ψ̄σλμ1Dμ2ψ − − −
ψ̄σλμ1Dμ2Dμ3ψ − − −
ψ̄σλμ1Dμ2Dμ3Dμ4ψ − − −

TABLE II. Values of the anomalous dimension γðγDÞ
IR;F calculated

to OðΔp
f Þ, denoted γðγDÞ

IR;F;Δp
f
, with 1 ≤ p ≤ 3, for G ¼ SUð3Þ, as a

function of Nf.

Nf γðγDÞ
IR;F;Δf

γðγDÞ
IR;F;Δ2

f
γðγDÞ
IR;F;Δ3

f

8 −0.377 −0.446 −0.481
9 −0.332 −0.386 −0.411
10 −0.288 −0.328 −0.344
11 −0.244 −0.273 −0.282
12 −0.199 −0.219 −0.224
13 −0.155 −0.167 −0.169
14 −0.111 −0.117 −0.118
15 −0.0665 −0.0686 −0.0688
16 −0.02215 −0.0224 −0.0224

TABLE III. Values of the anomalous dimension γðγDDÞ
IR;F calcu-

lated toOðΔp
f Þ, denoted γðγDDÞ

IR;F;Δp
f
, with 1 ≤ p ≤ 3, forG ¼ SUð3Þ,

as a function of Nf.

Nf γðγDDÞ
IR;F;Δf γðγDDÞ

IR;F;Δ2
f

γðγDDÞ
IR;F;Δ3

f

8 −0.588 −0.654 −0.724
9 −0.519 −0.570 −0.618
10 −0.450 −0.488 −0.520
11 −0.381 −0.408 −0.427
12 −0.3115 −0.330 −0.340
13 −0.242 −0.253 −0.258
14 −0.173 −0.179 −0.180
15 −0.104 −0.106 −0.106
16 −0.0346 −0.0348 −0.0349

TABLE IV. Values of the anomalous dimension γðγDDDÞ
IR;F calcu-

lated toOðΔp
f Þ, denoted γðγDDDÞ

IR;F;Δp
f
, with 1 ≤ p ≤ 3, forG ¼ SUð3Þ,

as a function of Nf.

Nf γðγDDDÞ
IR;F;Δf γðγDDDÞ

IR;F;Δ2
f

γðγDDDÞ
IR;F;Δ3

f

8 −0.739 −0.794 −0.900
9 −0.652 −0.695 −0.7675
10 −0.565 −0.598 −0.645
11 −0.478 −0.501 −0.530
12 −0.391 −0.407 −0.422
13 −0.304 −0.314 −0.321
14 −0.217 −0.222 −0.225
15 −0.130 −0.132 −0.133
16 −0.0435 −0.0437 −0.0437

TABLE V. Values of the anomalous dimension γðσÞIR;F calculated

to OðΔp
f Þ, denoted γðσÞIR;F;Δp

f
, with 1 ≤ p ≤ 3, for G ¼ SUð3Þ, as a

function of Nf.

Nf γðσÞIR;F;Δf γðσÞ
IR;F;Δ2

f

γðσÞ
IR;F;Δ3

f

8 −0.141 −0.223 −0.207
9 −0.125 −0.188 −0.1775
10 −0.108 −0.156 −0.149
11 −0.0914 −0.125 −0.121
12 −0.0748 −0.0976 −0.0953
13 −0.05815 −0.07195 −0.0709
14 −0.0415 −0.0486 −0.0482
15 −0.0249 −0.0275 −0.0274
16 −0.00831 −0.00859 −0.00859

TABLE VI. Values of the anomalous dimension γðσDÞ
IR;F calcu-

lated toOðΔp
f Þ, denoted γðσDÞ

IR;F;Δp
f
, with 1 ≤ p ≤ 3, forG ¼ SUð3Þ,

as a function of Nf.

