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We investigate the scattering of a quark on a heavy nucleus at high energies using the time-dependent
basis light-front quantization (tBLFQ) formalism, which is the first application of the tBLFQ formalism in
QCD. We present the real-time evolution of the quark wave function in a strong classical color field of the
relativistic nucleus, described as the color glass condensate. The quark and the nucleus color field are
simulated in the QCD SU(3) color space. We calculate the total and the differential cross sections, and the
quark distribution in coordinate and color spaces using the tBLFQ approach. We recover the eikonal cross
sections in the eikonal limit. We find that the differential cross section from the tBLFQ simulation is in
agreement with a perturbative calculation at large p⊥, and it deviates from the perturbative calculation at
small p⊥ due to higher-order contributions. In particular, we relax the eikonal limit by letting the quark
carry realistic finite longitudinal momenta. We study the sub-eikonal effect on the quark through the
transverse coordinate distribution of the quark with different longitudinal momentum, and we find the sub-
eikonal effect to be sizable. Our results can significantly reduce the theoretical uncertainties in small p⊥
region which has important implications to the phenomenology of the hadron-nucleus and deep inelastic
scattering at high energies.
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I. INTRODUCTION

Scattering of an ultrarelativistic quark off a heavy
nucleus is one of the most direct ways to study the structure
of the cold nuclear matter at low values of Bjorken’s x. The
perturbative calculations involve resummation of the multi-
ple scatterings of the quark in the nucleus [1] and of the
radiative processes [2,3] all in the eikonal limit. Due to the
gluon saturation at small x, the typical transverse momen-
tum scale in this process is the semihard saturation
momentum,whichmakes the perturbative approach possible
[4,5]. The resummation can be very efficiently performed by
means of the color glass condensate (CGC) theory that treats
heavy nucleus as a random color field [6,7].

While the perturbative eikonal approach yielded essen-
tial insights into the structure and dynamics of the cold
nuclear matter at small x [8], the corresponding phenom-
enological approaches often suffer from uncertainties that
arise from the infrared and sub-eikonal corrections.
Motivated by the future experimental program at the
Electron-Ion Collider [9] we initiate in this paper inves-
tigation of the sub-eikonal nonperturbative corrections to
the quark-nucleus scattering using the computational for-
malism the time-dependent basis light-front quantization
(tBLFQ) [10]. We ignore the radiative effects that contrib-
ute to the quantum evolution of the quark wave function
with energy.
The tBLFQ formalism is a natural extension of the basis

light-front quantization (BLFQ) approach [11], that has
been developed based on the light-front quantum field
theory and the Hamiltonian formalism to tackle bound state
problems. The implementation of the basis function rep-
resentation allows us to choose a basis with the same
symmetries of the system under investigation, and is
therefore advantageous for carrying out efficient numerical
calculations. This method has been applied to study the
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QED bound state system of positronium [12], the
QCD bound states of heavy and light mesons [13–17],
and the bound states of the nucleon-pion system with a
simple chiral model [18]. It has been shown that tBFLQ
is particularly well-suited for calculating nonperturba-
tive effects through the applications of the nonlinear
Compton scattering [10,19], and the interaction of an
electron with intense electromagnetic fields [20]. Its
counterpart in quantum mechanics, the time-dependent
basis function approach, has been applied to investigate
deuteron heavy ion scatterings under the Coulomb inter-
action [21,22].
In this paper we apply the tBLFQ formalism to inves-

tigate the quark-nucleus scattering, by treating the nucleus
as a classical SU(3) color field using the CGC theory [23–
25]. In particular, we solve for the time evolution of the
quark as a quantum state inside the CGC. We calculate the
quark-nucleus elastic and total scattering cross sections,
and we study the evolution of the quark’s distribution in the
transverse coordinate space as well as in the color space.
The intrinsic nonperturbative feature of the tBLFQ formal-
ism provides us an opportunity to study the sub-eikonal
effects. At high energy, the propagation time of the quark
through the target nucleus is short and its transverse
position does not change substantially during the propa-
gation. Neglecting such change is usually implemented as
the eikonal limit in many studies [8]. However, in reality
the quark carries a finite longitudinal momentum and
therefore admits sub-eikonal effects. A variety of works
using pQCD has studied sub-eikonal effects from different
aspects, including helicity change of the quark, longitudinal
momentum exchange, and finite length of the background
field [26–32]. In this work, we treat the quark with finite
energy and keep its interaction time with the nucleus finite,
and we reveal a sub-eikonal effect through the evolution of
the quark’s transverse coordinate distribution from the
nonperturbative aspect.
The results presented in this paper can be used to

calculate particle production in pA collisions in the proton
fragmentation region by convoluting the quark total cross
section with the quark distribution function of the proton
and with the quark-hadron (jet) fragmentation function.
Generalization to dipole-nucleus scattering is also straight-
forward and will allow us in the future to investigate deep
inelastic scattering and exclusive vector meson production
using light-front wave function obtained in the BLFQ
formalism. This work also provides the foundation for
the study of particle production and evolution in the glasma
field created by heavy-ion collisions, where the initial
gluon field can be solved analytically [33].
The layout of this paper is as follows. We introduce the

formalism of tBLFQ in the application to the quark-nucleus
scattering problem in Sec. II. The numerical results are
presented and discussed in Sec. III. We conclude the work
in Sec. IV.

II. METHODOLOGY: TIME-DEPENDENT BASIS
LIGHT-FRONT QUANTIZATION

We start by considering scattering of a high-energy quark
moving in the positive z direction, on a high-energy nucleus
moving in the negative z direction, as shown in Fig. 1. The
quark has momentum pμ and pþ ≫ p−; p⊥ whereas the
nucleus has momentum Pμ and P− ≫ Pþ; P⊥ (see defi-
nitions of the light-front variables in the Appendix A). We
treat the quark state at the amplitude level and the nucleus
as an external background field. The quark interacts with
the nuclear field at 0 ≤ xþ ≤ Δxþ.

A. Time evolution under a background field

We consider a quark interacting with the background
field generated by the heavy nucleus. To start with, we
truncate the Fock space of the quark to the leading sector as
jqi. Consequently, the QCD Lagrangian reduces to

Lq ¼ Ψ̄ðiγμDμ −mÞΨ; ð1Þ

where Dμ ≡ ∂μI þ igAμ and m ¼ mI. I is the 3 by 3 unit
matrix in color space, and Aμ ¼ AaμTa is the background
gluon field. The light-front Hamiltonian is derived from
the Lagrangian through the standard Legendre transforma-
tion [34],

FIG. 1. The quark is moving along the positive-z direction
scatters on the nucleus along the negative-z direction. The dashed
line is the worldline of the quark, z ¼ βqt with βq the speed of the
quark. The band represents worldlines of the nucleus, z ¼ −βAt
for one end and z ¼ −βAtþ d0 for the other end. βA is the speed
of the nucleus and d0 ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2A

p
with d the width of the

nucleus in its rest frame. In the ultra-relativistic limit of βA → 1,
the red band in the diagram shrinks to a single line aligned
with xþ ¼ 0.
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P− ¼
Z

dx− d2x⊥
�
1

2
Ψ̄γþ

m2 −∇2⊥
i∂þ Ψ

þ gΨ̄γμTaΨAa
μ þ

g2

2
Ψ̄γμTaAa

μ
γþ

i∂þ γνTbAb
νΨ

�
: ð2Þ

The standard QCD light-front Hamiltonian is formulated in
the light cone gauge of Aþ ¼ 0. Here the dynamical gauge
field is absent due to Fock sector truncation, and we apply
the condition Aþ ¼ 0 to the background field. The first
term is the light-front QCD Hamiltonian in the jqi sector,
which is the kinetic energy of the quark, denoted as P−

