
 

Hadron-quark hybrid model reliable for equations
of state with μB ≤ 400 MeV

Akihisa Miyahara,1 Masahiro Ishii,2 Hiroaki Kouno,3 and Masanobu Yahiro 2,*

1Observation Division, Chubu Aviation Weather Service Center, Japan Meteorological Agency,
Tokoname 479-0881, Japan

2Department of Physics, Graduate School of Sciences, Kyushu University, Fukuoka 819-0395, Japan
3Department of Physics, Saga University, Saga 840-8502, Japan

(Received 24 July 2019; accepted 23 March 2020; published 13 April 2020)

We present a simple version of hadron-quark hybrid (HQH) model in the μB-T plain, where T is
temperature and μB is the baryon-number chemical potential. The model is composed of the independent-
quark model for quark-gluon states and an improved version of excluded-volume hadron resonance gas
(EV-HRG) model for hadronic states. In the improved version of EV-HRG, the pressure has charge
conjugation and is obtained by a simple analytic form. The switching function from hadron states to quark-
gluon states in the present model has no chemical potential dependence. The simple HQH model is
successful in reproducing LQCD results on the transition region of chiral crossover and the EoS in
μB ≤ 400 MeV. We then predict the chiral-crossover region in 400 ≤ μB ≤ 800 MeV. We also predict a
transition line derived from isentropic trajectories in 0 ≤ μB ≤ 800 MeV and find that the effect of
strangeness neutrality is small there.
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I. INTRODUCTION

A. LQCD

The state-of-art 2þ 1-flavor lattice QCD (LQCD) sim-
ulation of Ref. [1] showed that the transition is “crossover”
at finite temperature (T) and zero baryon chemical potential
(μB ¼ 0), where the continuum and thermodynamic limits
were carefully taken. In general, the crossover nature means
that the transition temperature depends on the choice of
observables. In fact, observable-dependent transition tem-

peratures TðOÞ
c ðμBÞ have been discussed in LQCD simu-

lations for zero and small μB; actually, the renormalized
chiral condensate O ¼ Δl;sðT; μBÞ, the Polykov loop
O ¼ ΦðT; μBÞ, the energy density O ¼ εðT; μBÞ, and the
trace anomaly O ¼ IðT; μBÞ are taken in Refs. [2–9]. In
Ref. [9], the LQCD data disfavor the existence of critical

endpoint (CEP) in μB=T ≤ 2 and T=TðΔl;sÞ
c ðμB ¼ 0Þ > 0.9.

The equation of state (EoS) is important particularly for
relativistic nuclear collisions and neutron stars. The loca-
tion of transition region is essential to determine EoS. For

these reasons, a lot of LQCD data have been accumulated
[1–13].

B. Effective models

As a complementary approach to LQCD simulations, we
can consider effective models such as the quark-meson
model [14] and the Polyakov-loop extended Nambu–Jona-
Lasinio (PNJL) model [15–18]. The model approach is
useful for the prediction of the transition lines, the presence
or absence of CEP and EoS. The hadron resonance gas
(HRG) model is a simple model for hadronic matter and
remarkably reproduces LQCD data on EoS in T ≲
1.3TðΔl;sÞ

c ðμB ¼ 0Þ [11].
As a simplified version of the PNJL model [15–18], the

independent-quark (IQ) model reproduces T dependence of
the Polyakov loop calculated with 2þ 1-flavor LQCD
simulations for μB ¼ 0 [19,20], although the PNJL model
does not. The IQ model treats the coupling between the
quark field and the homogeneous classical gauge field, but
not the couplings between quarks.

