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In this work we provide a bosonized version of the Thirring model in 2þ 1 dimensions in the case of
single fermion species, where we do not have the benefit of large N expansion. In this situation there are
very few analytical methods to extract nonperturbative information. Meanwhile, nontrivial behavior is
expected to take place precisely in this regime. To establish the bosonization of the Thirring model, we
consider a deformation of a basic fermion-boson duality relation in 2þ 1 dimensions. The bosonized
model interpolates between the ultraviolet and infrared regimes, passing several consistency checks and
recovering the usual bosonization relation of the web of dualities in the infrared limit. In addition the
duality predicts the existence of a nontrivial ultraviolet fixed point in the Thirring model.
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I. INTRODUCTION

In recent years a confluence of ideas in field theory and
condensed matter has led to the discovery of an intricate set
of dualities [1–3] thenceforth called web of dualities. This
refers to a set of relations between 2þ 1-dimensional (3D)
quantum field theories valid at an infrared stable fixed
point. In the heart of this web, one finds a relationship of
the bosonization type, namely,

ψ̄i=DAψ −
1

2

AdA
4π

⇔ jDaϕj2 −
λ�
4
jϕj4 þ ada

4π
þ Ada

2π
; ð1Þ

from which many other dualities can be derived, including
the original particle-vortex bosonic duality [4,5] and its
fermionic counterpart proposed in [6]. Da and DA are
covariant derivatives acting on charge þ1 fields. The left-
hand side corresponds to a free fermion coupled to a
background field, A, while the right hand side involves a
complex scalar coupled to a compact dynamical gauge field
with a Chern-Simons (CS) term and flux quantization over
the sphere

R
S2 da ¼ 2πZ, which is responsible for imple-

menting the fermion-boson transmutation. The compact
field couples to the external field through a BF term Ada.

In addition, this theory is taken at the Wilson-Fisher fixed
point [7], so that both theories in (1) are scale invariant.
The spirit of this work is to take advantage of this

relation in order to extend the class of models related by
duality. This is accomplished by considering deformations
of (1) and may be specially useful to explore nonperturba-
tive regimes, where usually we do not have much analytical
methods at our disposal. A possible deformation of the
duality (1) is to include mass operators in both sides [2,8].
In this case, the duality assumes the form

ψ̄i=DAψ −Mψ̄ψ −
1

2

AdA
4π

⇔ jDaϕj2 −m2jϕj2 − λ

4
jϕj4

þ ada
4π

þ Ada
2π

: ð2Þ

Of course the parameters of the two theories must be
somehow connected. The above relation has been verified
in the strict limit of infinite masses, reproducing correctly
the Hall conductivity (Chern-Simons coefficient) in both
sides [2,8]. A more precise relation between the masses was
suggested in [8], motivated by an analogy with large N
studies [9,10]. The idea is to introduce an auxiliary field, σ,
which allows us to write the interaction − λ

4
jϕj4 as

−σjϕj2 þ 1
λ σ

2. The map between operators is then estab-
lished in terms of the auxiliary field, according to ψ̄ψ ∼ −σ.
Including a mass term for the fermion, −Mψ̄ψ , is equiv-
alent to add on the bosonic side the operator Mσ, which
in turn implies the identification between the masses in (2)
as m2 ∼ −λM. As we shall see, the consistency of this
identification emerges as a by-product of the analysis in the
present work.
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It is worth emphasizing that the infrared duality that
follows from (2) can be explicitly derived simply by
computing the Hall conductivity in both sides. Both models
describe two gapped phases depending on the sign of M
(m2) on the fermionic (bosonic) side. If the phase transition
on the bosonic side is of second order, one can conjecture
that the two models share the same critical point described
by the duality (1) [2]. By assuming this conjecture we have
an exact relation between conformal theories valid, there-
fore, for arbitrary energies. By adding operators depending
on the background field in both sides of the duality and
promoting them to dynamical fields leads to new dualities.
Making this procedure in (2) we get new dualities that must
be true in the infrared. However, if this is done in (1) we get
new conjectured dualities valid for arbitrary energy scales.
As we shall see, a particularly interesting operator that fits
in this perspective is the Thirring interaction, i.e., a four-
fermion interaction of the form ðψ̄γμψÞ2, which is
extremely important in several contexts.
Indeed, the 3D Thirring model (more generally, models

with four-fermion interactions) has served over the years as
valuable prototype to examine a number of methodological
questions, such as large N renormalizability [11–13],
realization of the Weinberg’s asymptotic safety scenario
[14], dynamical symmetry breaking [15], lattice simula-
tions [16–20], and the relationship to other models like
QED3 [21,22]. Furthermore, it is relevant for condensed
matter systems of great interest, as in the case of high-Tc
superconductors [23,24] and also in the description of low-
energy excitations of materials like graphene [25,26].
In this work we investigate the 3D Thirring model with a