QCD.
The two terms in the second line are the interactions
introduced by the external field, and together they are
signified by V. The interaction term, in general, could have
a time dependence arising from the external field, such
that P−ðxþÞ ¼ P−

QCD þ VðxþÞ.
We are interested in how the quark, as an eigenstate of

the QCD Hamiltonian, P−
QCD, evolves due to interactions

with the background field. It is therefore natural to use an
interaction picture to solve the evolution equation on the
light front,

i
∂

∂xþ jψ ; xþiI ¼
1

2
VIðxþÞjψ ; xþiI: ð3Þ

VIðxþÞ ¼ ei
1
2
P−
QCDx

þ
VðxþÞe−i12P−

QCDx
þ

is the interaction
Hamiltonian in the interaction picture. The solution of
Eq. (3) describes the state of the investigated system at any
given light-front time xþ,

jψ ; xþiI ¼ T þ exp

�
−
i
2

Z
xþ

0

dzþVIðzþÞ
�
jψ ; 0iI; ð4Þ

where T þ is the light-front time ordering. In the perturba-
tive calculations, the time-ordered exponential is written as
a Taylor series expansion, and only the leading terms are
retained. However, in cases where the external fields are
strong, the perturbative treatment may not be sufficient.
Our aim is to solve the problem through a nonperturbative
treatment. We decompose the time-evolution operator into
many small steps of the light-front time xþ,

T þ exp

�
−
i
2

Z
xþ

0

dzþVIðzþÞ
�

¼ T þ lim
n→∞

Yn
k¼1

�
1 −

i
2
VIðxþk Þ

xþ

n

�

¼ lim
n→∞

�
1 −

i
2
VIðxþn Þδxþ

�
� � �

�
1 −

i
2
VIðxþ1 Þδxþ

�
; ð5Þ

The step size is δxþ ≡ xþ=n, and the intermediate times are
xþk ¼ kδxþðk ¼ 1; 2;…; nÞ. This product expansion is
exact in the continuum limit of n → ∞. In practical
calculations, the value of n could be determined so as to

achieve a desiring convergence of the final state.
Observables could then be evaluated from the evolved state.

B. Gluon field as the color glass condensate

The CGC formalism provides a description of gluon
dynamics in the small-x region [26]. The underlying
approximation involved in the CGC theory of high energy
scattering is the eikonal approximation, i.e., small angle
deflection of a high energy projectile traversing a medium.
The classical gluon field is found from the Yang-Mills
equation,

DμF μν ¼ Jν: ð6Þ

Jν ¼ JνaTa (a ¼ 1; 2;…; 8) is the color current, and Ta is
the color generator. The current generated by the high-
energy nucleus moving along the negative z direction has
only one nonzero component, Jνa ¼ δν−ρa, and it is inde-
pendent of its time x− [8].
Due to Lorentz contraction, the xþ dependence of the

nucleus is peaked around xþ ¼ 0, and in the extreme limit
it is usually taken to be a delta function. Here we keep the
xþ dependence to allow for an extended target. The valence
charges are treated as stochastic variables satisfying the
correlation relation,

hρaðx⃗⊥; xþÞρbðy⃗⊥; yþÞi ¼ g2μ2δabδ2ðx⃗⊥ − y⃗⊥Þδðxþ − yþÞ:
ð7Þ

This correlation relation could be achieved by taking the
color charge density ρaðx⃗⊥; xþÞ to be a stochastic random
variable with a local Gaussian distribution [23,24],

f½ρ2aðx⃗⊥; xþÞ� ¼ exp

�
−
δxþδ2x⊥
g2μ2

ρ2aðx⃗⊥; xþÞ
�
:

δxþ and δ2x⊥ are the unit lengths in the xþ and x⃗⊥
directions respectively. The Gaussian form is reasonable
when the color charges at high rapidity are uncorrelated and
random [35,36].
The field in the covariant gauge of ∂μAμ ¼ 0 has only

one nonzero component A−,

ðm2
g −∇2⊥ÞA−

a ðx⃗⊥; xþÞ ¼ ρaðx⃗⊥; xþÞ: ð8Þ

The gluon mass mg is introduced to regularize the infrared
(IR) divergence in the field, which simulates color neutral-
ity on the source distribution [37]. The field solved from
this regularized Poisson equation can be expressed in terms
of the Green’s function

A−
a ðx⃗⊥; xþÞ ¼

Z
d2y⊥G0ðx⃗⊥ − y⃗⊥Þρaðy⃗⊥; xþÞ; ð9Þ
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where

G0ðx⃗⊥ − y⃗⊥Þ ¼ −
Z

d2k⊥
ð2πÞ2

e−ik⃗⊥·ðx⃗⊥−y⃗⊥Þ

m2
g þ k⃗2⊥

: ð10Þ

The field is logarithmically ultraviolet (UV) divergent. The
divergence corresponds to the large momentum modes in
the nuclear wave function, which are the degrees of
freedom not meant to be included in the classical field.
It is then natural to introduce a UV regulator [38]. In the
numerical calculations of this work, the discretization of the
transverse space automatically introduces a UV cutoff.
Alternatively, one can introduce an additional parameter
ΛUV when solving the gluon field as in Eq. (10), and the
integral measure becomes

R ΛUV dk⊥ [39].
In this work, we follow the McLerran-Venugopalan

(MV) model, where a quantum correction to saturation
scale Qs is not implemented. Consequently, the saturation
scale is a constant for a fixed charge density g2μ, and Lη, the
extension of the field along xþ [1,40],

Q2
s ¼

ðg2μÞ2Lη

2π2
: ð11Þ

This differs from more sophisticated methods where the
saturation scale is related to the gluon structure function of
the nucleus and depends on x [8]. In our numerical analysis
we vary the density parameter g2μ at fixed Lη ¼
50 GeV−1 ≈ 10 fm (see Appendix B for more discussion
of Lη).
Note that since the background field has only one

nonzero component A−, the quark instantaneous interac-
tion vanishes and only one term remains in V,

V ¼
Z

dx−d2x⊥gΨ̄γþTaΨAaþ: ð12Þ

This interaction changes the transverse dependence and the
color distribution of the quark, but leaves the longitudinal
distribution and the spin of the quark unchanged.

