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The signum-Gordon model in 1þ 1 dimensions possesses an exact solution with a discontinuity of the
field at the light cone. Thus, the gradient energy of these waves is infinite whereas the energy of a part of the
wave localized inside the light cone is finite and grows linearly with time. The initial data for such waves
contain a field configuration which is null in space and its time derivative is proportional to the Dirac delta.
We study regular initial data that lead to shocklike waves with finite gradient energy. We found that such
waves exist only for a finite time and eventually decay in a cascade of oscillonlike structures. The pattern of
decay is very similar to the one observed in the scattering of compact oscillons.
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I. INTRODUCTION

Compact oscillons [1] in the signum-Gordon model [2]
are rather unusual field configurations. They do not match
well any of the two groups containing qualitatively differ-
ent types of oscillating (quasi)periodic excitations of scalar
fields—oscillons and breathers. Whereas oscillons [3–8]
are quasiperiodic and slowly radiating excitations in non-
integrable field theories, the breathers [9–12] are exact
infinitely long living solutions in many integrable models.
In this sense, the presence or lack of emission of the
radiation from such periodic structures indicates the model
may or may not be integrable. The signum-Gordon oscillon
is an exact, compact, perfectly periodic and finite energy
solution. Although it does not radiate at all, when perturbed
it emits some radiation [13]. Since the signum-Gordon
model is a nonintegrable field theory, the existence of
infinitely long living exact oscillons is a rather unusual
phenomenon. Such oscillons may have wider applications
in theories with approximate scaling symmetry [14]. It is
possible due to the fact that the signum-Gordon model
emerges from many field theories with nondifferentiable
potentials in the limit of small amplitude excitations [13–
16]. Such more general models can support topological
solitons and defects [17]. An interesting problem associated
with the presence of oscillons is their production during
scattering of kinks, skyrmions and other topological or
nontopological objects. Quite recently we have looked at
the process of scattering of the signum-Gordon oscillons

and production of a radiation being dominated by smaller
oscillons [18]. Motivated by this study we shall look in
more detail at the process of the collapse of signum-Gordon
shock waves which is an efficient process of emission
of oscillons. This is the subject of the present paper. We
expect that similar phenomena may be observed in models
with approximate scaling symmetry in the limit of small
amplitudes. Our study may have applications in such
models and can contribute to a better understanding of
the dynamics of small amplitude oscillations of fields close
to the vacua [14,19].
The signum-Gordon model is a scalar field theory with a

self-interaction term which is proportional to ϕ=jϕj. Such a
term corresponds with the potential V ¼ jϕj which is a
particular case of a wider group of the so-called V-shaped
potentials. The signum-Gordon model describes a universal
behavior of the field in the vicinity of V-shaped minima
in a similar way as the Klein-Gordon equation describes
dynamics of small amplitude oscillations of fields in the
model with parabolic potentials around minima. According
to Ref. [14], a symmetry reduction in certain physical
models results in limitations on values taken by new
fields and, consequently, in the appearance of models with
V-shaped potentials. Therefore, the solutions of the
signum-Gordon equation,

ð∂2
t −∇2Þϕðt; x⃗Þ þ sgnϕðt; x⃗Þ ¼ 0; ð1:1Þ

have universal character in the sense that they can appear as
solutions (or approximations of true solutions) of many other
models. For instance, the signum-Gordon oscillons were
found in the second Bogomol'nyi–Prasad–Sommerfield
(BPS) submodel of the Skyrme model [13,14].
The signum-Gordon model is well behaving from a

physical viewpoint and, in particular, it admits a mechanical
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realization. The potential V ¼ jϕj is fundamentally non-
linear only at ϕ ¼ 0. Thus the signum-Gordonmodel shares
some aspects of linear and nonlinear field theories. The
nonlinear character is associated with the minimum of the
potential; i.e., it is particularly visible for small amplitude
fields. Contrary to many other nonlinear field theories it
cannot be linearized in the limit ϕ → 0, which means that
small amplitude perturbations are always nonlinear. On the
other hand, in the regions of spacewhere the sign of the field
is fixed, the signum-Gordon equation reduces to a nonho-
mogeneous linear wave equation. In this paper we shall look
at the real valued model in one spatial dimension. It means
that ∇2 → ∂2

x. In such a case there exists a general expres-
sion for solutions with a fixed sign, sgnϕk ¼ �1,

ϕkðt; xÞ ¼ Fkðxþ tÞ þ Gkðx − tÞ � 1

4
ðx2 − t2Þ; ð1:2Þ

where FkðzÞ and GkðzÞ are some arbitrary functions. Such
solutions are called partial solutions and each of them has a
domain corresponding with a support1 labeled by k. A
physical solution consists on a certain number (usually
infinitelymany) of properlymatched partial solutions. Thus,
linearity is rather a local property associated with individual
partial solutions and it cannot be extended on solutions of
the model.
The signum-Gordon model is certainly nonintegrable.

However, it possesses a quite large family of exact
solutions, for instance self-similar solutions [20,21], exact
oscillons [1,22,23], and shock waves [20,24]. This fact is
related to the existence of a quite general expression for
partial solutions (1.2). In this paper we study solutions
which are closely related with shock waves. The motivation
for such a study came from the analysis of recent results for
scattering of the signum-Gordon oscillons [18], where
shock-wave-like configurations form right after oscillon
interaction and then break and decay into a cascade of
oscillons.
The paper is organized as follows. In Sec. II, we give a

short revision of shock waves in the signum-Gordon model
and present initial conditions which lead to such solutions.
In Sec. III, we discuss the problem of energy density and
total energy of shock waves. Section IV is devoted to the
presentation of numerical and analytical solutions obtained
from the initial configuration of the field which contains a
deltalike initial profile of the time derivative.

II. THE SIGNUM-GORDON SHOCK WAVES

A. The solution

The shock waves form a particular class of exact
solutions of the signum-Gordon model that stand out
against its other solutions by the presence of a discontinuity

of the field at the light cone. This class of solutions has been
proposed in Ref. [20]. It is obtained by the reduction of the
signum-Gordon equation to an ordinary differential equa-
tion via ansatz

ϕðt; xÞ ¼ θð−zÞWðzÞ; where z ¼ 1

4
ðx2 − t2Þ; ð2:1Þ

where θð−zÞ is the Heaviside step function. The function
WðzÞ obeys the equation

zW00ðzÞ þW0ðzÞ ¼ sgnðWðzÞÞ;

and it consists of infinitely many partial solutions WkðzÞ,
k ∈ Zmatched at points −ak. Each partial solution satisfies
the equation

zW00
kðzÞ þW0

kðzÞ ¼ ð−1Þk ð2:2Þ

and the matching conditions Wkð−akÞ ¼ 0 ¼ Wkþ1ð−akÞ
and W0

kð−akÞ ¼ W0
kþ1ð−akÞ. Imposing the condition

Wkð−akÞ ¼ 0 we get the partial solutions in the form

WkðzÞ ¼ ð−1Þk
�
zþ ak þ bk ln

jzj
ak

�
:

Then, imposing the remaining conditions we get some
restrictions on the coefficients ak and bk, namely

bkþ1

ak
¼ 2 −

bk
ak

; and
akþ1

ak
¼ 1þ bkþ1

ak
ln
akþ1

ak
: ð2:3Þ

Note that b0 must vanish in order to avoid the singularity of
the logarithm at z ¼ 0. The first zero a0 can be chosen as a
free parameter which, in turn, determines the values of all
other constants via recurrence relations (2.3). In particular,
it holds b1 ¼ 2a0. In terms of new variables αkþ1 ≔ 1