single fermion field (N ¼ 1), in the light of the web of
dualities. A dual description of the Thirring model in 3D
offers in principle the possibility to explore strong coupling
regimes, which are difficult to be accessed by analytical
methods like large N expansion.1 By carrying out simple
manipulations of the partition functions we are able to
obtain a bosonized version of the Thirring model from the
critical duality (1) in the presence of an external field.
To support the proposed duality we analyse some

accessible limits of the relation. First, we consider the
strict limit of infinite mass, where we recover the Fradkin-
Schaposnik map relating the fermionic theory with the
Maxwell-Chern-Simons model [30]. Then we consider
the limit of large but finite mass, where we perform an
expansion in the inverse of mass, matching both sides to the
first leading terms. In particular, this matching confirms the
relation m2 ∼ −λM suggested in [8].

This work is organized as follows. In Sec. II we review
some useful properties of the Thirring model in 3D. In
Sec. III, we discuss how to obtain the bosonized version
of the Thirring model starting from the critical duality. In
Sec. IV, some checks of the proposed duality are per-
formed. We conclude in Sec. V with a brief summary and
additional comments.

II. 3D THIRRING MODEL

We start by discussing some features of the Thirring
model in 2þ 1 dimensions given by the action

S ¼
Z

d3x

�
iψ̄=∂ψ −Mψ̄ψ −

g
2
ðψ̄γμψÞ2

�
: ð3Þ

We are considering the two-component irreducible repre-
sentation for the Dirac spinors. Most of literature about the
Thirring model consider the reducible four-dimensional
representation, where generally there is no Chern-Simons
generation in the effective action of fermions coupled to
gauge fields. We insist in the case of the irreducible
representation since this is precisely the case that takes
place in the web of dualities, where the Chern-Simons term
has a fundamental role. The Thirring model involves
two dimensionful parameters: the mass, ½M� ¼ 1, and the
coupling constant, ½g� ¼ −1. As the coupling constant has
negative mass dimension, the Thirring operator is irrel-
evant at weak coupling. On the other hand, large N
analysis has shown that the model is renormalizable in
this framework [12,13] suggesting it has a nonperturba-
tive UV fixed point.
The essential ingredient in the fermion-boson dualities in

2þ 1 dimensions is the particle-vortex nature of the
mapping between objects of the dual theories. In other
words, a local field that creates a particle excitation in one
theory corresponds to a monopole operator in its dual [1,2].
A different kind of bosonization duality for the Thirring
model has been discovered by Fradkin and Schaposnik in
[30]. In that work the authors show that the strict large mass
limit of the Thirring model is equivalent to the Maxwell-
Chern-Simons (MCS) theory. More precisely, they consider
the energy regime E ∼ 1

g ≪ jMj. Since no single fermion
state can be excited in the large mass limit, the mapping
actually shows that the bound-state sector2 of the Thirring
model can be described by a bosonic gauge field governed
by the MCS dynamics. Therefore the large mass limit of the

1In this context, it is worth to mention an interesting recent
approach to deal with fermions in 3D in terms of quantum wires
[27–29], where one spatial dimension is discretized so that the
3D problem is transformed into a set of 2D ones, and all the
machinery of 2D bosonization can be used.

2In the large N expansion, the bound-state condition can be
determined exactly by examining the pole structure of the
auxiliary vector field Aμ arising when we write the Thirring

interaction as −ðg=2Þðψ̄γμψÞ2 ¼ A2
μ

2g − Aμψ̄γ
μψ , which exhibits a

pole satisfying k2 < 4M2 when g > − 4π
jMj [12]. Thus, in the large

mass limit, for any positive coupling constant g (corresponding to
attractive interactions) there is bound-states formation.
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Thirring model is described by a purely bosonic gauge
theory

iψ̄=∂ψ −Mψ̄ψ −
g
2
ðψ̄γμψÞ2 ⇔

jMj→∞
−

g
64π2

f2b − signðMÞbdb
8π

;

ð4Þ

where the sign of the fermion mass determines the sign of
the CS coefficient in the bosonic description. In [31] a
bosonized version of the Thirring model is obtained that is
valid to all orders in an expansion in the inverse of mass.
Since no spin and statistical transmutation are involved in
the Fradkin-Schaposnik mapping, the compact character of
the emergent field, and consequently monopole configu-
rations, can be ignored. We will show that this mapping can
be recovered from the large mass limit of a more complete
bosonized version of the Thirring model for finite mass. It
is important to emphasize that the relation (4) is valid even
in the strong coupling limit and thus provides an useful
consistency check for the duality that we will discuss in the
next sections.