C. Hadron-quark hybrid model

Asakawa and Hatsuda proposed the hadron-quark hybrid
(HQH) model for μB ¼ 0 in order to describe the coexist-
ence of quarks and hadrons [21]. The total entropy sðT; μBÞ
of the model is sðTÞ ¼ fHðTÞsHðTÞ þ ½1 − fHðTÞ�sQðTÞ,
where sHðTÞ≡ 12ðπ2=90ÞT3 and sQðTÞ≡ 148ðπ2=90ÞT3

are the entropy densities of massless free gas with two
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flavors in the hadronic phase (pion gas) and in the quark-
gluon phase, respectively. The weight function fHðTÞ
means the occupancy of hadronic matter in the total entropy
and assumed a simple function satisfying the condition
0 ≤ fH ≤ 1. As shown in Fig. 1, their sðTÞ (dashed line)
does not reproduce sLQCD, where the fHðTÞ has a width
parameter Γ=Tc and the value 0.2 has been determined to
reproduce the low T part of sLQCDðTÞ. In addition, their
sðTÞ=T3 does not vanish at T ¼ 0, but HRG does.
Therefore, we should take HRG as sHðTÞ and the IQ
model as sQðTÞ.
In our previous papers [19,20], we improved the HQH

model of Ref. [21] for finite μB, taking the HRG model for
the hadronic part and the IQ model for the quark-gluon part.
The total entropy sðT; μBÞ reads

sðT;μBÞ¼ fHðT;μBÞsHðT;μBÞþ ½1−fHðT;μBÞ�sQðT;μBÞ:
ð1Þ

The result (solid line) of Ref. [20] reproduces LQCD data
[7], as shown in Fig. 1.
Another type of HQH model was proposed in

Refs. [22,23]. The HQH model considers the pressure
instead of the entropy. As an advantage of our approach,
sLQCD automatically satisfies the thermodynamic inequality
and the Nernst’s theorem [24],

∂sðT; μBÞ
∂T

����
μB¼0

> 0; sðT; μBÞjT¼μB¼0 ¼ 0: ð2Þ

In our previous papers [19,20], the fHðT; μBÞ was deter-
mined from LQCD data on sLQCD and the second-
order susceptibilities at μB ¼ 0. For this reason, the
approach is applicable only for small μB. We could not

show the chiral-transition line, since Δl;s becomes negative
in T ≳ 170 MeV.
In the HRG model, the interactions between baryons

(antibaryon) are neglected, but it should be taken into
account for μB dependence of thermodynamic quantities. A
simple way of treating volume-exclusion effects (repulsive
force) [25] was suggested in Refs. [26,27]. This model is
called “excluded-volume HRG (EV-HRG) model.”
Furthermore, a method of treating an attractive force in
addition to the repulsive force was proposed in Ref. [28].
The volume-exclusion effects are included by fitting the
volume parameter b ¼ 4 · 4πr3=3 [24] to either LQCD data
or the core radius r of nucleon-nucleon force [26,27]. In the
framework of Refs. [26–28], the interaction between baryon
and antibaryon and the radius of meson are neglected.

D. Our aim

In this paper, we improve the HQH model of Ref. [20],
taking the EV-HRG model for the hadron piece and the
simple IQ model for the quark-gluon piece. The EV-HRG
model taken yields the pressure as a simple analytic
function and guarantees that the pressure is μB even. We
refer to the present version of HQH model as “simple HQH
(sHQH) model.”
The present sHQH model has only six parameters, i.e.,

one parameter r in the EV-HRG model and five parameters
in the IQ model. In the IQ model, the parameters are fitted
to sLQCD in 400 < T < 800 MeV and μB ¼ 0 [20]. In our
EV-HRG model, as a value of r, we take the hard-core
radius r ¼ 0.34 fm of the Hamada-Johnston nucleon-
nucleon interaction [29], since the other nuclear forces
do not have the hard core. We have also supposed that the
hard core universally emerges in the other baryon-baryon
interactions between hyperons or excited baryons, and their
core radii are assumed to be the same as that of nucleon. We
then determined the switching function fH from sLQCD at
μB ¼ 0. The sHQH model with the fHðT; 0Þ reproduces
LQCD data on the Polyakov loop at zero chemical potential
and the EoS in finite μB up to 400 MeV. The present sHQH
model thus has no μB in fH; namely, μB dependence of
physical quantities come from the EV-HRG and the IQ
model. We thus succeed in simplifying the HQH model by
taking r ¼ 0.34 fm.
The Δl;s signals the chiral transition. The Δl;s calculated