Nf γðσDÞ
IR;F;Δf γðσDÞ

IR;F;Δ2
f

γðσDÞ
IR;F;Δ3

f

8 −0.424 −0.503 −0.527
9 −0.374 −0.436 −0.452
10 −0.324 −0.3705 −0.381
11 −0.274 −0.307 −0.314
12 −0.224 −0.247 −0.250
13 −0.174 −0.188 −0.190
14 −0.125 −0.131 −0.132
15 −0.0748 −0.0772 −0.0774
16 −0.0249 −0.0252 −0.0252
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In Figs. 1–7 we show plots of these anomalous dimen-
sions for the SU(3) theory with R ¼ F. The plot of the
anomalous dimension for ψ̄σλμ1ψ is based on the analytic
results of our earlier paper [36] but was not given there and
is new here. As can be seen from these tables and figures,
the higher-order terms in the Δf expansion are sufficiently
small that it is expected to be reliable throughout much of
the non-Abelian Coulomb phase (i.e., conformal window).
As is obvious, since our calculations are finite series
expansions in powers of Δf, they are most accurate in
the upper part of the NACP, where this expansion parameter
Δf is small. This is similar to what we found in our earlier
scheme-independent calculations of anomalous dimensions

TABLE VII. Values of the anomalous dimension γðσDDÞ
IR;F calcu-

lated toOðΔp
f Þ, denoted γðσDDÞ

IR;F;Δp
f
, with 1 ≤ p ≤ 3, forG ¼ SUð3Þ,

as a function of Nf.

Nf γðσDDÞ
IR;F;Δf γðσDDÞ

IR;F;Δ2
f

γðσDDÞ
IR;F;Δ3

f

8 −0.612 −0.682 −0.748
9 −0.540 −0.594 −0.640
10 −0.468 −0.509 −0.539
11 −0.396 −0.425 −0.443
12 −0.324 −0.344 −0.353
13 −0.252 −0.264 −0.268
14 −0.180 −0.186 −0.188
15 −0.108 −0.110 −0.111
16 −0.0360 −0.03624 −0.03625

TABLE VIII. Values of the anomalous dimension γðσDDDÞ
IR;F

calculated to OðΔp
f Þ, denoted γðσDDDÞ

IR;F;Δp
f
, with 1 ≤ p ≤ 3, for

G ¼ SUð3Þ, as a function of Nf .

Nf γðσDDDÞ
IR;F;Δf γðσDDDÞ

IR;F;Δ2
f

γðσDDDÞ
IR;F;Δ3

f

8 −0.753 −0.811 −0.913
9 −0.665 −0.709 −0.779
10 −0.576 −0.610 −0.655
11 −0.487 −0.511 −0.539
12 −0.399 −0.415 −0.430
13 −0.310 −0.320 −0.327
14 −0.222 −0.2265 −0.229
15 −0.133 −0.135 −0.135
16 −0.0443 −0.0445 −0.0445

FIG. 1. Plot of the anomalous dimension γðγDÞ
IR;F of the operator

ψ̄γμ1Dμ2ψ at the IRFP for the theory with G ¼ SUð3Þ, and Nf

fermions in the fundamental representation, calculated to order
OðΔp

f Þ, where p ¼ 1, 2, 3. Denoting the anomalous dimension

calculated to order OðΔp
f Þ as γðγDÞ

IR;F;Δp
f
, the curves, from top to

bottom, refer to γðγDÞ
IR;F;Δf

(red), γðγDÞ
IR;F;Δ2

f
(green), and γðγDÞ

IR;F;Δ3
f
(blue).

FIG. 2. Plot of the anomalous dimension γðγDDÞ
IR;F of the operator

ψ̄γμ1Dμ2Dμ3ψ at the IRFP forG ¼ SUð3Þ, and Nf fermions in the
fundamental representation, calculated to order OðΔp

f Þ, where
p ¼ 1, 2, 3. Denoting the anomalous dimension calculated to

order OðΔp
f Þ as γðγDDÞ

IR;F;Δp
f
, the curves, from top to bottom, refer to

γðγDDÞ
IR;F;Δf

(red), γðγDDÞ
IR;F;Δ2

f
(green), and γðγDDÞ

IR;F;Δ3
f
(blue).

