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We study multi-Higgs final states in vector boson fusion (VBF) processes at the LHC and at future
proton-proton colliders, focusing on the prospects for measurements at 27 and 100 TeV. We use an effective
Lagrangian which includes higher-dimensional operators in the mass eigenstates which are relevant to VBF
processes and relate this to specific parametrizations and models for new physics in the Higgs sector. We
derive theoretical constraints on the parameter space from the unitarity of 2 → n scattering amplitudes and
apply the results to VV → hh and hhh processes, where V ¼ W, Z. As a result, we present constraints on
differential distributions as appropriate to the study of VV → hh and hhh processes.
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I. INTRODUCTION

After the discovery of the Higgs boson with mass mh ≈
125 GeV at the LHC [1,2], detailed measurements of all of
its properties have become central to any search for new
physics beyond the Standard Model (SM). In the SM, the
Higgs boson has three types of interaction at tree level:
(i) the Yukawa interaction with massive fermions, (ii) the
interaction with electroweak gauge bosons (W� and Z),
and (iii) the cubic and quartic Higgs self-interactions.
Establishing the last type of interaction is a crucial test
of our current understanding of electroweak symmetry
breaking. However, any direct measurement of Higgs self-
interactions involves producing two or more Higgs bosons
in a single elementary process.
For all possible multi-Higgs production processes, the

SM rates are very small. Beyond the SM, new effects may
significantly enhance the rate, but any such enhancement is
subject to generic relations from unitarity. In the current

paper, we investigate multi-Higgs production in the context
of vector-boson fusion topologies, compute production
rates with appropriate cuts and selection criteria, and study
the applicable unitarity constraints within an effective-
theory formalism. The results are intended to supply future
studies of multi-Higgs production with generic limits of
event distributions and rates that have to be considered in
the physical interpretation of the analysis.

A. Higgs-pair production in the SM

The cubic Higgs self-coupling, hhh, contributes to
processes that involve at least two Higgs bosons in the
final state. At the LHC, the dominant process of Higgs-pair
production in the SM is gluon-gluon fusion (ggF) via a
heavy top-quark loop. Current LHC data constrain the
triple-Higgs self-coupling only very weakly [3]. Multiple
groups have evaluated the potential for a first meaningful
measurement of the triple-Higgs self-coupling at future
high-luminosity runs of the LHC [4–10]. The considered
decay channels of the Higgs pair include WþW−WþW−

[11,12], bb̄γγ [13–18], bb̄WþW− [19], bb̄τþτ− [20–22],
bb̄μþμ− [13], WþW−γγ [23], and bb̄bb̄ [20,24,25]. It is
expected that the triple-Higgs self-coupling can be con-
strained within 40% accuracy after collecting 3 ab−1 of data
at the 14 TeV LHC [26]. Beyond the LHC, at a future
100 TeV hadron collider, the Higgs-pair production rate is
enhanced significantly [9,15,27–32], allowing for a more
accurate determination of the Higgs potential.
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Vector-boson fusion (VBF), VV → hh, is a subdominant
process of Higgs-pair production in hadron collisions [33].
The vector bosons V ¼ W�, Z are effectively radiated from
incoming quarks. In addition to its dependence on the
Higgs self-interaction, this process also depends on the
hVV and hhVV couplings. The single-Higgs couplings
hVV can be determined from the precise measurement of
the decay branching fractions h → WW� and h → ZZ� at
the LHC, up to a common normalization factor. Current
LHC data on the decay branching fractions for these
channels are consistent with the SM predictions [34,35].
The Higgs-pair interaction hhVV has not been accessible
otherwise. In principle, the VV → hh process allows for a
simultaneous extraction of this class of couplings and of the
Higgs self-interaction hhh.
The VBF mode of Higgs-pair production at hadron

colliders has been studied in Refs. [36–40]. Beyond tree
level, the NLO QCD correction enhances the cross section
by ∼7% [41,42]. In the high-luminosity mode of the LHC
(HL-LHC) with 3 ab−1 at 14 TeV, the hhVV interaction can
be constrained to 20% [38]. A 100 TeV hadron collider has
the potential to reduce the uncertainty down to 1% [39].
The hhWW coupling is also accessible in theW�W�h final
state. In Ref. [43], it is found that this particular final state
can constrain this coupling toOð100%Þ at the HL-LHC and
to 20% at a 100 TeV collider.
There are further modes of Higgs-pair production in

hadron collisions, namely, tt̄hh or Vhh production. The
corresponding production rates are substantially smaller
than in the ggF and VBF modes [41,42,44–50].

B. Triple-Higgs production in the SM

The quartic Higgs coupling hhhh is even more elusive,
and experimentally establishing this interaction in the SM
is a challenging task. Direct access requires processes with
three Higgs bosons in the final state. In the dominant
production channel at the LHC, gg → hhh, the total cross
section at 14 TeV is only Oð0.01Þ fb [51,52]. As an
alternative, the authors of Ref. [53] have considered triple
Higgs-strahlung, pp → Zhhh, but the cross section is also
tiny. At a 100 TeV hadron collider, triple-Higgs production
via ggF can become observable in principle [54–60]. The
cross section of gg → hhh at a 100 TeV hadron collider is
estimated to 5 fb if NLO QCD corrections are included
[54]. Various decay channels have been investigated in
some detail, such as hhh → bb̄bb̄γγ [55,56], hhh →
bb̄bb̄ττ [57,60], and hhh → bb̄WW�WW� [58]. These
results are encouraging, but an unambiguous discovery
of this process in the SM puts strong requirements on the
performance of the detector and analysis.
Looking at the VBF mode of triple-Higgs production,

VV → hhh, the characteristics of the signal suggest a
dedicated study despite the small expected event rate.
The VBF topology, which implies forward jets with

suppressed QCD activity in the central region, improves
the signal-to-background ratio considerably. This process is
sensitive to a hhhVV interaction which does not exist in the
SM but may be expected for a strongly interacting Higgs
sector [61]. The amplitude also involves the lower-order
hVV and hhVV couplings and is subject to gauge can-
cellations at high energy. For instance, an anomalous hVV
coupling would have a strong impact on triple-Higgs
production in VBF [62].
At a future lepton collider, the situation is slightly more

favorable. A high-luminosity eþe− collider in the energy
range between 500 GeV and 3 TeV gives access to the
Higgs-strahlung and VBF modes of Higgs-pair production
and allows for a meaningful determination of the cubic
Higgs self-interaction [63,64]. Furthermore, single-Higgs
production processes enable an absolute determination of
the hVV couplings, which is an essential ingredient of an
unambiguous determination of the Higgs potential in pair-
production processes. However, the SM cross section for
triple-Higgs production in either eþe− → Zhhh or eþe− →
νν̄hhh does not rise above 1 ab [65,66].

C. Purpose and contents of this paper

For a process that is as rare as triple-Higgs production,
in the presence of large background, detection becomes a
challenge even if an SM calculation predicts a sizable
number of events. Fortunately, any disturbance of the SM
interactions is likely to increase the expected event yield,
possibly by a significant amount, so even a loose
upper limit on the cross section should acquire physical
meaning. To this end, it is important to know about
model-independent upper limits, beyond which experi-
mentally determined bounds would lose their immediate
significance.
In this paper, we study double- and triple-Higgs pro-

duction in VBF processes in an effective-field theory (EFT)
approach. In this framework, anomalous effects are para-
metrized by the coefficients of higher-dimensional oper-
ators. By investigating the consequences of S-matrix
unitarity for the amplitudes VV → hh and VV → hhh,
we constrain the energy-dependent parameter region where
the EFTyields a valid parametrization. We use the packages
WHIZARD [67] and Madgraph5_aMC@NLO [68] to compute the
tree-level cross sections including all terms linear and
bilinear in the EFT parameters. Evaluating numerical
results at 14, 27, and 100 TeV, we turn the results into
scale-dependent bounds on the model parameters. For a
complete picture, it is important to treat Higgs-pair and
triple-production processes on the same footing. By apply-
ing our methods to a detailed study of signal and back-
ground effects which we do not attempt here, it should
become possible to properly gauge the achievable sensi-
tivity of the collider to new-physics effects in the Higgs
potential, in a largely model-independent fashion.
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The paper is organized as follows. In Sec. II, we esta-
blish the framework and introduce the generic effective
Lagrangian, together with two more specific model
scenarios where anomalous effects are present in the
Higgs sector. In Sec. III, we derive unitarity relations
that arise in general and in particular for this class of
processes. To this end, we generalize the well-known
formalism for quasielastic relativistic scattering processes
to multiparticle final states and compute the specific
constraints that arise within the EFT framework. In
Sec. IV, we apply our findings to the phenomenology
of Higgs-pair and triple-production processes, considering
cut strategies, interference effects, and invariant-mass
distributions. We conclude this paper with a discussion
of our results in Sec. V.

II. EFFECTIVE LAGRANGIAN FOR VBF
HIGGS PRODUCTION

For an unbiased approach to multi-Higgs production
phenomenology and constraints, we would like to employ
a framework that is as model independent as possible.

We choose to parametrize the Higgs interactions within an
effective-theory framework. In practice, this may be con-
sidered as arising from the most general form-factor
approach for the interactions of interest, where all form
factors are expanded in powers of momentum. We keep the
leading terms in the expansion. We do not introduce new
fields, and we keep the infrared symmetries of the SM
(QED, QCD) intact. The effective Lagrangian is expressed
in terms of physical fields W�; Z; h, etc.
It is well known that such a framework can be rendered

formally gauge invariant by introducing a nonlinear gauge
representation for the electroweak interactions. Vice versa,
the Lagrangian in terms of physical fields emerges from a
generic nonlinear representation by selecting the unitary
gauge, where Goldstone and ghost fields are eliminated.
Furthermore, it is perturbatively equivalent to a standard
effective-theory framework with linear gauge representa-
tion [69]. We have used the same framework for our
previous study of multiple Higgs production in gluon-gluon
fusion [58].
The effective Lagrangian can be written as follows:

LEFT ¼ LSM þ Lh þ LVVh þ LVh; ð2:1Þ

Lh ¼ −λ3
m2

h

2v
h3 −

κ5
2v

h∂μh∂μh − λ4
m2

h

8v2
h4 −

κ6
4v2

h2∂μh∂μhþ � � � ; ð2:2Þ

LVVh ¼ −
�
gW;b1

h
v
þ gW;b2

h2

2v2
þ gW;b3

h3

6v3
þ � � �

�
Wþ

μνW−μν

−
�
gA;b1

h
2v

þ gA;b2
h2

4v2
þ gA;b3

h3

12v3
þ � � �

�
FμνFμν

−
�
gX;b1

h
v
þ gX;b2

h2

2v2
þ gX;b3

h3

6v3
þ � � �

�
FμνZμν

−
�
gZ;b1

h
2v

þ gZ;b2
h2

4v2
þ gZ;b3

h3

12v2
þ � � �

�
ZμνZμν; ð2:3Þ

LVH ¼ gW;a1
2m2

W

v
hWþ;μW−

μ þ gW;a2
m2

W

v2
h2WμWμ þ gW;a3

m2
W

3v3
h3WμWμ

þ gZ;a1
m2

Z

v
hZμZμ þ gZ;a2

m2
Z

2v2
h2ZμZμ þ gZ;a3

m2
Z

6v3
h3ZμZμ þ � � � : ð2:4Þ

Dots indicate higher-dimensional interactions which are
not relevant for the VBF Higgs production processes that
we consider. We restrict the calculation to charge and parity
symmetry (CP)-conserving interactions and therefore omit
any CP-violating operators.
In the SM at the tree level, we have the relations λ3 ¼

λ4 ¼ gW;a1 ¼ gW;a2 ¼ gZ;a1 ¼ gZ;a2 ¼ 1 and κ5 ¼ κ6 ¼ gV;
b1 ¼ gV;b2 ¼ gV;b3 ¼ gW;a3 ¼ gZ;a3 ¼ 0, where the sub-
script V denotes W, A, X, Z. It is understood that the

corresponding terms have been removed from LSM, such
that they are not double counted.
The higher-order operators in the kinetic-energy term

(proportional to κ5 and κ6) are redundant and can be
eliminated by applying the equation of motion of the
Higgs field or by a nonlinear transformation [70]. To
eliminate κ5, we may replace h → hþ a

2v h
2 and get

parameter shifts such as
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λ3 → λ3 þ a λ4 → λ4 þ a2 þ 6aλ3; ð2:5Þ

κ5 → κ5 − 2a κ6 → κ6 þ 5aκ5 − 2a2; ð2:6Þ

gW;a2 → gW;a2 þ agW;a1 gW;a3 → gW;a3 þ 3agW;a2:

ð2:7Þ

Choosing a ¼ 1
2
κ5 eliminates κ5. Analogously, replacing

h → hþ b
3v2 h

3 results in

λ4 → λ4 þ 4b; ð2:8Þ

κ6 → κ6 − 4b; ð2:9Þ

gW;a3 → gW;a3 þ 2bgW;a1; ð2:10Þ

so we can eliminate κ6 with b ¼ κ6
4
. To facilitate the

comparison between parametrizations, we choose to retain
these parameters in Table II below (cf. also Ref. [58]).
The phenomenological Lagrangian (2.1) provides a

robust parametrization of new physics in the Higgs-
electroweak sector, under the condition that no new on
shell states appear in the kinematically accessible range.
In Table I, we summarize the dependency of various Higgs
production processes on the coefficients in the effective
Lagrangian, as can be read off from the contributing
Feynman diagrams.

TABLE II. Relations between the phenomenological Lagrangian parameters in (2.1)–(2.4) (first column), the
SILH effective Lagrangian A 1 (second column), and the free parameters of the Higgs-inflation model, Sec. A 1.
Note the extra parameters ζnh, ζ

n
W , ζ

n
Z, ζ

n
A, ζ

n
AZ (defined in Eq. (A34)–(A41) and the ð1þ 6ξ2v2=M2

pÞ−1=2 factor,
induced by the Higgs and gauge-boson wave-function normalization, respectively.

