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Novelty detection is the machine learning task to recognize data, which belong to an unknown pattern.
Complementary to supervised learning, it allows us to analyze data model-independently. We demonstrate
the potential role of novelty detection in collider physics, using autoencoder-based deep neural network.
Explicitly, we develop a set of density-based novelty evaluators, which are sensitive to the clustering of
unknown-pattern testing data or new-physics signal events, for the design of detection algorithms. We also
explore the influence of the known-pattern data fluctuations, arising from nonsignal regions, on detection
sensitivity. Strategies to address it are proposed. The algorithms are applied to detecting fermionic ditop
partner and resonant ditop productions at LHC, and exotic Higgs decays of two specific modes at a future
eþe− collider. With parton-level analysis, we conclude that potentially the new-physics benchmarks can be
recognized with high efficiency.
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I. INTRODUCTION

Since the early developments in the 1950s [1], machine
learning (ML) has evolved into a science addressing various
big data problems. The techniques developed for ML, such
as decision tree learning [2] and artificial neural networks
(ANN) [3], allow us to train computers in order to perform
specific tasks usually deemed to be complex for handwoven
algorithms. For supervised learning, the algorithm is first
trained on labeled data, and then to classify testing data into
the categories defined during training. In contrast, in semi-
supervised and unsupervised learning, where partially
labeled or unlabeled data is provided, the algorithm is
expected to find the relevant patterns unassisted.
The last decade has seen a rapid progress in ML

techniques, in particular the development of deep ANN.
A deep ANN is a multilayered network of threshold
units [4]. Each unit computes only a simple nonlinear
function of its inputs, which allows each layer to represent a
certain level of relevant features. Unlike traditional ML
techniques (e.g., boosted decision trees) which rely heavily

on expert-designed features in order to reduce the dimen-
sionality of the problem, deep ANN automatically extract
pertinent features from data, enabling data-mining without
prior assumptions. Fueled by vast amounts of big data and
the fast development in training techniques and parallel
computing architectures, modern deep learning systems
have achieved major successes in computer vision [5],
speech recognition [6], natural language processing [7],
and have recently emerged as a promising tool for scientific
research [8–11], where the plethora of experimental data
presents a challenge for insightful analysis.
High energy physics (HEP) is a big data science and has a

long history of using supervised ML for data analysis.
Recently, pioneering works have demonstrated the capabil-
ity of deep ANN in understanding jet substructure [12–15]
and the identification of particles [16] or even whole signal
signatures (see e.g., [17], where weakened supervised
learning is applied). However, the primary goal of the
HEP experiments is to detect predicted or unpredicted
physics beyond the Standard Model (BSM) in order to
establish the underlying fundamental laws of nature.Despite
its significant role in current data analysis, supervised ML
techniques suffer from the model dependence introduced
during training. This problem can potentially be addressed
by the semi-supervised/unsupervised techniques developed
for novelty detection (for a review see, e.g., [18]). Novelty
detection is the ML task to recognize data belonging to an
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unknown pattern. If being interpreted as novel signal, BSM
physics could be detected without specifying an underlying
theory during data analysis.Hence, a combination of novelty
detection and supervised ML may lay out a framework for
the future HEP data analysis.
Some preliminary and at least partially related efforts

have been made at jet [19,20] and event [21–25] level. For
novelty detection with given feature representation, its
sensitivity depends crucially on the performance of novelty
evaluators. Well-designed evaluators will allow to evaluate
the data novelty efficiently and precisely. As a matter of fact
the design of novelty evaluators or the relevant test statistics
defines the frontier of novelty detection [18]. In this paper,
we propose a set of density-based novelty evaluators. In
contrast to traditional density-based ones, which only
quantify isolation of testing data from the known patterns,
the new novelty evaluators are sensitive to the clustering of
testing data. On this basis, we design algorithms for novelty
detection using an autoencoder, which are subsequently
applied for detecting several BSM benchmarks at LHC and
future eþe− colliders.