FIG. 3. Plot of the anomalous dimension γðγDDDÞ
IR;F of the operator

ψ̄γμ1Dμ2Dμ3Dμ4ψ at the IRFP forG ¼ SUð3Þ, andNf fermions in
the fundamental representation, calculated to orderOðΔp

f Þ, where
p ¼ 1, 2, 3. Denoting the calculation to order OðΔp

f Þ as γðγDDDÞ
IR;F;Δp

f
,

from top to bottom, the colors refer to γðγDDDÞ
IR;F;Δf

(red), γðγDDDÞ
IR;F;Δ2

f

(green), and γðγDDDÞ
IR;F;Δ3

f
(blue).
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[34–39]. In the figures, this is evident from the fact that the
curves for the anomalous dimensions calculated to OðΔ3

fÞ
are reasonably close to the corresponding curves for
these anomalous dimensions calculated to order OðΔ2

fÞ.
As is evident from the values of γðOÞ

IR;F;Δp
f
that we have

listed for the various operators O in Tables II–VIII, the
fractional differences RðOÞ

3;2 ≡ðγðOÞ
IR;F;Δ3

f
−γðOÞ

IR;F;Δ2
f
Þ=γðOÞ

IR;F;Δ3
f
are

∼Oð10−3Þ for Nf values near the upper end of the
conformal window and increase as Nf decreases; at

Nf ¼ 12, the RðOÞ
3;2 are a few per cent, and at Nf ¼ 8,

RðOÞ
3;2 ∼ 0.1. For a given Nf, R

ðOÞ
3;2 increases slightly with the

spin of the operator O; for example, for Nf ¼ 12,

RðγDÞ
3;2 ¼0.024, RðγDDÞ

3;2 ¼0.032, and RðγDDDÞ
3;2 ¼ 0.037, while

RðσDÞ
3;2 ¼0.014, RðσDDÞ

3;2 ¼ 0.028, and RðσDDDÞ
3;2 ¼ 0.035.

VI. LNN LIMIT FOR γðOÞ
IR;SUðNcÞ;F

In a theory with gauge group SUðNcÞ and fermions in the
fundamental representation, R ¼ F, it is of interest to
consider the limit

FIG. 4. Plot of the anomalous dimension γðσÞIR;F of the operator
ψ̄σλμ1ψ at the IRFP for G ¼ SUð3Þ, and Nf fermions in the
fundamental representation, calculated to order OðΔp

f Þ, where
p ¼ 1, 2, 3. Denoting the calculation to order OðΔp

f Þ as γðσÞIR;F;Δp
f
,

the colors refer to γðσÞIR;F;Δf
(red), γðσÞIR;F;Δ2

f
(green), and γðσÞ

IR;F;Δ3
f

(blue).

FIG. 5. Plot of the anomalous dimension γðσDÞ
IR;F of the operator

ψ̄σλμ1Dμ2ψ at the IRFP for G ¼ SUð3Þ, and Nf fermions in the
fundamental representation, calculated to order OðΔp

f Þ, where
p ¼ 1, 2, 3. Denoting the calculation to order OðΔp

f Þ as γðσDÞ
IR;F;Δp

f
,

from top to bottom, the colors refer to γðσDÞ
IR;F;Δf

(red), γðσDÞ
IR;F;Δ2

f

(green), and γðσDÞ
IR;F;Δ3

f
(blue).

FIG. 6. Plot of the anomalous dimension γðσDDÞ
IR;F of the operator

ψ̄σλμ1Dμ2Dμ3ψ at the IRFP for G ¼ SUð3Þ, and Nf fermions in
the fundamental representation, calculated to orderOðΔp

f Þ, where
p ¼ 1, 2, 3. Denoting the calculation to order OðΔp

f Þ as γðσDDÞ
IR;F;Δp

f
,

from top to bottom, the colors refer to γðσDDÞ
IR;F;Δf

(red), γðσDDÞ
IR;F;Δ2

f

(green), and γðσDDÞ
IR;F;Δ3

f
(blue).