SILH Higgs inflation

λ3 ð1þ 5
2
c6v2=f2Þð1þ 3

2
c6v2=f2Þ−1ζh ð1þ 6ξ2v2=M2

pÞ−1=2
λ4 ð1þ 15

2
c6v2=f2Þð1þ 3

2
c6v2=f2Þ−1ζ2h ð1þ 6ξ2v2=M2

pÞ−1
κ5 −2cHv2=f2ζ3h −12v2ξ2=M2

pð1þ 6ξ2v2=M2
pÞ−3=2

κ6 −2cHv2=f2ζ4h −12v2ξ2=M2
pð1þ 6ξ2v2=M2

pÞ−2
gW;b1 cHW

g2v2

32π2f2 ζhζ
2
W

0

gW;b2 cHW
g2v2

32π2f2 ζ
2
hζ

2
W

0

gA;b1 −cγ
g2v2

8π2f2
g02

g2ρ
cos2 θζhζ2A 0

gA;b2 −cγ
g2v2

8π2f2
g02

g2ρ
cos2 θζ2hζ

2
A

0

gX;b1 gg0v2

64π2f2 ½ðcHW − cHBÞ þ 8cγ
g2

g2ρ
sin2θ�ζhζAζZ

þcγ
g2v2

4π2f2
g02

g2ρ
cos2θζhζ2AZ

0

gX;b2 gg0v2

64π2f2 ½ðcHW − cHBÞ þ 8cγ
g2

g2ρ
sin2θ�ζ2hζAζZ

þcγ
g2v2

4π2f2
g02

g2ρ
cos2θζ2hζ

2
AZ

0

gZ;b1 g2v2

32π2f2 ðcHW þ cHBtan2θÞζhζ2Z − cγ
g2v2

8π2f2
g02

g2ρ
cos2θζhζ2AZ

− gg0v2

64π2f2 ½ðcHW − cHBÞ þ 8cγ
g2

g2ρ
sin2θ�ζhζAZζZ

0

gZ;b2 g2v2

32π2f2 ðcHW þ cHBtan2θÞζ2hζ2Z − cγ
g2v2

8π2f2
g02

g2ρ
cos2θζ2hζ

2
AZ

− gg0v2

64π2f2 ½ðcHW − cHBÞ þ 8cγ
g2

g2ρ
sin2θ�ζhζAZζZ

0

gW;a1 ½1 − ðcW g2v2

m2
ρ
þ cHW

g2v2

16π2f2Þ�ζhζ2W ð1þ 6ξ2v2=M2
pÞ−1=2

gZ;a1 ½1 − ðcW g2v2

m2
ρ
þ cB

g02v2

m2
ρ
þ cHW

g2v2

16π2f2 þ cHB
g02v2

16π2f2Þ�ζhζ2Z ð1þ 6ξ2v2=M2
pÞ−1=2

gW;a2 ½1 − 3ðcW g2v2

m2
ρ
þ cHW

g2v2

16π2f2Þ�ζ2hζ2W ð1þ 6ξ2v2=M2
pÞ−1

gZ;a2 ½1 − 3ðcW g2v2

m2
ρ
þ cB

g02v2

m2
ρ
þ cHW

g2v2

16π2f2 þ cHB
g02v2

16π2f2Þ�ζ2hζ2Z ð1þ 6ξ2v2=M2
pÞ−1

gW;a3 From dim-8 operators or higher OðξÞ
gZ;a3 From dim-8 operators or higher OðξÞ

TABLE I. Parameters that contribute to the VBF Higgs pro-
duction processes studied in this paper.

VV → h VV → hh VV → hhh

Parameters gV;a1, gV;b1 gV;a1, gV;b1 gV;a1, gV;b1
involved … gV;a2, gV;b2, λ3, κ5 gV;a2, gV;b2, λ3, κ5

… … gV;a3, gV;b3, λ4, κ6
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Table II contains the actual translation between param-
eter sets. We consider two actual models: the strongly
interacting light Higgs (SILH) model and Higgs-inflation
model. Details of deriving the relation between the SILH
Lagrangian and the effective Lagrangian (2.1), the relation
between the Higgs-inflation model and the effective
Lagrangian, including conventions, are given in A 2.
In Table II, we list the coefficient expressions for the

Higgs-inflation model and relate them to the SILH operator
basis and to the Higgs Lagrangian that we use for our study.
It is evident that the SILH operator basis, which is
appropriate for a generic strongly interacting model,
incorporates directions in parameter space which are absent
in the more specific model of Higgs inflation. Dedicated
measurements of Higgs self-interactions become essential
if such a class of model is realized.

III. CONSTRAINTS ON PARAMETERS FROM
THE UNITARITY OF S MATRIX

When adopting an EFT for calculations, we accept a
truncated Taylor expansion as a model for any scattering
amplitude, distribution or cross section. A term of dimen-
sion d in the Lagrangian generates uncanceled factors that
rise proportional to Ed−4 in the amplitude, where E is the
overall energy scale in a scattering process [71]. Due to this
growth, the model ceases to be weakly interacting at some
scale.
The scale where the scattering strength has to saturate,

can be deduced from the optical theorem, i.e., unitarity.
Physically, the theorem describes the effect of rescattering
which occurs whenever overlapping field amplitudes
become sufficiently large. In this work, we want to turn
the argument around and determine bounds for EFT
parameters such that sizable rescattering corrections do
not occur below some arbitrary scale Q, for the concrete
processes of multi-Higgs production in VBF.
In the simplest case of spinless 2 → 2 scattering,

exploiting the optical theorem is textbook knowledge. A
partial-wave decomposition will reformulate the restricted
S operator as a discrete matrix which can be diagonalized
for convenience (cf., e.g., Ref. [72]).
The extension to relativistic 2 → n scattering (n > 2), in

the context of the SM and its extensions, is not as familiar.
There is no obvious decomposition of the final state.
Apparently, we have to consider m → n contributions to
the scattering operator which do not correspond to physical
scattering processes, and reformulating the problem into
matrix equations is no longer straightforward. To arrive at
useful inequalities, previous work introduced extra assump-
tions [73–75]. Neglecting spin also simplifies the problem
considerably [76].
Below, we adopt a generic approach, which we then

apply to the particular case at hand. It turns out that the
exact form of decomposition does not matter for the
purpose of deriving phenomenologically viable parameter
bounds. In the particular case of EFT operators, compli-
cations from kinematical dependencies are largely absent.

A. General unitarity constraints

Unitarity is the conservation of probability in a quantum
theory, applied to the S operator that encodes the scattering
of observable particles S†S ¼ 1. Its nontrivial part T ,
defined by S ¼ 1þ iT , satisfies the universal relation

−iðT − T †Þ ¼ T †T : ð3:1Þ
We are interested in unitarity conditions for matrix ele-
ments between asymptotic states which consist of a finite
number na of particles with well-defined masses. We
denote multiparticle states collectively by jα;Φai, where
Φa is a shorthand for the kinematical configuration of na on
shell four-momenta (the phase-space point), and α denotes
the set of discrete quantum numbers such as helicity and
color. Furthermore, we fix the total momentum of a multi-
particle state a to pa. With this constraint, the manifold of
configurations ðα;ΦaÞ becomes a compact manifold for
each fixed na.
Momentum conservation allows us to introduce the

matrix elements of the scattering amplitude operator M
between the initial state jα;Φai and the final state jβ;Φbi,

hβ;ΦbjT jα;Φai ¼ ð2πÞ4δð4Þðpa − pbÞhβ;ΦbjMjα;Φai:
ð3:2Þ

We take matrix elements on both sides of Eq. (3.1) and
insert a complete set of multiparticle states jγ;Φci,
− i½hβ;ΦbjMjα;Φai − hα;ΦajMjβ;Φbi��

¼
X
γ

Z
dΦchγ;ΦcjMjβ;Φbi�hγ;ΦcjMjα;Φai;

ð3:3Þ
where dΦc denotes the canonical Lorentz-invariant measure
on the phase space fΦcg constrained by pc ¼ pa ¼ pb.
For calculations, we may introduce a bijective mapping

between the unit hypercube in da ¼ 3na − 4 dimensions,
fxa ∈ Rda ; 0 < ðxaÞi < 1g and the manifold fΦag, for
each fixed na. For instance, we may factorize phase space
as a tree consisting of na − 1 momentum splittings of type
1 → 2, with pa at the root. There are 2ðna − 1Þ angular
variables and na − 2 invariant-mass variables. This map-
ping introduces a Jacobian JaðxaÞ ¼ dΦa=dxa, which
should incorporate symmetry factors where appropriate.
The construction provides a method of evaluating phase-
space integrals that has become standard and preserves
overall Lorentz invariance. If we introduce amplitude
functions which include the Jacobian factors as follows:

Mβαðxb; xaÞ ¼ J1=2b ðxbÞhβ;ΦbðxbÞjMjα;ΦaðxaÞiJ1=2a ðxaÞ;
ð3:4Þ

Eq. (3.1) takes the form
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− i½Mβα�ðxb; xaÞ −Mαβðxa; xbÞ�

¼
X
γ

Z
dxcMγβ�ðxc; xbÞMγαðxc; xaÞ: ð3:5Þ

If massless particles are involved, the sum over inter-
mediate states is infinite, and the matrix elements contain
nonintegrable infrared, collinear, and Coulomb singular-
ities, so the integrals do not converge. To remedy this, we
may introduce some version of phase-space slicing and sum
over nearly degenerate states, which introduces indefinite
particle numbers [77,78]. However, in the present context
wherewe are studying the production ofmassive bosons, we
focus on anomalous couplings of the Higgs boson. Aswe do
not change the couplings of massless particles, we may
ignore this complication, and assume that all external and
internal states are massive. The sum over intermediate states
then is a finite sum, the matrix elements and the Jacobians
are finite, and the integration manifold [the union of the unit
hypercubes for all contributing ðna; αÞ] is compact.
In such a situation, it is possible to introduce a scalar

product of square-integrable functions on the integration
manifold and to find a complete basis of functions which
are mutually orthonormal with respect to this scalar
product. For instance, choosing the canonical scalar prod-
uct, we could take a straightforward Fourier expansion. A
more physical choice could involve spherical harmonics for
the normalized angular variables and an arbitrary basis for
the invariant-mass variables. In the two-particle case where
there are no free invariant masses, this becomes the
standard partial-wave expansion. We note that for each
particle combination a, we may choose a different kind of
expansion for the corresponding phase space ΦaðxaÞ.
We adopt, for simplicity, the canonical scalar product

and a corresponding orthonormal basis fHα
AðxaÞg on each α

phase space, Z
dxaHα�

A ðxaÞHα
BðxaÞ ¼ δAB; ð3:6Þ

where A is an appropriate (multi-)index which labels the
basis functions. We expand the amplitudes as

Mβαðxb; xaÞ ¼ 2
X
AB

aαβABH
α
AðxaÞHβ�

B ðxbÞ ð3:7Þ

and thus express the scattering in terms of an actual matrix
with elements aαβAB.

1 Explicitly, the coefficients are

aαβAB ¼ 1

2

Z
dxadxbHα�

A ðxaÞHβ
BðxbÞMβαðxb; xaÞ: ð3:8Þ

They take complex values and depend only on the total
momentum, aαβAB ¼ aαβABðpaÞ, where pa ¼ pb. If we choose

a phase-space parametrization which preserves Lorentz
invariance, the coefficients depend only on s ¼ p2

a.
We obtain a discrete version of Eq. (3.5) [79,80],

−iðaαβAB − aβα�BA Þ ¼ 2
X
γ

X
C

aαγACa
βγ�
BC ; ð3:9Þ

where all coefficients are finite and the sums are convergent
if the simplifications regarding massless states are applied,
as described above.
Equation (3.9) encodes all unitarity relations of the

scattering matrix in question. To derive constraints on
individual amplitudes, we need a positivity condition. We
may diagonalize the scattering matrix and obtain exact
relations for superpositions of states. Alternatively, we may
derive less comprehensive but phenomenologically more
useful relations by focusing on diagonal matrix elements,
i.e., α ¼ β and A ¼ B,

−iðaααAA − aαα�AA Þ ¼ 2
X
γ

X
C

jaαγACj2; ð3:10Þ

¼ 2jaααAAj2 þ 2
X
C≠A

jaααACj2 þ 2
X
γ≠α

X
C

jaαγACj2: ð3:11Þ

To cast this in the intuitive geometry of the Argand circle,
we may express the diagonal amplitude in terms of its real
and imaginary parts and write

jReaααAAj2þ
����ImaααAA −

1

2

����2 þX
C≠A

jaααACj2 þ
X
γ≠α

X
C

jaαγACj2 ¼
1

4
:

ð3:12Þ

That is, each complex-valued elastic amplitude aααAAðsÞmust
lie on a circle with radius r around i=2, where the elastic
radius r ¼ 1=2 is reduced by the total contribution of all
inelastic channels.
The exact relation (3.12) yields strict upper bounds for

the elastic amplitude as well as for the total inelastic
contribution, which trivially translates into a bound for
each individual final state in this representation. We read off

jReaααAAj2 ≤
1

4����ImaααAA −
1

2

����2 ≤ 1

4X
C≠A

jaααACj2 ≤
1

4X
γ≠α

X
C

jaαγACj2 ≤
1

4
: ð3:13Þ

Examples for the application of these bounds, referring also
to the treatments in Refs. [72–74,76], can be found in
Appendix B.