C. Basis construction

To solve the time evolution equation of Eq. (3), one
could select a basis and then work with the matrix form of
the equation. An optimal basis should preserve the sym-
metries of the system and approximate the eigenfunctions
of the Hamiltonian.
To begin, let us first identify the eigenstates jβi and

eigenvalues P−
β of P−

QCD, such that

P−
QCDjβi ¼ P−

β jβi: ð13Þ

Since P−
QCD only contains the kinetic energy of the quark,

its eigenstates are therefore the momentum states of the

quark. Considering that the background field interacts with
the quark in the transverse space and the color space, we
construct the basis state as jβi ¼ jkx; ky; ci, where kx and
ky are the transverse momentum of the quark and c is the
color of the quark. This choice of basis is very similar to the
discretized momentum representation [41,42].
We then expand the quark state as a sum over the QCD

eigenstates:

jψ ; xþiI ¼
X
β

cβðxþÞjβi; ð14Þ

where cβðxþÞ≡ hβjψ ; xþiI are the basis coefficients. The
initial state at xþ ¼ 0 can be specified by cβð0Þ as a vector
cð0Þ. The solution of Eq. (4) can be written in the QCD
eigenstate basis in the matrix form as

cðxþÞ ¼ T þ exp

�
−i

Z
xþ

0

dzþMðzþÞ
�
cð0Þ; ð15Þ

where the matrix elements of MðxþÞ are defined as
Mββ0 ðxþÞ≡ hβjVIðxþÞ=2jβ0i. Once we know the wave
function of the state via cðxþÞ, it is straightforward to
evaluate observables from it.

D. Numerical scheme

In the numerical calculation, the fields are color SU(3)
matrices on the sites of a 3-dimensional discrete space. The
2-dimensional transverse space is a lattice extending from
−L to L for each side. The number of transverse lattice sites
is 2N, giving the lattice spacing a ¼ L=N. As such, a
vector r⃗⊥ ¼ ðrx; ryÞ would read as,

ri ¼ niaði ¼ x; yÞ; ni ¼ −N;−N þ 1;…; N − 1:

This space satisfies periodic boundary conditions. It fol-
lows that in the momentum space, for any vector,
p⃗⊥ ¼ ðpx; pyÞ,

pi ¼ kidpði ¼ x; yÞ; ki ¼ −N;−N þ 1;…; N − 1;

where dp ≡ π=L is the resolution in momentum space. The
momentum space extends from −π=a to π=a. Therefore,
the transverse lattice introduces a pair of IR and UV cutoffs,
λIR ¼ π=L and λUV ¼ Nπ=L. We include details of the
conventions and relations in the discrete space in
Appendix C.
The longitudinal dimension of the field xþ (note that this

is the light-front time of the incident quark) is discretized
into a number of Nη layers [43]. If the field extends Lη

along xþ, each layer would have an expansion of
τ ¼ Lη=Nη. For example, the k-th (k ¼ 1; 2;…; Nη) layer
extends as xþ ¼ ½ðk − 1Þτ; kτ�.
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To summarize, our calculation depends on those numeri-
cal parameters.

(i) g2μ, color charge density parameter. We take differ-
ent values for it and study how observables depend
on it.

(ii) mg, screening mass, the IR regulator. We will take
mg ¼ 0.1 GeV and use a range of values when
investigating its role.

(iii) The transverse lattice: size L, number N and
spacing a ¼ L=N. In most cases, we take L ¼
50 GeV−1ð¼ 9.87 fmÞ as estimated from the radius
of gold nucleus. Exceptions will be separately noted.

(iv) The xþ direction: duration Lη, the number of layers
Nη and interval τ ¼ Lη=Nη. We take Lη ¼
50 GeV−1 and study the convergence on Nη.

In this discretized space, the correlation relation of the color
charge as defined in Eq. (7) also takes a discrete form as,

hρaðnx; ny; kÞρbðn0x; n0y; k0Þi

¼ g2μ2δab
δnx;n0xδny;n0y

a2
δk;k0

τ
: ð16Þ

Note that the Kronecker delta dividing the discrete reso-
lution replaces the Dirac delta in Eq. (7), and they converge
in the continuous limit of a → 0 and τ → 0.

III. NUMERICAL RESULTS

In this section, we discuss various observables obtained
from the tBLFQ formalism. We first study the total and
elastic cross sections, and support our approach by com-
paring to predictions in the eikonal limit. We then study the
differential cross section and look into the time evolution of
the quark’s distribution in transverse coordinate space and
color space. We further relax the eikonal condition and
explore sub-eikonal effects with finite pþ.

A. The cross sections

The cross section is calculated as the sum of the squares
of the transition amplitudes. [44],

dσ
d2b

¼
X
ϕf

jMðϕf;ψ iÞj2¼
X
ϕf

jhϕfjSjψ ii− hϕfjψ iij2: ð17Þ

ψ i stands for the initial state, and ϕf is the final state;
P

ϕf

sums over the phase space of the final state. The S in the
equation is the evolution operator from the initial state to
the final through a finite time transition, and is different
from the case where one takes the infinite time limit. In
evaluating the cross section, one should average over the
color charge density ρ as in Eq. (7). This would give us the
total cross section by definition,

dσtot
d2b

¼
	X

ϕf

jMðϕf;ψ iÞj2


: ð18Þ

The total cross section is the summation of the elastic
2 → 2 contribution and the inelastic contributions (2 → 3,
2 → 4, etc.), σtot ¼ σel þ σinel [8]. To calculate the elastic
cross section, we carry out the configuration average on the
amplitude level to get the elastic scattering amplitude first,
and afterwards square it [1,45,46].

dσel
d2b

¼
X
ϕf

jhMðϕf;ψ iÞij2: ð19Þ

In the eikonal limit, the longitudinal momentum of the
quark is infinite, pþ ¼ ∞, thus the phase factor e�ip−xþ

[see text associated with Eq. (3)] is 1 and VIðxþÞ reduces to
VðxþÞ. In this limit, the cross sections can be expressed
analytically in terms of the charge density g2μ, the

FIG. 2. The dependence on the transverse grid number N of (a) the total and (b) the elastic cross sections at L ¼ 50 GeV−1. The cross
sections are calculated as functions of g2μ with Lη ¼ 50 GeV−1, Nη ¼ 4 and pþ ¼ ∞. The solid lines are the eikonal predictions as
calculated from Eq. (20). Each data point results from an average over 100 configurations, and the standard deviation is taken as the
uncertainty bar.
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interaction duration Lη, the IR cutoff ΛIR and the UV cutoff
ΛUV [1]. A detailed derivation of the interaction matrix is
included in Appendix D.

dσtot
d2b

����
pþ¼∞

¼ 2

�
1 − exp

�
−
ðN2

c − 1Þðg2μÞ2Lη

16πNc

×

�
1

Λ2
IR

−
1

Λ2
UV

���
;

dσel
d2b

����
pþ¼∞

¼
�
1 − exp

�
−
ðN2

c − 1Þðg2μÞ2Lη

16πNc

×

�
1

Λ2
IR
−

1

Λ2
UV

���
2

: ð20Þ

We have introduced the screening mass as the IR regulator,
therefore ΛIR ¼ mg. Though the gluon field has a UV

divergence, the cross sections have finite ΛUV → ∞ limits.
We therefore do not implement such a cutoff in calculating
the cross sections unless specified.
We first calculate the total and elastic cross sections in

the eikonal limit and compare our results with the eikonal
expectations in Eq. (20). We also study the sensitivity of the
cross sections to the parameters, N;L;Nη, and mg. We then
relax the eikonal condition to allow a finite pþ, and explore
potential effects. The light-front kinetic energy of the quark
is calculated as p− ¼ ðp⃗2⊥ þm2

qÞ=pþ, we use mq ¼
0.15 GeV in the presented results. We have checked that
using quark mass in the range of mq ¼ 0.05–4.50 GeV
does not make noticeable change in the results.
We then check the dependence of the cross sections on

the lattice by varying N and L. Note that a reasonable
numerical grid should cover the physical range of interest.
In this case, we should make sure that the numerical IR

FIG. 3. The dependence on the transverse grid length L of (a) the total and (b) the elastic cross sections. The lattice spacing is fixed as
a ¼ L=N ¼ 6.25 GeV−1 for these results. The cross sections of the quark are plotted as functions of g2μ at Lη ¼ 50 GeV−1,Nη ¼ 4 and
pþ ¼ ∞. The solid lines are the eikonal predictions as calculated from Eq. (20). Each data point is averaged over 100 configurations,
and the standard deviation is taken as the uncertainty bar.

