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In this paper we show how to recast the results of the semiclassical method of Baier, Katkov and
Strakhovenko for pair production, including the possibility of specifying all the spin states and photon
polarization, in a form that is suitable for numerical implementation. In this case, a new type of integral
appears in addition to the ones required for the radiation emission process. We compare the resulting
formulas with those obtained for a short pulse plane wave external field by using the Volkov state. We
investigate the applicability of the local constant field approximation for the proposed upcoming
experiments at FACET II at SLAC and LUXE at DESY. Finally, we provide results on the dependence
of the pair production rate on the relative polarization between a linearly polarized laser pulse and a
linearly polarized incoming high energy photon. We observe that even in the somewhat intermediate
multiphoton regime of these experiments, there is roughly a factor of 2 difference between the pair
production rates corresponding to the two relative photon polarizations, as predicted by Ritus in the
monochromatic highly multiphoton weak field limit. This finding is of interest in light of the vacuum
birefringence of QED.
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I. INTRODUCTION

In view of the rapid development of laser technology, the
consideration of nonlinear QED effects in the interaction of
light with matter is increasingly important. An example of
such processes is quantum radiation emission, experimen-
tally seen in nonlinear Compton scattering in [1] and
also in channeling radiation in crystals [2–11]. Recently
it has also been possible to see multiphoton emission in, or
close to, the quantum regime, the so-called quantum
radiation reaction studied extensively theoretically in,
e.g., [12–23] and also recently studied experimentally in
crystal and laser fields [24–27]. Future experiments at
SLAC, DESY and the Extreme Light Infrastructure, aim to
study these processes further into the nonlinear regime
[28–31]. Another related nonlinear process of strong-field
QED is that of electron-positron pair production, for the
case of a laser field, called the nonlinear Breit-Wheeler
process. This is the nonlinear counterpart of the Breit-
Wheeler process [32] in the sense that absorption of several
photons from the strong field occurs. This has been studied
theoretically in a short pulse using the Volkov state in, e.g.,
[33–42]; see also [43] for the effect of recollision in the pair

production process. This process is also the subject of the
current paper, but with the focus on how to treat this
process in more general field configurations. In particular
we show how the semiclassical method of Baier, Katkov
and Strakhovenko [44,45] in its most general form,
including spins and polarizations, can be recast into a
form that is suitable for numerical implementation. The
strength of this approach is that it can be used in any
background field, as only the Lorentz force trajectory of the
produced electron in this field is required, which is easily
found numerically. This stands in contrast to the conven-
tional Furry picture approach where wave functions in the
background field must be found. The scheme presented in
this paper could also be useful for polarization and spin
effect studies, such as the ones seen in [46–48]. We refer to,
e.g., [49–53] for work on the semiclassical approach for
pair production, where the average is taken over the photon
polarization and summation is carried out over the spins.
The semiclassical approach is an approximation, the limits
of which are discussed by the authors themselves and
additionally in, e.g., [54,55], with the main criterion being
that the notion of a classical trajectory should be reason-
able, or that the quantum numbers associated with the
motion should be large.
Below, the relativistic metric þ − −− is employed. We

will use Feynman notation to write =a ¼ aμγμ, where aμ is a
generic 4-vector, and we will use the shorthand for the
product of 4-vectors, ab ¼ aμbμ. We will use units where
ℏ ¼ c ¼ 1, and e is the elementary charge (e2 ∼ 1=137).
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II. SEMICLASSICAL PAIR PRODUCTION

Baier et. al write the pair production probability in the
semiclassical formalism, in the most general form, as [45]

dP ¼ e2

ð2πÞ2ω
����
Z

∞

−∞
RpðtÞei

ε−
εþωðt−n·x−Þdt

����
2

d3p−; ð1Þ

where dP is the differential transition probability, ω the
energy of the incoming photon which converts to a pair, n is
a unit vector along the momentum of this photon such that
k ¼ ωn, x−ðtÞ is the trajectory of an electron that solves the
Lorentz force equation, v− ¼ dx−=dt and p− ¼ ε−v−, ε−
being the electron energy and

RpðtÞ ¼ iϕ†
−ðAðtÞ − iσ · BðtÞÞϕþ; ð2Þ

AðtÞ ¼ Npε−ωv− · ðϵ × nÞ; ð3Þ

BðtÞ ¼ Np½ϵfðε− þmÞω − ε−ωv− · ng
− 2ε2−v−ðϵ · v−Þ þ ε−ωnðϵ · v−Þ�; ð4Þ

Np ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4εþε−ðε− þmÞðεþ þmÞp ; ð5Þ