2

bkþ1

ak
and ykþ1 ≔

akþ1

ak
, the relations (2.3) take the form

αkþ1 ¼ 1 −
αk
yk

; and ykþ1 ¼ 1þ 2αkþ1 ln ykþ1; ð2:4Þ

where α1 ¼ 1. It follows from (2.4) that αkþ1 is determined
by ak and bk. Then, solving numerically the second
equation of (2.4) one gets ykþ1 and thus both coefficients
akþ1 and bkþ1 can be determined. We shall skip the
discussion of the solution of the recurrence relations
because it is given in previous papers. In Fig. 1(a) we
present the first few partial solutionsWkðzÞ and in Fig. 1(b)
we present the shock wave at t ¼ 6.5, which consists of
four partial solutions.
In Fig. 2 we show the shock wave on the Minkowski

diagram. The zeros of the field ϕðt; xÞ correspond with
hyperbolas1Usually this support is compact.
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xkðtÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − 4ak

q
: ð2:5Þ

In contrast to the case of compact oscillons or self-similar
solutions, there is very little known about the role of shock
waves in the dynamics ofmore complex field configurations
in the signum-Gordon model. We have not seen such
solutions in numerical simulations of interaction between
kinks and perturbations of exact oscillons. However, this
situation has changed after getting the first results of the
scattering of high speed oscillons; see Ref. [18]. We have
found that such oscillons produce radiation that mainly
consists of perturbed oscillons. The oscillons do not appear
immediately after the collision. The numerical study shows
that they are generated in the process of breaking of the
wave field configuration. We have confirmed that these
waves are related to shock waves by comparing their zeros
with the zeros of exact shock waves. It raised the question
about initial conditions that support such shock-wave-like
configurations. We shall answer this question in the sub-
sequent section.

B. The initial problem

An important question we would like to answer now is a
relation between the discontinuity of the field at the light
cone and the initial conditions which would produce such a

discontinuity. This problem has not been answered in the
original papers which address the construction of shock
waves in the signum-Gordon model and its modifications.
The analysis of the shock wave solution allows one to
conclude that in the limit t → 0þ, the scalar field ϕ and its
first derivative ∂tϕ vanish everywhere except the point
x ¼ 0. It suggests the possible choice of initial configura-
tion of the field ϕð0; xÞ ¼ 0 everywhere and ∂tϕðt; xÞjt¼0

proportional to the Dirac delta δðxÞ. The problem of the
discontinuity of the field at the light cone can be studied
without the necessity of solving the complete signum-
Gordon equation.

1. The initial problem for the wave equation

Looking at the problem of the appearance of disconti-
nuities of the field, it is enough to look at a simpler
problem involving the wave equation in (1þ 1) dimensions
ð∂2

t − ∂2
xÞϕðt; xÞ ¼ 0. There is another advantage associ-

ated with this simplification—we have a general solution of
the initial problem given by the d’Alembert formula. Let
ϕð0; xÞ ¼ fðxÞ and ∂tϕðt; xÞjt¼0 ¼ gðxÞ be an initial field
configuration, then the wave equation in one spatial
dimension has its solution given by

ϕðt; xÞ ¼ 1

2
ðfðxþ tÞ þ fðx − tÞÞ þ 1

2

Z
xþt

x−t
dξgðξÞ: ð2:6Þ

Taking particular initial conditions which are suitable for
our considerations

ϕð0;xÞ¼ fðxÞ¼ 0; ∂tϕðt;xÞjt¼0 ¼ gðxÞ¼ aδðxÞ; ð2:7Þ

where a ¼ const, we find

ϕðt;xÞ¼a
2
ðθðxþ tÞ−θðx− tÞÞ¼

(
a
2
for jxj<t

0 for jxj>t
: ð2:8Þ

Thus the solution ϕðt; xÞ is equal to a=2 inside the light
cone and it vanishes outside the light cone. Clearly, the field

FIG. 2. The exact shock wave solution for a0 ¼ 1 at the
spacetime diagram.
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FIG. 1. The exact shock wave solution for a0 ¼ 1.
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possesses discontinuity at the light cone x ¼ �t. The same
behavior at the light cone is expected for the signum-
Gordon equation. However, in the signum-Gordon model
the sign term modifies the solution inside the light cone,
which leads to observed oscillations.

2. Regular initial data

The presence of a discontinuity in the field has some
unpleasant consequences. This is pretty clear when looking
at the problem of the energy associated with such field
configurations. To see it, we look again at the problem
restricted to the solutions of the wave equation in one
spatial dimension. The energy of a solution is given by the
expression

E ¼ 1

2

Z
∞

−∞
dxðð∂tϕÞ2 þ ð∂xϕÞ2Þ: ð2:9Þ

Looking at partial derivatives of the solution (2.8) one gets

∂tϕðt; xÞ ¼
a
2
ðδðxþ tÞ þ δðx − tÞÞ; ð2:10Þ

∂xϕðt; xÞ ¼
a
2
ðδðxþ tÞ − δðx − tÞÞ: ð2:11Þ

It raises the problem about the expression “ðδðxÞÞ2”, which
is meaningless as a distribution. Thus we see that this
question is related to the problem of “multiplication of
generalized functions”.
In order to overcome this problem we shall replace the

delta distribution δðxÞ in (2.7) by a classical function. There
are many classical functions δϵðxÞ which tend to the Dirac
delta when ϵ → 0. This limit has the following sense:

lim
ϵ→0

Z
∞

−∞
dxδϵðxÞφðxÞ ¼ φð0Þ≡

Z
∞

−∞
dxδðxÞφðxÞ;

where φðxÞ is a test function.
We shall consider two such functions in our analysis,

namely a Gaussian function,

δϵðxÞ ¼
1

2
ffiffiffiffiffi
πϵ

p e−
x2
4ϵ ; ð2:12Þ

and a triangular function with compact support,

δϵðxÞ ¼
1

4πϵ
½ð2 ffiffiffiffiffi

πϵ
p þ xÞθð2 ffiffiffiffiffi

πϵ
p þ xÞθð−xÞ

þ ð2 ffiffiffiffiffi
πϵ

p
− xÞθð2 ffiffiffiffiffi

πϵ
p

− xÞθðxÞ�: ð2:13Þ

We have chosen two different classes of functions δϵ in
order to see to which extent the solutions of the wave
equation depend on the choice. Functions (2.12) and (2.13)
satisfy Z

∞

−∞
dxδϵðxÞ ¼ 1; δϵð0Þ ¼

1

2
ffiffiffiffiffi
πϵ

p :

The triangular function δϵ has been normalized in a way
that it takes the same value at the center x ¼ 0 as the
Gaussian function. The plots corresponding with (2.12) are
shown in Fig. 3(a) and those corresponding with (2.13) in
Fig. 4(a).
The d’Alembert formula (2.6) allows one to obtain an

exact solution for fðxÞ ¼ 0 and gðxÞ ¼ aδϵðxÞ. When δϵ is
a Gaussian function one gets the expression

ϕðt; xÞ ¼ a
4

�
erf

�
xþ t
2

ffiffiffi
ϵ

p
�
− erf

�
x − t
2

ffiffiffi
ϵ

p
��

; ð2:14Þ

where erfðzÞ stands for the error function.2 Figure 3(b)
shows a few solutions ϕðt; xÞ at t ¼ 3 for different values of
the parameter ϵ. In the limit ϵ → 0, the solution (2.14) tends
to (2.8). In the case of initial data given by (2.13), one can
also obtain an exact solution. However, this solution is
technically more complex because it contains different
expressions in different regions of spacetime. The partial
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FIG. 3. (a) Function δϵðxÞ and (b) solution ϕðt; xÞ and (c) energy density for ϵ ¼ f1; 1
2
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4
; 1
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; 1
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2

erfðzÞ ≔ 2ffiffiffi
π

p
Z

z

0

due−u
2 ¼ 2ffiffiffi

π
p

X∞
n¼0

ð−1Þnz2nþ1

n!ð2nþ 1Þ :
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solutions vanish outside their supports. In Fig. 5 we show
the regions where the supports of partial solutions are
localized. The partial solutions that form the solution of the
problem are given by the expressions