FIG. 7. Plot of the anomalous dimension γðσDDDÞ
IR;F of the

operator ψ̄σλμ1Dμ2Dμ2Dμ3ψ at the IRFP for G ¼ SUð3Þ, and
Nf fermions in the fundamental representation, calculated to
order OðΔp

f Þ, where p ¼ 1, 2, 3. Denoting the calculation to

order OðΔp
f Þ as γðσDDDÞ

IR;F;Δp
f
, from top to bottom, the colors refer to

γðσDDDÞ
IR;F;Δf

(red), γðσDDDÞ
IR;F;Δ2

f
(green), and γðσDDDÞ

IR;F;Δ3
f
(blue).
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Nc → ∞; NF → ∞ with r≡ NF

Nc
fixed and finite

and ξðμÞ≡ αðμÞNc is a finite function of μ: ð6:1Þ

This limit is denoted as limLNN [where “LNN” connotes
“large Nc and NF” with the constraints in Eq. (6.1)
imposed]. It is also often called the ’t Hooft-Veneziano
limit. It has the simplifying feature that rather than depend-
ing on Nc and Nf, the properties of the theory only depend
on their ratio, r. The scheme-independent expansion
parameter in this LNN limit is

Δr ≡ lim
LNN

Δf

Nc
¼ 11

2
− r: ð6:2Þ

ru ¼ lim
LNN

Nu

Nc
; ð6:3Þ

and

rl ¼ lim
LNN

Nl

Nc
; ð6:4Þ

with values

ru ¼
11

2
¼ 5.5 ð6:5Þ

and

rl ¼ 34

13
¼ 2.6154: ð6:6Þ

With IIRZ∶Nl < Nf < Nu, it follows that the correspond-
ing interval in the ratio r is

IIRZ;r∶
34

13
< r <

11

2
; i:e:; 2.6154 < r < 5.5: ð6:7Þ

Here we evaluate these scheme-independent anomalous
dimension coefficients in a theory with G ¼ SUðNcÞ and
R ¼ F, in the LNN limit. The rescaled coefficients that are
finite in the LNN limit are

κ̂ðOÞ
n ¼ lim

Nc→∞
Nn

cκ
ðOÞ
n : ð6:8Þ

The anomalous dimension γðOÞ
IR is also finite in this limit and

is given by

lim
LNN

γðOÞ
IR;SUðNcÞ;F ¼

X∞
n¼1

κðOÞ
n Δn

f ¼
X∞
n¼1

κ̂ðOÞ
n Δn

r : ð6:9Þ

As r decreases from its upper limit, ru, to rl, the expansion
variable Δr increases from 0 to

ðΔrÞmax ¼
75

26
¼ 2.8846 for r ∈ IIRZ;r: ð6:10Þ

In this LNN limit, the values of κ̂ðOÞ
n with 1 ≤ n ≤ 3 for

the operators O considered here are listed in Table IX. For
comparison, we also include the corresponding values of

κ̂ðOÞ
n for the operators ψ̄ψ and ψ̄σμνψ that we had calculated
in [36].

VII. EVALUATION OF ANOMALOUS
DIMENSIONS γðOÞ

IR FOR G=SUðNcÞ AND R=Adj

For the case where G ¼ SUðNcÞ and the fermions are in
the adjoint representation, R ¼ Adj, our general results for
the scheme-independent expansion coefficients for the
anomalous dimensions of the operators under consideration
are as follows::

κðγDÞ
1;SUðNcÞ;Adj ¼ −

25

34
¼ −0.395062; ð7:1Þ

κðγDÞ
2;SUðNcÞ;Adj ¼ −

1756

39
¼ −0.0892140; ð7:2Þ

κðγDÞ
3;SUðNcÞ;Adj ¼ −

88129

314
þ 4736

310N2
c

¼ −0.0184256þ 0.0802046
N2

c
; ð7:3Þ

κðγDDÞ
1;SUðNcÞ;Adj ¼ −

50

34
¼ −0.617284; ð7:4Þ

κðγDDÞ
2;SUðNcÞ;Adj ¼ −

10165

22 · 39
¼ −0.129109; ð7:5Þ

κðγDDÞ
3;SUðNcÞ;Adj ¼ −

2272255

24 · 314
þ 7400

310N2
c

¼ −0.0296920þ 0.125320
N2

c
; ð7:6Þ

κðγDDDÞ
1;SUðNcÞ;Adj ¼ −

314

34 · 5
¼ −0.775309; ð7:7Þ

κðγDDDÞ
2;SUðNcÞ;Adj ¼ −

1504769

22 · 39 · 53
¼ −0.152900; ð7:8Þ

TABLE IX. Values of the κ̂ðOÞ
n coefficients forG ¼ SUðNcÞ and

R ¼ F in the LNN limit. The operators are indicated by their
shorthand symbols, so 1 refers to ψ̄ψ ; σ refers to ψ̄σλμ1ψ ; γD to
ψ̄γμ1Dμ2ψ , etc. The notation ae-n means a × 10−n.