εþ ¼ ω − ε−, ϕ− and ϕþ are the 2-component spinors of
the electron and positron respectively, σ are the Pauli spin
matrices and ϵ is the polarization of the incoming photon.
We have here rewritten BðtÞ as compared to that found in
[45], which was achieved by using p2− ¼ ε2− −m2. Note
here that if we choose the quantization axis along z then
ð1 0ÞT corresponds to the spin-up state for the electron,
while ð0 1ÞT is the spin-up state for the positron. The
integration over d3p− is implicitly understood to be per-
formed over the asymptotic momentum of the trajectory
when the external field has gone to zero. Therefore onemust
find a trajectory for each final momentum, whereas for
radiation emission one only needs the trajectory correspond-
ing to the initial state, and therefore the semiclassical
approach is typically more numerically demanding for pair
production. Note that the above formula only requires the
electron trajectory, which is an arbitrary choice made during
the derivation, where the summation over the final states of
the positronwas carried out, instead of that over the electron.
This means that in the semiclassical approach pþðtÞ ¼ k −
p−ðtÞ [45]. In order to calculate the integral from Eq. (1) we
need the integrals

Z
v−e

iε−εþωðt−n·x−Þdt; ð6Þ
Z

ei
ε−
εþωðt−n·x−Þdt; ð7Þ

Z
v−ðϵ · v−Þei

ε−
εþωðt−n·x−Þdt: ð8Þ

While the first two integrals of Eq. (6) and (7) are also
encountered in the radiation emission process as can be seen
in, e.g., [56–58], the third integral of Eq. (8) does not, and
therefore we will need to rewrite this in a similar fashion as
what is done for the first two. This amounts to an integration
by parts and removing the boundary terms, such that the
integrals with an integrand proportional to acceleration are
obtained. The justification for this, is that terms related to
what happens in the infinite past and future, where the field
has turned off, should not have an effect on the result. As a
sanity check, we will compare the results obtained when
using the Volkov state solution of the Dirac equation in the
background field, where we will see that the results are
indistinguishable. We are working in the limit where the
electrons and positrons will be ultra relativistic. We then
define the quantities in analogy to the radiation emission
process as

I ¼
Z

n × ½ðn − v−Þ × _v−�
ð1 − n · v−Þ2

ei
ε−
εþωðt−n·x−Þdt

¼
Z

d
dt

�
n × ðn × v−Þ
1 − n · v−

�
ei

ε−
εþωðt−n·x−Þdt

¼ −i
ε−
εþ

ω

Z
n × ðn × v−Þei

ε−
εþωðt−n·x−Þdt

≃ −i
ε−
εþ

ω

Z
ðn − v−Þei

ε−
εþωðt−n·x−Þdt; ð9Þ

where in the last linewe have neglected terms suppressed by
at least 1=γ−, with γ− ¼ ε−=m, compared to the dominant
ones, and we have that

Z
ei

ε−
εþωðt−n·x−Þdt

¼
Z

1

i ε−εþ ωð1 − n · v−Þ
d
dt

ei
ε−
εþωðt−n·x−Þdt

¼ −
Z

ei
ε−
εþωðt−n·x−Þ d

dt
1

i ε−εþ ωð1 − n · v−Þ
dt

¼ i
ε−
εþ
ω

Z
n · _v−

ð1 − n · v−Þ2
ei

ε−
εþωðt−n·x−Þdt

¼ i
ε−
εþ
ω
J; ð10Þ

where we have then defined

J ¼
Z

n · _v−
ð1 − n · v−Þ2

ei
ε−
εþωðt−n·x−Þdt: ð11Þ

Then from Eq. (9) and (10) we have that

Z
v−e

iε−εþωðt−n·x−Þdt ≃
i

ε−
εþ
ω
½nJ − I�: ð12Þ
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Now we follow the same approach for the new integral