II. ALGORITHMS

Novelty detection using a deepANNcan be separated into
three steps: (1) feature learning, (2) dimensional reduction,
(3) novelty evaluation. During the first step the ANN is
trained under supervision, using labeled known patterns.
The nodes of the trained ANN contain the information
gathered for classification and constitute the feature space,
which has typically a large dimension. In order to reduce the
sparse error and to improve the efficiency of the analysis, one
removes the irrelevant features by dimensional reduction,
which can be implemented using an autoencoder [26]. An
autoencoder is an ANN with identical number of nodes for
input and output layers and fewer nodes for hidden layers. Its
loss-function measures the difference between input and
output, defined as the reconstruction error kx − x0k2. Here x
and x0 are the vectors of input and output nodes, respectively.
Hence the autoencoder learns unsupervised how to recon-
struct its input. This allows it to form a submanifold in the
full feature space. Afterwards, the novelty of testing data is
evaluated, for the final significance analysis. The algorithm
is shown in Fig. 1. For the HEP data analysis, the data with
known and unknown patterns can be interpreted as SM
background and BSM signal, respectively.
We generate Monte Carlo data using MADGRAPH5_

aMC@NLO [27] and rely on Keras [28] (TensorFlow [29]-
based) for the ANN construction. For the supervised
classification of events with n visible-particle four-
momenta (which we internally normalize by 200 GeV)
and l labeled patterns we use an ANN with 4n input nodes,
l output nodes, and three hidden layers with 30, 30 and 10
nodes, respectively. We use Nesterov’s accelerated gradient
descent optimizer [30] with a learning rate of 0.3, a learning

momentum of 0.99 and a decay rate of 10−4. The batch size
is fixed to be 30 and the loss function is the categorical
cross entropy [31,32]. The collection of all nodes constitute
the feature space with dimension 4nþ 30þ 30þ 10þ l.
This ensures that it contains the nonlinear information
learned from classification. We normalize the axes of the
feature space to ½−1; 1� and use tanh as activation function
for the autoencoder. Finally, an autoencoder consisting of
five hidden layers with 40, 20, 8, 20, and 40 nodes,
respectively, and a learning rate of 2.0 projects this feature
space onto an eight-dimensional sub-space. We have
checked that the results of all ANNs are stable against
variations in the numbers of hidden layers and nodes.

III. NOVELTY EVALUATION

Novelty evaluation of testing data is a crucial step for
novelty detection. Various approaches have been developed
in the past decades [18]. For nontime series data, one of the
most popular approaches is density-based [33], in which a
local outlier factor (LOF), i.e., the ratio of the local density
of a given testing data and the local densities of its
neighbors, is proposed as a novelty measure. Explicitly,
this traditional measure is [34,35]

Δtrad ¼
dtrain − hd0traini
hd02traini1=2

; ð1Þ

here dtrain is the mean distance of a testing data to its k
nearest neighbors, hd0traini is the average of the mean
distances defined for its k nearest neighbors, and
hd02traini1=2 is the standard deviation of the latter. The
subscript of “train” indicates that all quantities are defined
with respect to the training dataset. We calculate hd02traini1=2
using the method suggested in [34,35]. The probabilistic
novelty evaluator can be defined as the cumulative

FIG. 1. Novelty detection algorithm. The training and testing
phases are marked in blue and red, respectively. Datasets,
algorithm and probabilities are indicated by rectangular, elliptic,
and plain nodes, respectively. The information gathered during
training and used for testing is marked by dashed red arrows. For
clarity we have limited the number of labeled known patterns cl
to two. di denotes testing data with known and unknown patterns.
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distribution function Otrad ¼ 1
2
ð1þ erf Δtrad

c
ffiffi
2

p Þ. Here c is a

normalization factor, defined as the root mean square of the
measure values for the testing dataset with known pattern
only. This evaluator measures the isolation of testing data
from training data. A testing data located away from or at
the tail of the training data distribution thus tends to be
scored high by Otrad [33,34].
However, Otrad is blind to the clustering of testing data

which generically exists in the BSM datasets and may
result in nontrivial structures such as resonance. In order to
utilize this feature, we introduce a measure:

Δnew ¼ d−mtest − d−mtrain
d−m=2
train

; ð2Þ

with m being the dimension of the feature space where the
novelty of data is evaluated. In the analysis pursued below,
the novelty of data will be evaluated in the eight dimen-
sional latent space of the autoencoder, and hence m ¼ 8.
dtest is the mean distance of the testing data to its k nearest
neighbors in the testing dataset, whereas dtrain is the SM
prediction of the same, which can be approximately
calculated using the training dataset. To make this measure
meaningful in the case where the training and testing

datasets are different in size, we require k to scale with
the size or the corresponding luminosity of the datasets,
respectively. This measure is reminiscent of the test statistic
introduced in [36,37], where similar idea is employed for
estimating the divergence of data distribution. As Δnew is
approximately ∝ Sffiffiffi