FIG. 4. The dependence on Nη of (a) the total and (b) the elastic cross sections. Parameters for those results: L ¼ 50 GeV−1, N ¼ 8,
Lη ¼ 50 GeV−1 and pþ ¼ ∞. The solid lines are the eikonal predictions as calculated from Eq. (20). Each data point is averaged over
100 configurations, and the standard deviation is taken as the uncertainty bar.
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cutoff λIR ¼ π=L is much smaller than the physical IR
cutoff ΛIR ¼ mg, and the numerical UV cutoff λUV ¼
Nπ=L much higher than that. Thus a suitable grid for
our investigation should satisfy:

π

L
≪ mg ≪ N

π

L
: ð21Þ

Figure 2 represents the total and elastic cross sections as
functions of g2μ at different N for a fixed L. The results
show a convergence with increasing N. We take the
standard deviation of the 100 averaged configurations as
the uncertainty. Such uncertainty is smaller at largerN. This
is not hard to imagine, since with more sites on the lattice,
the fluctuation of each configuration is more likely to
smooth out when averaged over equal number of events.

Most importantly, there is a good agreement between the
tBLFQ results and the eikonal analytical expectations
calculated from Eq. (20). This agreement helps verify
our formalism. The dependence of the cross sections on
the grid size L is also checked and shown in Fig. 3.
The total and elastic cross sections are calculated as
functions of g2μ at different L for a fixed lattice spacing
a ¼ L=N ¼ 6.25 GeV−1. The results show agreement with
the eikonal analytical expectations from Eq. (20). We again
observe that the lattice with a larger number of grids has
smaller uncertainties. The cross sections are not sensitive to
the grid size.
We next show in Fig. 4 the dependence of the cross

sections on the number of layers in the longitudinal
direction, Nη. An interesting “oscillation” pattern is
observed when Nη ¼ 1. At Nη ¼ 1, the source hence the

FIG. 5. The dependence of (a) the total and (b) the elastic cross sections on mg. Parameters for those panels, N ¼ 8, L ¼ 50 GeV−1,
Lη ¼ 50 GeV−1, Nη ¼ 4 and pþ ¼ ∞. The transverse grid parameters introduce numerical IR cutoff λIR ¼ π=L ≈ 0.06 GeV and UV
cutoff λUV ¼ Nπ=L ≈ 0.5 GeV to the momentum space. The physical IR cutoff mg should be inside the numerical range to obtain a
valid result. The solid lines are the eikonal predictions as calculated from Eq. (20). Each data point is averaged over 100 configurations,
and the standard deviation is taken as the uncertainty bar.

FIG. 6. The dependence on pþ of (a) the total and (b) the elastic cross sections at L ¼ 50 GeV−1 andN ¼ 18. The cross sections of the
quark as functions of g2μ for Lη ¼ 50 GeV−1 with Nη ¼ 4. The solid lines are the eikonal predictions (pþ ¼ ∞). Each data point is
averaged over 100 configurations, and the standard deviation is taken as the uncertainty bar.
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gluon field along xþ is constant, this breaks one necessary
ingredient for the CGC field: sources are uncorrelated
along xþ, as in Eq. (7). It follows that in deriving the
analytical expression of the cross section, the contraction of
multiple sources is no longer preserved, causing a non-
trivial “oscillation”. In our calculation, the xþ ¼ ½0; Lη�
duration is divided into Nη layers, each lasting equally for
τ ¼ Lη=Nη. The color charges from different layers belong
to different nucleons, so they are uncorrelated with each
other, as in Eq. (16). Within each layer, the field is constant
along xþ. The continuum limit is restored at Nη → ∞, as
in Eq. (22).
This “oscillation” gets strongly suppressed when

Nη ¼ 2, and for larger Nηð≥ 4Þ, the physical results
converge to the analytical expectation and depend very
little on Nη, as shown in Fig. 4.Z þ∞

−∞
dxþ

Z þ∞

−∞
dyþhρaðxþ; x⊥Þρbðyþ; y⊥Þi

¼ g2μ2δabδ2ðx⃗⊥ − y⃗⊥Þ
Z þ∞

−∞
dxþ

Z þ∞

−∞
dyþ

δk;k0

τ

¼ g2μ2δabδ2ðx⃗⊥ − y⃗⊥Þ
�XNη

k¼1

τ2
�
1

τ

¼ g2μ2δabδ2ðx⃗⊥ − y⃗⊥ÞLη: ð22Þ
Another dependence of the cross sections comes from

the IR cutoff ΛIR ¼ mg. Figure 5 presents the cross sections

evaluated at different mg on the same grid. Thesemg values
are covered by the grid range (see Eq. (21) and the
associated discussion), and the cross sections agree well
with the analytical eikonal expectation. Though not shown
in the figure, we found that when the mg value is not
between the numerical IR and UV cutoffs ½λIR; λUV�, the
results would start to deviate from the expectations.
We have seen that the cross sections in the eikonal limit

agree with the analytical expectations. We now relax the

FIG. 7. The differential cross section of the qA scattering at different g2μ, (a) g2μ ¼ 0.05 GeV3=2, (b) g2μ ¼ 0.14 GeV3=2, and (c; d)
g2μ ¼ 0.49 GeV3=2. The top panels are plotted on a linear scale, and the bottom panels are on a log-log scale. The tBLFQ results are
plotted as empty diamonds (or black stars), and each data point is averaged over 50 events. The vertical dashed line is at the saturation
scaleQ2

s ¼ ðg2μÞ2Lη=ð2π2Þ. LO (NLO) is the leading (next-to leading) order perturbative approximation (see Appendix E). The tBLFQ
results in panels (a-c) are calculated on the transverse lattice of L ¼ 50 GeV−1, and that in panel (d) is evaluated on the lattice of
L ¼ 5 GeV−1 to reveal the large p2⊥ range at the same g2μ ¼ 0.49 GeV3=2 as (c). Other parameters for those tBLFQ results: N ¼ 18,
mg ¼ 0.1 GeV, Lη ¼ 50 GeV−1 and Nη ¼ 4.

FIG. 8. The differential cross section of the qA scattering with
different Nη plotted on (a) linear scale and (b) log-log scale.
The tBLFQ results are plotted as empty diamonds, and each data
point is averaged over 50 events. Parameters for those results:
N ¼ 18, L ¼ 50 GeV−1, mg ¼ 0.1 GeV, Lη ¼ 50 GeV−1 and
g2μ ¼ 0.05 GeV3=2. The vertical dashed line is atQ2

s ¼ ðg2μÞ2Lη=
ð2π2Þ ≈ 0.006 GeV2. LO (NLO) is the leading (next-to leading)
order perturbative approximation (see Appendix E).
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FIG. 10. The evolution of the quark’s transverse coordinate distribution when no source exists—that is, the light-front time evolution
of the wave packet without interactions. The initial state of the quark is distributed asCe−jr⃗⊥j2=ð0.2�50 GeV−1Þ2 , whereC is the normalization
coefficient. From left to right, the transverse coordinate distributions of the quark are shown at a sequential interaction time calculated by
tBLFQ. Parameters in those panels: Lη ¼ 50 GeV−1, Nη ¼ 4, mg ¼ 0.1 GeV, N ¼ 18, L ¼ 50 GeV−1, pþ ¼ 10 GeV.