with the HRG model becomes negative in T ≳ 170 MeV
[5], whereas the corresponding LQCD result is positive.
The present model has this problem. We circumvent this
problem in the following way.
As an interesting result of LQCD simulations in Ref. [5],

the chiral-crossover region determined from dΔl;s=dT
agrees with that from dε=dT at μB ¼ 0. In LQCD simu-
lations of Ref. [7], furthermore, the transition region is
obtained by dε=dT for finite μB. Therefore, we use the peak
and the half-value width of dε=dT as a transition region in
μB-T plane. We show that the transition region determined
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FIG. 1. T dependence of s=T3 at μB ¼ 0 MeV. The dashed line
denotes the s=T3 of Ref. [21] in which sQðTÞ=T3 ≡ 190ðπ2=90Þ
for three-flavor free quark-gluon gas and Tc ¼ 172 MeV, where
Tc is the chiral pseudocritical temperature at μB ¼ 0 MeV. The
solid line stands for the result of Ref. [20]. The dotted line is
sHðTÞ=T3 ≡ 12ðπ2=90Þ of massless pion gas. LQCD data for
2þ 1 flavor are taken from Ref. [7].
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from ε agrees with the chiral-transition region calculated
with LQCD simulations [8].
As mentioned above, the present sHQH model well

reproduces LQCD data on the EoS and the chiral-crossover
region in 0 ≤ μB ≤ 400 MeV. We can then predict the
transition region of chiral crossover in 400 ≤ μB ≤
800 MeV. LQCD data will become available for μB ¼
400 ∼ 800 MeV by development of LQCD simulations
such as the complex Langevin method [30–33].
Finally, we present a transition line derived from

isentropic trajectories in 0 ≤ μB ≤ 800 MeV. When we
calculate the isentropic trajectories, we switch on and off
the strangeness neutrality. We find that the effect is small
there. For this reason, we do not consider the strangeness
neutrality for the chiral-crossover region and the EoS.
This paper is organized as follows. In Sec. II, we show

the model building. Numerical results are shown in Sec III.
Section IV is devoted to a summary.

II. MODEL BUILDING

We present a simple version of the HQH model. The
model is composed of an improved version of EV-HRG
model for hadronic states and the IQ model for quark-gluon
states.
For the 2þ 1 flavor system, we can consider the chemical

potentials of u, d, s quarks by μu; μd, μs, respectively. These
potentials are related to the baryon-number (B) chemical
potential μB, the isospin (I) chemical potential μI , and the
hypercharge (Y) chemical potential μY as

μB ¼ μu þ μd þ μs;

μI ¼ μu − μd;

μY ¼ 1

2
ðμu þ μd − 2μsÞ: ð3Þ

As for μI and μY , the right-hand side of Eq. (3) comes from
the diagonal elements of the matrix representation of Cartan
algebra in SUð3Þ group: μI ¼ ð1;−1; 0Þðμu; μd; μsÞt and
μY ¼ ð1=2Þð1; 1;−2Þðμu; μd; μsÞt. Equation (3) yields

μu ¼
1

3
μB þ 1

2
μI þ

1

3
μY;

μd ¼
1

3
μB −

1

2
μI þ

1

3
μY;

μs ¼
1

3
μB −

2

3
μY: ð4Þ

A. HRG model

For later convenience, we start with the HRG model. In
the model, the pressure PH is divided into the baryon
(B) part PB, the antibaryon (aB) part PaB, and the meson
(M) part PM,

PH ≡ PB þ PaB þ PM; ð5Þ

with

PB ¼
X
i∈B

diT
Z

logð1þ e−ðEB;i−μB;iÞ=TÞ; ð6Þ

PaB ¼
X
i∈aB

diT
Z

logð1þ e−ðEB;iþμB;iÞ=TÞ; ð7Þ

PM ¼ −
X

j∈Meson

djT
Z

flogð1 − e−ðEM;j−μM;jÞ=TÞ

þ logð1 − e−ðEM;jþμM;jÞ=TÞg ð8Þ

for EB;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þmB;i

2
q

and EM;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þmM;j

2
q

, where

mB;i (mM;j) and μB;i (μM;j) are the mass and the chemical
potential of the ith baryon (jth meson), respectively. Here,
we have used the shorthand notation

Z
≡
Z

d3p
ð2πÞ3 ð9Þ

for the integration over 3d-momentum p. In Eq. (5), all the
hadrons listed in the Particle Data Table [34] are taken.