III. THIRRING MODEL FROM
THE CRITICAL DUALITY

In light of the previous discussions, we will see now how
to induce the Thirring operator in the critical duality (1) by
adding operators involving exclusively the external field. In
this way, we propose the following duality relation:

ψ̄i=DAψ −
g
2
ðψ̄γμψÞ2 ⇔ jDaϕj2 −

λ

4
jϕj4 þ 1

4π
ada

−
1

2π
cdc −

g
16π2

f2aþc

þ 1

2π
ðaþ cÞdA; ð5Þ

where a is an emergent compact gauge field satisfying the
Dirac flux quantization condition

Z
S2
da ¼ 2πZ; ð6Þ

with S2 being a compactification of the space slices R2.
The field c is an independent gauge field with no flux
quantization condition. Some comments are in order. First,
the flux quantization condition ensures that the partition
function for the bosonic model is gauge invariant including
large gauge transformations of a. In second place, naturally
the above relation contains (1). Indeed, by flowing to low
energies the Thirring operator becomes irrelevant, and we
recover the original duality [taking g → 0 we can directly
integrate out the gauge field c in the bosonic theory to
obtain (1)]. In the next section we will see that, in regimes
of energy where the Thirring operator is important, the

above duality passes some consistency checks and predicts
an interesting behavior in the UV limit. In the following we
shall discuss how to obtain the above relation.
To motivate the relation (5), we start with the critical

duality (1) and introduce in both sides the term 1
2g ðA − BÞ2,

with B being a new external field. This sets out an energy
scale, g−1, in the duality that was previously scale invariant.
Then, promoting A to a dynamical field and renaming the
fields as A → eb and B → A, we obtain

ψ̄ið=∂ − ie=bÞψ þ 1

2g
ðeb − AÞ2 ⇔ jDaϕj2 −

λ

4
jϕj4 þ 1

4π
ada

þ e
2π

bdaþ e2

8π
bdb

þ 1

2g
ðeb − AÞ2: ð7Þ

At this point b is a noncompact field. Notice also that in
promoting A to a dynamical field we have assigned a
corresponding coupling constant e, which is useful to
properly analyse specific regimes of energy. We see that
the left-hand side produces the Thirring interaction after
integrating out b. Actually, we first make the shift
eb → ebþ A, and then integrate out this redefined field
producing the Thirring interaction with a coupling constant
g. In order to obtain the proposed duality, the right hand
side still needs some attention. Let us consider the part of
the Lagrangian involving the b field:

L½a; b; A�≡ e
2π

bdaþ e2

8π
bdbþ 1

2g
ðeb − AÞ2: ð8Þ

In the spirit of the connection between self-dual and MCS
models [32], we define the interpolating Lagrangian

LI ¼ −
1

8π
cdcþ e

4π
cdbþ 1

2g
ðeb − AÞ2 þ e

2π
bda; ð9Þ

where c is a new emergent gauge field and similarly to b
is also noncompact. Integrating over c gives c ¼ eb.
Plugging this relation back into the Lagrangian (9) gives
(8). Therefore, (8) and (9) are equivalent. Alternatively, we
can integrate out the field b to get eb ¼ A − g

4π ðdcþ 2daÞ.
Plugging this back into the Lagrangian (9) and making the
field redefinition c → 2c̃, we obtain

L ¼ −
1

2π
c̃dc̃ −

g
16π2

f2aþc̃ þ
1

2π
ðaþ c̃ÞdA: ð10Þ

Therefore, we can see (9) as an interpolating Lagrangian
between (8) and (10). Replacing (8) by (10) in (7) and
renaming c̃ → c, we obtain the right-hand side of (5).
Now, we analyze the field content of (5) and determine

the fermion operator in terms of the bosonic field and the
monopole operator (bosonization rule). The charges of the

BOSONIZATION OF THE THIRRING MODEL IN 2þ 1 … PHYS. REV. D 101, 076010 (2020)

076010-3



monopole operatorMa can be read out from the respective
CS and BF coefficients involving the field a. This is
summarized in Table I. The fermion is identified as the
operator that is uncharged by the emergent gauge fields a
and c, being charged only by the electromagnetic field A:

ψ ⇔ ϕ†Ma: ð11Þ
As the combination of fields aþ c is coupled to the
electromagnetic field A, we can read out the corresponding
current ψ̄γμψ ⇔ 1

2π ϵ
μνρ∂νðaρ þ cρÞ.