1The factor 2 has been inserted for consistency with the
standard two-particle partial-wave expansion.
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The last inequality in Eq. (3.13) gives the unitarity
constraints on inelastic scattering. The important observa-
tion is that it is independent of the chosen basis in
multiparticle phase space, fHγg. To see this, we define
the coefficients bαγA as follows:

bαγA ≡ 1

4

Z
dxadxbdxcHα�

A ðxaÞHα
AðxbÞ

×Mγα�ðxc; xbÞMγαðxc; xaÞ; ð3:14Þ
which is clearly independent of Hγ . Using the expansion in
Eq. (3.7), we find

bαγA ¼
X
C

jaαγACj2 ≥ 0: ð3:15Þ

The unitarity constraint for inelastic scattering can be
written as

X
γ≠α

bαγA ≤
1

4
: ð3:16Þ

The problem has been reformulated as a set of discrete
matrix equations. Diagonalization becomes a possibility
also for the generic case, although analytical solutions do
not exist for realistic applications [81].
We are interested in inelastic scattering processes, VV →

hh and VV → hhh. For those, the inequality (3.16) con-
strains the sum over all contributions to a particular final
state. Moreover, we read off the weaker constraint

0 ≤ bαγA ≤
1

4
ð3:17Þ

for each individual contribution γ. In fact, the offending
terms in the EFT turn out to either not depend on the phase-
space point at all, or otherwise the dependence is well
controlled, so that meaningful bounds can easily be
computed. We arrive at a set of conservative bounds on
the parameter space even without an analytical solution. A
more detailed calculation could further narrow down the
parameter space but not widen it.

B. Unitarity constraints arising from VV → hh

We now apply the generic formalism to the two-particle
inelastic scattering process VV → hh. In the following, we
derive the formulas for WþW− → hh. Analogous results
for ZZ → hh can be obtained by replacing the couplings
accordingly and taking into account the symmetry factor

from two identical Z boson. We assume that the on shell
approximation is justified for the purpose of deriving
unitarity bounds, i.e., we treat the incoming vector bosons
as on shell with a pair invariant mass mðWþW−Þ ¼
mðhhÞ ¼ ŝ. In the actual process, the incoming propagators
are spacelike with a virtuality of Oðm2

WÞ; cf. Ref. [82] for
the possibility of relaxing that assumption.
We are looking at an inelastic channel. If we expand in

an orthonormal basis as described in the preceding sub-
section, we obtain

bW
þW−→hh

A ðŝÞ≡X
C

jaWþW−→hh
AC ðŝÞj2 ≤ 1

4
; ð3:18Þ

where A and C are (multi-)indices for the initial-state and
final-state basis, respectively. We note that the initial-state
particles carry spin as well as momentum, while the final-
state phase space manifold is trivially given by the unit
sphere, for fixed energy

ffiffiffî
s

p
.

As shown in Fig. 1, there are four distinct Feynman
diagrams which contribute to the WþW− → hh process in
the SM, and this breakdown remains valid in the EFT,

MðWþW− → hhÞ ¼ Ms þMt þMu þM4: ð3:19Þ
We refer to these as the s channel, t channel, u channel, and
contact-interaction amplitudes, respectively.
In the high-energy limit s ≫ m2

W , m2
H, the leading

contribution in the EFT is proportional to s. We thus write
a series expansion as follows, in terms of the rescaled
energy

ffiffiffiffiffiffiffiffiffi
s=v2

p
as a dimensionless expansion parameter,

MðWþW− → hhÞ ¼
Xþ∞

i¼0

mi

� ffiffiffi
s

p
v

�
2−i

; ð3:20Þ

where mi are the coefficients in the expansion. In Table III,
we list the prefactors of the leading contribution for each

FIG. 1. Four types of Feynman diagrams which contribute to the processes WþW− → hh.

TABLE III. Leading contribution m0 to the helicity amplitudes
for VV → hh, broken down by type of Feynman diagram. The
notation Oðg2W;b2Þ indicates that the contribution is nonzero but
depends on the phase-space point, proportional to the coupling
constants g2W;b2.

Helicity configuration þþ þ− 00

s channel 1
2
κ5gW;b1 0 1

2
κ5gW;a1

t, u channel 2g2W;b1 Oðg2W;b1Þ −g2W;a1

Contact interaction gW;b2 0 gW;a2
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amplitude and each one of the four independent helicity
modes. The amplitudes of all other helicity modes are
related to the four modes that we include in the table. We
find that with the exception of one term (t=u-channel þ−),
all leading contributions are independent of the kinematics.
These table entries translate directly into bounds for
amplitude coefficients. We also observe that only the
þþ, þ−, and 00 modes lead to amplitudes rising propor-
tional to s, so we may focus on those when considering
unitarity bounds.
Angular-momentum conservation directs the choice of a

convenient phase-space basis for the initial state of two
vector bosons. We couple helicity with orbital angular
momentum to total angular momentum j, i.e., adopt the
Wigner D-matrix formalism (cf. Appendix B) in analogy
with the formalism developed for quasielastic proc-
esses [83].
We thus derive individual bounds for amplitude coef-

ficients bjðh1h2Þ,

bjðh1h2Þ ≤
1

4
; where hi ¼ þ − 0: ð3:21Þ

The strongest bounds on the EFT coefficients that we
obtain for this process are the following ones:

b0ð00Þ ¼
s2

29π2v4
jgW;a2 − g2W;a1 þ

1

2
κ5gW;a1j2 ≤

1

4
; ð3:22Þ

b0ðþþÞ ¼ s2

29π2v4
jgW;b2 þ 2g2W;b1 þ

1

2
κ5gW;b1j2 ≤

1

4
;

ð3:23Þ

b2ðþ−Þ ¼ s2

3 × 210π2v4
g4W;b1 ≤

1

4
: ð3:24Þ

In particular, the þ− mode contributes a bound on gW;b1,
i.e., the hWþ

TW
−
T interaction, which is independent of the

other EFT parameters.
We have deliberately neglected the constraint from the

þ0 helicity amplitude. The amplitude should respect the
following constraint:

b2ðþ0Þ ¼ sm2
W

327π2v4
g2W;a1g

2
W;b1 ≤

1

4
: ð3:25Þ

In principle, we can also derive a bound of gW;b1 from this
equation also, instead from Eq. (3.24). But it is noticed that

only when gW;a1 ≥
ffiffiffiffiffiffiffiffiffiffiffiffi
3

p
π

p
v=mW ≈ 7, the new bound from

b2ðþ0Þ could be more stringent than that from b2ðþ−Þ. As
it is known that a large deviation of gW;a1 ¼ 1 is ruled out
by the Higgs decay data from current LHC measurements;
therefore, we will neglect the bound derived from b2ðþ0Þ
here and after.

C. Unitarity constraints arising from VV → hhh

The helicity amplitudes of the process WþW− → hhh
are associated with seven distinct types of Feynman
diagrams, Fig. 2. Similar to WþW− → hh, in the high-
energy limit, the amplitude can be expanded as a series in
powers of

ffiffiffiffiffiffiffiffiffi
s=v2

p
,

MðWþW− → hhhÞ ¼
Xþ∞

i¼0

miv−1
� ffiffiffi

s
p
v

�
2−i

: ð3:26Þ

We list the leading term m0 in Table IV for each helicity
combination. Wherever the coefficient is phase-space
dependent, we denote it asOðCÞ, where C is a combination
of coupling constants.
Since this is also an inelastic channel, we obtain unitarity

bounds on the b-coefficients defined in Eq. (3.14),

FIG. 2. Seven types of Feynman diagrams which contribute to the processes WþW− → hhh.

TABLE IV. Leading contribution m0 to the helicity amplitudes
in the high-energy limit for VV → hhh, broken down by type of
Feynman diagram.

þþ þ− 00

a gW;b3 0 gW;a3

b 1
2
gW;b1κ6 0 1

2
gW;a1κ6

c 3
2
gW;b2κ5 0 3

2
gW;a2κ5

d gW;b1κ
2
5

0 gW;a1κ
2
5

e 6gW;b1gW;b2 OðgW;b1gW;b2Þ −4gW;a1gW;a2

f Oðg3W;b1Þ Oðg3W;b1Þ 4g3W;a1

g 3g2W;b1κ5 Oðg2W;b1κ5Þ −2g2W;a1κ5
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bW
þW−→hhh

A ðŝÞ ≤ 1

4
: ð3:27Þ

Note that the b coefficients are independent of the phase-
space parametrization and of the basis functions for the
triple-Higgs system; only the phase-space parametrization
and the basis functions for the W-boson pair do matter. As
discussed in Appendix B, after we choose the Wigner D
matrix as our basis for the WþW− state, the b coefficients
are diagonal and can be denoted as bjðh1h2Þ, where j
represents the total angular momentum, and hi ¼ þ;−; 0
are the helicities of the two W bosons. We calculate the
(reduced) b-coefficients directly according to Eq. (3.14).
Although the result is independent of the phase-space
parametrization for the triple-Higgs system, an explicit
expression is required for phase-space integration; we
adopt the form given in Appendix B 4. We give the results
for the three helicity modes as follows:

(1) For the 00 helicity mode, the amplitude is constant in
phase space. The corresponding bound becomes

b0ð00Þ ¼
s3

3 × 214π4v6
jgW;a3

þ 1

2
gW;a1κ6 þ

3

2
gW;a2κ5 þ gW;1κ

2
5

− 4gW;a1gW;a2 þ 4g3W;a1 − 2g2W;a1κ5j2 ≤
1

4
:

ð3:28Þ
(2) For the þþ helicity mode, the type-f contribution is

phase-space dependent, and it yields a nonzero bj
for j > 0. However, we checked that the dependence
is of minor importance, and the bounds from bj ≤ 1

4

with j > 0 turn out to be much weaker than the
bounds from WþW− → hh. Therefore, we only
quote b0 here,

b0ðþþÞ ¼ s3

3 × 214π4v6

�
jgW;b3 þ

1

2
gW;b1κ6 þ

3

2
gW;b2κ5 þ gW;b1κ

2
5

þ 6gW;b1gW;b2 þ f1g3W;b1 − 3g2W;b1κ5j2 þ f2g6W;b1

�
≤
1

4
; ð3:29Þ

with f1 ¼ 7.49994� 0.00005 and f2 ¼ 0.0658� 0.0006 computed by numerical integration. The negligible f2
reflects the fact that the dependence of g3W;b1 on phase space is small.

(3) For the þ− helicity mode, only bj with j ¼ 2; 4;… are nonzero, and among them the largest one is b2, which is
given by

b2ðþ−Þ ¼ s3

3 × 214
ffiffiffi
6

p
π4v6

����gW;b1gW;b2 þ 2g3W;b1 þ
1

2
g2W;b1κ5

����2 ≤ 1

4
: ð3:30Þ

Similar to the VV → hh case, we find that the constraint
from the b2ðþ0Þ helicity mode amplitude only contributes
to m1, which belongs to a subleading one. It is noticed that
the related amplitude depends on the values of gW;a1, gW;a2,
and κ5. A meaningful constraint derived from b2ðþ0Þmode
could only be more stringent when the values of these
parameters could have very large deviation from the
prediction of the SM. Although such a possibility might
not be forbidden, we will not consider it in our following
discussion.

IV. MULTI-HIGGS PRODUCTION IN VBF
PROCESSES IN THE EFT APPROACH

In this section, we consider the phenomenology of
multi-Higgs production in VBF together with basic strat-
egies to isolate the signals at a high-energy hadron collider.
The impact of anomalous couplings, introduced via the
EFT Lagrangian, depends on the final-state kinematics, and
has to be understood in order to evaluate the physical

implications of assigning unitarity bounds to the EFT
parameter set.
We have computed the cross sections for the processes

pp → hhjj and pp → hhhjj including the full depend-
ence on the higher-dimensional operator coefficients,
represented by the free parameters of the phenomenological
Lagrangian (2.1). To enhance the contribution of the VBF
subprocess, we apply standard VBF cuts, as listed in
Table V. We display results for the 14 TeV LHC, for a

TABLE V. Acceptance cuts used for the calculation of VBF
(multi-)Higgs production in pp collision (VBF cuts) for three
different collider energies.

Cuts
ffiffiffi
s

p ¼ 14 TeV
ffiffiffi
s

p ¼ 27 TeV
ffiffiffi
s

p ¼ 100 TeV

PtðjÞ >20 GeV >20 GeV >30 GeV
ΔRðj; jÞ >0.8 >0.8 >0.8
jηðjÞj <5.0 <5.0 <8.0
Δηðj; jÞ >3.6 >3.6 >4.0
Mðj; jÞ >500 GeV >500 GeV >800 GeV
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pp collider with 27 TeV c.m. energy, and for a 100 TeV pp
collider.
For the numerical calculations, we use the automatic

Monte Carlo integration and simulation packages WHIZARD

2.3 [67] and Madgraph5_aMC@NLO [68], where we have
implemented the effective Lagrangian (2.1). For
Madgraph5_aMC@NLO, we have constructed an appropriate
Universal FeynRules Output (UFO) model file.2 For
WHIZARD, we introduced an auxiliary field S with a
Lagrangian,

LS ¼
1

2
ð∂μSÞ2 −

1

2
M2S2 − gShhhð∂2SÞh3

þ gW;a3
2m2

W

v3
SWμWμ −

gW;b3

v3
SWμνWμν: ð4:1Þ

Choosing M ¼ 0 and gShhh ¼ −1 and restricting the
calculation to the triple-Higgs production process, gW;a3

and gW;b3 become equivalent to the parameters in our
convention, and the resulting amplitude expression is
identical to the one that follows from using (2.1) directly,
cf. Fig. 3. The anomalous ZZhhh vertex is implemented in
a similar way.
We have cross-checked numerical results from WHIZARD

and Madgraph5_aMC@NLO and found mutual agreement. As
another cross-check, we have validated selected results
against the package VBFNLO [84,85], again with good
agreement.
For the pure SM, we obtain the cross sections after VBF

cuts as listed in Table VI. All numerical results are
computed at leading order in the strong and electroweak
perturbative expansions.
The VBF cuts in Table V force the remnant jets to a

forward/backward configuration, with high energy and
momentum, as it is expected from q → Wq0 splitting in
the VBF signal region. We require pTðjÞ > 20 GeV for 14
and 27 TeV, and 30 GeV for 100 TeV, respectively.
Regarding the transition from LHC kinematics to a
100 TeV collider, our numerical results demonstrate that
the forward jets can acquire significantly larger rapidity
than at lower energy (Fig. 4). Therefore, we assume a better
rapidity coverage for the detector at 100 TeV and have
adapted our cuts in Table V accordingly.