Z
v−ðϵ · v−Þei

ε−
εþωðt−n·x−Þdt

¼
Z

v−ðϵ · v−Þ
i ε−εþ ωð1 − n · v−Þ

d
dt

ei
ε−
εþωðt−n·x−Þdt

¼ −
Z

d
dt

�
v−ðϵ · v−Þ

i ε−εþ ωð1 − n · v−Þ
�
ei

ε−
εþωðt−n·x−Þdt

¼ i
ε−
εþ
ω
K; ð13Þ

with

K ¼
Z �½a−ðϵ · v−Þ þ v−ðϵ · a−Þ�

1 − n · v−

þ v−ðϵ · v−Þðn · a−Þ
ð1 − n · v−Þ2

�
ei

ε−
εþωðt−n·x−Þdt: ð14Þ

Thenwemay rewrite the integrals involvingAðtÞ andBðtÞ in
the following fashion:

Z
∞

−∞
AðtÞeiε−εþωðt−n·xÞdt¼ i

ε−
εþ
ω
ε−ωN½nJ− I� · ðϵ×nÞ; ð15Þ

Z
∞

−∞
BðtÞeiε−εþωðt−n·xÞdt

¼ i
ε−
εþ
ω
N½ϵfðε− þmÞωJ − ε−ω½nJ − I� · ng

− 2ε2−K þ ε−ωnðϵ · ½nJ − I�Þ�

¼ i
ε−
εþ
ω
N½ϵωmJ − 2ε2−K − ε−ωnðϵ · IÞ�; ð16Þ

where we used ϵ · n ¼ 0 and I · n ¼ 0 as can be seen from
Eq. (9). Now one is able to perform the computation. One
must simply calculate the I, J and K integrals numerically
based on the trajectory which can be obtained by solving the
Lorentz force equation. To this end, we recommend to
follow the approach developed in [57] to deal with cancel-
lations between large terms as seen in, e.g., 1 − n · v−
as n · v− is close to 1. One can then pick the spin and
polarization states and calculate the transition probability for
each combination. It therefore consumes nearly the same
computational resources to keep all the information regard-
ing spin and polarization. In fact, it is the computation of
I, J and K which is demanding, and here only K depends on
the photon polarization (but not on the spins of the electron
and positron).

III. VOLKOV STATE APPROACH

The Dirac equation in a background field, given by the
4-vector potential Aμ

ði=∂ þ e=A −mÞψ ¼ 0; ð17Þ

has an exact solution when Aμ is a plane wave; i.e., it
depends on space-time only through the variable φ ¼ k0x
where k0 is the wave vector characterizing the plane wave,
with k20 ¼ 0. In this case the electron solution is given by

ψ−ðxÞ ¼
1ffiffiffiffiffiffiffiffi
2ε−

p
�
1 −

e=k0=A
2k0p−

�
ueiS− ; ð18Þ

where p is the asymptotic 4-momentum of the electron, (we
have set the quantization volume equal to 1), u is the free
particle electron bispinor which is reached asymptotically
and where

S− ¼ −p−xþ
e

k0p−

Z
φ
dφ0

�
p−Aðφ0Þ þ e

2
A2ðφ0Þ

�
: ð19Þ

The positron solution is obtained by replacing p− → −pþ
and u → v where v is the free Dirac positron bispinor. With
this in mind, it is unnecessary to redo the whole derivation
for the pair production process. It closely parallels the one
for radiation emission carried out in [56]. The result for pair
production follows from the one presented in [56] upon
substituting pf → p−, pi → −pþ, k → −k and ϵ� → ϵ, and
replacing d3kd3pf → d3p−d3pþ. We consider a vector
potential of the form

Aμ ¼
X2
j¼1

aμjfjðφÞ; ð20Þ

where the conditions a1a2 ¼ 0 and ajk0 ¼ 0 are satisfied.
In this way we obtain

dP ¼ e2

4ωðk0p−Þðk0pþÞ

×

����ū
�
A0=ϵþ

X2
j¼1

A1;jBj þ A2;jCj

�
v

����
2

d3p−; ð21Þ

where

Bj ¼ =ϵ
e=k0=aj
2k0pþ

−
e=aj=k0
2k0p−

=ϵ; ð22Þ

Cj ¼
e2a2j

2ðk0p−Þðk0pþÞ
ðϵk0Þ=k0; ð23Þ

and

An;jðs;αj;βjÞ¼
1

2π

Z
∞

−∞
dφfnj ðφÞeiðsφþ

P
2

j¼1
½αjFjðφÞþβjGjðφÞ�Þ;

ð24Þ
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for n ∈ f1; 2g. Moreover, we have s ¼ p−k=pþk0,