B
p , with S and B being the numbers of

signal and background events in a local bin with unit
volume, this measure can be interpreted as the significance
of discovery (up to a calibration constant) for this local bin.
Onew is defined in a similar way asOtrad does. To compare

the performance ofOtrad and Onew in probing the clustering,
we introduce a toy model, where the data resides in a two-
dimensional space. The known pattern is a Gaussian distri-
bution centered around the origin N ð0⃗; IÞ, while the
unknown pattern is an overlapping narrow Gaussian distri-
bution shifted away from the origin N ðð0.5; 0.5ÞT; 0.1IÞ.
The training dataset consists of104 eventswith knownpattern
[cf. Fig. 2(a)], while the testing dataset contains from each,
known and unknown pattern, 104 events [cf. Fig. 2(b)]. As
shown in Fig. 2(c) and Fig. 2(d), the clustering of the
unknown-pattern data, although being hidden from Otrad,
is picked-up by Onew.
The detection based on Δnew (or Onew) however may

suffer from fluctuations of the known-pattern testing data in

FIG. 2. Comparison between traditional and new novelty evaluators. The toy-data is shown in panels (a) and (b), while the novelty
response is given in (c) and (d).
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the nonsignal regions, via the 1=dmtest term in Eq. (2). While
Δnew is expected to be zero if the data only consists of
events with known patterns, the fluctuations result in
nonzero values, since the measure picks up local data
excess. This in essence is a kind of look elsewhere effect
(LEE). The fluctuations in 1=dmtrain on the other hand
can be neglected, as long as the training dataset used for

calculating 1=dmtrain is much larger than the testing one, with
k being properly scaled.
The influence of fluctuations on detection sensitivity can

be compensated for as the luminosity L increases, if k
scales with L. In this case more and more data are used to
calculate 1=dmtest in the local bin which is barely changed.
This compensation is approximately predicted by the

FIG. 3. Dependence of theΔnew response on k, for the testing data with known patterns only. While the training dataset is composed of
50000 points, the testing dataset consists of 10000, 5000, 2500, 1250 and 625 points, with k scaling linearly as 100, 50, 25, 12 and 6,
respectively. Both datasets are Gaussian. Panel (a) shows the Δnew response in all cases. Panel (b) shows that its standard deviation σΔnew

scales linearly with 1=
ffiffiffi
k

p
or 1=

ffiffiffiffi
L

p
, as predicted by the CLT.
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FIG. 4. Normalized data responses to the novelty evaluators Onew (a), Otrad (b), and Ocomb (c), and significance performance of these
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the reference distribution of novelty response for the significance calculation.
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central limit theorem (CLT), which states in this context
that the standard deviation of the Δnew response scales with
1=

ffiffiffi
k

p
or 1=

ffiffiffiffi
L

p
, for the testing data with known patterns

only. We show this in Fig 3, using the known-pattern
Gaussian datasets defined before. Indeed, as the number of
testing data increases, Δnew becomes less and less sensitive
to the fluctuations [see Fig. 3(a)].
If the fluctuations are not fully compensated for by

luminosity, the known-pattern testing data could still be
scored high by Δnew, and hence diminish the detection
sensitivity. This is often true if Stot=Btot is small, as typically
occurs in the analyses at LHC. To address this potential
problem, we propose one more evaluator