A. Higgs-pair production

The analysis of Higgs-pair production, VV → hh, aims
at a determination of the VVhh and hhh couplings.
Anomalous lower-order couplings such as VVh would
affect the amplitudes but can be measured in lower-order
processes, with considerably higher event rates. We assume
that such measurements yield better precision. For the sake
of simplicity, we thus fix the VVh couplings to their SM
values, gV;a1 ¼ 1 and gV;b1 ¼ 0. In addition, we assume the
custodial-symmetry relations gW;a2 ¼ gZ;a2 ¼ gV;a2 and
gW;b2 ¼ gZ;b2 ¼ gV;b2 whenever contributions of the Z
boson are considered. Furthermore, we introduce the shifts
δgV;a2 ¼ gV;a2 − 1, δλ3 ¼ λ3 − 1 which multiply the
deviation with respect to the SM, as parameters in our
calculation.
By construction, the tree-level result for the cross section

in the EFT depends linearly and bilinearly on the free
parameters, and can be cast into the form

σðpp → hhjjÞ ¼
X

iþjþk≤2
σhhijkðδgV;a2ÞigjV;b2ðδλ3Þk ð4:2Þ

¼ σhh000 þ σhh100δgV;a2 þ σhh200ðδgV;a2Þ2
þ σhh010gV;b2 þ σhh110δgV;a2gV;b2 þ σhh020g

2
gV;b2

þ σhh001δλ3 þ σhh101δgV;a2δλ3 þ σhh011gV;b2δλ3 þ σhh002ðδλ3Þ2:
ð4:3Þ

In Table VII, we display the values of the SM cross
section σhh000 and of all EFT coefficients σhhijk, evaluated for
the three collider energies of 14, 27, and 100 TeV. As
discussed in Sec. III B, the amplitude contributions propor-
tional to δgV;a2 and gV;b2 grow linearly with s. For any
nonzero values of δgV;a2 or gV;b2, the resulting contributions
to the cross section will break perturbative unitarity as s
increases. If such terms are present, we should expect a
rapidly growing enhancement in the Higgs-pair invariant-
mass distribution mðhhÞ, eventually dampened by non-
perturbative rescattering corrections. We will discuss this
property below.
The amplitude contribution proportional to δλ3 does not

grow with energy relative to the SM cross section. The
dependence on δλ3 is dominated by the low-energy region,
and constraining δλ3 is much more challenging than
constraining δgV;a2 and gV;b2. Conversely, the uncertainty

FIG. 3. Triple-Higgs production diagram with a five-point
vertex WWhhh effectively generated by an auxiliary field S.

TABLE VI. SM values for the cross sections of the processes
pp → hjj, pp → hhjj, and pp → hhhjj with VBF cuts, at three
different collider energies.

Process σð14 TeVÞ [fb] σð27 TeVÞ [fb] σð100 TeVÞ [fb]
pp → hjj 1.64 × 103 4.87 × 103 2.60 × 104

pp → hhjj 1.10 4.32 41.2
pp → hhhjj 2.73 × 10−4 1.73 × 10−3 4.50 × 10−2

2The current version 2.8.1 of WHIZARD does support this UFO
standard. The calculations for the current paper relies on an
earlier version which did not support the five-point vertices in the
EFT contributions to VV → hhh.
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on δλ3 is not essential for studying the dependence on
δgV;a2 and gV;b2. In the following, we focus on the effects
induced by δgV;a2 and gV;b2.
When adopting the EFTapproach for an analysis, there is

an underlying assumption that the included terms are
dominant, and higher-order terms can be dropped. In a
cross section calculation, the formally leading term is the
interference of the linear EFT contribution with the SM
part, which should be larger than the quadratic EFT
contribution. In the present case, the linear coefficient
σhh010 is much smaller than the naive expectation

O
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σhh000σ
hh
020

q �
. The interference effect is suppressed,

and the squared term σhh020 is more important even for
small values of gV;b2.
In fact, there is a cancellation among regions in phase

space caused by a helicity mismatch between the SM and
the EFT terms. The parameter gV;b2 multiplies the coupling
between the transverse vector bosons and Higgs bosons,
while δgV;a2 and the SM contribution describe the coupling
between longitudinal vector bosons and Higgs bosons.
Consequently, different azimuthal distributions reflect the
different polarizations of intermediate vector bosons. The
finite vector-boson masses induce some level of mixing, so
the cancellation is not exact.
To illustrate this property, in Fig. 5 we show the

distribution of ΔϕðjjÞ at the 14 TeV LHC, i.e., the
azimuthal-angle correlation of the two VBF jets. For
σhh000, σ

hh
100, and σhh200 terms, the distribution of ΔϕðjjÞ is

almost flat. By contrast, for σhh010, σhh110, and σhh020, the

differential cross section depends on ΔϕðjjÞ with a sign
flip near π=2.
We conclude that the interference contribution of gV;b2,

for instance, can significantly be enhanced by constructing
an appropriate observable, weighing events by azimuthal
distance. Furthermore, the azimuthal dependence in Fig. 5
discriminates between the two different EFT parameters
and should definitely be accounted for in an analysis. Since
helicity-mixing effects disappear with increasing energy,
the discrimination becomes even clearer for the higher
collider energies of 27 or 100 TeV.
We now turn to the distribution in the observable mðhhÞ,

the invariant mass of the final state as the total c.m. energy
of the elementary VV → hh scattering. In this observable,
effects growing with energy are manifest, and we should
study the behavior of the terms proportional to δgV;a2
and gV;b2.
In Fig. 6, we show themðhhÞ distribution of the σhh200 and

σhh020 terms (green and blue, respectively) and the SM
distribution (red). As discussed above, the EFT distribu-
tions decrease much slower with increasing mðhhÞ, com-
pared to the SM curve. δgV;a2 and gV;b2 lead to similar
VV → hh subamplitudes where the leading contribution
for δgV;a2 corresponds to longitudinal vector bosons, while
for gV;b2 it corresponds to transverse vector bosons. The
dominant contribution to the complete off shell process
originates from quasi-on-shell collinear splitting q → Vq0.
The emission of longitudinal vector boson from a quark is
kinematically suppressed in relation to transverse vector
bosons [86]. Consequently, for comparable values of the
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FIG. 4. Rapidity distribution (η) of the forward tagging jets at (a) 14 TeV and (b) 100 TeV. Jet 1 (2) labels the harder (softer) jet,
respectively.

TABLE VII. Coefficients σhhijk (in fb) in the expression (4.2) for VBF hh at three different collider energies.

σhhSM ¼ σhh000 σhh100 σhh200 σhh010 σhh110 σhh020 σhh001 σhh101 σhh011 σhh002

14 TeV 1.10 −3.51 11.0 1.31 1.7 87.8 −0.81 3.6 0.35 0.66
27 TeV 4.32 −15.0 61.1 6.91 9.6 957 −2.89 14.1 1.4 2.3
100 TeV 41.2 −158 1302 79.2 95 4.80 × 104 −21.8 123 11.2 16.9
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EFT coefficients gV;b2 and δgV;a2, the contribution from
gV;b2 is much larger than δgV;a2 and exhibits a slower
decrease as a function of mðhhÞ.
The powerlike increasing EFT distributions will leave

the perturbative regime beyond some point in the high-
energy region that depends on the parameters, invalidating
the EFT as a systematic approximation to the (unknown)
true amplitudes. Given numerical values for the EFT
parameters, perturbative unitarity thus provides an upper
bound on the range of validity of the EFT. We may require
that the EFT should be valid up to some scale Q, in the
range mðhhÞ ≤ Q. The perturbative unitarity constraints
derived in Sec. III B then provide bounds on the values of
δgV;a2 and gV;b2. Restricting δgV;a2 and gV;b2 to vary only
within this parameter range, we can compute the differ-
ential cross section dσ

dmðhhÞ in the region mðhhÞ ≤ Q, and

derive the maximally allowed deviation at any point within
that region.
Explicitly, we model the deviation from the SM by

linear and quadratic terms in the EFT parameters, dropping
any higher-dimensional contributions. Allowing a single

parameter, say, δgV;a2, to deviate from zero and imposing
the unitarity bound for the entire mðhhÞ distribution below
the scale Q, we obtain the formal condition

max
δgV;a2

dσNP

dmðhhÞ
����
mðhhÞ¼Q

¼max
δgV;a2

����δgV;a2
�

dσhh100
dmðhhÞ

����
mðhhÞ¼Q

þδgV;a2
dσhh200
dmðhhÞ

����
mðhhÞ¼Q

�����:
ð4:4Þ

Here, we can take the unitarity bounds from Sec. III B,

−
8

ffiffiffi
2

p
πv2

Q2
≤ δgV;a2 ≤

8
ffiffiffi
2

p
πv2

Q2
: ð4:5Þ

Analogous results hold for gV;b2 if varied on its own.
Regarding the general case of both VVhh couplings non-
zero, we recall that their interference is small and asymp-
totically suppressed, as discussed above. In effect, the
overall deviation of the distribution is approximately the

FIG. 5. Distribution of ΔϕðjjÞ for various modifications of VBF hh production in the EFT at the 14 TeV LHC.

FIG. 6. Higgs-pair invariant-mass distribution for the coefficients of the leading power corrections to VBF hhh production in pp
collisions. The SM baseline is drawn in red. We display results for 14 TeV (left) and for 100 TeV (right).
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sum of the maximally allowed deviations from δgV;a2 and
gV;b2 being varied separately.
In Fig. 7, we display the results following from that

argument, namely the curves of maximal event rate. Taking
the conditions (4.4), (4.5) literally, we obtain an upper
bound on the mðhhÞ distribution for all energies, where we
identify mðhhÞ with Q. We observe that there is more
freedom for enhancement in the direction of δgV;b2, which
corresponds to transverse gauge bosons interacting with a
Higgs pair, than for δgV;a2 which parametrizes the longi-
tudinal coupling.

B. Triple-Higgs production

We now consider the hhhjj final state which contains
VV → hhh as the relevant sub-amplitude, on the same
footing as the hhjj final state in the previous subsection.
The Feynman diagrams are displayed in Fig. 2. In analogy
with VV → hh, we assume that gW;a1, gW;a2, λ3 and gW;b1,
gWb2

, κ5 have been sufficiently well determined from
lower-multiplicity measurements, single-Higgs and dou-
ble-Higgs production in particular. For simplicity, we set
these parameters to their SM values 1 and 0, respectively.
Expanding the full dependence on the remaining free

parameters, we can write the cross section as

σðpp → hhhjjÞ ¼
X

iþjþk≤2
σhhhijk g

i
V;a3g

j
V;b3ðδλ4Þk; ð4:6Þ

¼ σhhh000 þ σhhh100gV;a3 þ σhhh200 ðgV;a2Þ2
þ σhhh010gV;b3 þ σhhh110gV;a3gV;b3 þ σhhh020g

2
V;b3

þ σhhh001δλ4 þ σhhh101gV;a3δλ4 þ σhhh011gV;b3δλ4 þ σhhh002 ðδλ4Þ2:
ð4:7Þ

We have computed the σhhhijk coefficients by numerical
integration using WHIZARD. The results are listed in
Table VIII.
Only the couplings to vector bosons, gV;a3 and gV;b3, lead

to unitarity violation at high energy in the EFT calculation.
Here, gV;a3 couples a pair of longitudinal vector bosons to
the Higgs triplet, while gV;b3 multiplies the triple-Higgs
coupling of transverse vector bosons. By contrast, a
deviation in the quartic Higgs coupling δλ4 does not lead
to a powerlike enhancement. Asymptotically, its effect is
subleading compared to gV;a3 and gV;b3, and we expect
significantly more resolution power for the latter
parameters.
Of course, the main goal of such a measurement would

be to get a handle on the quartic Higgs self-coupling.

FIG. 7. Maximally allowed enhancement of the differential cross section of VBF hh production in pp collisions, as a function of the
Higgs-pair invariant mass. We display results for 14 TeV (left) and for 100 TeV (right), identifying mðhhÞ with the cutoff scale Q.

TABLE VIII. Coefficients σhhhijk (in fb) in the expression (4.6) for the process VBF hhh at three different collider
energies.