αj ¼ e

�
pþaj
k0pþ

−
p−aj
k0p−

	
; ð25Þ

βj ¼ −
e2a2j
2

�
1

k0p−
þ 1

k0pþ

	
; ð26Þ

A0ðs; αj; βjÞ ¼ −
1

s

X2
j¼1

½αjA1;j þ βjA2;j�; ð27Þ

as well as

FjðφÞ ¼
Z

φ

0

fjðφ0Þdφ0; ð28Þ

and

GjðφÞ ¼
Z

φ

0

f2jðφ0Þdφ0: ð29Þ

IV. DISCUSSION

We have now shown how one may calculate the pair
production probabilities using the semiclassical approach,
and the approach using the Volkov state. We will compare
the two approaches using an example of a linearly polarized
laser pulse characterized by aμ1 ¼ f0; ax; 0; 0g, aμ2 ¼
f0; 0; ay; 0g and kμ0 ¼ fω0; 0; 0;−ω0g. The high-energy

photon of four-momentum k propagates in the opposite
direction of k0 and the spin quantization axis is along the
momentum of k. We then choose as a model of our pulse

f1ðφÞ ¼ dðφÞ cosðφÞ; ð30Þ
f2ðφÞ ¼ 0; ð31Þ

dðφÞ ¼

8><
>:

sin4
�

φ

2N

�
; 0 < φ < 2πN

0; otherwise;
ð32Þ

we define the invariant quantities ξ and κ in terms of their
peak value which leads to the values

ξ ¼ eax
m

; ð33Þ

κ ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðFμνkνÞ2j

p
m3

¼ 2ωω0eax
m3

; ð34Þ

where Fμν is the peak value of the electromagnetic field
tensor of the laser pulse. The parameter ξ controls if the
process involves single photons from the external field
(ξ ≪ 1) or many photons (ξ ≫ 1). The κ parameter
measures the field experienced by one of the produced
particles (if all the energy went to this particle), relative to
the Schwinger critical field, in its rest frame. When κ is
small, the pair production process in a constant crossed
field is heavily suppressed by an exponential “tunneling”
factor e−8=3κ, see, e.g., [59]. In strong fields, i.e., (ξ ≫ 1),
Ritus has shown that the result in the monochromatic plane
wave goes towards that of the local constant field approxi-
mation (LCFA). The LCFA means that one may apply the
analytical formula for the result in a constant crossed field

FIG. 1. Here we plot the case of ξ ¼ 1, κ ¼ 1 and N ¼ 5 for the
laser pulse described in the text. The fully colored lines are the
result using the semiclassical approach, while the black dots on
top are the same results using the Volkov state. The arrows denote
the spin state of the produced electron and positron, respectively,
with the up-arrow denoting spin along the quantization axis (z).
The label ek and e⊥ denotes, respectively, that the incoming
photon has polarization parallel or perpendicular to the polari-
zation of the laser pulse. The remaining 5 possible combinations
of spins and polarization are not plotted, as they coincide with the
already plotted curves; however, in all cases, there is agreement.

FIG. 2. Here we plot the case of ξ ¼ 5, κ ¼ 1 and N ¼ 5 which
has been summed over the spins, but showing the dependence of
the probability depending on the relative photon polarizations.
We compare the full result obtained with the semiclassical
approach, with that of the LCFA.
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at each point of the laser pulse and obtain the correct result.
The formula for the pair production rate can be found in,
e.g., [45]. This is of course a powerful result, and is often
the one used in simulation codes. However, the initial
experiments may not yet have quite strong enough fields
for this approximation to be completely valid, as will be
seen below. It is proposed, in the context of the LUXE
experiment, to see this tunneling behavior [28,60]. It is kept
in mind that the experimental setup would involve a target
to produce gamma rays from an electron beam via
Bremsstrahlung, which would then collide with the laser
pulse. We consider the case where the gamma ray photon
has the same energy as the initial electron, which is
reasonable as the largest contribution comes from these
photons due to the mentioned tunneling suppression factor.
In both of the planned experiments at SLAC and DESY the
pulse duration of around 30 fs at full width half maximum
of the intensity corresponds to roughly N ¼ 43 for our
choice of the pulse shape, and therefore we will use this for
those cases along with ω0 ¼ 1.55 eV. In Fig. 1 we show an
example of ξ ¼ 1, κ ¼ 1 and N ¼ 5 where we have plotted
the result from the semiclassical approach along with that
from the Volkov state, and see that the results are indis-
tinguishable. We have also checked for other values of
these parameters, in particular the cases shown in the
remaining figures, and also for the situation where the laser
beam is not counterpropagating with the incoming photon,
and in every case there is as good agreement as seen in
Fig. 1. It has also been checked that the mentioned
additional integral which arises for pair production, but
not in radiation emission, plays a role for the result, and
therefore that it has been handled correctly. In the LUXE
experiment it is planned that the first stage of the experi-
ment is done at ξ ¼ 2 using a 30 TW laser [28]. In the
SLAC experiment, a 17 TW laser is available which is