ϕ1Lðt; xÞ ¼
a
4πϵ

ð2 ffiffiffiffiffi
πϵ

p þ xÞt; ð2:15Þ

ϕ2Lðt; xÞ ¼
a
4πϵ

�
xþ t
2

þ ffiffiffiffiffi
πϵ

p �
2

; ð2:16Þ

ϕ3Lðt; xÞ ¼
a
4πϵ

�
πϵþ ffiffiffiffiffi

πϵ
p ðxþ tÞ − ðxþ tÞ2

4

�
; ð2:17Þ

ϕ1Cðt; xÞ ¼
a
4πϵ

�
2

ffiffiffiffiffi
πϵ

p
t −

x2 þ t2

2

�
; ð2:18Þ

ϕ2Cðt; xÞ ¼
a
2
; ð2:19Þ

ϕkRðt; xÞ ¼ ϕkLðt;−xÞ for k ¼ 1; 2; 3:

Note that all expressions presented above are given by
polynomials of degree no higher than two. Figure 4(b)

shows the profile of the solution ϕðt; xÞ at t ¼ 3 for various
values of ϵ. In the case of initial data given by the triangle
shape of the initial profile of ∂tϕ, the solution is compact.
Finally, one can look at the energy density and total

energy of such solutions. Since the solution ϕðt; xÞ is given
by classical functions then there is no problem with taking
the square of its derivatives. In the case of the solution
(2.14) obtained for Gaussian initial data, one gets the
following expression for the total energy of the field:

E ¼
Z

∞

−∞
dxuðt; xÞ ¼ a2

16πϵ

Z
∞

−∞
dxð1þ e

2tx
ϵ Þe−ðxþtÞ2

2ϵ

¼ a2

4
ffiffiffiffiffiffiffiffi
2πϵ

p : ð2:20Þ

The energy density shown in Fig. 3(c) is finite everywhere.
Also, the total energy of the field is finite. However, it
depends on ϵ. In the limit ϵ → 0 the energy tends to infinity
as ϵ−1=2 is what is associated with the formation of
discontinuities of the field and the increasing of the gradient
energy.
In the case of triangle-shape profile (2.13) we find that

the energy density is a finite function that consists on the
patches

u1Lðt; xÞ ¼
a2

32π2ϵ2
½t2 þ ðxþ 2

ffiffiffiffiffi
πϵ

p Þ2�;

u2Lðt; xÞ ¼
a2

64π2ϵ2
½tþ xþ 2

ffiffiffiffiffi
πϵ

p �2;

u3Lðt; xÞ ¼
a2

64π2ϵ2
½tþ x − 2

ffiffiffiffiffi
πϵ

p �2;

u1Cðt; xÞ ¼
a2

32π2ϵ2
½x2 þ ðt − 2

ffiffiffiffiffi
πϵ

p Þ2�;
u2Cðt; xÞ ¼ 0;

ukRðt; xÞ ¼ ukLðt;−xÞ where k ¼ 1; 2; 3:

The plot of this energy density is shown in Fig. 4(c). In
similarity to the Gaussian case the energy density is a finite
function for ϵ ≠ 0. The only difference is that now the
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FIG. 4. (a) Function δϵðxÞ and (b) solution ϕðt; xÞ and (c) energy density for ϵ ¼ f1; 1
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FIG. 5. Partial solutions for the triangle-shape initial profile
of ∂tϕ.
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energy density vanishes explicitly outside the two compact
supports localized around the light cone of the event (0,0).
The total energy in this case reads

E ¼
Z

2
ffiffiffiffi
πϵ

p

−2
ffiffiffiffi
πϵ

p dxuðt; xÞ ¼ a2

6
ffiffiffiffiffi
πϵ

p : ð2:21Þ

It has exactly the same functional behavior as for the
Gaussian case.

III. THE ENERGY OF A SHOCK WAVE

A fundamental difference between the wave equation
and the signum-Gordon equation is the presence of the self-
interaction described by the potential VðϕÞ ¼ jϕj, which
gives rise to the term sgnðϕÞ in the field equation. It means
that each nonvanishing field configuration has also some
potential energy. Consequently, the wave on an open
segment −t < x < t has some finite energy. This energy
consists on three elements: kinetic, gradient, and potential
energy. Of course, similarly to the solution of the
d’Alembert equation, there is also an infinite gradient
energy due to discontinuities at x ¼ �t. The gradient
energy stored in the discontinuity of the field at the light
cone is essential for the existence of shock waves. The
discontinuities of the field constitute a sort of energy
reservoir feeding the regular wave in the central region
inside the future light cone of the event (0,0). In order to
make this statement clearer, we look in more detail to the
wave on an open segment −t < x < t, especially to the
energies of its partial solutions.
A general solution describing a shock wave is a sum3 of

partial solutions ϕkðt; xÞ ¼ WkðzÞ

ϕðt; xÞ ¼
X∞
k¼0

ϕkðt; xÞ; ð3:1Þ

whereWkðzÞ≡ 0 outside the support ak ≤ z ≤ ak−1. At the
instant of time

tk−1 ¼ 2
ffiffiffiffiffiffiffiffiffi
ak−1

p
; ð3:2Þ

the partial solution ϕk−1 splits into two disjointed parts and
there appears the solution ϕkðt; xÞ. The solution ϕkðt; xÞ
exists on the support

suppϕk
ðtÞ≔

(
jxj≤ ck−1ðtÞ for tk−1 ≤ t≤ tk
ckðtÞ≤ jxj≤ ck−1ðtÞ for t≥ tk

;

ð3:3Þ

where

ckðtÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − 4ak

q
ð3:4Þ

has an interpretation of positive zeros of the wave. The
values of ak and tk for a0 ¼ 1 are given in Table I. The
function (3.1) is a C1 class at x ∈ ð−t; tÞ.
The energy associated with the wave on the open

segment −t < x < t is given by

EðtÞ ¼
XNðtÞ

k¼0

ðKkðtÞ þUkðtÞÞ; ð3:5Þ

where NðtÞ þ 1 is the number of partial solutions at t that
form a shockwave, and

KkðtÞ ≔
1

2

Z
t

−t
dx½ð∂tϕkÞ2 þ ð∂xϕkÞ2�

¼
Z
suppϕk ðtÞ

dx

�
x2 þ t2

8

�
W0

k

�
x2 − t2

4

��
2
�
; ð3:6Þ

UkðtÞ ≔
Z

t

−t
jϕkjdx ¼

Z
suppϕk ðtÞ

dx

����Wk

�
x2 − t2

4

����� ð3:7Þ

describe contributions of individual partial solutions to the
energy of the wave inside the light cone. In Fig. 6 we show
integrands (densities) of (3.6) and (3.7) at t ¼ t6.
Both integrals presented above can be given by explicit

functions. First we shall look at the contributions to kinetic
and gradient energy. We shall present separately the cases
k ¼ 0 and k ¼ 1; 2; 3;…. In the case k ¼ 0, we get
W0

0 ¼ 1. Then

K0ðtÞ ¼ 2

Z
xmaxðtÞ

xminðtÞ
dx

x2 þ t2

8
¼ 1

4

�
t2x −

x3

3

�
xmaxðtÞ

xminðtÞ
; ð3:8Þ

where the factor “2” appears due to the spatial symmetry of
the wave, and

ðxmin; xmaxÞ ¼
� ð0; tÞ for 0 ≤ t ≤ t0
ðc0ðtÞ; tÞ for t ≥ t0

;

where t0 is given by (3.2). The integral (3.8) reads

TABLE I. Zeros ak of WðzÞ and instants of time tk ¼ 2
ffiffiffiffiffi
ak

p
at

which each solution ϕkþ1ðt; xÞ appears.
k ¼ 0 k ¼ 1 k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 5 k ¼ 6

ak 1.00 3.51 6.92 11.03 15.73 20.96 26.67
tk 2.00 3.75 5.26 6.64 7.93 9.16 10.33

3Each partial solution vanishes outside its own support.
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K0ðtÞ¼