FIG. 9. The evolution of the quark’s transverse coordinate distribution at different pþ, (a) pþ ¼ ∞, (b; c) pþ ¼ 10 GeV. The initial
state of the quark is distributed as Ce−jr⃗⊥j2=ð0.2�50 GeV−1Þ2 , where C is the normalization coefficient. From left to right, the transverse
coordinate distributions of the quark are shown at a sequential interaction time calculated by tBLFQ. Parameters in those panels:
Lη ¼ 50 GeV−1, Nη ¼ 4, mg ¼ 0.1 GeV, N ¼ 18, L ¼ 50 GeV−1, g2μ ¼ 0.486 GeV−3=2. The result in (a) is identical for each event
with the same parameters. The result in (b) is an single event and could be different for a different event with the same parameters. The
result in (c) is an average of 50 events.
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condition so that we have finite pþ and see if this could
affect the cross section. Figure 6 presents the cross sections
at different pþ values. It turns out that even for very small
pþ, the cross section does not show noticeable differences
from the pþ ¼ ∞ case.
The tBLFQ results of the cross sections agree well with

the analytical eikonal expectations in the eikonal limit. It
also shows good numerical convergences on the various
parameters. To study differences from the eikonal limit, we
will investigate other observables that depend on additional
kinematic variables in what follows.

B. The differential cross sections

The differential cross section dσ=ðd2bd2p⊥Þ is also of
great interest. Convoluted with the quark distribution func-
tion of the proton at the factorization scale, the pþ A →
hþ X cross section can be obtained from the qA cross
section.
In Fig. 7, we present the tBLFQ calculations and

compare with perturbative approximations. The differential
cross section in the eikonal limit is given in Ref. [1], and we

derive its perturbative approximations as power series
expansions of Q2

s in Appendix E. In the large p⊥ region,
i.e., p⊥ >> Qs, the tBLFQ results agree with the leading
order (LO) and next-to-leading order (NLO) perturbative
calculations, whereas at small p⊥ region, the perturbation
approximation deviates.
We also check the dependence of the differential cross

section on the grid parameters, N and L. Like the total and
the elastic cross sections, the dependence is not noticeable
for grids covering the physical range. The result is also not
sensitive to the longitudinal resolution, Nη, as in Fig. 8.
Unlike the cross sections, no “oscillation” pattern appears
even at Nη ¼ 1.

C. The evolution of the quark state

By carrying out the explicit time-evolution of the quark,
we are able to access the intermediate information and
investigate the process of the quark-nucleus scattering. In
particular, we study how the quark evolves in two aspects,
the transverse coordinate space and the color space.

FIG. 11. The evolution of the expectation value of the quark’s transverse coordinate at different pþ and at different color charge
densities. The initial state of the quark is distributed as Ce−jr⃗⊥j2=ð0.2�50 GeV−1Þ2 , where C is the normalization coefficient. From left to right,
the first panel is calculated without an external field, the following three panels are calculated with increasing color charge density g2μ.
The results are averaged over 10 events. Parameters in those panels: Lη ¼ 50 GeV−1, Nη ¼ 4,mg ¼ 0.1 GeV, N ¼ 18, L ¼ 50 GeV−1.

FIG. 12. The evolution of the expectation value of the quark’s transverse coordinate at different lattice sizes and at different color
charge densities with a fixed lattice spacing of a ¼ L=N ¼ 5 GeV−1. Parameters in those panels: Lη ¼ 50 GeV−1, Nη ¼ 4,
mg ¼ 0.1 GeV, pþ ¼ 10 GeV. The initial state of the quark is distributed as Ce−jr⃗⊥j2=ð0.2�50 GeV−1Þ2 , where C is the normalization
coefficient. From left to right, the first panel is calculated without an external field, the following three panels are calculated with
increasing color charge density g2μ. The results are averaged over 10 events.
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To explore how the quark state evolves in the transverse
coordinate space, we take the initial state of the quark
to be a Gaussian packet Ce−jr⃗⊥j2=r20 , where r0 ¼ 0.2L ¼
0.2 � 50 GeV−1 ¼ 1.97 fm and C is the normalization
coefficient. This chosen Gaussian packet has a rather small
width, such that the quark is still relatively localized though
not pointlike. Snapshots of the quark’s transverse coordinate

distribution at a sequence of light-front time are presented in
Fig. 9. In the eikonal limit, i.e., pþ ¼ ∞, the quark does not
change its transverse location. But with finite values of pþ,
the quark undergoes changes in its transverse coordinate
distribution. In the plot of a single event as shown inFig. 9(b),
the quark dissipateswith a randompattern,which is related to
the randomly generated field. In the plot of averaged event as

FIG. 13. The evolution of the expectation value of the quark’s transverse coordinate at four different values of the grid numberN and at
different color charge densities (g2μ) with a fixed lattice size of L ¼ 50 GeV−1. The initial state of the quark is Ce−jr⃗⊥j2=ð0.2LÞ2 , where C
is the normalization coefficient. For both (a) and (b), from left to right, the first panel is calculated without an external field, the following
three panels are calculated with increasing color charge density g2μ. In (b), we impose a UV cutoff when solving the gluon field so that
Ãðk⃗⊥Þ ¼ 0 for jk⃗⊥j ≥ ΛUV ¼ 0.2 GeV. The results are averaged over 10 events. Parameters in those panels: Lη ¼ 50 GeV−1, Nη ¼ 4,
mg ¼ 0.1 GeV, pþ ¼ 10 GeV.

FIG. 14. The evolution of the expectation value of the quark’s transverse coordinate with different quark masses and at different color
charge densities. Parameters in those panels: L ¼ 50 GeV−1, N ¼ 18, Lη ¼ 50 GeV−1, Nη ¼ 4, mg ¼ 0.1 GeV, pþ ¼ 10 GeV. The
initial state of the quark is distributed as Ce−jr⃗⊥j2=ð0.2�50 GeV−1Þ2 , where C is the normalization coefficient. From left to right, the first panel
is calculated without an external field, the following three panels are calculated with increasing color charge density g2μ. The results are
averaged over 10 events.
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shown in Fig. 9(c), the quark spreads out more evenly, as
expected by averaging the field configurations.
We know that even without an external field, the quark

should dissipate in the coordinate space with a finite pþ.
For comparison, Fig. 10 shows the evolution of the quark’s
transverse coordinate distribution when no external field
exists. The quark spreads out slower with the expected
simple isotropic pattern compared with cases where exter-
nal field exists.
To study the effect of the external field quantitatively, we

calculate the expectation value of the quark’s transverse
coordinate jr⃗⊥j in cases with and without external fields.
We first show how the energy scale of the quark, pþ, and

the color charge density, g2μ, affect the evolution. Figure 11
presents the expectation value of the quark’s transverse
coordinate as a function of light-front time at various pþ
and for a range of color charge densities. It shows that the
CGC field promotes the quark’s dissipation in the trans-
verse plane compared with the no-field case (g2μ ¼ 0). In
concert with simple intuition, the quark spreads faster with
smaller pþ and larger color charge density.
We also check the sensitivity of the quark’s evolution to