envisaged to focus down to the diffraction limit yielding
ξ ¼ 7.3. The difference here is therefore that the first stage
of the LUXE experiment is set more conservatively in terms
of focusing the laser pulse. Both experiments plan on
achieving ξ > 5, and therefore in Fig. 2 we verify that when
ξ ¼ 5 and κ ¼ 1, one may to good accuracy use the LCFA.
However for the case of a potential first stage of these
experiments, where the fully focused pulse may not yet be
achieved, we will see deviations from the LCFA result as ξ
goes closer to 1. As pointed out by Ritus in [59] in Sec. 13,
for the case of a monochromatic wave, if ξ is not large, or if

κ ≪ ξ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p
deviations from the LCFA arise. Most

importantly, the overall pair production rate starts to deviate
from the LCFA result. This can be seen in Figs. 3 and 4. In
general, the pair production probability is larger than
predicted by the LCFA when ξ approaches 1 from above.
For the case shown in Fig. 4 the polarization averaged total
probability in the exact case is 27% larger than that using
the LCFA and for the case in Fig. 3 it is 23%. An interesting
prediction seen in [59] is that the pair production proba-
bility depends on the relative polarization between the laser
pulse and the incoming photon. In particular it is shown that
in a constant crossed field, or a linearly polarized mono-
chromatic wave, when ξ ≫ 1, it holds that the pair
production rate for different relative polarizations obeys
W⊥ ¼ 2Wk when κ ≪ 1 and W⊥ ¼ 3=2Wk when κ ≫ 1.
This prediction has not been experimentally verified. As
shown in [45] the strong field can be seen as a dispersive
medium, where the pair production corresponds to the
imaginary part of the refractive index of this medium, the
real part of which can be obtained by the Kramers-Kronig
relations, i.e., the process of vacuum birefringence in
QED. This process has been extensively studied [61–72],
but not yet experimentally observed. Therefore the clear
demonstration of the pair production rate’s dependence on

FIG. 3. Here we show the case of ξ ¼ 2, κ ¼ 0.4 and N ¼ 43
which arises for a photon energy of 17.5 GeV. This result
therefore applies to the first stage of the proposed LUXE
experiment [28].

FIG. 4. Here we show the case of ξ ¼ 2, κ ¼ 0.3 and N ¼ 43
which arises for a photon energy of 13.0 GeV, which could be
observed in a potential first stage of the SLAC E320 experiment,
before the strongest focusing is achieved.
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the relative polarization is an indirect detection of the
vacuum birefringence of QED. For the cases shown in
Figs. 3 and 4 we have that W⊥ ¼ 2.05Wk and W⊥ ¼
2.04Wk, respectively. However for this measurement one
would need polarized gamma rays, which can be obtained
using either Compton back scattering on a small fraction
of the laser pulse, or produced using a crystal target and
the process of coherent bremsstrahlung; see, e.g., [73].
A calculation of this is, however, beyond the scope of the
current paper.

V. CONCLUSION

We have shown how the semiclassical approach of Baier,
Katkov and Strakhovenko may be recast in a form suitable
for numerical implementation, allowing one to calculate
the pair production probability in an arbitrary external field
and for any photon polarization and electron-positron spins.
We compared the results for a case where an exact solution
is known, namely the Volkov state describing an electron/
positron in a laser wave. In this case the results are

indistinguishable. We investigated the size of the deviations
from the local constant field approximation for experiments
planned in the near future, when ξ is not large. We saw that
when ξ ¼ 2 deviations of around 25% in the overall rate
should be expected. Finally, the presented numerical
approach allows to study polarization effects in pair
production. In the present work we used this to see that
the pair production rate in the two states of polarization,
parallel and orthogonal to the linearly polarized laser pulse,
still yields a factor of roughly 2, even though κ is not
negligible and that we are dealing with a laser pulse rather
than a monochromatic wave. The generalization of these
considerations to more complicated field configurations is
straightforward.
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