8>><
>>:
t3

3
for 0≤ t≤ t0

t3

3
−
1

3
ðt2−a0Þc0ðtÞ for t≥ t0

: ð3:9Þ

The expression K0ðtÞ in the limit of large t has linear
behavior

K0ðtÞ ≈ a0tþOðt−3Þ: ð3:10Þ

The energies KkðtÞ with k ¼ 1; 2;… are given by the
expression

KkðtÞ ¼ 2

Z
xmaxðtÞ

xminðtÞ
dx

x2 þ t2

8

�
1þ 4bk

x2 − t2

�
2

;

where

ðxmin; xmaxÞ ¼
� ð0; ck−1ðtÞÞ for tk−1 ≤ t ≤ tk
ðckðtÞ; ck−1ðtÞÞ for t ≥ tk

;

and where tk and ck are given by (3.2) and (3.4). The kinetic
and gradient part of the energy reads

KkðtÞ ¼
(
Kð−Þ

k ðtÞ ¼ PkðtÞ for tk−1 ≤ t ≤ tk

KðþÞ
k ðtÞ ¼ PkðtÞ þQkðtÞ for t ≥ tk

;

ð3:11Þ

where we have defined the symbols

PkðtÞ ≔
�
b2k
ak−1

þ 2bk −
ak−1
3

þ t2

3

�
ck−1ðtÞ

− 4bktArcTanh

�
ck−1ðtÞ

t

�
;

QkðtÞ ≔ −
�
b2k
ak−1

þ 2bk −
ak
3
þ t2

3

�
ckðtÞ

− 4bktArcTanh

�
ckðtÞ
t

�
:

The expression KkðtÞ has the following asymptotic behav-
ior for t → ∞:

KkðtÞ ≈
�
b2k
ak−1

−
b2k
ak

þ ak−1 − ak

�
tþOðt−3Þ: ð3:12Þ

In Fig. 7(a) we show the first seven contributions KkðtÞ
associated with derivative terms in the energy density.

10 5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

x

(a)

10 5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

x

(b)

FIG. 6. (a) Density of kinetic and gradient energy and (b) density of potential energy associated with the wave at t ¼ t6.
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U0

U1
U2 U3 U4 U5 U6

U(t)

0 2 4 6 8 10
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1
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3

t

(b)

FIG. 7. (a) Kinetic and gradient energies of partial solutions. (b) Potential energies of these solutions.
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The vertical grid lines correspond with instants of time tk ¼
2

ffiffiffiffiffi
ak

p
at which new partial solutions appear. The abrupt

decreasing of the energy KkðtÞ which manifests in the
presence of spikes is caused by the appearance of the new
partial solution ϕkþ1 and, consequently, by a quick decrease
of the support size of ϕk. We have plotted also the first four
straight lines (3.10) and (3.12) for k ¼ 1, 2, 3. They are
marked by dashed lines. The picture in Fig. 7(a) shows that
the dominating contribution to the kinetic and gradient
energy is associated with the partial solution k ¼ 0. Its
energy grows as a0t for large t.4 Note that the partial
solution k ¼ 0 is in contact with the discontinuity at
x ¼ �t. This discontinuity can be seen as a reservoir of
infinite energy. The energy is transferred first into ϕ0ðt; xÞ
and then it is transferred to the other partial solutions
ϕkðt; xÞ. The central partial solutions carry less energy than
partial solutions localized close to the light cone.
Now we shall look at the potential energy of the partial

solutions. The potential energy associated with the partial
solution ϕ0ðt; xÞ reads

U0ðtÞ ¼
8<
: 2a0t − t3

3
for 0 ≤ t ≤ t0

2a0t − t3
3
þ 1

3
ðt2 − 4a0Þ3=2 for t ≥ t0

;

ð3:13Þ

which has the following asymptotic behavior for large t:

U0ðtÞ ≈
2a20
t

þOðt−3Þ: ð3:14Þ

Similarly we find the potential energy of partial solutions
with k ¼ 1; 2;… They are given by

UkðtÞ ¼
(
Uð−Þ

k ðtÞ ¼ RkðtÞ for tk−1 ≤ t ≤ tk

UðþÞ
k ðtÞ ¼ RkðtÞ þ SkðtÞ for t ≥ tk

;

ð3:15Þ

where

RkðtÞ¼
�
4

3
ak−4bk−

t2

3

�
ck−1ðtÞþ4bktArcTanh

�
ck−1ðtÞ

t

�
;

SkðtÞ¼−
�
4

3
ak−1−4bk−

t2

3

�
ckðtÞ−4bktArcTanh

�
ckðtÞ
t

�
:

We have eliminated logarithmic terms in Rk and Sk using
the second one of relations (2.3). The last formula implies
that, for large t, the expression for UkðtÞ behaves as

UkðtÞ ≈ 2½ðak − ak−1Þðak þ ak−1 − 2bkÞ�
1

t
þOðt−2Þ:

ð3:16Þ

It shows the potential energy of each partial solution
decreasing as t−1 for large t.
The energy of a single partial solution is given by a sum

of expressions (3.9) and (3.13)

E0ðtÞ ¼
(
Eð−Þ
0 ðtÞ ¼ X0ðtÞ for 0 ≤ t ≤ t0

EðþÞ
0 ðtÞ ¼ X0ðtÞ þ Y0ðtÞ for t ≥ t0

;

ð3:17Þ

where

X0ðtÞ ≔ 2a0t; Y0ðtÞ ≔ −a0c0ðtÞ: ð3:18Þ

Similarly, for k ¼ 1; 2;… the energy of partial solutions is
obtained adding (3.11) and (3.15). It reads

EkðtÞ ¼
8<
:Eð−Þ

k ðtÞ ¼ XkðtÞ for tk−1 ≤ t ≤ tk

EðþÞ
k ðtÞ ¼ XkðtÞ þ YkðtÞ for t ≥ tk

;

ð3:19Þ

where

XkðtÞ≔PkðtÞþRkðtÞ¼
�
b2k
ak−1

−2bkþak−1

�
ck−1ðtÞ;

ð3:20Þ

YkðtÞ ≔ QkðtÞ þ SkðtÞ ¼ −
�
b2k
ak

− 2bk þ ak

�
ckðtÞ: ð3:21Þ

In Fig. 8 we plot the energies (3.17) and (3.19) of partial
solutions together with individual contributions from
kinetic gradient and potential part. It is quite notable that
the total energy of the wave grows exactly linearly with
time. In order to show it we consider a total energy of the
wave at t belonging to the interval tk−1 ≤ t ≤ tk. Since the
wave consists on first kþ 1 partial solutions then it has
the energy

EðtÞ ¼
Xk
i¼0

EiðtÞ ¼
Xk−1
i¼0

EðþÞ
i ðtÞ þ Eð−Þ

k ðtÞ; ð3:22Þ

where EðþÞ
i ðtÞ¼XiðtÞþYiðtÞ and Eð−Þ

k ðtÞ¼XkðtÞ. Expres-
sion (3.22) can be cast in the form

EðtÞ ¼ X0ðtÞ þ
Xk
i¼1

½Yi−1ðtÞ þ XiðtÞ�:
4This is exactly half of the total energy of the wave; see (3.22).
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Making use of the relation b1 ¼ 2a0 and the first one of
relations (2.3) we get

X1ðtÞ þ Y0ðtÞ ¼
�
b21
a0

− 2b1

�
c0ðtÞ ¼ 0;

XiðtÞ þ Yi−1ðtÞ ¼
�
b2i − b2i−1

ai−1
− 2bi−1 − 2bi

�
ci−1ðtÞ ¼ 0;

i ¼ 1; 2;…k:

It shows that the energy of the wave inside the light cone is
given by the expression X0ðtÞ

EðtÞ ¼ 2a0t: ð3:23Þ

This result shows that the energy of the wave inside the
light cone grows linearly with time.