B. Improved version of EV-HRG

We first explain the EV-HRG model of Refs. [26–28].
The pressure PEV;H is obtained by

PEV;H ¼ PEV;B þ PEV;aB þ PM; ð10Þ

with

PEV;B ¼
X
i∈B

diT
Z

logð1þ e−ðEB;i−μEV∶B;iÞ=TÞ; ð11Þ

PEV;aB ¼
X
i∈aB

diT
Z

logð1þ e−ðEB;iþμEV∶aB;iÞ=TÞ: ð12Þ

Here the effective baryon and antibaryon chemical poten-
tials, μEV∶B;i and μEV∶aB;i, are defined by

μEV∶B;i=T ¼ μB;i=T − b̄PEV;B=T4; ð13Þ

μEV∶aB;i=T ¼ μB;i=T − b̄PEV;aB=T4; ð14Þ

where b̄ ¼ bT3 for a positive volume parameter b. It is not
easy to obtain PEV;B and PEV;aB, since μEV;B;i (μEV;aB;i)
includes PEV;B (PEV;aB) and self-consistent calculation is
necessary. Actually, PEV;B and PEV;aB are obtained by
solving Eqs. (11) and (12) numerically.
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In QCD, the pressure is charge-conjugation even (μB
even). Hence,PEV;H should be μB even, because it is a model
of explaining QCD in T < Tc. Since μEV∶B;i includes a μB-
odd term, μB;i=T and a μB-even b̄PEV;B=T4, the resulting
PEV;H is not μB even. It is not natural.
We then redefine PEV;B and PEV;aB so that PEV;H can be

μB even. The redefined PEV;B and PEV;aB are denoted by
Pinv;B and Pinv;aB, respectively. Namely,

Pinv;B ¼
X
i∈B

diT
Z

logð1þ e−ðEB;i−μinv;B;iÞ=TÞ; ð15Þ

Pinv;aB ¼
X
i∈aB

diT
Z

logð1þ e−ðEB;iþμinv;aB;iÞ=TÞ; ð16Þ

with

μinv∶B;i=T ¼ μB;i=T − b̄Pinv;B=T4; ð17Þ

μinv∶aB;i=T ¼ μB;i=T þ b̄Pinv;aB=T4: ð18Þ

The sum of Pinv;B and Pinv;aB are μB even, since the sum is
invariant under μB → −μB. For this reason, we take
Eqs. (15)–(18). These equations show that Pinv;B ≥ Pinv;aB.
Pinv∶B and Pinv∶aB can be rewritten into

Pinv∶B

T4
¼

X
i∈B

Ai

X∞
l¼1

ð−1Þlþ1

l2

× K2

�
lmi

T

�
exp

�
lμinv;B;i

T

�
; ð19Þ

Pinv∶aB

T4
¼

X
i∈aB

Ai

X∞
l¼1

ð−1Þlþ1

l2

× K2

�
lmi

T

�
exp

�
−
lμinv;aB;i

T

�
ð20Þ

for

Ai ≡ di
2π2

�
mi

T

�
2

: ð21Þ

LQCD data on the EoS are available for T ≤ 400 MeV
and μB ≤ 400 MeV [5,7]. We then consider this region. We
consider PB, because of Pinv;B ≥ Pinv;aB. The l convergence
of Eq. (19) becomesworse as jðμB −miÞ=Tj becomes larger;
note that K2ðxÞ is proportional to expð−xÞ for large x and
μB −mi is negative. Therefore, the convergence is worst for
the smallest case ð939 − 400Þ=400 where T ¼ μB ¼
400 MeV andmN ¼ 939 MeV. Taking the l ¼ 1 term only
is a 3% error in Eq. (19). In actual calculations, nucleon
contribution in PB is only 3%, so that taking the l ¼ 1 term
only corresponds to 0.1% error. We can identify PB with its

l ¼ 1 term and PaB with its l ¼ 1 one. This approximation
is called “l ¼ 1 identification” in this paper.
Using the l ¼ 1 identification, we can rewrite Pinv∶B as