grid parameters at different color charge densities. Results at
different lattice size L and at different color charge densities

with a fixed lattice spacing of a ¼ L=N ¼ 5 GeV−1 ¼
0.99 fm are compared in Fig. 12. We find that the evolution
is not very sensitive to the lattice size described by these
parameters over the range of values shown.
We study the dependence on the grid number N at a

selection of external field strengths in Fig. 13. When the
external field is absent or weak, the evolution of jr⊥j agrees
among these cases with different N. However, with a strong
external field, the evolution of jr⊥j diverges, as seen in
Fig. 13(a). This divergence is expected from the ultra-
violetly divergent gluon field, as discussed in text asso-
ciated with Eq. (10). We verify this source of divergence by
imposing an explicit UV cutoff on the gluon field. The
results become better converged, that is independent ofN at
the stronger field strength, with the imposed UV cutoff, as
presented in Fig. 13(b).
The quark admits changes in the transverse coordinate at

finite pþ, and this is achieved through the phase factor
e�i1

2
p−xþ with p− ¼ ðp⃗2⊥ þm2

qÞ=pþ. One might then expect
that using different values of the quark mass could influence
this effect. However, since pþ does not change through
the interaction, �m2

q=pþ is the same for all basis states

and therefore, ei
1
2
m2

q=pþxþ and e−i
1
2
m2

q=pþxþ cancel out in the

FIG. 15. The evolution of the quark’s distribution in the color space at a selection of color charge densities with different pþ,
(a) pþ ¼ ∞ and (b) pþ ¼ 10 GeV. The results are averaged over 50 events. Parameters in those panels: N ¼ 18, L ¼ 50 GeV−1,
Lη ¼ 50 GeV−1, Nη ¼ 4, mg ¼ 0.1 GeV. For both (a) and (b), from left to right, the first panel is calculated without an external field,
the following three panels are calculated with increasing color charge density g2μ. The initial state of the quark is a single color state
(c ¼ 1) with space distribution as Ce−jr⃗⊥j2=ð0.2LÞ2 , where C is the normalization coefficient. The dashed line marks the average
probability of the three colors: 0.33.
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phase factors, leaving VIðxþÞ¼ ei
1
2
P−
QCDx

þ
VðxþÞe−i12P−

QCDx
þ ¼

ei
1
2
p⃗2⊥xþ=pþ

VðxþÞe−i12p⃗2⊥xþ=pþ
(see Eq. (3) and associated text).

We show that the role of thequarkmass is indeedminimal at a
selection of color charge densities by usingmq ¼ 0.05, 0.15,
0.3 and 4.5 GeV in Fig. 14.

In the color space, the quark evolves toward a uniformly
distributed state, jψcj2 → 1=3; ðc ¼ 1; 2; 3Þ. This is shown
in Fig. 15. The quark evolves faster in the color space with
larger color charge density g2μ as may be expected but does
not show significant dependence on pþ when comparing
the pþ ¼ ∞ and pþ ¼ 10 GeV results.

FIG. 16. The transverse profiles of the CGC field and related quantities. (a–c): single-event source charges scaled by profile functions
plotted on the transverse plane r⃗⊥. The shapes of the adopted profiles are sketched above each panel for reference. (d): the total cross
sections using the three different profiles. The initial state of the quark is set as p⃗⊥ ¼ 0⃗⊥. The solid line is the eikonal prediction with the
uniform profile according to Eq. (20). (e): the differential cross sections using the three different profiles. The solid lines are the
perturbative approximations with the uniform profile, see the caption of Fig. 7. For this result, we choose the initial state of the quark as
p⃗⊥ ¼ 0⃗⊥ and the color charge density of value g2μ ¼ 0.14 GeV3=2. (f): the evolution of the expectation value of the quark’s transverse
coordinate with different profiles and at a selection of color charge densities. The initial state of the quark is Ce−jr⃗⊥j2=ð0.2LÞ2 , where C is
the normalization coefficient. The results are averaged over 100 events. Parameters for those panels: N ¼ 18, L ¼ 50 GeV−1,
Lη ¼ 50 GeV−1, Nη ¼ 4, mg ¼ 0.1 GeV, pþ ¼ 10 GeV.
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D. Profiled CGC field

The CGC field we adopt so far is uniform in the
transverse plane. In reality, the field generated from a large
nucleus should be stronger at the center than on the edges.
We take this into consideration by introducing a Gaussian
profile and a Woods-Saxon profile to scale the CGC field in
the transverse coordinate space.
In the Gaussian form, the scale factor reads

fGaussianðr⃗⊥Þ ¼ e−ðr⊥=R0Þ2 ; ð23Þ

where R0 is taken as the nuclear radius. For the gold
nucleus, R0 ¼ 37 GeV−1.
In the Woods-Saxon form, the scale factor reads

fWoods-Saxonðr⃗⊥Þ ¼
1

1þ eðr⊥−R0Þ=s : ð24Þ

We use the usual parametrization, where R0 is taken as the
nuclear radius and s ¼ 3.2 GeV−1 is the surface diffuse-
ness [47].
We revisit the quark’s evolution, the cross section and the

p⊥-dependent differential cross section in Fig. 16.
To study the total cross sections with different profiles,

we choose the initial state of the quark as p⃗⊥ ¼ 0⃗⊥, such
that the quark is distributed on the entire transverse space.
We find that the total cross sections are smaller with the
Gaussian and Woods-Saxon profiles where the background
fields are also smaller overall, as shown in Fig. 16(d). Note
that we use σtot=L2 as the total cross section, which is
equivalent to the average of dσtot=db over the entire
transverse space with area L2. For the uniform profile,
σtot=L2 ¼ dσtot=db, since the color charge density g2μ is a
constant on the transverse plane. But for both the Gaussian
and the Woods-Saxon profiles, the cross section as a
function of the impact parameter b is not constant. The
tBLFQ result is computed in the transverse momentum
space which automatically sums over the contributions in
the entire transverse coordinate space, and gives σtot=L2.
The differential cross section is more peaked around

p⊥ ¼ 0 when the fields are scaled by these two profiles, as
shown in Fig. 16(e). Considering that the initial state is
p⃗⊥ ¼ 0⃗⊥, the profiled fields which are reduced in strength,
make less change to the quark state compared to the
uniform field.
However, the evolution of jr⊥j does not seem to be

sensitive to the profiles, as shown in Fig. 16(f). This is
likely for the reason that during the evolution process the
quark state is still constrained in the central area where all
three profiles have similar strengths of the field.