IV. SOLUTIONS

In this section we go back to regular initial data with the
deltalike profile of the time derivative of the field. First we
make some important remarks on the numerical solutions
we have adopted. Then we present numerical solutions of
shocklike waves and give the analytical solution for the
initial phase of the formation of the wave. Finally, we
compare some numerical simulations containing the for-
mation of shocklike waves with the results of the scattering
of compact oscillons.

A. Remarks on the numerical method and its reliability

We have made use of the 4th order Runge-Kutta method
with a regularly discretized space dimension and have
advanced the initial conditions with constant time steps. We
have checked that the numerical solutions usually start to
converge for the space resolution of at least about 5k sites.

The very small features of the field (small oscillon like
structures) do not ever converge to a certain solution even
for very large resolutions (about 1M sites). The sensibility
that these structures have on initial conditions (which are
slightly affected by small changes in simulation resolution)
has been the subject of thorough discussion [18]. This
means that the very small structures observed in these
simulations (i.e., oscillons of width < 0.1) are not a 100%
accurate description of the field, although they are quali-
tatively accurate. Also, our simulations have been imple-
mented twice, and independently, and the results converge.

B. Numerical results for triangular and
Gaussian initial data

Here we shall present the results of the numerical
evolution of the initial data

ϕðt; xÞjt¼0 ¼ 0; ∂tϕðt; xÞjt¼0 ¼ aδϵðxÞ; ð4:1Þ

where δϵðxÞ is given by both the Gaussian function (2.12)
and the triangular function (2.13). We study how the
numerical solution changes in dependence with the value
of the parameter ϵ. The results are presented on spacetime
diagrams where the value of the field is marked by the
gradient color. We also plot the energy density of the
system

H ¼ 1

2
ð∂tϕÞ2 þ

1

2
ð∂xϕÞ2 þ jϕj: ð4:2Þ

In Fig. 9 we show the evolution of the signum-Gordon
field for the deltalike initial profile of ∂tϕ. We consider
ϵ ¼ f10−6; 2 × 10−5; 4 × 10−5; 5 × 10−5g. For ϵ ¼ 10−6

the numerical solution looks very similar to the exact
shock wave. After increasing ϵ by a factor 20 we see that
the wave breaks down for t > 4. Looking at the energy
density in Fig. 9(d) we can see an initial phase of the
formation of jets. This behavior is even more visible for
ϵ ¼ 4 × 10−5 and ϵ ¼ 5 × 10−5. Looking in more detail at
these jets we see that they contain structures which are very
similar to oscillons. Some of these oscillons interact with
others which leads to quite complex structures. The region
of existence of a shocklike wave configuration of the
signum-Gordon field shrinks when ϵ decreases.
We have also looked at higher values of ϵ. For

ϵ ¼ 2 × 10−4, see Fig. 10(a,b), the region of spacetime
being the support of the wave has a diamond-shaped form.
At the left and right edge of the diamond two oscillons
emerge. They move in opposite directions with relatively
high speeds. In the central part of the diagram we see the
formation of a certain number of slow oscillons. They
interact with each other by scattering and by emission and
absorption of radiation.
Our choice of a triangular shape for the δϵ function

allows us to obtain an exact oscillon. In the case of the

E0

E1

E2

E0+E1

E0+E1+E2

E0+E1+E2+E3

E(t)

K(t)U(t)

0 2 4 6 8 10
0

10

20

t

FIG. 8. Total energies of partial solutions EkðtÞ and total energy
EðtÞ ¼ KðtÞ þ UðtÞ of the wave. The dashed line represents total
energy of the wave.
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simplest exact oscillon the initial profile of velocity is an
isosceles triangle with sides that form the angle α ¼ π=4
with the x-axis. Hence, the ratio of its height aδϵð0Þ ¼ a

2
ffiffiffiffi
πϵ

p

by a half of size of its base 2
ffiffiffiffiffi
πϵ

p
must be equal to unity,

i.e., a
4πϵ ¼ 1. It means that ϵ ¼ a

4π is a special value that gives
the simplest exact oscillon with the support size 2

ffiffiffi
a

p
.

Taking a ¼ 0.05 one gets ϵ ¼ 1
80π ≈ 0.0039788 ≈ 4 × 10−3.

The numerical solution corresponding with this case is
presented in Fig. 11.
We have also checked the evolution of the signum-Gordon

field for higher values of ϵ. A solution obtained for ϵ ¼
4 × 10−2 is sketched in Fig. 12. The numerical solution
represents the collision of two segments of self-dual solutions
which results in the appearance of radiation that consists on
many oscillons.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 9. The case of triangular form of δϵ. The decay of the shock wave in function of ϵ for a ¼ 0.05. Field ϕðt; xÞ (left) and its energy
density (right).
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In order to check to which extent our results depend on
the choice of the form of δϵðxÞ, we also performed
simulations taking its Gaussian version. The results are
shown in Figs. 13–15. Comparing these figures with the
previous ones we do not see much difference between the
triangular and the Gaussian cases. Figures 10 and 13 are
very similar. More differences appear when comparing the
Gaussian case for ϵ ¼ 1

80π with the triangular case suitable
for exact oscillon. Contrary to Fig. 11, the solution shown

in Fig. 14 has a border which is not a straight line. This is
pretty clear from the picture of the energy density shown in
Fig. 15(b). A counterpart of the exact oscillon obtained in
this case is a solution whose support shrinks and expands
periodically. Similarly in the case ϵ ¼ 4 × 10−2 a region
with a high value of the energy density shrinks and expands
with certain regularity; see Fig. 15. The maximum size of
the regions with a high value of the energy density
decreases with time because of the emission of oscillons.

(a) (b)

FIG. 10. The case of triangular form of δϵ: a ¼ 0.05 and ϵ ¼ 2 × 10−4. (a) Field ϕ and (b) its energy density.

(a) (b)

FIG. 11. The case of triangular form of δϵ: a ¼ 0.05 and ϵ ¼ 0.0039788 ≈ 4 × 10−3. In this case the numerical solution corresponds
with the exact oscillon.

(a) (b)

FIG. 12. The case of triangular form of δϵ: a ¼ 0.05 and ϵ ¼ 4 × 10−2.
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C. Exact solution in an initial stage of evolution

In this section we shall study some analytical expressions
that describe a shocklike wave solution. Having in mind the
results of our numerical simulations we do not expect to
obtain the exact solution for arbitrarily long times. On the
other hand, the initial triangular data are simple enough to
get some analytical results describing a wave in its initial
stage of evolution. It would be interesting to compare
such solutions with their counterparts that form an exact
shock wave.

The triangular initial data (4.1) with ϵ≡ ε2

4π is given on a
segment x ∈ ½−ε; ε�, where the triangular shape is given by
the expression

δεðxÞ ¼
1

ε2
½ðεþ xÞθðεþ xÞθð−xÞ þ ðε − xÞθðε − xÞθðxÞ�:

The energy of such initial field configuration equals to
(2.21) or E ¼ a2

3ε. This energy is finite and conserved during
the evolution. The initial data are symmetric under spatial

(a) (b)

FIG. 13. The case of Gaussian form of δϵ: a ¼ 0.05 and ϵ ¼ 2 × 10−4. (a) Field ϕ and (b) its energy density.