[fb] σhhhSM ¼ σhhh000 σhhh100 σhhh200 σhhh010 σhhh110

14 TeV 2.792 × 10−4 −5.21 × 10 − 4 0.146 2.44 × 10−3 1.55 × 10−2

27 TeV 1.66 × 10−3 −1.45 × 10−3 2.30 2.00 × 10−2 0.195
100 TeV 3.10 × 10−2 5.18 × 10−2 495 0.398 11
[fb] σhhh020 σhhh001 σhhh101 σhhh011 σhhh002

14 TeV 3.29 −8.32 × 10−5 7.24 × 10−3 4.7 × 10−4 2.09 × 10−4

27 TeV 121 −3.55 × 10−4 5.28 × 10−2 2.9 × 10−3 1.06 × 10−3

100 TeV 6.67 × 104 −3.07 × 10−3 1.61 4.6 × 10−2 1.38 × 10−2
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The apparent dominance of the other EFT couplings makes
it even more important to understand their impact on the
process.
In Fig. 8, we show the azimuthal Δϕjj distributions for

VBF to hhh at the 14 TeV LHC. For the 27 and 100 TeV
colliders, the results are similar. The behavior is super-
ficially analogous to the double-Higgs case, taking finite-
mass effects into account. Apart from the much smaller
absolute values, there also are significant differences. The
Lorentz structure of the interference terms is more com-
plicated. This is reflected in the σhhh100 and σhhh010 distributions.
To examine the energy dependence of the gV;a3 and gV;b3

contributions, in Fig. 9 we plot the appropriate mðhhhÞ
distributions. While the SM curve displays the expected
decrease with increasing mðhhhÞ, the Oðg2V;a3Þ and
Oðg2V;b3Þ coefficients exhibit a wide plateau with a very
slow falloff for high masses.
This behavior demonstrates the necessity of considering

unitarity constraints on the EFT parameters. Based on
formulas given in Sec. III C with a cutoff Q, gV;a3 and gV;b3
are restricted to the range

jgV;a3j; jgV;b3j <
64

ffiffiffi
3

p
v3π2

Q3
: ð4:8Þ

In analogy with the double-Higgs case discussed before, we
use this relation to deduce the maximally allowed enhance-
ment of the differential cross section as a function of
mðhhhÞ, varying either gV;a3 or gV;b3. The results are
presented in Fig. 10. As the interference is negligible,
we may sum the two sources incoherently to obtain an
absolute upper bound. We conclude that the potential
enhancement is substantial in the transverse mode, some-
what less so in the longitudinal mode. This conclusion is
qualitatively similar to the double-Higgs case, cf. Fig. 7.
While we do not attempt a full study of the collider

sensitivity to the final state in this work, we may remark
that the presence of one extra Higgs boson relative to hh,
reduces the signal reconstruction efficiency but also helps
to suppress backgrounds. Despite the tiny cross section,
obtaining some experimental limits on the parameters gV;a3
and gV;b3 may become feasible. This, in turn, would help
to set meaningful bounds on the actual quartic Higgs self-
coupling.

FIG. 8. Distribution of Δϕjj for various modifications of VBF hhh production at the 14 TeV LHC.

FIG. 9. Triple-Higgs invariant mass distribution for the coefficients of the leading power corrections to VBF hhh production in pp
collisions. We display results for 14 TeV (left) and for 100 TeV (right).
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C. Unitarity bounds for the cross sections
of multi-Higgs final states

We study the relation of the indirect and direct
discovery potential for the two-Higgs process at the
three collision energies

ffiffiffi
s

p ¼ 14, 27, and 100 TeV. The
criterion is whether for some given parameter point in
the EFT, a significant part of the extrapolated cross
section violates the (parameter-dependent) unitarity
limit, and thus gives access to a range where non-
EFT corrections must become dominant. To this end, in
Fig. 11, we plot the invariant-mass distribution of the
process pp → hhjj. We fix the EFT parameters to ga2 ¼
0.9 (left plot) and gb2 ¼ 0.1 (right plot), respectively.
For these values, unitarity is saturated in the distribution
at 4.6 TeV. To the left of that cutoff, the curves should
extrapolate the low-energy effective theory in a still
meaningful way. To the right, the extrapolation loses its
validity, and the actual result will look significantly

different. We expect nonperturbative suppression, reso-
nances, or other new effects to set in at or before this
effective cutoff. Stated differently, given a nonzero
parameter value which by itself is an indirect sign of
physics beyond the SM, the distribution probes a range
where direct manifestations of new physics appear.
For the LHC energy

ffiffiffi
s

p ¼ 14 TeV and ga2 ¼ 0.9, the
cross section in the range mðhhÞ > 4.6 TeV is negligible.
There is no direct sensitivity to new effects in this process.
Increasing the collision energy to

ffiffiffi
s

p ¼ 27 TeV, the
integrated cross section with mðhhÞ > 4.6 TeV provides
a fraction of 0.2% of the total cross section. If we look atffiffiffi
s

p ¼ 100 TeV, the fraction of events with mðhhÞ >
4.6 TeV provides 4.2%. Assuming that the differential
distribution is accessible in an experiment, for sufficiently
large luminosity, a separation and discovery of new effects
beyond the EFT becomes feasible. The analysis clearly
benefits from an increase collision energy.

FIG. 10. Maximally allowed enhancement of the differential cross section of VBF hhh production in pp collisions, as a function of the
triple-Higgs invariant mass. We display results for 14 TeV (left) and for 100 TeV (right), identifying mðhhhÞ with the cutoff Q.
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FIG. 11. The unitarity bounds and discovery potentials of different collision energy at hadronic colliders, i.e., 14, 27 and 100 TeV, are
shown for pp → hhjj process.
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The situation for the gb2 ¼ 0.10 case is qualitatively
similar. Due to the larger incoming flux of transverse
polarizedW bosons, the integrated cross section beyond the
limit of 4.6 TeV amounts to fractions 0.3%, 6.6%, and
48.0% of the total rate at 14, 27, and 100 TeV, respectively.
While the range of validity of the EFT is similar for both
parameter points, the gb2 direction grants a more favorable
view at new effects than ga2.
In Fig. 12, we analogously study the triple-Higgs process

pp → hhhjj. The parameter ga3 ¼ 0.1 for the left plot
(gb3 ¼ 0.1 for the right plot) corresponds to a cutoff at
5.42 TeV. Again, increasing the collider energy enhances
the fraction of the cross section that falls beyond the
unitarity limit in a naive extrapolation and thus is subject to
nonperturbative corrections and new effects. In fact, for all
parameter values, the distribution is more spread out

toward higher invariant masses, compared to the double-
Higgs production channel. For instance, if the collision
energy is

ffiffiffi
s

p ¼ 100 TeV, the rate beyond the limit of
mðhhhÞ > 5.42 TeV becomes the dominant fraction in the
extrapolation.
While a significant influence of non-EFT new effects is

an interesting property of the naive extrapolation, we also
have to take account of the fact that the true rate cannot
exceed the unitarity limit. If we interpret this limit in the
mass distribution as an ultimate cutoff, by removing the
part of the cross section beyond that limit we can estimate
the maximal cross section which is actually allowed by
unitarity, for any given collision energy.
In Fig. 13, we show the maximally allowed cross sec-

tions as a function of the collider energy for pp → hhjj
and pp → hhhjj, respectively, denoted by the black curves.
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FIG. 12. The unitarity bounds and discovery potentials of different collision energy at hadronic colliders, i.e., 14, 27, and 100 TeV, are
shown for pp → hhhjj processes.

FIG. 13. Total cross section of pp → hhjj and pp → hhhjj as a function of the total energy, for three exemplary values of the free
parameters. The black curves indicate the unitarity bounds for the total cross section as a function of the energy (see the text for details).
For the purpose of comparison, we also show the cross section of the SM, and the unitarity bounds from Ref. [62], represented by the
shaded regions.
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To avoid unnecessary complexity, we read off the black
curves from the cross-section predictions for specific values
of gW;a2 (gW;b2, gW;a3, and gW;b3). In principle, by using the
steps given below, we can determine the maximal cross
section for any value of s.
In the left plot of Fig. 13, we present the maximal cross

sections for pp → hhjj. For the purpose of comparison,
the shaded regions indicate the parameter space which is
excluded by unitarity if we use the method given in
the Ref. [62].
To show how the constraints for 2 → 2 processes given

in Eqs. (3.22)–(3.24) in our method can determine the
maximal cross section, we have selected three values of
gW;a2ðgW;b2Þ ¼ 0.15, 0.10, and 0.05, which correspond to
three UV cutoffs 3.5, 4.2, and 6.5 TeV, respectively.
Accordingly, by using the formula given in Eq. (4.3),
we generate three points where the dashed (solid) lines
intersect the extrapolated cross section curves for gW;a2

(gW;b2). Without any constraint from unitarity, the cross
extrapolated cross sections would further increase with the
increase of collision energy, crossing the black lines and
ultimately entering the shaded region.
If we consider the triple-Higgs production process (right

plot of Fig. 13), we arrive at similar conclusions.
There are the following three comments on this plot:
(i) The unitarity bounds that correspond to nontrivial

values of gW;a2 and gW;b2 differ from each other: the
applicable bound depends on the location in the
EFT parameter space. For example, when the cutoff
is taken as 3.5 TeV, the maximal cross section is
30 and 80 pb, respectively. This is a natural result
due to the different incident flux of polarized
vector bosons in the protons, as can be read out
from Eq. (4.3).

(ii) The unitarity bounds derived in our method are more
strict than the method determined in Ref. [62].
For example, when the cutoff is taken as 3.5 TeV,
the maximal cross section is 300 pb in term of the
method of Ref. [62], which is different from the
values in our method given above.

(iii) The SM cross section curves for these two sub-
processes are also displayed in Fig. 13. We note
that the maximally allowed cross section decreases
with the increase of the total collision energy, but
remains larger than that of the SM. In the small s
region (s ∼ 3–4 TeV), the allowed rate for the
process pp → hhjj can be 1–2 orders of magnitude
larger than that of the SM. For the process
pp → hhhjj, in the same region, the allowed rate
can be 3–4 orders of magnitude larger than that of
the SM.

For example, for the cutoff s ¼ 4.7 TeV, the maximally
allowed cross section for gW;b3 ¼ 0.15 is 45 pb, while for
gW;a3 ¼ 0.15 we obtain 25 pb. The method given in
Ref. [62] yields a weaker limit of around 200 pb.

For example, for the cutoff s ¼ 4.7 TeV, the maximal
cross section for gW;b3 ¼ 0.15 is 45 pb or so, while the one
for gW;a3 ¼ 0.15 is about 25 pb. In contrast, the results
given in Ref. [62] (which are a direct use of the unitary
condition σð2 → nÞ < 4π

s from the methods given in
[73,74]) yields a number 200 pb or so.
To appreciate the difference between the results given in

[62] and our results, it is noticed that the information of the
helicity amplitudes given in Eqs. (3.22)–(3.24) and
Eqs. (3.28)–(3.30) play a central role.

D. Bounds on multi-Higgs production
in the SILH and Higgs-inflation models

After discussing unitarity bounds in the generic EFT
context, we apply the formalism to the more specific SILH
(Sec. A) and Higgs-inflation (Sec. A 1) models. We recall
from Sec. A that the SILH model describes a truncation of
the EFT expansion in a linear gauge representation, such
that interactions with different multiplicities become related
to each other. The Higgs-inflation model is even more
restricted, and all corrections depend on just a single
parameter.
For the SILH model, we simplify the treatment by

considering only cW and cB as nonzero parameters, and
furthermore impose the relation cB ¼ −cW to ensure that
the Ŝ parameter is zero at tree level, cf. Eq. (A8). Denoting

ĉW ¼ cW
m2

W
m2

ρ
and ĉZ ¼ ð1 − tan2 θWÞĉW ≈ 0.71ĉW , we have

δgW;a2 ¼ 3δgW;a1 ¼ −3ĉW; δgZ;a2 ¼ 3δgZ;a1 ¼ 3ĉZ:

ð4:9Þ
Evaluating the unitarity constraints given in Sec. III for the
W fusion subamplitudes in this parametrization, we obtain

bW
þW−→hh

0 ð00Þ ¼ s2

29π2v4
ðĉW − ĉ2WÞ2 ≤

1

4
; ð4:10Þ

bW
þW−→hhh

0 ð00Þ ¼ s3

3 × 210π4v6
ð1þ ĉWÞ2ðĉW − ĉ2WÞ2 ≤

1

4
:

ð4:11Þ

If we assume that δgW;a1 ≪ 1, we can ignore higher-order
terms in δgW;a1 and reduce this to

bW
þW−→hh

0 ð00Þ ≈ s2

29π2v4
ĉ2W ≤

1

4
; ð4:12Þ

bW
þW−→hhh

0 ð00Þ ≈ s3

3 × 210π4v6
ĉ2W ≤

1

4
: ð4:13Þ

Comparing the constraints from the double- and triple-
Higgs production processes, we find that once

ffiffiffi
s

p
≥ffiffiffi

6
p

πv ≈ 1.9 TeV, the b0 value that results from VBF
triple-Higgs production is larger than its double-Higgs
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counterpart, and thus provides a stronger constraint. In
addition, considering that the differential cross section is
proportional to b [see Eq. (B15)], this observation suggests
that the cross section deviation from the SM prediction
would be larger for triple-Higgs than for double-Higgs
production. The triple-Higgs production process should be
considered as supplementing relevant information, pro-
vided the difficulties of isolating the final state can be
overcome.
We expand the cross section for VBF double-Higgs

production in the form

σðpp → hhjjÞ ¼
X4
j¼0

σhhj ĉjW ð4:14Þ

and list the coefficient values in Table IX. In contrast to the
generic EFT (2.1) where all distinct interactions have
distinct coefficients, the SILH parameters enter the ampli-
tude quadratically, and thus appear with up to fourth power
in the cross section.
We observe that σhh2 ≫ σhh1 , in line with the discussion in

the preceding subsections. On the other hand, σhh2 , σhh3 , σhh4
are all of the same order; they are accounted for in the b0
term in Eq. (4.10). As long as ĉW ≪ 1, the contributions
from σhh3 and σhh4 are much smaller than the one from σhh2 .
Similarly, for VBF triple-Higgs production, the cross

section becomes

σ ¼
X6
j¼0

σhhhj ĉ2W; ð4:15Þ

and the numerical results are shown in Table X. As
expected, from the leading contribution represented by
Eq. (4.11), we find that (jσhhh0 j; jσhhh1 j; jσhhh3 j; jσhhh5 jÞ ≪
ðσhhh2 j; jσhhh4 j; jσhhh6 j). Therefore, in the case ĉW ≪ 1, σhhhj

contributions with j > 2 are negligible with respect to the
σhhh2 contribution.
In Fig. 14, we present the maximally allowed enhance-

ment with respect to the SM differential cross section for
VBF double-Higgs and triple-Higgs production, respec-
tively, after taking into account all unitarity constraints for
WþW− → hh, WþW− → hhh, ZZ → hh, and ZZ → hhh.
The SM cross section for VBF triple-Higgs production is
indeed tiny, 2–3 orders smaller than the cross section for
VBF double-Higgs production. However, if we push the
SILH parameters to their unitarity limits, the differential
cross section for both processes becomes much larger than
the SM cross section. In fact, the enhancement of VBF
triple-Higgs production can amount to 3–6 orders of
magnitude, becoming comparable to VBF double-Higgs
production. In the region of large multi-Higgs invariant
mass, the former rate can even surpass VBF double-Higgs
production. This is due to the fact that the VV → hhh cross
section grows faster than VV → hh, as indicated by the b0
values given in Eqs. (4.10) and (4.11).
It is obvious that in such a region of strong interactions,

the SILH model as a truncated EFT will most likely be
inappropriate, and higher-order terms and nonperturbative
effects will dominate the rates. Nevertheless, this particular
example should serve to illustrate the generic property of
strongly interacting quantum field theories, that multiple
production of particles is no more suppressed relative to
low-multiplicity processes, and only inclusive observables
are under control. This observation holds as soon as the
masses of the involved particles—in our case, the Higgs
boson—become negligible. If strong interactions are a
possibility, setting bounds on high-multiplicity final states
is of major physical relevance even if the process itself
cannot be detected.
Turning to the one-parameter Higgs-inflation model as

described in Sec. A 1, we denote x̂ ¼ 6ξ2v2=M2
p and

express the unitarity constraints given in Sec. III as

bW
þW−→hh

0 ð00Þ ¼ s2

29π2v4
ð1þ x̂Þ−4x̂2 ≤ 1

4
; ð4:16Þ

bW
þW−→hhh

0 ð00Þ ¼ s3

3 × 210π4v6
ð1þ x̂Þ−7x̂4 ≤ 1

4
: ð4:17Þ

In the limit of small x̂, VBF triple-Higgs boson production

provides a weaker bound if
ffiffiffi
s

p
≥ 16

ffiffi
3

p
3

v ≈ 2.3 TeV.