IV. CONCLUSIONS AND OUTLOOK

In this work, we applied the tBLFQ formalism to a QCD
problem for the first time, the quark-nucleus scattering. We

are able to access the wave function of the quark at any
intermediate time during the evolution. This provides us
with an opportunity to carry out detailed studies of the time-
dependent process.
Our results of the total and differential cross sections are

in good agreement with the analytical expectations under
the eikonal condition pþ ¼ ∞. In the sub-eikonal case with
a finite pþ, the cross sections do not show noticeable
deviation from the eikonal limit. However, there are clear
sub-eikonal effects shown from the distribution of the
quark’s transverse coordinate. At finite pþ, the quark
admits changes in its transverse coordinate distribution.
We aim to study the implication on transverse momentum
distribution in particle production in pA collision in the
future.
We used the single quark sector to carry out the

calculations as an initial investigation. In general, the single
dressed quark state expands in the Fock space,

jqidressed ¼ ajqi þ bjqgi þ cjqggi þ djqqq̄i þ � � � : ð25Þ

This includes the bare quark as well as its dressed states
with gluons and sea quarks. With the parameter sensitivities
established in the present work, we are enabled to extend
the Fock space to jqi þ jqgi and study gluon emission and
absorption during the collision process. The QCD
Lagrangian will then be restored by including the dynami-
cal gluon in Eq. (1).
In this work, we take the MV model as the background

field of the nucleus, and keep the dominant field compo-
nent (A−) in our calculation. In future works, we also hope
to include the transverse component of the color field (A⊥)
and further investigate its role in the evolution process, for
example, the effect on the spin of the quark.
We foresee more applications of the tBLFQ approach to

scattering processes in the near future. The work on quark-
nucleus scattering formulated in this paper could be
extended to the qq̄-nucleus and gg-nucleus scatterings,
which are the basic ingredients of any cross section at high
energies. We also look forward to investigating the particle
production and evolution in the glasma field created by
heavy-ion collisions.
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APPENDIX A: CONVENTIONS

The light-front coordinates are defined as
ðxþ; x−; x1; x2Þ, where xþ ¼ x0 þ x3 is the light-front time,
x− ¼ x0 − x3 is the longitudinal coordinate and x⃗⊥ ¼
ðx1; x2Þ are the transverse coordinates. Nonvanishing ele-
ments of the metric tensor are

gþ−¼g−þ¼2; gþ−¼g−þ¼1

2
; g11¼ g22¼−1: ðA1Þ

The Dirac matrices are four unitary traceless 4 × 4 matri-
ces:

γ0 ¼ β ¼
�
0 −i
i 0

�
; γþ ¼

�
0 0

2i 0

�
;

γ− ¼
�
0 −2i
0 0

�
; γi ¼

�
−iσ̂i 0

0 iσ̂i

�
; ðA2Þ

where,

σ̂1 ¼ σ2 ¼
�
0 −i
i 0

�
; σ̂2¼−σ1¼

�
0 −1
−1 0

�
: ðA3Þ

We use the following spinor representation,

u

�
p; λ ¼ 1

2

�
¼ 1ffiffiffiffiffiffi

pþp ðpþ; 0; imq; ipx − pyÞ⊺;

u

�
p; λ ¼ −

1

2

�
¼ 1ffiffiffiffiffiffi

pþp ð0; pþ;−ipx − py; imqÞ⊺: ðA4Þ

APPENDIX B: THE INTERACTION TIME

To estimate Lη, consider the quark moving along
the positive-z direction with speed βq and the nucleus
moving along the negative-z direction with speed −βA, as
illustrated in Fig. 1. The starting point of the quark-nucleus
interaction is at tstart ¼ 0, zstart ¼ 0, i.e., xþstart ¼ 0.

The end point of their interaction is at tend ¼
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ βAβqÞ2=ðβA þ βqÞ2 − 1

q
; zend ¼ βqtend. Thereby,

Lη ¼ Δxþ ¼ ðtend þ zendÞ − ðtstart þ zstartÞ

¼ dðβq þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − β2AÞð1 − β2qÞ

q
βA þ βq

: ðB1Þ

d is thewidth of the nucleus in its rest frame. If we consider a
gold beam at the RHIC energy of

ffiffiffi
s

p ¼ 100A GeV, and
estimate its velocity according to γA ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2A

p
¼ffiffiffi

s
p

=m ¼ 100 with m the mass of gold nucleus, thereby
βA ¼ 0.9999. Its restwidth for a central impact isd ¼ 14 fm.
Assuming that the quark has the same speed, i.e., βq ¼ βA,
we get Δxþ ¼ 0.0014 fm, which is small just as we
expected. However the color field generated by the nucleus
is identified as the small momentum degrees of freedom in
the nucleus, and should admit a smaller longitudinalmomen-
tum scaled by Bjorken-x, p− ¼ xP−. The resulting Lorentz
factor is also scaled as γ ¼ xγA. At x ¼ 0.1,Δxþ ¼ 0.14 fm,
and at x ¼ 0.012, Δxþ ≈ 14 fm. We therefore take Lη ¼
50 GeV−1 ≈ 10 fm as the duration of the color field along xþ
in our calculations.

APPENDIX C: DISCRETIZATION

In the numerical calculation, the fields are SU(3)
matrices on the sites of a 3-dimensional discrete space.
The 2-dimensional transverse space is a lattice extending
from −L to L for each side. The number of transverse
lattice sites is 2N, giving the lattice spacing a ¼ L=N. For
any vector in this space, r⃗⊥ ¼ ðr1; r2Þ,

ri ¼ niaði ¼ 1; 2Þ; ni ¼ −N;−N þ 1;…; N − 1:

This space satisfies periodic boundary conditions. It fol-
lows that in the momentum space, for any vector,
p⃗⊥ ¼ ðp1; p2Þ,

pi ¼ kidpði ¼ 1; 2Þ; ki ¼ −N;−N þ 1;…; N − 1;

where dp ≡ π=L is the resolution in momentum space. The
momentum space extends from −π=a to π=a.
The conversion of the integration is

Z
d2p⃗⊥
ð2πÞ2 →

1

ð2LÞ2
X
k1;k2

;
Z

d2r⃗⊥ → a2
X
n1;n2

: ðC1Þ

The Dirac delta is converted to the Kronecker delta as
follows

ULTRARELATIVISTIC QUARK-NUCLEUS SCATTERING IN A … PHYS. REV. D 101, 076016 (2020)

076016-15



Z
d2r⃗⊥e−ip⃗⊥·x⃗⊥ ¼ ð2πÞ2δ2ðp⃗⊥Þ

→
X
n1;n2

a2e−iðn1k1þn2k2Þπ=N ¼ ð2LÞ2δk1;0δk2;0; ðC2Þ

and

Z
d2p⃗⊥eip⃗⊥·x⃗⊥ ¼ ð2πÞ2δ2ðr⃗⊥Þ

→
X
k1;k2

1

ð2LÞ2 e
iðn1k1þn2k2Þπ=N ¼ 1

a2
δn1;0δn2;0: ðC3Þ

The (inverse-)Fourier transformation becomes

fðn1; n2Þ ¼
1

ð2LÞ2
X
k1;k2

eiðn1k1þn2k2Þπ=Nf̃ðk1; k2Þ;

f̃ðk1; k2Þ ¼
X
n1;n2

a2e−iðn1k1þn2k2Þπ=Nfðn1; n2Þ: ðC4Þ

APPENDIX D: THE EIKONAL LIMIT
OF THE INTERACTION MATRIX

In the eikonal approximation, the momentum of the
quark is dominated by pþ ≫ p−; p⊥ and correspondingly
for the target P− ≫ Pþ; P⊥. This is usually simplified
as pμ ¼ ðpþ ≈

ffiffiffi
s

p
; p− ¼ 0; p⊥ ¼ 0Þ and Pμ ¼ ðPþ ¼ 0;