Ocomb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
OtradOnew

p
: ð3Þ

This evaluator utilizes the fact that the known-pattern
testing data with high Onew scores pretty often come from
the high-density regions in the feature space, whereas such
data are typically scored low by Otrad. As indicated in
Fig. 4,Ocomb performs very well in a typical case where the
known and unknown-pattern data distributions are partially
overlapped, and many of the known-pattern data, especially
the ones in the central region, are scored high by Onew due
to the fluctuations. The known-pattern datasets used here
are the same as before, containing 104 events. The
unknown pattern is defined as N ðð1.5; 1.5ÞT; 0.1IÞ, with
Stot=Btot ¼ 1=20. Indeed, many high-scoring data of known
pattern in Fig. 4(a) are pushed to the low-scoring end in
Fig. 4(c), due to the compensation of Otrad. This effect
results in ∼100% improvement, compared to the sensitiv-
ities based on Otrad or Onew only, as is shown in Fig. 4(d).
As a reference, a significance based on ANN with super-
vised learning is also presented in the same panel. Here
(and similarly below) the significance is calculated against
the known-pattern only hypothesis for the testing data.
Only the events are counted which pass a threshold with
respect to the novelty response to the evaluator O. At
O ¼ 0 the significance is calculated with no cut being
applied. In the Otrad-based analysis, a Poisson-probability-
based test statistic [38] has been applied. In the Onew- and
Ocomb-based analyses, the independence of events is lost to
some extent when their novelty response is evaluated. So,
we generated 1000 known-pattern datasets, calculated the
standard deviation of the 1000 event numbers in the signal
bin (based on the novelty responses of the 1000 datasets to
Onew andOcomb, respectively), and applied this information
to approximately calculating the significance of event
excess (in each benchmark analysis below, 100 background
datasets are generated for this purpose.).

IV. STUDY ON BENCHMARK SCENARIOS

In order to illustrate their performance, we apply the
algorithms designed above to two parton-level analyses,

with two BSM benchmarks defined for each. Though being
unrealistic, it is sufficient for proof of concept.
In the first analysis, we simulate the final state

b̄blþl−Emiss
T at the 14 TeV LHC, with a luminosity of

3 ab−1. We require exactly two bottom quarks with pT >
20 GeV and two charged leptons (e� and μ�) with
pT > 10 GeV. The SM backgrounds (i.e., the labeled
known patterns which are used for training the supervised
classifier shown in Fig. 1) mainly include

(i) pp → t̄ltl, σ ¼ 11.5 fb,
(ii) pp → tlb̄W�

l , σ ¼ 0.365 fb,
(iii) pp → ZbZl, σ ¼ 0.0765 fb,

Here the physical cross sections have been universally
suppressed by a factor 2000 for effectively testing the
applicability of novelty evaluators. The signal could arise
from multiple BSM scenarios in this analysis. Here we
consider:

X1 pp → T̄T → Wþ
l W

−
l b̄b where T̄ and T are fermionic

top partners,
X2 pp → Z0 → t̄t where Z0 is a new gauge boson.

For simulating the detection sensitivities, we generate the
training and testing datasets with a luminosity of 15 ab−1

and 3 ab−1, respectively.
In the second analysis, we simulate unpolarized

eþe− → Zh production with the final state b̄blþl−Emiss
T

at
ffiffiffi
s

p ¼ 240 GeV, with a luminosity of 5 ab−1. We require
exactly two bottom quarks with pT > 10 GeV and two
charged leptons (e� and μ�) with pT > 5 GeV. The SM
background arises mainly from

(i) eþe− → hZ → Z�
invZb̄bl

þl−, σ ¼ 0.00686 fb,
(ii) eþe− → hZ → Z�̄

bb
Zinvlþl−, σ ¼ 0.00259 fb,

For BSM scenarios, we consider two specific modes of
exotic Higgs decay [39]:

Y1 h → χ̃1χ̃2 → χ̃1χ̃1a. This decay topology can arise
from the nearly Peccei-Quinn symmetric limit in the
NMSSM [40,41], where χ̃2 and χ̃1 are bino- and
singlinolike neutralinos, respectively, and a is a light
CP-odd scalar.

Y2 h → Za in the 2HDM and the NMSSM [39].
For simulating the detection sensitivities, we generate the
training and testing datasets with a luminosity of 3000 ab−1

and 5 ab−1, respectively. The parameter values and cross
sections for the four benchmark scenarios are summarized
in Table I.

TABLE I. Parameter values and cross sections (after preselec-
tion) in the benchmark scenarios of BSM physics.