TABLE IX. Coefficients σhhj (in fb) in Eq. (4.14) for VBF hh in
SILH with cB ¼ −cW . We show values for pp collisions at 14,
27, and 100 TeV, respectively.

[fb] σhhSM ¼ σhh0 σhh1 σhh2 σhh3 σhh4

14 TeV 1.10 0.90 10.6 −9.3 16.1
27 TeV 4.32 3.0 56.4 −64.5 78.1
100 TeV 41.2 14.3 1.13 × 103 −1.79 × 103 1.29 × 103

TABLE X. Coefficients σhhhj (in fb) for different contributions to VBF hhh in SILH with cB ¼ −cW . We show
values for pp collisions at 14, 27, and 100 TeV, respectively.

[fb] σhhhSM ¼ σhhh0 σhhh1 σhhh2 σhhh3 σhhh4 σhhh5 σhhh6

14 TeV 2.792 × 10−4 1.61 × 10−3 1.89 0.198 −3.85 −0.218 2.09
27 TeV 1.66 × 10−3 2.52 × 10−3 30.1 1.87 −58.3 −1.97 29.6
100 TeV 3.10 × 10−2 −0.28 6.58 × 103 93.6 −1.22 × 104 −93.2 5.87 × 103
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The cross sections for VBF double-Higgs and triple-
Higgs production take the form

σðhhÞ ¼ ð1þ x̂Þ−6
X4
j¼0

σhhj x̂j; ð4:18Þ

σðhhhÞ ¼ ð1þ x̂Þ−9
X6
j¼0

σhhhj x̂j: ð4:19Þ

We list the coefficients in Tables XI and XII, respectively.
We can verify that the magnitude of the coefficients is
consistent with Eqs. (4.16) and (4.17): jσhh2 j, jσhh3 j, jσhh4 j ≫
jσhh0 j, jσhh1 j and jσhhh4 j, jσhhh5 j, jσhhh6 j ≫ jσhhh0 j, jσhhh1 j,
jσhhh2 j, jσhhh3 j.
In Fig. 15, we show the maximally allowed enhancement

of the differential cross section in this restricted model.
Again, the maximal deviations allowed by unitarity lift both

multi-Higgs processes by orders of magnitude, and the
rates become comparable to each other. In contrast to the
SILH case, the triple-production process approaches dou-
ble production in the low-energy part of phase space, but
falls off faster at high energy. This can be understood from
Eqs. (4.16) and (4.17).
Comparing the unitarity bounds within the three models

or parametrizations that we have considered, Figs. 7, 10,
14, and 15, we note that in the models with additional
relations, there are regions where the hh and hhh cross
sections become both large and of comparable magnitude.
Individual bounds such as (4.18), (4.19) then have to be
combined to a common bound according to (3.16). We
should also account for multiple W and Z bosons in the
final state. Since we have introduced the specific models for
illustrative purposes, not expected to be complete or
realistic in such an extreme parameter range, we did not
attempt a more complete calculation. We expect combined
bounds to be more restrictive, reduced by an effective

FIG. 14. Maximally allowed enhancement of the differential cross section of VBF hhh production in pp collisions in the SILH model,
as a function of the triple-Higgs invariant mass. We display results for 14 TeV (left) and for 100 TeV (right), identifyingmðhhhÞwith the
cutoff Q.

TABLE XI. Coefficients σhhhj (in fb) in Eq. (4.18). The values correspond to the Higgs-inflation model and apply
to pp collisions at 14, 27, and 100 TeV, respectively.

[fb] σhhSM ¼ σhh0 σhh1 σhh2 σhh3 σhh4

14 TeV 1.10 8.07 33.7 47.1 20.3
27 TeV 4.32 33.6 154 223 98.9
100 TeV 41.2 331 2.20 × 103 3.57 × 103 1.64 × 103

TABLE XII. Coefficients σhhhj (in fb) in Eq. (4.19). The values correspond to the Higgs-inflation model and apply to pp collisions at
14, 27, and 100 TeV, respectively.

[fb] σhhhSM ¼ σhhh0 σhhh1 σhhh2 σhhh3 σhhh4 σhhh5 σhhh6

14 TeV 2.792 × 10−4 3.72 × 10−3 4.07 × 10−2 −0.132 2.49 5.51 2.86
27 TeV 1.66 × 10−3 2.47 × 10−5 0.327 −1.06 37.3 79.0 40.3
100 TeV 3.10 × 10−2 0.55 11.6 −46.0 7.77 × 103 1.57 × 104 7.89 × 103
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number of contributing final states which depends on the
details of the model in the strongly interacting regime.

V. SUMMARY AND DISCUSSION

We have studied multi-Higgs boson production via VBF
processes at the LHC and at future hadron colliders. While
our emphasis lies on the rare triple-Higgs production mode,
we have treated double- and triple-Higgs production pro-
cesses in a common framework based on a generic Higgs-
sector effective Lagrangian.
The generic effective Lagrangian given in Eq. (2.1) can

be related to more restricted scenarios beyond the SM.
Specifically, we have investigated two examples, the SILH
model—linearly realized gauge symmetry, truncated at
dimension six—and a Higgs-inflation model. Various further
models with potentially strong interactions in the Higgs
sector have been proposed in the literature, such as the
minimal composite Higgs model [87], the composite twin-
Higgs model [88–90], or the composite minimal neutral
naturalness model [91], cf. also [92]. Such models can be
related to the generic effective Lagrangian in a similar way.
It is not surprising that even at a 100 TeV proton-proton

collider, observing the VBF multi-Higgs final state is very
difficult and challenging if the SM is correct. Beyond the
SM, models such as the ones mentioned above have revived
the interest in new strong interactions with little impact on
observables outside the Higgs sector, but potentially strik-
ing effects on the Higgs itself.
Anomalous interactions short of a new complete, weakly

interacting theory, spoil the delicate gauge cancellations of
the SM, leading to amplitudes which grow rapidly with
energy and eventually saturate the unitarity limits. In this
paper, we have derived unitarity limits for inelastic two-
and three-particle production in the Higgs sector, and
investigated their impact on the various possible contribu-
tions and form factors. It turns out that the unitarity limits

are rather weak and allow for an enhancement of double-
and triple-Higgs production with rates that likely can be
observed at a hadron collider, either the high-luminosity
LHC or at a future high-energy pp machine. In principle,
the triple-Higgs rate can surpass the double-Higgs rate in
part of the phase space, where the latter could also be
enhanced by a large factor. We have computed the maxi-
mally possible enhancement in the context of either the
generic EFT, or of the specific SILH and Higgs-inflation
models.
For a more realistic study of the collider sensitivity to

multi-Higgs production, one has to find strategies that
enhance the signal in a difficult experimental environment,
beyond the VBF cuts that we apply on the parton level.
Regarding the theoretical models with which to compare,
unitarity bounds have to be incorporated in a way that
accounts for phase space in detail. There are generic
algorithms such as in Refs. [82,83,93], where the amplitude
is projected onto the submanifold of amplitudes consistent
with unitarity. Such a formalism should be applied to the
case of inelastic and multiparticle production, to yield more
specific limits, and proper matching to global-fit data
obtained within the low-energy EFT. We defer this program
to future work.
Our results confirm that despite the tiny rates for VBF

multi-Higgs processes in the SM, substantial enhancements
of multi-Higgs processes are a real possibility that is not in
conflict with unitarity. Such final states should definitely be
searched for in dedicated analyses.
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APPENDIX A: RELATION TO THE SILH
EFFECTIVE LAGRANGIAN

As mentioned above, the Lagrangian (2.1) does not mani-
festly exhibit electroweak gauge invariance. To reformulate

it as an equivalent SUð2ÞL × Uð1ÞY invariant Lagrangian,
we should apply the appropriate field redefinitions and
connect our parameters to standard parametrizations in the
literature. In fact, one may expect a linearly gauge-invariant
Lagrangian to result from integrating out manifestly gauge-
invariant new physics at higher scales; for an example,
cf. Ref. [94]. If we then truncate the gauge-invariant
expansion at some fixed order, we obtain relations among
the operator coefficients in (2.1).
In the following, we consider those relations for a

particular version of the linear gauge representation trun-
cated at dimension six, the SILH parametrization [70]. For
the translation to different bases, cf., e.g., Refs. [87,95–97],
these parameter relations are the consequence of truncating
the gauge-invariant power-series expansion. By allowing
higher-dimensional operators (D ≥ 8) in the EFT, we
recover the original expression (2.1) after fixing the gauge.
There are various versions of the SILH effective-

Lagrangian [70] parametrization. We refer to the following
definition:

LSILH ¼ cH
2f2

∂μðH†HÞ∂μðH†HÞ þ cT
2f2

ðH†Dμ
↔
HÞðH†D

↔

μHÞ − c6λ
f2

ðH†HÞ3

þ
�
cyyf
f2

H†Hf̄LHfR þ H:c:

�
þ cgg2S
16π2f2

y2t
g2ρ

H†HGa
μνGaμν

þ icWg
2m2

ρ
ðH†σiDμ

↔
HÞðDνWμνÞi þ

icBg0

2m2
ρ
ðH†Dμ

↔
HÞð∂νBμνÞ

þ icHWg
16π2f2

ðDμHÞ†σiðDνHÞWi
μν þ

icHBg0

16π2f2
ðDμHÞ†ðDνHÞBμν

þ cγg02

16π2f2
g2

g2ρ
H†HBμνBμν: ðA1Þ

Regarding derivatives acting on bosonic fields, we recall
that we may apply the equations of motion

ðDμDμHÞj ¼ m2Hj − λðH†HÞHj − ēΓ†
elj

þ ϵjkq̄kΓuu − d̄Γ†
dq

j; ðA2Þ

ðDρGρμÞA ¼ gsðq̄γμTAqþ ūγμTAuþ d̄γμTAdÞ; ðA3Þ

ðDρWρμÞi ¼
g
2
ðH†iD

↔i
μH þ l̄γμτilþ q̄γμτiqÞ; ðA4Þ

∂ρBρμ ¼ g0YHH†iD
↔i

μH þ g0
X

ψ∈fl;e;q;u;dg
Yψ ψ̄γμψ ðA5Þ

and trade them for terms with less derivatives and terms
with flavor-diagonal contact interactions between bosons
and fermions. Boson-fermion contact terms yield sublead-
ing effects in dedicated VBF data analyses, if we apply cuts

that enhance the quasi on shell contribution for intermedi-
ate vector bosons, and optimize the analysis for resonant
final-state vector bosons.
Further details of deriving the relation between the SILH

Lagrangian and the effective Lagrangian (2.1), including
conventions not listed here, are given in Appendix A 2.
Table II contains the actual translation between param-
eter sets.
We conclude this part with a remark on oblique correc-

tions. According to Ref. [98], the parameter Ŝ is given by

Ŝ ¼ 2
cos θ
sin θ

cWB; ðA6Þ

T̂ ¼ −cH; ðA7Þ

where cWB=v2gg0 is the coefficient of the operator
H†σiHWi

μνBμν=gg0 for noncanonical gauge fields, and
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cH is the coefficient of the operator jH†DμHj2. If we
translate the basis of Ref. [98] to our version of the SILH
effective Lagrangian, we have

Ŝ ¼ −ðcW þ cBÞ
m2

W

m2
ρ
; ðA8Þ

T̂ ¼ −
v2

f2
cT: ðA9Þ

We recall that Ŝ is constrained by data at the 10−3 level; the
precise value depends on the variation of the other
electroweak parameter T̂. For our purposes, we have set
cT to zero.