P− ≈
ffiffiffi
s

p
; P⊥ ¼ 0Þ. In such circumstances, the interaction

picture and the Schrödinger picture become equivalent,
VIðxþÞ ¼ VðxþÞ. In our calculation, the field exists during
xþ ¼ ½0; Lη�. The evolution of the quark can be written in
terms of the Wilson line,

Uð0; Lη; x⃗⊥Þ≡ T þ exp

�
−ig

Z
Lη

0

dxþA−
a ðx⃗⊥; xþÞTa

�
:

ðD1Þ
The physical observables such as the cross section could be
determined from the configuration average of the Wilson
line, as hUð0; Lη; x⃗⊥Þi. The Taylor expansion of the time-
ordered exponential function leads to

hUð0; Lη; x⃗⊥Þi ¼
X∞
n¼0

ð−igÞn
Z Yn

i¼1

d2zi⊥G0ðx⊥ − zi⊥Þ
Z

Lη

0

dzþ1
Z

Lη

zþ
1

dzþ2 � � �
Z

Lη

zþn−1

dzþn T þhρa1ðzþ1 ; z1⊥Þρa2ðzþ2 ; z2⊥Þ

� � � ρanðzþn ; zn⊥ÞiTa1Ta2 � � �Tan; ðD2Þ

whereG0 is given in Eq. (10). According to the correlation function of ρa given in Eq. (7), the configuration average for the
production of odd number charge densities hρ1ρ2 � � � ρ2jþ1i is zero; for even number cases hρ1ρ2 � � � ρ2ji, only the adjacent
contractions survive under the time-ordered integrals.

hρa1ðz−1 ; z1⊥Þ � � � ρanðz−n ; zn⊥Þi → hρa1ðz−1 ; z1⊥Þρa2ðz−2 ; z2⊥Þihρa3ðz−3 ; z3⊥Þρa4ðz−4 ; z4⊥Þi
� � � hρan−1ðz−n−1; zn−1⊥Þρanðz−n ; zn⊥Þi: ðD3Þ

The integral on each of the two-point charge correlators can be carried out separately, and then the Wilson line can be
recollected into an exponential,

hUð0; Lη; x⃗⊥Þi ¼
X∞
n¼0

ð−ig2Þn
Z Yn=2

i¼1

d2z2i⊥G2
0ðx⃗⊥ − z⃗2i⊥Þ

1

2

Z
Lη

0

dz−1 μ
2ðz−1 Þ

1

2

Z
Lη

z−
1

dz−3 μ
2ðz−3 Þ

� � � 1
2

Z
Lη

z−n−3

dz−n−1μ
2ðz−n−1ÞT2

a1T
2
a3 � � �T2

an−1

¼
X∞
n¼0

1

ðn=2Þ!
�
−g4

2

Z
d2z⊥G2

0ðx⊥ − z⊥Þ
Z

Lη

0

dz−μ2ðz−ÞT2
a

�
n=2

¼ exp

�
−g4μ2ðN2

c − 1ÞLη

16πm2
gNc

I3

�
: ðD4Þ

Note that I3 is the identity matrix in the color space.
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APPENDIX E: PERTURBATIVE APPROXIMATIONS OF THE DIFFERENTIAL CROSS SECTION IN
THE EIKONAL LIMIT

In the eikonal limit, the differential cross section is given by [1],

dσtot
d2bd2qt

¼ 1

ð2πÞ2
Z

d2rte−iqtrt ½e−2πQ
2
s=Nc

R
d2kt=k4t ð1−eiktrt Þ − 2e−π

2Q2
s=Ncm2

g þ 1�

¼ 1

ð2πÞ2
Z

d2rte−iqtrte
−2πQ2

s=Nc

R
d2kt=k4t ð1−eiktrt Þ þ δ2ðqtÞð−2e−π2Q2

s=Ncm2
g þ 1Þ: ðE1Þ

Note that qt is the difference between the quark’s initial and final transverse momentum. Therefore for numerical
calculation, it is convenient to study the differential cross section with the quark’s initial state as p⊥ ¼ 0, and this is also
what we did in this work.
We implement an infrared cutoff mg on the integral of the transverse momentum kt, such that

Z
d2kt

1

k4t
¼ 2π

Z
∞

0

dkt
1

k3t
→ 2π

Z
∞

mg

dkt
1

k3t
¼ π

m2
g
→ 2π

Z
∞

0

dkt
1

ðkt þmgÞ3
¼ π

m2
g
; ðE2Þ

and

Z
d2kt

1

k4t ðqt − ktÞ4
→

Z
∞

0

dkt
2πkt

ðkt þmgÞ4ðjqt − ktj þmgÞ4
: ðE3Þ

The first term of Eq. (E1) contributes to qt > 0 region. Expand the exponential over Q2
s to its second order,

1

ð2πÞ2
Z

d2rte−iqtrte
−2πQ2

s=Nc

R
d2kt=k4t ð1−eiktrt Þ

¼ 1

ð2πÞ2
Z

d2rte−iqtrt
�
1 −

2πQ2
s

Nc

Z
d2kt
k4t

ð1 − eiktrtÞ þ 1

2

�
−
2πQ2

s

Nc

Z
d2kt
k4t

ð1 − eiktrtÞ
�
2

þ � � �
�
: ðE4Þ

The second term of Eq. (E1) contributes to qt ¼ 0. We also expand the exponential over Q2
s to its second order,

δ2ðqtÞð−2e−π2Q2
s=Ncm2

g þ 1Þ ¼ δ2ðqtÞ
��

−2
�
1 −

π2Q2
s

Ncm2
g
þ 1

2

�
2π2Q2

s

Ncm2
g

�
2

þ � � �
�
þ 1

�
ðE5Þ

The approximation up to the leading order (LO) of Q2
s is

dσtot
d2bd2qt

����
LO

¼ 2πQ2
s

Ncq4t
: ðE6Þ

The approximation up to the next-to-leading order (NLO) is
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dσtot
d2bd2qt

����
LOþNLO

¼ 1

2

�
2π2Q2

s

Ncm2
g

�
2

δ2ðqtÞ þ
�
2πQ2

s

Nc
−
�
2πQ2

s

Nc

�
2 π

mg

�
1

q4t
þ 1

2ð2πÞ2
�
2πQ2

s

Nc

�
2 1

3m3
gq7t ðmg þ qtÞ2ð2mg þ qtÞ7

× π

�
15360m13

g log

�
mg þ qt

mg

�
− 15360m12

g qt þ 76800m12
g qt log

�
mg þ qt

mg

�
− 69120m11

g q2t

þ 161280m11
g q2t log

�
mg þ qt

mg

�
− 128000m10

g q3t þ 180480m10
g q3t log

�
mg þ qt

mg

�
− 121600m9

gq4t

þ 107520m9
gq4t log

�
mg þ qt

mg

�
− 54912m8

gq5t þ 20160m8
gq5t log

�
mg þ qt

mg

�

þ 960m7
gq6t − 16800m7

gq6t log

�
mg þ qt

mg

�
þ 14528m6

gq7t − 14160m6
gq7t log

�
mg þ qt

mg

�
þ 7808m5

gq8t

− 4740m5
gq8t log

�
mg þ qt

mg

�
þ 2380m4

gq9t − 600m4
gq9t log

�
mg þ qt

mg

�
þ 814m3

gq10t

þ 60m3
gq10t log

�
mg þ qt

mg

�
þ 280m2

gq11t þ 49mgq12t þ 4q13t

�
: ðE7Þ
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