Pinv∶B

T4
≃
X
i∈B

AiK2

�
mi

T

�
exp

�
μinv;B;i
T

�
: ð22Þ

Multiplying both the sides of Eq. (22) by b̄ expðb̄Pinv;B=T4Þ
and using the l ¼ 1 identification, one can obtain

b̄
Pinv∶B

T4
exp

�
b̄
Pinv;B

T4

�

¼ b̄
X
i∈B

AiK2

�
mi

T

�
exp

�
μB;i
T

�

¼ b̄
X
i∈B

Ai

X∞
l¼1

ð−1Þlþ1

l2
K2

�
lmi

T

�
exp

�
lμB;i
T

�

¼ b̄
Pinv;BðμBÞ

T4
; for μB ¼ μB;i: ð23Þ

Noting that the Lambert WðzÞ function is the inverse
function of WeW ¼ z, one can get Pinv∶B as a simple
analytic function. Namely,

Pinv;B

T4
¼ Wðb̄Pinv;BðμBÞ=T4Þ

b̄
: ð24Þ

In the limit of b̄ ¼ 0, Pinv∶B tends to PB, because of
WðzÞ → z. Parallel discussion is possible for antibaryon.
The result is

Pinv;aB

T4
¼ Wðb̄PaBðμBÞ=T4Þ

b̄
: ð25Þ

Hence, the hadronic pressure becomes

Pinv;H ¼ Pinv;B þ Pinv;aB þ PM; ð26Þ

with Eqs. (24) and (25). The entropy density sinv∶H is
obtained from Pinv∶H as

sinv∶H ¼ ∂Pinv∶H

∂T : ð27Þ

This improved version of EV-HRG model is referred to as
“improved EV-HRGmodel,” but the difference between the
improved EV-HRG model and the original EV-HRG model
is not large for the pressure.
Figure 2 shows T dependence of the total pressure P for

μB ¼ 0, 400 MeV. The results of improved EV-HRG and
HRG models are compared with LQCD ones [13]. In the
improved EV-HRG model, we take the core radius 0.34 fm
as a value of r, i.e., b ¼ 0.63 fm3. For μB ¼ 400 MeV
(lower panel), the EV-HRG result (solid line) agrees with
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LQCD one [13] in T ≲ 210 MeV, while the HRG result
(dashed line) is consistent with LQCD one in
T ≲ 150 MeV. For μB ¼ 0 MeV (upper panel), both the
EV-HRG and HRG results are consistent with LQCD one
[13] in T ≲ 210 MeV. The difference between the EV-
HRG and HRG results means a repulsive nature of baryon
and baryon.

C. Independent-quark model

We have to consider quark-gluon states in the region
T ≳ 200 MeV. The Lagrangian density of the IQ model is

LQ ¼
X
f

fq̄fðiγμDμ −mfÞqfg − UðT;Φ; Φ̄Þ; ð28Þ

where mf is the current mass of f quark and Dμ ¼ ∂μ −
igAa

μ
λa
2
δμ0 with the Gell-Mann matrix λa in color space. See

Refs. [17,18] for the definition of the Polyakov loop Φ and
its conjugate Φ̄.
Making the path integral over quark fields leads to