1. Relation to models of Higgs inflation

Higgs-inflation models [99–107] provide an interesting
example of a scenario where new physics is associated with
the Higgs sector, with little impact on other SM particles.
Such models are notoriously difficult to identify, and any
possible probe of Higgs interactions should be investigated.
In the present context, this class of model provides an
example of a scenario where the effective-Lagrangian des-
cription applies, the main effects are tied to the Higgs
sector, and the parameter set is even more restricted. Con-
versely, the relations and limits that we derive for the
parameters of the generic effective Lagrangian can be tran-
sferred to such a restricted model in a straightforward way.
We briefly review the derivation of the phenomenologi-

cal Higgs Lagrangian for this model, where the Higgs field
is coupled to gravity in a nonminimal way. The model is
originally formulated as a Lagrangian in the Jordan frame,

SJordan ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
M2 þ 2ξHH†

2

× R −
1

4
WaμνWa

μν −
1

4
BaμνBa

μν

þDμH†DμH − λ

�
HH† −

v2

2

�
2
	
: ðA10Þ

The value of ξ can vary between 1 ≪
ffiffiffi
ξ

p
≪ 1017, corre-

sponding to M ≃MP.
For investigating the phenomenology, we apply the

conformal transformation from the Jordan frame to the
Einstein frame,

ĝμν ¼ Ω2gμν; Ω2 ¼ 1þ 2ξHH†

M2
P

: ðA11Þ

This transformation leads to a nonminimal kinetic term
for the Higgs field. In the unitary gaugeH ¼ 1ffiffi

2
p ð0; hÞT , we

may introduce a scalar field χ as a transformed Higgs field,

dχ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ 12ξ2HH†=M2

P

Ω4

r
dh: ðA12Þ

The action in the Einstein frame is

SE ⊃
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
−
M2

P

2
R̂þ ∂μχ∂μχ − UðχÞ

	
; ðA13Þ

where R̂ is calculated using the metric ĝμν. We neglect any
renormalization-group running effect. The effective Higgs
potential is

UðχÞ ¼ 1

ΩðχÞ4
λ

4

�
hðχÞ2 − v2

2

�
2

: ðA14Þ

In the context of collider physics, we are looking at small
field values h ≃ χ andΩ2 ≃ 1, so the potential for the field χ
is close to that of the initial Higgs field. Inflation physics is
described by the large-field behavior of the Higgs field, the
Higgs thus acting as an inflaton, where h ≫ MP=

ffiffiffi
ξ

p
(or

χ ≫
ffiffiffi
6

p
MP). In this range, we can approximate

h ≃
MPffiffiffi
ξ

p exp

�
χffiffiffi
6

p
MP

�
;

UðχÞ ¼ λM4
P

4ξ2

�
1þ exp

�
−

2χffiffiffi
6

p
MP

��
−2
: ðA15Þ

The potential is exponentially flat at large h, as appropriate
for a model of inflation.
We are interested in collider phenomenology and thus

assume small h field values, so we replace χ by h again. We
plug Eq. (A12) into Eq. (A13) and omit higher-order terms.
After reinstating the Higgs doublet notationH, we arrive at3

SE ¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
−
M2

P

2
R̂þ gauge interactions

þDμHDμH†

Ω2
þ 3ξ2

M2
p

∂μðH†HÞ∂μðHH†Þ
Ω4

−
1

Ω2
λ

�
H2 −

v2

2

�
2

þ 2H2

Ω2

�
M2

W

v2
WμWμ þ

M2
Z

2v2
ZμZμ

�	
: ðA16Þ

Details regarding the gauge interaction can be found in
Ref. [108]. We obtain corrections to the coefficients of the
following operators:

3Here we correct minor errors present in Ref. [58]. The
corrections do not change the numerical results of that analysis.

KILIAN, SUN, YAN, ZHAO, and ZHAO PHYS. REV. D 101, 076012 (2020)

076012-22



LVH ¼ gW;a1
2m2

W

v
hWμWμ þ gW;a2

m2
W

v2
h2WμWμ

þ gW;a3
m2

W

3v3
h3WμWμ þ gZ;a1

m2
Z

v
hZμZμ

þ gZ;a2
m2

Z

2v2
h2ZμZμ þ gZ;a3

m2
Z

6v3
h3ZμZμ þ � � � :

ðA17Þ
In Table II, we list the coefficient expressions for the

Higgs-inflation model and relate them to the SILH operator
basis and to the Higgs Lagrangian that we use for our study.
It is evident that the SILH operator basis, which is
appropriate for a generic strongly interacting model,
incorporates directions in parameter space which are absent
in the more specific model of Higgs inflation. Dedicated
measurements of Higgs self-interactions become essential
if such a class of model is realized.

2. Relating the SILH parametrization
to the Higgs EFT Lagrangian

In our notation, the field strength tensors of the Uð1Þ and
SUð2Þ gauge groups are defined as

Bμν ¼ ∂μBν − ∂νBμ; ðA18Þ

Wi
μν ¼ ∂μWi

ν − ∂νWi
μ − gϵijkWj

μWk
ν; ðA19Þ

respectively. The mass eigenstates of the gauge bosons are

Bμ ¼ cos θAμ − sin θZμ; ðA20Þ

W1
μ ¼

1ffiffiffi
2

p ðW−
μ þWþ

μ Þ; ðA21Þ

W2
μ ¼

1ffiffiffi
2

p ðW−
μ −Wþ

μ Þ; ðA22Þ

W3
μ ¼ cos θZμ þ sin θAμ: ðA23Þ

In unitary gauge, the Higgs doublet is given by

H ¼ 1ffiffiffi
2

p
�

0

vþ h

�
: ðA24Þ

By using the equation of motion of Wμν and Bμν (cf. [97]),

ðDρWρμÞi ¼
g
2
ðH†iσiD

↔

μH þ l̄γμσilþ q̄γμσiqÞ; ðA25Þ

∂ρBρμ ¼ g0YH†iD
↔

μH þ g0
X

ψ∈fl;e;q;u;dg
Yψ ψ̄γμψ ; ðA26Þ

we obtain the following expressions for the operators with
coefficients cW and cB:

icWg
2m2

ρ
ðH†σiDμ

↔
HÞðDνWμνÞi ¼

icW
m2

ρ

g2

4
ðH†σiDμ

↔
HÞð−H†iσiD

↔

μHÞ þ…

¼ cW
m2

ρ

g2

4



−

g2

4cos2θ
ZμZμðvþ hÞ4 − g2

2
WþμW−

μ ðvþ hÞ4
�
þ…; ðA27Þ

icBg0

2m2
ρ
ðH†Dμ

↔
HÞð∂νBμνÞ ¼

icB
m2

ρ

g02

4
ðH†Dμ

↔
HÞð−H†iD

↔

μHÞ þ…

¼ cB
m2

ρ

g02

4



−

g2

4cos2θ
ZμZμðvþ hÞ4

�
þ…: ðA28Þ

To obtain expressions for the operators with coefficients cHW and cHB, we write the relations

2ðDμHÞ†σiðDνHÞWi
μν ¼ H†σiDμ

↔
HðDνWi

μνÞ −H†σiðDμDνHÞWi
μν − ðDνDμHÞ†σiHWi

μν þ total derivative

¼ H†σiDμ
↔
HðDνWμνÞi þ i

g
2
H†HWiμνWi

μν þ i
g0

2
H†σiHBμνWi

μν þ Total derivative; ðA29Þ

2ðDμHÞ†ðDνHÞBμν ¼ H†Dμ
↔
Hð∂νBμνÞ −H†ðDμDνHÞBμν − ðDνDμHÞ†HBμν þ total derivative

¼ H†Dμ
↔
H∂νBμν þ i

g
2
H†σiHWiμνBμν þ i

g0

2
H†HBμνBμν þ Total derivative: ðA30Þ

Here we used that DμDν ¼ 1
2
½Dμ; Dν� þ 1

2
fDμ; Dνg and ½Dμ; Dν� ¼ −ig σi

2
Wiμν − ig0YBμν. Also, note that fDμ; Dνg

vanishes when it is being contracted with an antisymmetric tensor Wμν, Bμν. Equations (A29) and (A30) correspond to the
analogous relations in Ref. [96]. Expanding in unitary gauge, we obtain
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icHWg
16π2f2

ðDμHÞ†σiðDνHÞWi
μν ¼

icHWg
16π2f2



1

2
ðH†σiDμ

↔
HÞðDνWμνÞi

− i
g
4
H†HWi

μνWiμν − i
g0

4
H†σiHWi

μνBμν

�

¼ cHWg2

64π2f2



−
m2

Z

v2
ZμZμðvþ hÞ4 − 2m2

W

v2
WþμW−

μ ðvþ hÞ4
�

þ cHWg2

128π2f2
ðvþ hÞ2Wi

μνWiμν þ cHWgg0

64π2f2
H†σiHWi

μνBμν þ…; ðA31Þ

icHBg0

16π2f2
ðDμHÞ†ðDνHÞBμν ¼

icHBg0

16π2f2



1

2
ðH†Dμ

↔
HÞð∂νBμνÞ −

g0

4
H†HBμνBμν − i

g
4
H†σiHWi

μνBμν

�

¼ cHBg02

64π2f2



−
m2

Z

v2
ZμZμðvþ hÞ4

�
þ cHBg02

128π2f2
ðvþ hÞ2BμνBμν þ cHBgg0

64π2f2
H†σiHWi

μνBμν þ…:

ðA32Þ

We arrive at the following kinetic part of the Lagrangian which includes the anomalous contributions:

Lkin ¼
1

2

�
1þ cH

v2

f2

�
∂μh∂μh −

1

2

�
1þ cHW

g2v2

32π2f2

�
WþμνW−

μν

−
1

4



1þ g2v2

32π2f2

�
cHW þ cHBtan2θ − 4cγ

g02

g2ρ
sin2θ

��
ZμνZμν

−
1

4



1 −

g2v2

32π2f2

�
4cγ

g02

g2ρ
cos2θ

��
AμνAμν

−
1

4



gg0v2

32π2f2
ðcHW − cHBÞ þ

gg0v2

16π2f2

�
4cγ

g2

g2ρ
sin2θ

��
ZμνAμν: ðA33Þ

The fields may be rescaled by

h ¼
�
1þ cH

v2

f2

�−1
2

h0 ¼ ζhh0; ðA34Þ

W�
μ ¼

�
1þ cHW

g2v2

32π2f2

�−1
2

W0�
μ ¼ ζWW0�

μ ; ðA35Þ

Zμ ¼


1þ g2v2

32π2f2

�
cHW þ cHBtan2θ − 4cγ

g02

g2ρ
sin2θ

��−1
2

Z0
μ ¼ ζ0ZZ

0
μ; ðA36Þ

Aμ ¼


1 −

g2v2

32π2f2

�
4cγ

g02

g2ρ
cos2θ

��−1
2

A0
μ ¼ ζAA0

μ ðA37Þ

to rewrite the Lagrangian in terms of normalized fields as

Lkin ¼
1

2
∂μh0∂μh0 −

1

2
W0þμνW0−

μν −
1

4
Z0
μνZ0μν −

1

4
A0
μνA0μν

−
1

4



gg0v2

32π2f2
ðcHW − cHBÞ þ

gg0v2

16π2f2

�
4cγ

g2

g2ρ
sin2θ

��
ζAζ

0
ZZ

0
μνA0μν; ðA38Þ

¼ 1

2
∂μh0∂μh0 −

1

2
W0þμνW0−

μν −
1

4
Z0
μνZ0μν −

1

4
A0
μνA0μν −

1

4
yZAζAζ0ZZ

0
μνA0μν: ðA39Þ
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To eliminate the ZA mixing term, we introduce a linear shift as follows:

A00
μ ¼ A0

μ þ yZAζAζ0ZZ
0
μ=2; ðA40Þ

Z00
μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2ZAζ

2
Aζ

02
Z=4

q
Z0
μ ¼ ζ−1Z Zμ: ðA41Þ

This leads to

Aμ ¼ ζAA00
μ −

yZAζ2Aζ
0
Z

4
Z00
μ ¼ ζAA00

μ − ζAZZ00
μ: ðA42Þ

In the final result, all electroweak gauge bosons are canonically normalized, and we may omit the primes from the redefined
fields. The factors ζh, ζW , ζZ,ζ0Z ζA, and ζAZ are introduced for convenience.
From Eqs. (A27) and (A28), we also have the mass terms,

Lmass ¼ −λv2
�
1þ 3

2
c6

v2

f2

�
ζ2hh

2 þ g2v2

4

�
1 − cW

g2v2

2m2
ρ
− cHW

g2v2

32π2f2

�
ζ2WW

þμW−
μ

þ g2v2

8cos2θ

�
1 − cW

g2v2

2m2
ρ
− cB

g02v2

2m2
ρ
− cHW

g2v2

32π2f2
− cHB

g02v2

32π2f2

�
ζ2ZZμZμ: ðA43Þ

There are shifts in the W and Z mass given by

m2
W ¼ g2v2

4

�
1 − cW

g2v2

2m2
ρ
− cHW

g2v2

32π2f2

�
ζ2W; ðA44Þ

m2
Z ¼ g2v2

4cos2θ

�
1 − cW

g2v2

2m2
ρ
− cB

g02v2

2m2
ρ
− cHW

g2v2

32π2f2
− cHB

g02v2

32π2f2

�
ζ2Z: ðA45Þ

After rescaling the fields, we read off the parameter
relations that are listed in Table II.