(a) (b)

FIG. 14. The case of Gaussian form of δϵ: a ¼ 0.05 and ϵ ¼ 4 × 10−3.

(a) (b)

FIG. 15. The case of Gaussian form of δϵ: a ¼ 0.05 and ϵ ¼ 4 × 10−2.
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reflection and so is the solution. This solution consists on
partial solutions that have the general form given by
expression (1.2). It is known that initial data for the
signum-Gordon field determine the number and the size
of the supports of the partial solutions. The restriction to the
triangular initial data still leaves a freedom of a choice of
the parameters a and ε. These parameters determine the
inclination of the sides of the triangle. According to
Ref. [21] an inclination of the velocity profile determines
whether the support of the solution spreads out, remains
unchanged (the exact oscillon), or shrinks. Since we are
interested in solutions which are similar to exact shock
waves, then we will study a triangular shape with the height
aδεð0Þ ¼ a

ε > ε. An example of such a solution with a ¼
0.05 and ϵ ¼ 2 × 10−4 (thus a

ε2
¼ a

4πϵ ≈ 19.89 > 1) is shown
in Fig. 10. In Fig. 16 we present domains of various partial
solutions that compose the solution in its initial stage of
evolution. Figure 16(b) shows a blowup of the rectangular
region at Fig. 16(a). The partial solution ϕ1Lðt; xÞ can be
obtained directly from the initial data and it reads

ϕ1Lðt; xÞ ¼
a
ε2
½xþ ε�t − t2

2
: ð4:3Þ

Its symmetric counterpart is given by ϕ1Rðt;xÞ¼ϕ1Lðt;−xÞ.
These two solutions are restricted to the interior of the past
light cones of the two events ðt; xÞ ¼ ðε

2
;� ε

2
Þ. Note that

(4.3) and (2.15) differ only by the expression − t2
2
.

The partial solution ϕ2Lðt; xÞ interpolates between
ϕ1Lðt; xÞ and the vacuum solution ϕ ¼ 0. It matches
ϕ1Lðt; xÞ at the light cone x ¼ −εþ t and the vacuum at
x ¼ −εþ vt, where v < 0. This solution reads

ϕ2Lðt; xÞ ¼
ðxþ ε − vtÞ2
2ð1 − v2Þ ; v ¼ −1þ ε2

a
: ð4:4Þ

Its symmetric counterpart is given by ϕ2Rðt;xÞ¼ϕ2Lðt;−xÞ.
Note that the subluminal zero x ¼ −εþ vt crosses the light
cone x ¼ −t at tc ¼ a

ε. It results in the compactness of a
region of spacetime in which ϕ2L holds. Note also that ϕ1L
and ϕ2L (as well as ϕ1R and ϕ2R) are given by expressions
which are identical with the formulas that describe the

self-similar solutions discussed in [21]. The basic
difference is that in the present case the supports of the
self-similar partial solutions are restricted to a region
corresponding with the exterior of the future light cone
of the event ðt; xÞ ¼ ð0; 0Þ. The region inside this light cone
contains some new partial solutions.
In order to obtain the partial solution ϕ1Cðt; xÞ, we

assume its positivity (i.e., we choose a term “− t2
2
”) and

impose the following matching conditions ϕ1Cðt;−tÞ ¼
ϕ1Lðt;−tÞ and ϕ1Cðt; tÞ ¼ ϕ1Rðt; tÞ. It gives

ϕ1Cðt; xÞ ¼
1

1þ v

�
εt −

x2 þ t2

2

�
−
t2

2
: ð4:5Þ

This solution remains valid in a compact region delimited
by the intersection of the future light cone of the event
(0,0) and the past light cone of the event ðε; 0Þ. The events
ðε
2
;� ε

2
Þ correspond with two points at the Minkowski

diagram at which new partial solutions ϕ3L and ϕ3R
emerge. The solution ϕ3Lðt; xÞ satisfies the matching
conditions ϕ3Lðt;−tÞ ¼ ϕ2Lðt;−tÞ and ϕ3Lðt;−εþ tÞ ¼
ϕ1Cðt;−εþ tÞ. It takes the form

ϕ3Lðt; xÞ ¼
1

1þ v

�
ε

2
ðxþ tÞ − 1

4
ðxþ tÞ2

�
þ ðx − tÞ2

8
−
t2

2

þ 1

2ð1 − v2Þ
�
εþ ð1þ vÞ x − t

2

�
2

: ð4:6Þ

Figure 16 shows that, in the limit ε → 0, all the supports
of the partial solutions presented above shrink to points.
Moreover, in this limit the gradients of the partial solutions
become singular. It reflects the emergence of discontinu-
ities of the field at the light cone. As a result, there are no
counterparts for these solutions in the set of partial
solutions describing the exact shock wave.
On the other hand, the partial solution ϕ2Cðt; xÞ is a

counterpart of the first partial solution ϕ0ðt; xÞ ¼ 1
4
ðx2 −

t2Þ þ a0 that composes the exact shock wave. This solution
matches ϕ3Lðt; xÞ at x ¼ ε − t and ϕ3Rðt; xÞ at x ¼ −εþ t.
It has the form

(a) (b)

FIG. 16. Partial solutions for triangular initial data: a ¼ 0.05 and ϵ ¼ 2 × 10−4 (ε ¼ 0.05013).
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ϕ2Cðt;xÞ¼
x2−bðtÞ
2ð1−vÞ ; where bðtÞ≔−vt2þ2εt−2a: ð4:7Þ

Indeed, in the limit ε → 0, (v → −1) the solution ϕ2Cðt; xÞ
tends to ϕ0ðt; xÞ with a0 ¼ 1

2
a [see Fig. 1(a) for the

meaning of a0]. The coefficient bðtÞ satisfies bðtÞ ≥ 0
for t ≤ t0 where

t0 ¼ −
ε

v

� ffiffiffiffiffiffiffiffiffiffiffi
1 − v
1þ v

r
− 1

�
: ð4:8Þ

Thus, ϕ2Cðt0; 0Þ ¼ 0. Note that t0 →
ffiffiffiffiffiffi
2a

p ¼ 2
ffiffiffiffiffi
a0

p
in the

limit ε → 0. For t > t0 the zero of ϕ2Cðt; xÞ splits into two
zeros xð1ÞðtÞ ¼ � ffiffiffiffiffiffiffiffi

bðtÞp
that move in opposite directions.

Trajectories of the zeros xð1ÞðtÞ delimit the domain of the
solution ϕ2Cðt; xÞ. In the case of exact shock wave (ε ¼ 0)
this region is restricted from below by the light cone x ¼
�t and from above by a hyperbola xðtÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − 2a

p
. This

situation changes qualitatively for solution (4.7), which,
contrary to its counterpart, is delimited from below by the
future light cone x ¼ �ε ∓ t of the event ðt; xÞ ¼ ðε; 0Þ
and from above by a hyperbolalike curve xð1ÞðtÞ. The
intersection of the line x ¼ −εþ t with the curve xð1ÞðtÞ
determines an instant of time

tc ¼
a
ε
ð2 −

ffiffiffiffiffiffiffiffiffiffiffi
1 − v

p
Þ; ð4:9Þ

at which both supports of the solution ϕ2Cðt; xÞ shrink to
zero. It means that ϕ2Cðt; xÞ is restricted to a compact
region on the Minkowski diagram. This region is delimited
by the endpoints �xc where xc ≔ −εþ tc. The events
ðtc;�xcÞ are marked in Fig. 16(a). Note that tc → ∞
for ε → 0.
The partial solution that matches ϕ2Cðt; xÞ at xð1ÞðtÞ ¼