PQ ¼−UðT;Φ;Φ̄Þþ2
X
f

�Z
ðT logzþf þT logz−f Þ

�
; ð29Þ

where

zþf ¼ 1þ 3Φ̄e−ðEfþμfÞ=T þ 3Φe−2ðEfþμfÞ=T

þ e−3ðEfþμfÞ=T; ð30Þ

z−f ¼ 1þ 3Φe−ðEf−μfÞ=T þ 3Φ̄e−2ðEf−μfÞ=T

þ e−3ðEf−μfÞ=T; ð31Þ

with Ef ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

f

q
. In Eq. (29), the vacuum term has

been omitted, since the pressure calculated with LQCD
simulations does not include the term. The Φ and Φ̄ are
obtained by minimizing ΩQ ¼ −PQ.
The entropy density sQ is obtained from PQ as

sQ ¼ ∂PQ

∂T : ð32Þ

We take the Polyakov-loop potential of Ref. [20],

UðT;Φ; Φ̄Þ
T4

¼ −
aðTÞ
2

ΦΦ̄

þ bðTÞ logf1 − 6ΦΦ̄þ 4ðΦ3 þ Φ̄3Þ
− 3ðΦΦ̄Þ2g; ð33Þ

aðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

; ð34Þ

bðTÞ ¼ b3

�
T0

T

�
3

: ð35Þ

The parameters a0, a1, a2, b3, and T0 were fitted to 2þ 1
flavor sLQCD in 400≲ T ≲ 500 MeV; see Fig. 1 of
Ref. [20] for the fit. The resulting values are tabulated in
Table I.

D. sHQH model

The total entropy reads

sðT; μBÞ ¼ fHðTÞsinv∶HðT; μBÞ þ ½1 − fHðTÞ�sQðT; μBÞ
ð36Þ

in the sHQH model. We consider that fHðT; μBÞ has no μB
dependence, since sinv∶H and sQ depend on μB. This allows
us to determine fHðTÞ from s ¼ sLQCD [13] at μB ¼ 0.
Namely,
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FIG. 2. T dependence of pressure P at μB ¼ 0 MeV (upper
panel) and μB ¼ 400 MeV (lower panel). The solid and dashed
lines stand for the results of improved EV-HRG model and HRG
model, respectively. LQCD data are taken from Ref. [13].

TABLE I. Parameters in the Polyakov-loop potential.

a0 a1 a2 b3 T0

2.457 −2.47 15.2 −1.75 270 [MeV]
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fHðTÞ ¼
sLQCDðTÞ − sQðTÞ
sinv∶HðTÞ − sQðTÞ

: ð37Þ

In Fig. 3, fHðTÞ of Eq. (37) is shown by dots with error
bars. The errors come from sLQCD. The solid line is a fitting
function for fHðTÞ of Eq. (37); in the χ2 fitting, the line is
assumed to be 1 in T < 180 MeV. From now on, we regard

the solid line as the switching function fHðTÞ. The weight
function fHðTÞ means the occupancy of hadronic matter in
the total entropy, and the condition 0 ≤ fH ≤ 1 should be
satisfied.
The pressure P with no vacuum contribution is obtain-

able from sLQCD of Eq. (36),

PðT; μBÞ ¼
Z

T

0

dT 0sðT 0; μBÞ: ð38Þ

The energy density is obtained by εðT; μBÞ ¼ sT−
Pþ μBn, where n is the baryon-number density.

III. NUMERICAL RESULTS

As mentioned in Sec. I, we can consider the transition
region determined from with the peak and the half-value
width of dεðT; μBÞ=dT as a chiral-transition region. This
statement is confirmed explicitly by analyses shown in this
section.

A. T dependence of the Polyakov
loop for μB = 0 ∼ 400 MeV

Figure 4 shows the Polyakov loop Φ as a function of T
for the cases of μB ¼ 0, 100, 200, 300, 400 MeV. The
LQCD result is available only for μB ¼ 0 MeV [5]. In the
upper panel for μB ¼ 0 MeV, the sHQH result (solid line)
well reproduces LQCD one in which the continuum limit is
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FIG. 3. T dependence of the switching function fHðTÞ. The
dots with error bars are fHðTÞ of Eq. (37). The solid line is a
fitting function for the fHðTÞ; see the text for the fitting.
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FIG. 4. T dependence of the Polyakov loop Φ. The upper panel
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300, 400 MeV. The sHQH model results are shown by the solid
lines. In the lower panel, four lines correspond to the cases of
μB ¼ 100, 200, 300, 400 MeV from right to left. LQCD data are
taken from Ref. [5].