APPENDIX B: DETAILS FOR THE DERIVATION
OF UNITARITY CONSTRAINTS

1. 2 → 2 scattering

The application of unitarity conditions to elastic 2 → 2
scattering is well known. In this subsection, for com-
pleteness, we provide the explicit derivation and its con-
nection to the generic formulas in Sec. III. The derivation is
not restricted to elastic scattering; it applies to any
combination of two-particle initial and final states a and
b, respectively.
For a two-particle state vector jα;Φai, working in the

center of mass frame, it is convenient to choose the polar
angle θa and azimuthal angle ϕa as phase-space parameters,
or correspondingly, the normalized kinematics variables are
x⃗a ¼ ð1

2
ðcos θa þ 1Þ; ϕa

2πÞ. The Jacobian determinant is
given by

Ja ¼
1

8π

1

Sα
s−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s − ðma1 þma2Þ2�½s − ðma1 −ma2Þ2�

q
;

ðB1Þ

where ma1, ma2 are the masses of particles in a. Sα is the
symmetry factor that accounts for identical particles in a
with quantum-number combination α: if the two particles
are identical then Sα ¼ 2, otherwise Sα ¼ 1.
Following Ref. [109], in the center of mass frame, the

scattering matrix from the two-particle state jα;Φai to
jβ;Φbi can be expressed as follows4:

Mβαðxb; xaÞ≡ J
1
2

bhβ; θb;ϕbjMjα; θa;ϕaiJ
1
2
a

¼ 2
X
j

ð2jþ 1Þaαβj Dj
λαλβ

ðζ1; ζ2; ζ3Þ

¼ 2
X
j;m

ð2jþ 1Þaαβj Dj�
mλα

ðϕa; θa; 0Þ

×Dj
mλβ

ðϕb; θb; 0Þ; ðB2Þ

where θa (θb) are the polar angles and ϕa (ϕb) are the
azimuthal angles for the states jα;Φai (jβ;Φbi), respec-
tively. ζ1, ζ2, ζ3 denote corresponding Euler angles which
represent the rotation from direction ðθa;ϕaÞ to direction

4To be consistent with the explicit choice of polarization vector
in Eq. (B6), our phase convention differs from Ref. [109].
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ðθb;ϕbÞ. We use the standard convention for parametrizing
four-momenta in terms of polar and azimuthal angles,

pμ ¼ ðE; jp⃗j sin θ cosϕ; jp⃗j sin θ sinϕ; jp⃗j cos θÞ: ðB3Þ

If the particle is a massive vector boson, we define the
polarization states as follows:

jp;þi ¼ 1ffiffiffi
2

p ð0; cosϕ cos θ þ i sinϕ;

sinϕ cos θ − i cosϕ;− sin θÞ; ðB4Þ

jp;−i ¼ 1ffiffiffi
2

p ð0; cosϕ cos θ − i sinϕ;

sinϕ cos θ þ i cosϕ;− sin θÞ; ðB5Þ

jp; 0i ¼
�jp⃗j
m

;
p0

m
sin θ cosϕ;

p0

m
sin θ sinϕ;

p0

m
cos θ

�
;

ðB6Þ

where m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − jp⃗j2

p
.

This expansion suggests that we choose the Wigner D
matrix as an orthonormal basis for the two-particle phase
space,

Hα
jmðx⃗Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p
Dj�

mλα
ðϕa; θa; 0Þ: ðB7Þ

As a result, in the scattering amplitude between two-
particle states, the corresponding amplitude a becomes
diagonal and depends only on one index,

aαβjm;j0m0 ¼ δjj0δmm0aαβj ; ðB8Þ

where we introduce reduced a coefficients aαβj .
Similarly, the b coefficients can be reduced to a one-

index version,

bαβjm ¼
X
j0m0

jaαβjm;j0m0 j2 ¼ jaαβj j2: ðB9Þ

The set of unitarity conditions (3.13) is thus reduced to

jReaααj j ≤ 1

2
; ðB10Þ

����Imaααj −
1

2

���� ≤ 1

2
; ðB11Þ

X
β≠α

bαβj ¼
X
β≠α

jaαβj j2 ≤ 1

4
: ðB12Þ

These conditions are equivalent to those in Refs. [72,81,
110], if only 2 → 2 processes are considered.

2. 2 → n scattering: general idea

The unitarity conditions (3.13) do not depend on the
characteristics of the intermediate state c, which may be
any n-particle state. We have made use of this fact by
expressing the conditions in terms of b coefficients,

bαγA ≡ 1

4

Z
dxadxbdxcHα�

A ðxaÞHα
AðxbÞMγα�ðxc; xbÞ

×Mγαðxc; xaÞ ≤
1

4
; ðB13Þ

which by construction are independent of the phase-space
parametrization pertaining to Φc. We keep the dependency
on the discrete quantum numbers γ of the intermediate
state c.
In analogy to the 2 → 2 case above, we may use any

orthonormal basis for the initial two-particle state a.
Choosing the same Wigner D-matrix expansion is most
convenient, since due to angular-momentum conservation,
the b coefficients only depend on one index,

bαγjm ≡ bαγjm0 ≡ bαγj ; ðB14Þ

independent of the complexity of the intermediate states c.
At this point, we may discuss the connection to previous

literature on the subject [73,74,76].
(i) In Refs. [73,74], unitarity constraints are formulated

for the total cross section of 2 → n scattering under
the assumption that the j ¼ 0 partial wave (s wave)
dominates. This assumption applies to some subset
of the states that we consider here, but clearly is not
justified for the generic case of polarized vector-
boson scattering.

In fact, with our notation, the cross section for
a → c with discrete quantum numbers α, γ is
given by

σαγða→ cÞ ¼ 16πSαs
½s− ðma1 þma2Þ2�½s− ðma1 −ma2Þ2�
×
X
j

ð2jþ 1Þbαγj ; ðB15Þ

where bj are the reduced b coefficients after choos-
ing the Wigner D matrix as basis.

Assuming that the j ¼ 0 partial wave dominates
in the high-energy limit, we obtain

σαγða → cÞ ≈ 16πSα
s

bαγ0 ≤
4πSα
s

; ðB16Þ

which is equivalent to the result of Refs. [73,74].
This inequality applies to any polarized cross section
and could provide a stronger bound than its equiv-
alent for an unpolarized cross section.
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(ii) Reference [76] considers the more generic situation
of 2 → n scattering without s-wave dominance, but
restricts the derivation to spin-less particles. In that
case, the Wigner D-matrix formalism collapses to
the familiar formalism of Legendre polynomials and
spherical harmonics. By the general relation,

Plðcos θbaÞ ¼
4π

2lþ 1

Xl

m¼−l
Ym
l ðθb;ϕbÞYm�

l ðθa;ϕaÞ;

ðB17Þ

the relative polar angle θba can be determined via

cos θba ¼ cos θb cos θa þ sin θb sin θa cosðϕb − ϕaÞ:
ðB18Þ

TheWigner D matrix reduces to spherical harmonics
as follows:

Dj
m0ðϕ; θ; 0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2jþ 1

s
Ym�
l ðθ;ϕÞ: ðB19Þ

With these relations, it is easy to verify that our
formulas reduce to the ones of Ref. [76] in the spin-
less case.

3. Generalized s wave

For some helicity combinations, the unitarity condition
for 2 → n scattering becomes independent of phase-space
parameters in the high-energy limit. This is the situation
which was considered in Refs. [73,74]. In this subsection,
we work out the details for our application.
In the high-energy limit, effectively we can treat all

external particles as massless, p2
i ¼ 0. The generalized

s-wave condition for scattering a → c takes the form

hγ;ΦcjMjα;Φai ≈ C; ðB20Þ

where C is a constant with respect to the kinematical
parameters, for fixed total four-momentum. In fact, in the
EFTapproximation, this situation occurs naturally for some
of the terms since the leading contributions become
polynomials of the Lorentz invariants.
(a) For the case of inelastic scattering α ≠ γ, the b

coefficients with (multi-)index A take the form

bαγA ¼1

4

Z
1

0

dx⃗adx⃗bHα�
A ðx⃗aÞHα

Aðx⃗bÞJ
1
2
αðx⃗aÞJ

1
2
αðx⃗bÞ

×
Z

1

0

dx⃗cJγðx⃗cÞhγ;ΦcjMjα;Φbi�hγ;ΦcjMjα;Φai

¼1

4
jCj2ΔγjFα

Aj2; ðB21Þ

where the total phase-space volume Δγ is given by
[111,112]

Δγ ≡
Z

1

0

dx⃗cJγðx⃗cÞ ¼
1

Sγ

1

ð2πÞ3nγ−4
�
π

2

�
nγ−1

×
snγ−2

ðnγ − 1Þ!ðnγ − 2Þ! ; ðB22Þ

and we define the function F as

Fα
A ¼

Z
1

0

dx⃗aHα
Aðx⃗aÞJ

1
2
αðx⃗aÞ: ðB23Þ

Using the Cauchy-Schwarz inequality, the orthonor-
mality condition for the basis yields

jFα
Aj2 ≤

Z
1

0

dx⃗ajHα
⃗lu
ðx⃗aÞj2

Z
1

0

dx⃗bJαðx⃗bÞ ¼ Δα:

ðB24Þ

Therefore, we have

bαγA ≤
1

4
ΔαΔγjCj2: ðB25Þ

The strongest bound is obtained if the equals sign
applies in Eq. (B25). The inequality becomes

1

4
ΔαΔγjCj2 ≤

1

4
: ðB26Þ

To realize the optimal bound within a given phase-
space parametrization, the following condition should
be satisfied:

Hα
Aðx⃗aÞ

J
1
2
αðx⃗aÞ

¼ constant: ðB27Þ

The condition can be met if Hα
Aðx⃗aÞ and Jαðx⃗aÞ are

both constant. Since a constant basis function is a
member of commonly used orthonormal bases, the
condition reduces to requiring a constant Jacobian
determinant for the phase-space parametrization. For
an algorithm which achieves this, cf. Ref. [112].
We observe that the bounds in Eq. (B26) are

symmetric under the exchange α ↔ γ, although the
states a and c may differ in number or species of
particles. We may exploit this property by performing
polarization sums to either the initial or final state,
when applying the formalism to scattering processes.

(b) In elastic scattering, i.e., α ¼ γ, the unitarity constraint
may be expressed in terms of the a coefficients rather
than b coefficients. After an analogous derivation, we
arrive at the following optimal constraint:
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����Re 12ΔαC

���� ≤ 1

2
; ðB28Þ

0 ≤
����Im 1

2
ΔαC −

1

4

���� ≤ 1: ðB29Þ

The above discussion can be also applied to the case that
the independence of phase-space parameters results from
summing over degenerate states (polarization, color, etc.).
Explicitly, for a set of degenerate states S,5X
γ∈S

ðhγ;ΦcjMjα;ΦaiÞ�hγ;ΦcjMjα;Φbi ¼ jCSj2; ðB30Þ

where jCSj2 is independent of the phase-space parameters
x⃗a, x⃗b, x⃗c. With an optimal choice of kinematic variables
and basis, we obtain the bound

1

4
ΔαΔγjCSj2 ≤

1

4
: ðB31Þ

4. Generic case: recursive kinematics

For the concrete evaluation of unitarity bounds in the
generic case where the phase-space parameter dependence
remains nontrivial, we have to choose a specific phase-
space parametrization. In our calculations, we used the
standard recursive generation of 2 → n phase space in
terms of 2 → 2 scattering followed by a tree of 1 → 2
momentum splittings. The phase-space manifold ultimately
is mapped to the 3n − 4-dimensional unit hypercube,
x⃗ ∈ ½0; 1�3n−4. Below, we review this construction and
provide the detailed formulas.
We denote the n-body phase-space element with total

four-momentum Qμ as dΦnfQμg.
(1) For n > 2, this phase-space element is given by

dΦnfQμg ¼ δð4Þ
�Xn

i¼1

pμ
i −Qμ

�
dΦn

¼ d4pn

ð2πÞ3 δðp
2
n −m2

nÞdΦn−1fQμ − pμ
ng: ðB32Þ

Working in the c.m. frame of Qμ where Qμ
CM ¼ ð

ffiffiffiffiffiffi
Q2

p
; 0; 0; 0Þ, we obtain

d4pn

ð2πÞ3 δðp
2
n −m2

nÞ ¼
d4pn;CM

ð2πÞ3 δðp2
n;CM −m2

nÞ

¼ ρ3ðQ2; mn;
P

n−1
i¼1 miÞx23n−6 sin θn

8πEn;CM
dx3n−6dx3n−5dx3n−4; ðB33Þ

where the function ρ is defined by

ρðs;m1; m2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s − ðm1 þm2Þ2�½s − ðm1 −m2Þ2�

q
; ðB34Þ

and the four momentum pn;CM satisfies

pμ
n;CM ¼ ðEn;CM; p⃗n;CMÞ; ðB35Þ

p⃗n;CM ¼ x3n−6ρ

�
Q2; mn;

Xn−1
i¼1

mi

�
ðsin θn cosϕn; sin θn sinϕn; cos θnÞ; ðB36Þ

En;CM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗n;CMj2 þm2

n

q
; ðB37Þ

θn ¼ πx3n−5; ðB38Þ
ϕn ¼ 2πx3n−4: ðB39Þ

The corresponding four momentum in original frame can be obtained by a simple Lorentz boost,

pμ
n ¼ ΛðQCM; Q; pn;CMÞ

¼ pμ
n;CM − 2ðQμ

CM þQμÞ ðQCM þQÞ · pn;CM

ðQCM þQÞ2 þ 2Qμ QCM · pn;CM

Q2
: ðB40Þ

5We require all states in S to have identical particle numbers and symmetry factors.
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(2) For n ¼ 2, working again in the c.m. frame, the
formulas simplify accordingly,

dΦ2ðQÞ ¼ dx1dx2
ρðQ2; m1; m2Þ sin θ

128π4
ffiffiffiffiffiffi
Q2

p ; ðB41Þ

with

pμ
1;CM ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
CM þm2

1

q
;−p⃗CM

�
; ðB42Þ

pμ
2;CM ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
CM þm2

2

q
; p⃗CM

�
; ðB43Þ

p⃗CM ¼ ρðQ2; m1; m2Þ
× ðsin θ2 cosϕ2; sin θ2 sinϕ2; cos θ2Þ;

ðB44Þ

θ2 ¼ πx1; ðB45Þ

ϕ2 ¼ 2πx2: ðB46Þ

Again, the corresponding four-momenta in the
original frame can be obtained via the Lorentz boost
given in Eq. (B.40).
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