O κ̂ðOÞ
1 κ̂ðOÞ

2 κ̂ðOÞ
3

1 0.160000 0.0376320 0.832074e-2
σ −0.0533333 −0.969956e-2 2.33189e-4
γD −0.142222 −1.04844e-2 −2.135375e-3
γDD −0.222222 −1.11967e-2 −0.404507e-2
γDDD −0.279111 −1.08149e-2 −0.572019e-2
σD −0.160000 −0.0120320 −1.967385e-3
σDD −0.231111 −1.17960e-2 −0.397447e-2
σDDD −0.284444 −1.114495e-2 −0.567795e-2
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and

κðγDDDÞ
3;SUðNcÞ;Adj ¼ −

9206650603

24 · 314 · 55
þ 46472

310 · 5N2
c

¼ −0.0384976þ 0.1574015
N2

c
; ð7:9Þ

κðσDÞ
1;SUðNcÞ;Adj ¼ −

22

32
¼ −0.444444; ð7:10Þ

κðσDÞ
2;SUðNcÞ;Adj ¼ −

149

2 · 36
¼ −0.102195; ð7:11Þ

and

κðσDÞ
3;SUðNcÞ;Adj ¼ −

10801

23 · 310
þ 592

38N2
c

¼ −0.0228645þ 0.0902301
N2

c
; ð7:12Þ

κðσDDÞ
1;SUðNcÞ;Adj ¼ −

52

34
¼ −0.641975; ð7:13Þ

κðσDDÞ
2;SUðNcÞ;Adj ¼ −

5123

2 · 39
¼ −0.130138; ð7:14Þ

κðσDDÞ
3;SUðNcÞ;Adj ¼ −

984949

23 · 314
þ 7696

310N2
c

¼ −0.0257410þ 0.130332
N2

c
; ð7:15Þ

κðσDDDÞ
1;SUðNcÞ;Adj ¼ −

26

34
¼ −0.790123; ð7:16Þ

κðσDDDÞ
2;SUðNcÞ;Adj ¼ −

3070

39
¼ −0.155972; ð7:17Þ

and

κðσDDDÞ
3;SUðNcÞ;Adj ¼ −

378247

2 · 314
þ 9472

310N2
c

¼ −0.0395410þ 0.160409
N2

c
: ð7:18Þ

For all of these operators O, the coefficients κðOÞ
n;SUðNcÞ;Adj

are negative for n ¼ 1 and n ¼ 2 and for all Nc. The

coefficient κðσDÞ
3;SUðNcÞ;Adj is negative for all Nc, while the

coefficients κðOÞ
3;SUðNcÞ;Adj for the other operators are positive

for Nc ¼ 2, i.e., G ¼ SUð2Þ, and are negative for Nc ≥ 3.

VIII. CONCLUSIONS

In conclusion, in this paper we have calculated scheme-
independent expansions up to OðΔ3

fÞ inclusive for the

anomalous dimensions of the higher-spin, twist-2 bilinear
fermion operators ψ̄γμ1Dμ2…Dμjψ and ψ̄σλμ1Dμ2…Dμjψ

with j up to 3, evaluated at an IR fixed point in the non-
Abelian Coulomb phase of an asymptotically free gauge
theory with gauge group G and Nf fermions transforming
according to a representation R of G. Our general results
are evaluated for several special cases, including the case
G ¼ SUðNcÞ with R equal to the fundamental and adjoint
representations. We have presented our results in conven-
ient tabular and graphical formats. For fermions in the
fundamental representation, we also analyze the limitNc →
∞ and Nf → ∞ with Nf=Nc fixed and finite. A compari-
son with our previous scheme-independent calculations of
the corresponding anomalous dimensions of ψ̄ψ and ψ̄σμνψ
has also been given. Our new results further elucidate the
properties of conformal field theories. With the requisite
inputs, one could extend these scheme-independent calcu-
lations to higher-spin operators and to higher order in
powers of Δf. It is hoped that lattice measurements of these
anomalous dimensions of higher-spin operators in the
conformal window will be performed in the future, and
it will be of interest to compare our calculations with lattice
results when they will become available.
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APPENDIX: PREVIOUS RESULTS ON γð1Þ AND
γðσÞ FOR G=SUð3Þ AND R =F