TABLE II. Comparison between lattice transition temperature
and transition region calculated with sHQH model for μB ¼ 0.

Tε
c TΔl;s∶LQCD

c

137–204 [MeV] 157(4)(3) [MeV]
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FIG. 5. Crossover region determined from dε=dT in μB-T
plane. The blue band is the chiral-transition region determined
by analytic continuation of LQCD simulations from imaginary to
real μ [8]. The horizontal line with cross stands for the transition
region determined from dε=dT and is calculated with the sHQH
model. The transition line (red solid line), obtained by connecting
the crosses, is expressed by T ¼ 172ð1 − 0.038ðμB=172Þ2Þ MeV.
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taken. We then predictΦ for μB ¼ 100, 200, 300, 400 MeV
in the lower panel. μB dependence of Φ is small.

B. Transitions

We first consider the case of μB ¼ 0. Table II shows
results of sHQH model for the transition region Tε

c
determined from the peak and the half-valued width of
dεðT; μBÞ=dT. The result is compared with LQCD data [5]
on the chiral-transition temperature Tχ∶LQCD

c . Obviously,

TΔl;s∶LQCD
c is in the region Te

c.
Figure 5 shows the transition region determined from the

peak and the half-valued width of dεðT; μBÞ=dT and the
lattice chiral-transition region in μB-T plane; the former is
calculated with the sHQH model and the latter is analytic
continuation of LQCD simulations from imaginary to real μ

[8]. The transition region determined from dεðT; μBÞ=dT is
shown by a horizontal line with cross for each of μB ¼ 0,
100, 200, 300, 400 MeV; the cross is a maximum value of
dε=dT and the horizontal line means the half-value width of
dε=dT. The red solid line is made by connecting the
crosses. Meanwhile, the blue band indicates the width of
the chiral-transition region extrapolated from the imagi-
nary-μB region [8]. The transition region calculated with
the sHQH model is consistent with the LQCD result. We
can thus regard the transition region determined from
dεðT; μBÞ=dT as a chiral-crossover region.
As shown in the right panel of Fig. 4 of Ref. [35],

Nonaka and Asakawa showed that in μB-T plane the
isentropic trajectories are focused to the CEP. They con-
cluded that the CEP acts as an attractor of isentropic
trajectories, n=s ¼ const.
In the upper panel of Fig. 6, the solid curve is a line

connecting the points at which the curvature of isentropic
trajectory becomes maximum. The curve is connected to
the CEP, if it exists [35]. We can thus regard the curve as a
transition line in μB-T plane.
In the lower panel, we impose the strangeness neutrality.

Comparing the two panels, we can find that the effect of
strangeness neutrality is small. Hence, the transition calcu-
lated with n=s may be deduced from relativistic nuclear
collisions. There is no evidence of focusing (attractor) of
isentropic trajectory in the sHQH model.
Figure 7 shows the transition line determined from s=n

by a solid line and the chiral-crossover region from the peak
and the half-valued width of dε=dT by two dashed lines in
μB-T plane. Here we do not consider the strangeness
neutrality, because the effect is small. The transition line
obtained from s=n passes in the vicinity of dots (the peak of
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FIG. 6. Isentropic trajectories, n=s ¼ const, in μB-T plane
where the strangeness neutrality is imposed for the lower
panel and not for the upper panel. In the upper panel, the
solid curve is a line connecting the points at which the curve of
trajectory becomes maximum; the resulting curve is T ¼
170ð1 − 0.025ðμB=170Þ2Þ MeV. The isentropic trajectories
are shown by n=s ¼ 0.014 ∼ 0.072 from top left to bottom right.
In the lower panel, the dashed line stands for a transition line with
the strangeness neutrality, i.e., T¼165ð1−0.023ðμB=165Þ2ÞMeV.
For comparison, we also show the solid lineT¼170ð1−0.025ðμB=
170Þ2ÞMeV in which the strangeness neutrality is not imposed.
The isentropic trajectories are shown by n=s ¼ 0.012 ∼ 0.07 from
top left to bottom right.
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FIG. 7. Chiral-crossover region determined from dε=dT
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half-valued width of dε=dT is denoted for μB ¼ 0, 100, 200,
300, 400 MeV by dots with error bars. The upper and
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dashed lines. The transition line determined from n=s is T ¼
170ð1 − 0.025ðμB=170Þ2Þ MeV.
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dε=dT) and is in the chiral-crossover region. This allows us
to regard the transition line determined from s=n as a chiral-
transition line. The quantity s=n is quite useful, since it is
obtainable from not ony LQCD but also heavy-ion
collisions.