Parameter values σðfbÞ
X1 mT ¼ mT̄1.2 TeV, BRðT → Wþ

l bÞ ¼ 50% 0.152
X2 mZ0 ¼ 3 TeV, gZ0 ¼ gZ, BRðZ0 → t̄tÞ ¼ 16.7% 1.55
Y1 mN1

¼ mN2

9
¼ ma

4
¼ 10 GeV, BRðh → b̄bEmiss

T Þ ¼ 1% 0.108

Y2 ma ¼ 25 GeV, BRðh → b̄bEmiss
T Þ ¼ 1% 0.053
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The significance performance of the three novelty
evaluators is shown in Fig. 5. Again a significance based
on ANN with supervised learning is presented as a
reference. By comparing this figure and Fig. 4(d), one
can see that the 2D Gaussian toy model discussed above
displays very good representativeness. In the first analysis,
the BSM signal and the SM background are partially
overlapped in the feature space for both benchmarks of
X1 and X2. Many of the background events in the nonsignal
region have a strong response to Onew, due to statistical
fluctuations, and hence diminish the detection sensitivity.
However, with the Otrad compensation, significant
improvement in sensitivity is achieved. As is shown in
Fig. 5(a) and Fig. 5(b), the sensitivities are at least doubled
usingOcomb, compared to the ones usingOnew orOtrad only.
In the second analysis, the fluctuation effect on Onew is
relatively small, due to Stot=Btot > 1 (typical for the
analyses at eþe− collider). This limits the performance
of Ocomb to a large extent, resulting in a significance with
10–20% improvement in Y1 and with null improvement in
Y2, compared to the best sensitivities which can be
achieved using Otrad and Onew.
The analyses of these benchmark scenarios, together

with the study on the 2D Gaussian toy model, show that
both Onew and Ocomb can effectively pick up the clustering
of signal events in the feature space, even if the signal and
background events overlap with each other. A large LEE
will weaken the efficiency of Onew, but this effect can be
significantly suppressed using Ocomb. In the case with
relatively small LEE (often characterized by relatively big

Stot=Btot), the performance of Ocomb tends to be weakened.
A better sensitivity could be achieved either by Otrad or
Onew, or by pursuing event counting with no cut being
applied (i.e., at O ¼ 0).

V. SUMMARY AND DISCUSSION

In this paper, we proposed a set of density-based novelty
evaluators, Onew and Ocomb, which are sensitive to the
clustering of the unknown-pattern testing data, for novelty
detection in the HEP data analysis. These evaluators allow
to design the algorithms with broad applications in
detecting BSM physics. They can be also applied to
measuring the SM processes yet to be discovered, if we
interpret them as “novel” events. As these algorithms are
designed using only general assumptions their application
could be extended to other big-data domains as well.
This study could be generalized in multiple directions.

We have focused on developing the algorithms for novelty
detection in HEP, using parton-level analysis to demon-
strate their sensitivity performance. To fill up the gap
between the concept and its application to real data
analysis, hadron-level analysis is definitely needed. In
addition, the algorithms could be improved in several
aspects. First, the feature selection in the ANN training
process might be not yet fully optimized. The features
learned from classification of data with labeled known
patterns are likely to be sub-optimal for enhancing the
isolation or clustering of the unknown-pattern data.
Nevertheless, we may introduce dynamical ML or some
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feedback mechanisms using the testing dataset, to reinforce
the learning of the unknown-pattern features. Second, the
distance definition of data depends on the geometry of the
feature space. We adopted the Euclidean geometry for
simplicity, but it is worthwhile to explore the other
possibilities. Third, the amount of memory and time needed
to implement Otrad increases rapidly with the data size and
dimension, which renders Otrad not very efficient for large
dataset. Ways of accelerating the calculation might be
needed. More than that, we would extend the performance
analysis of the algorithms to other BSM scenarios, e.g., the
ones with interference between the known and unknown
patterns, or nontrivial data clusters such as a dip [42].
Although it is beyond the scope of this study, at last we
mention that, a full analysis of the systematic and theo-
retical uncertainties is absent (for recent effort partially
addressing this see [43]). We leave these topics to a
future study.
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Note added.—While this paper was being finalized, [44]
appeared. Both the novelty evaluators proposed here and
the test statistic defined in [44] (as well as the one
developed in [25] recently) are able to measure the
clustering of testing data with unknown pattern. We would
like to stress that we developed this project and the relevant
ideas independently. Especially, two significant differences
exist between them. First, unlike the test statistic in [25,44]
which measures the divergence of the testing dataset from
the training dataset, the evaluators proposed in this work
quantify the novelty of individual testing data. Such a
design enables the evaluators to probe the fine/differential
structure of the clustering such as peak-dip (a famous BSM
example can be found in [42]) efficiently. Second, as the
LEE could be a severe problem for novelty detection at
Hadron colliders, we explored how to diminish its
influences on detection sensitivity (in relation to this,
Ocomb was designed). This was not developed in [25,44].
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