In this appendix, for comparison with our new results,
we list our previous results from [36] (see also [37]) for the
scheme-independent series expansions of the anomalous

dimensions γðOÞ
IR for O ¼ ψ̄ψ and O ¼ ψ̄σμνψ . Following

the same shorthand notation as in the text, we denote the
coefficients at order OðΔn

fÞ in the scheme-independent
series expansions (2.10) for these anomalous dimensions as

κð1Þn and κðσÞn . We calculated

κð1Þ1 ¼ 8TfCf

CAD
; ðA1Þ

κð1Þ2 ¼ 4T2
fCfð5CA þ 88CfÞð7CA þ 4CfÞ

3C2
AD

3
; ðA2Þ

and
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κð1Þ3 ¼ 4TfCf

34C4
AD

5

�
−55419T2

fC
5
A þ 432012T2

fC
4
ACf þ 5632T2

fCf
dabcdA dabcdA

dA
ð−5þ 132ζ3Þ

þ 16C3
A

�
122043T2

fC
2
f þ 6776

dabcdR dabcdR

dA
ð−11þ 24ζ3Þ

�

þ 704C2
A

�
1521T2

fC
3
f þ 112Tf

dabcdR dabcdA

dA
ð4 − 39ζ3Þ þ 242Cf

dabcdR dabcdR

dA
ð−11þ 24ζ3Þ

�

þ 32TfCA

�
53361TfC4

f − 3872Cf
dabcdR dabcdA

dA
ð−4þ 39ζ3Þ þ 112Tf

dabcdA dabcdA

dA
ð−5þ 132ζ3Þ

��
ðA3Þ

where the denominator factor D was defined in Eq. (3.1)]. In [37,39] we presented results for the next-higher order

coefficient, κð1Þ4 , but these are not needed here.

For the κðσÞn we found

κðσÞ1 ¼ −
8CfTf

3CAD
ðA4Þ

κðσÞ2 ¼ −
4CfT2

fð259C2
A þ 428CACf − 528C2

fÞ
9C2

AD
3

ðA5Þ

and

κðσÞ3 ¼ 4CfTf

35C4
AD

5

�
3CAT2

ffC4
Að−11319þ 188160ζ3Þ þ C3

ACfð−337204þ 64512ζ3Þ þ C2
AC

2
fð83616 − 890112ζ3Þ

þ CAC3
fð1385472 − 354816ζ3Þ þ C4

fð−212960þ 743424ζ3Þg − 512T2
fDð−5þ 132ζ3Þ

dabcdA dabcdA

dA

− 15488C2
ADð−11þ 24ζ3Þ

dabcdR dabcdR

dA
þ 11264CATfDð−4þ 39ζ3Þ

dabcdR dabcdA

dA

�
: ðA6Þ

For G ¼ SUðNcÞ and R ¼ F, in the LNN limit, these
yield the rescaled coefficients

κ̂ð1Þ1 ¼ 4

52
¼ 0.1600; ðA7Þ

κ̂ð1Þ2 ¼ 588

56
¼ 0.037632; ðA8Þ

κ̂ð1Þ3 ¼ 2193944

33 · 510
¼ 0.83207 × 10−2; ðA9Þ

κ̂ðσÞ1 ¼ −
4

3 · 52
¼ −0.053333; ðA10Þ

κ̂ðσÞ2 ¼ −
1364

32 · 56
¼ −ð0.969956 × 10−2Þ; ðA11Þ

and

κ̂ðσÞ3 ¼ 184456

34 · 510
¼ 2.3319 × 10−4: ðA12Þ

[1] This assumption of massless fermions does not entail any
loss of generality, since a fermion with nonzero mass m
would be integrated out of the low-energy effective field

theory that describes the physics at Euclidean momentum
scales μ < m and hence would not affect the infrared limit
μ → 0 that we consider here.
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