C. EoS

In this section, we do not consider the strangeness
neutrality, because the effect is small.
In order to compare the present model with the previous

model [20], we take the same assumption “fHðTÞ has no μB
dependence” in the previous model. The resulting switch-
ing function fprevH ðTÞ is shifted to the left by about 10 MeV
from fHðTÞ in Fig. 3. The difference between the present
model with fHðTÞ and the previous model with fprevH ðTÞ

shows EV effects. The previous model with fprevH ðTÞ is
referred to as “HRG-HQH model” in this paper.
Figure 8 shows T dependence of s, P, ε, at μB ¼ 0 MeV.

The solid and dashed lines are the results of sHQH and
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FIG. 9. T dependence of s, P, ε, n at μB ¼ 200 MeV. See the
text for the definition of lines. LQCD data are taken from Ref. [7];
note that n is deduced from s, P, ε.
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HRG-HQH models, respectively. The difference between
the two lines shows EVeffects. We can find that the effects
are small for μB ¼ 0 MeV.We find that the fitting of fHðTÞ
is good, since the sHQH result agrees with LQCD data [7].

Also, for P and ε, the sHQH model reproduces LQCD
data.
Figures 9–11 show T dependence of s, P, ε, n for

μB ¼ 200, 300, 400 MeV. The results of sHQH model well
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FIG. 10. T dependence of s, P, ε, n at μB ¼ 300 MeV. See the
text for the definition of lines. LQCD are taken from Ref. [7];
note that n is deduced from s, P, ε.
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reproduce the LQCD data [7]. EV effects become large as
μB increases from 200 to 400 MeV. This means that the
interaction between baryons becomes non-negligible as μB
increases.

IV. SUMMARY

We have constructed a simple-HQH model in the μB-T
plain, improving the EV-HRGmodel [26,27] for the hadron
piece and using the simple IQ model for the quark-gluon
piece. The improved EV-HRG model yields the baryon and
antibaryon pressures as simple analytic functions of
Eqs. (24)–(25) and ensures that the pressure is μB even.
As an interesting result of LQCD simulations for μB ¼ 0

[5], the chiral-crossover region determined from dΔl;s=dT
agrees with the region from dεðT; μBÞ=dT. In LQCD
simulations for finite μB [7], furthermore, a transition
region is obtained by dεðT; μBÞ=dT. We may regard the
transition region determined from ε as a chiral-crossover
region. In fact, the crossover region determined from
dεðT; μBÞ=dT of sHQH model agrees with the lattice result
for the chiral-crossover region [8] in μB ≤ 400 MeV. We
have then predicted the chiral-crossover region in 400 ≤
μB ≤ 800 MeV.

In this work, we have considered that fHðT; μBÞ does
not depend on μB, since sinv∶H and sQ depend on μB.
This allows us to determine the switching function fHðTÞ
from sLQCD at μB ¼ 0. The present sHQH with fHðTÞ is
successful in reproducing LQCD data on not only the chiral-
transition region but also the EoS in μB ≤ 400 MeV.
In addition, the present sHQH model accounts for LQCD
data on the Polyakov loop at μB ¼ 0 MeV. We have then
predicted the Polyakov loop for μB ¼ 100, 200, 300,
400 MeV.
Using the simple-HQH model, we have also predicted a

transition line derived from isentropic trajectories in
0 ≤ μB ≤ 800 MeV. We found that there is no evidence
of attractor of isentropic trajectories and the effect of
strange neutrality is small for the transition line derived
from isentropic trajectories. Further analyses of these
properties seem to be important for both LQCD and
relativistic nuclear collisions.
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