� ffiffiffiffiffiffiffiffi
bðtÞp

is symmetric in the variable x and negative
valued. Imposing matching conditions at x ¼ ffiffiffiffiffiffiffiffi

bðtÞp
on

the central partial solution ϕ3Cðt;xÞ¼Fðxþ tÞþGðx− tÞþ
t2
2
we get

Fð
ffiffiffiffiffiffiffiffi
bðtÞ

p
þ tÞ þGð

ffiffiffiffiffiffiffiffi
bðtÞ

p
− tÞ þ t2

2
¼ 0;

F0ð
ffiffiffiffiffiffiffiffi
bðtÞ

p
þ tÞ þG0ð

ffiffiffiffiffiffiffiffi
bðtÞ

p
− tÞ ¼ a

ffiffiffiffiffiffiffiffi
bðtÞp

2ð1 − vÞ ;

where F0ðsÞ ¼ dFðsÞ
ds and similarly for G0ðsÞ. Solving these

equations we get

ϕ3Cðt; xÞ ¼
1

1þ v
½Hðtþ xÞ þHðt − xÞ − 2Hðt0Þ�

þ 1

2
ðt2 − t20Þ þ αð−Þðt2 þ x2 − t20Þ

− 2εαðþÞðt − t0Þ; ð4:10Þ

where the coefficients αð�Þ have the form αð�Þ¼1
2
ð 1
1−v�

2
1þvÞ. The function HðzÞ stands for the integral HðzÞ ≔R
dz

ffiffiffiffiffiffiffiffiffi
cðzÞp

, where cðzÞ ¼ −vz2 þ 2εz − ε2, and it reads

HðzÞ¼ 1

2

�
z−

ε

v

� ffiffiffiffiffiffiffiffiffi
cðzÞ

p

−
1

2

�
ε2

1−v

ð−vÞ32 ln
�
2a

�
εffiffiffiffiffiffi
−v

p þ z
ffiffiffiffiffiffi
−v

p þ
ffiffiffiffiffiffiffiffiffi
cðzÞ

p ���
:

The integration constant is fixed by the condition
ϕ3Cðt0;0Þ¼ 0. The partial solution (4.10) is negative valued
on the segment −

ffiffiffiffiffiffiffiffi
bðtÞp

<x<
ffiffiffiffiffiffiffiffi
bðtÞp

in the interval of
time t0 < t < t1. At t ¼ t1 another zero arises, namely
ϕ3Cðt1; 0Þ ¼ 0. Due to the complexity of the expression
(4.10) we cannot give an exact solution to this equation.
Solving numerically this equation for a ¼ 0.05 and ε ¼
0.05013 we get t1 ≈ 0.554.
The validity of our numerical solution is determined by

the instant of time tc, given by (4.9) and in its central region
by a hyperbolalike curve xð2ÞðtÞ, which describes the
second zero of ϕ3Cðt; xÞ, i.e., ϕ3Cðt; xð2ÞðtÞÞ ¼ 0. In our
example, tc ≈ 0.602. In order to get a solution valid for
t > tc one has to construct a solution inside the future light
cones of the events ðtc;�xcÞ where xc ¼ −εþ tc. Such a
solution should match ϕ3Cðt; xÞ at x ¼ �½xc − ðt − tcÞ� and
ϕ3R=Lðt; xÞ at x ¼ �½xc þ ðt − tcÞ�. Since ϕ3C < 0 in the
vicinity of the matching point and ϕ3R=L > 0 then the
partial solution inside the future light cone of the event
ðtc;�xcÞ should consist of at least two partial solutions
with opposite signs. Unfortunately, the complexity of the
expression (4.10) makes it impossible to obtain an exact
expression for such solutions. For the same reason we
cannot give an exact expression for another partial solution
in the central region above the hyperbola xð2ÞðtÞ.
In Fig. 17 we show the exact shocklike waves obtained

for a ¼ 0.05 and ϵ ¼ 2 × 10−4 in three instants of time

t=
0.

1

t=
0.

25

t=
0.

55

0 0.2 0.4 0.60.6 0.4 0.2

0.01

0

0.01

0.02

x

FIG. 17. Evolution of a shocklike wave characterized by a ¼
0.05 and ϵ ¼ 2 × 10−4, and evolution of the exact shock wave for
t ¼ 0.1, t ¼ 0.25, and t ¼ 0.55.
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t ¼ 0.1, t ¼ 0.25 and t ¼ 0.55. The dotted line represents
the signum-Gordon field corresponding with an exact
shock wave configuration with a0 ¼ 1

2
a. Two external

bumps localized in the vicinity of the future light cone
of the event ðt; xÞ ¼ ð0; 0Þ decrease with time.
Figure 18 shows the exact shock wave and shocklike

wave solutions at t ¼ 0.5. The regular (without disconti-
nuities) solutions are taken for three different values of the
parameter ε ¼ 2

ffiffiffiffiffi
πϵ

p
given by ϵ ¼ 2 × 10−4, ϵ ¼ 2 × 10−5,

and ϵ ¼ 2 × 10−6. The shocklike wave solution tends to the
exact shock wave in the limit ϵ → 0.
Knowing the exact partial solutions, we can write

explicit expressions for the energy density carried by each
piece of the solution:

u1Cðt; xÞ ¼
ð2þ vÞt2 − 2εt − vx2 þ ε2

2ð1þ vÞ2 ð4:11Þ

u2Cðt;xÞ¼
vt2−2tεþð2−vÞx2

2ð1−vÞ2 þ ð3−vÞε2
2ð1−vÞ2ðvþ1Þ ð4:12Þ

u1Lðt; xÞ ¼
t2 þ ðxþ εÞ2
2ð1þ vÞ2 ð4:13Þ

u2Lðt; xÞ ¼
ðxþ ε − vtÞ2
ð1 − v2Þ2 ð4:14Þ

u3Lðt;xÞ¼
1

2ð1−v2Þ2 ½−vð1−v2Þðt2−x2Þþð1þv2Þðt2þx2Þ

−2tðð1þv2Þεþ2vxÞþ2ð1þð2−vÞvÞxεþ2ε2�:
ð4:15Þ

We do not write u3Cðt; xÞ because its expression is too
complicated to be analytically obtained. However, we can
use the finite differences method to take the derivatives of
ϕ3Cðt; xÞ necessary to calculate its energy density.
The expressions (4.11)–(4.15) and the numerical data for

u3Cðt; xÞ were used to plot the energy density as a color
gradient for 0 ≤ t ≤ t1 (Fig. 19, right-hand side).
Looking closely to Fig. 19 we can see the energy density

getting dimmer as the solution evolves in time. Such an effect
is particularly visible for larger values of ϵ and gets less
noticeable as ϵ decreases.This behavior suggests that the outer
regions of the solution act as a reservoir of energy, feeding the
expansion of the inner structures (shocklike wave).
The partial solutions ϕ2C and ϕ3C correspond to partial

solutions of the exact shockwave. Therefore, ϕC;ϕ1L;
ϕ2L;ϕ3L (and the corresponding right-side solutions) are
related to our approximation of the Dirac delta by a finite
function. When ϵ → 0, these solutions reduce to a dis-
continuity in the field. The color gradient plots suggests
that these partial solutions loose energy over time. We can
examine this claim closer by integrating the energy
densities and obtain the total energy as a function of time:

E1CðtÞ ¼

8>>><
>>>:

tð2t2ðvþ 3Þ − 6tεþ 3ε2Þ
3ðvþ 1Þ2 if 0 ≤ t ≤ ε

2

ðε − tÞð2t2ðvþ 3Þ þ 2tðv − 3Þε − ðv − 3Þε2Þ
3ðvþ 1Þ2 if ε

2
< t ≤ ε

ð4:16Þ

E1LðtÞ ¼ E1RðtÞ ¼
−8t3 þ 6t2ε − 3tε2 þ ε3

6ðvþ 1Þ2 ð4:17Þ
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(a)
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(b)
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(c)

FIG. 18. The shocklike wave at t ¼ 0.5 for a ¼ 0.05 and (a) ϵ ¼ 2 × 10−4, (b) ϵ ¼ 2 × 10−5, and (c) ϵ ¼ 2 × 10−6. For ϵ → 0 the
shock-wave-like solution (solid curve) tends to the exact shock wave solution (dotted curve).
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E2LðtÞ ¼ E2RðtÞ ¼

8>>><
>>>:

−
t3ðv − 1Þ
3ðvþ 1Þ2 if 0 ≤ t ≤ ε

2

−
ðð1þ vÞt − εÞ3
3ðv2 − 1Þ2 if t > ε

2

ð4:18Þ

E3LðtÞ¼E3RðtÞ¼

8>>><
>>>:
ð2t−εÞð2t2½vðvðvþ2Þ−1Þþ2�þ t½vðvðv−7Þþ5Þ−7�ε− ½vðvðv−4Þþ5Þ−4�ε2Þ

6ðv2−1Þ2 if ε
2
≤ t≤ ε

εð6t2ðvþ1Þ2þ3t½vðv−2Þ−5�ðvþ1Þε− ½vðvðvþ2Þ−7Þ−10�ε2Þ
6ðv2−1Þ2 if t > ε:

ð4:19Þ

Considering the intervals of time where each solution is valid, we can sum up the energy contained in the outer regions of
the field. That is, the energy contained in the regions that are reduced to discontinuities when ϵ tends to zero.
Looking at Fig. 20 we see that the energy in the outer regions is initially constant

(a) (b)

(c) (d)

(e) (f)

FIG. 19. Field ϕðt; xÞ (left) and its energy density (right) for a ¼ 0.05.
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E1CðtÞ þ E1LðtÞ þ E1RðtÞ þ E2LðtÞ þ E2RðtÞ ¼
a2

3ε
¼ a2

6
ffiffiffiffiffi
πϵ

p ; if 0 ≤ t ≤
ε

2
;

E1CðtÞ þ E3LðtÞ þ E3RðtÞ þ E2LðtÞ þ E2RðtÞ ¼
a2

3ε
¼ a2

6
ffiffiffiffiffi
πϵ

p ; if
ε

2
< t ≤ ε;

and later it decreases approximately linearly for small ε.
This decreasing of energy originates with the appearance of
the inner solution ϕ2C and then ϕ3C. It can be expected that
when the energy gets sufficiently small, it can no longer
feed the expansion of the shockwave. Therefore the
shockwave breaks down and radiates.

D. Shock waves and scattering of oscillons

One of the most characteristic properties of a radiation
generated from initial data (4.1) is an amazing similarity
between their patterns and the patterns formed by radiation
released during the process of scattering of oscillons. The
problem of scattering of oscillons has been reported in
Ref. [18]. The initial configuration contains two exact
oscillons with compact supports that touch each other at
t ¼ 0. Such oscillons move in front of each other with equal
speeds in the laboratory reference frame. In order to
simplify considerations we take only the initial configura-
tions which are symmetric under spatial reflections
x → −x. The scattering process leads to the emergence
of two main oscillons and production of the radiation
(smaller oscillons waves, etc.). This radiation is mainly
concentrated in the central region of the spacetime diagram.
There are two parameters which we use to get different
initial configurations: speeds of initial oscillons V and their
phase α. Dependently on the value of these parameters (on
the form of the initial oscillons) we get a variety of different
patterns of the radiation.

In Fig. 21 we show three examples of the evolution
of the signum-Gordon field. The magnitude of the field is
represented by a gradient color. Subfigures (a), (c), (e) show
the scattering of two oscillons in dependence on their initial
speed V and the phase α, whereas subfigures (b), (d),
(f) show the evolution of some initial field configurations
given by (4.1) (Gaussian case) with different values of ϵ.
The left and right figures look amazingly similar taking into
account that there is no direct relation between their initial
conditions. The presence of a radiation in the scattering
process means that the two emerging (leading) oscillons
have less energy than the incoming ones. The difference of
the energy is carried by the radiation. Having in mind that
the appearance of a shock wave solution requires a deltalike
initial field configuration we can speculate that such a
configuration of the field could be produced shortly after
collision (at the moment when two main outgoing oscillons
arise). This field configuration would give rise to the shock
wave solution in the similar way as the initial data (4.1)
does. In this scenario the role of a scattering process is
limited to the generation of a field configuration which
furthermore develops a shock-wave-like form. It explains
to some extent the universal character of the patterns
formed by radiation of the signum-Gordon field.

V. CONCLUSIONS

We have presented some considerations concerning the
problem of a collapse of shocklike wave solutions in the
signum-Gordon model. This phenomenon was observed
previously in the collision between two oscillons. Since the
oscillons dominate the radiation spectrum of the model and
they collide frequently the decay of shock waves is an
efficient mechanism of production of small size oscillons.
In the first part of the paper we looked in more detail at

the exact shock wave solution. We manage to establish the
initial condition for exact shock waves. Namely, a suitable
initial field configuration contains the field which vanishes
everywhere and its time derivative is proportional to the
Dirac delta. The support of the wave is localized inside
the light cone including the cone. We have shown that the
energy of the solution inside the light cone (excluding the
cone) increases linearly with time. This result may look
strange when confronted with the fact that the signum-
Gordon model conserves the energy. In fact there is no
inconsistency between these two facts. The total energy
of the shock waves includes also the gradient energy

FIG. 20. Total energy carried by the partial solutions ϕ1C, ϕ1L,
ϕ1R, ϕ2L, ϕ2R, ϕ3L, and ϕ3R for ϵ ¼ 2 × 10−4 (bottom) and ϵ ¼
4 × 10−5 (top).
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associated with discontinuities of the field at the light cone.
This energy is clearly infinite. Thus the existence of
the exact shock waves requires a continuous transfer of
the energy from discontinuities to the region inside the
light cone.
Next we have looked at the systems with finite total

energy. Taking the regular δ-like initial profile of ∂tϕ we
got a numerical solution which initially looks very similar
to exact shock wave solution. The finiteness of the gradient
energy of the field close to the light cone did not allow for
the existence of the wave for arbitrary long times. We found
that the wave begins to collapse (decay) into oscillons. The
decay starts earlier for configurations with lower the
gradient energy (bigger ϵ).

The numerical solutions obtained for initial configura-
tions that differ by a value of ϵ are very similar to solutions
obtained in the process of scattering of exact oscillons. Our
analysis of shock waves allows for a better understanding
of how oscillons are produced in the collision of two
incoming oscillons: the outgoing oscillons have less energy
than the incoming ones which leads to the production of
waves that eventually decay into oscillons.
The observed way of production of oscillons in a decay

of shocklike wave solution is also expected in other models
with V-shaped potentials in the limit of small amplitudes of
the field. Our preliminary results from the scattering of
compact kinks in double-well potential confirm this
statement.

(a) (b)

(c) (d)

(e) (f)

FIG. 21. Scattering of symmetric oscillons (left) and evolution of initial data (4.1) (right). The parameters of subfigures
(a) ðV; αÞ ¼ ð0.98; 0.648Þ, (b) ða; ϵÞ ¼ ð0.005; 1.747 × 10−5Þ, (c) ðV; αÞ ¼ ð0.93; 0.680Þ, (d) ða; ϵÞ ¼ ð0.005; 2.288 × 10−4Þ,
(e) ðV; αÞ ¼ ð0.74; 0.089Þ, and (f) ða; ϵÞ ¼ ð0.005; 3.0959 × 10−2Þ.
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