An immediate consequence of the duality (5) is that it
points out to the existence of a nontrivial fixed point in
this the UV regime. Indeed, considering the bosonic dual
model, a simple dimensional analysis shows that, since λ
and g−1 have positive mass dimension, the operators jϕj4,
ada, and cdc are negligible at the UV implying that the
bosonic model has a trivial UV fixed point. This, in turn,
must correspond to a strongly coupled fixed point on the
fermionic side, according to the relation

ψ̄i=∂ψ −
g�
2
ðψ̄γμψÞ2 ⇔ j∂ϕj2 − g�

16π2
f2aþc: ð12Þ

Therefore, the duality predicts an UV nontrivial fixed point
for the Thirring model. Recent studies employing non-
perturbative methods also provide strong evidence for the
existence of nontrivial fixed points in several four-fermion
theories in 2þ 1 dimensions [33–37]. However, a more
quantitative comparison with our result is not available
since these previous studies consider the four-dimensional
representation for the Dirac spinors, which induces a
couple of independent four-fermion interactions, contrarily
to the case of the irreducible representation.

IV. TESTING THE DUALITY

In order to make some quantitative tests of the duality, it
is convenient to extend it to the massive case. With this
purpose, we assume that the massive form of relation (2)
remains valid in the present case, so that we consider the
following relation

ψ̄i=DAψ −Mψ̄ψ −
g
2
ðψ̄γμψÞ2

⇔ jDa−cϕj2 −m2jϕj2 − λ

4
jϕj4 þ 1

4π
ada

−
1

4π
cdc −

1

2π
adc −

g
16π2

f2a þ
1

2π
adA: ð13Þ

For convenience we have made the shift a → a − c, which
leads to a more direct process of integration over fields.
Notice that in this basis, both scalar field and the monopole
operator Ma are charged under c. Nevertheless, the
combination ϕ†Ma remains uncharged.
Now, we consider the energy regimes where the Thirring

operator becomes more important. Actually, the duality can
be quantitatively tested in the limit of large but finite mass,
i.e., for energies E ≪ jMj, independent of the value of g. In
this way, the relations that emerge in this limit remain valid
even for the strong-coupling regime. We emphasize that, as
the scalar excitations are suppressed in this regime, no spin
and statistical transmutation occur and therefore we can
neglect monopole configurations.
On the fermionic side the calculation is straightforward.

Introducing the mass term in (7) and integrating out the
fermion field, we get

e2sgnðMÞ
8π

bdb −
e2

48πjMj f
2
b þ

1

2g
ðeb − AÞ2 þOð1=M2Þ:

ð14Þ

We consider the alternative Lagrangian

−
sgnðMÞ

8π
cdcþ e

4π
cdb−

1

48πjMjf
2
cþ

1

2g
ðeb−AÞ2: ð15Þ

Integrating c out, we get

cμ ¼ sgnðMÞebμ − e2

6jMj ϵ
μνσfbνσ þOð1=M2Þ; ð16Þ

where we have used (16) recursively to write the Maxwell
term for the field c in terms of the field b [the difference
being ofOð1=M2Þ]. Plugging this back into (15), we obtain

sgnðMÞe2
8π

bdb −
e2

48πjMj f
2
b þ

1

2g
ðeb − AÞ2 þOð1=M2Þ;

ð17Þ

which is equivalent to (14) up to Oð1=M2Þ terms.
Now, integrating out the b field in (15), we have

eb ¼ A − g
4π dc. Plugging this back into (15), we finally get

−
sgnðMÞ

8π
cdcþ 1

4π
cdA −

�
g

64π2
þ 1

48πjMj
�
f2c: ð18Þ

On the bosonic side things are slightly more subtle. The
strategy is similar to the fermionic case, in the sense that we
will integrate out the scalar field in the large mass limit.
The resulting effective action is then organized in a loop
expansion (with internal lines involving only the scalar
field) with parameter κ ≡ 1

ð4πÞ32
λ
jmj. The difference, however,

TABLE I. Charge of the monopole operators and of the scalar
field.

Uð1Þa Uð1ÞA
Ma 1 1
ϕ 1 0
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is that we have to consider the two phases of the model
separately.
Let us examine firstly the Higgs phase, wherem2 < 0, so

that the combination (a − c) acquires a mass. Expanding

around the new vacuum v ¼ hϕi ¼
ffiffiffiffiffiffiffiffiffiffi
− 2m2

λ

q
on the right-

hand side (RHS) of (7) and integrating out the massive
scalar mode, we obtain

−
2m2

λ
ð1þOðκÞÞða − cÞ2 − 1

4π
cdcþ 1

4π
ada

−
1

2π
adc −

g
ð4πÞ2 f

2
a þ

1

2π
Ada: ð19Þ

Integrating c out, we have cμ¼aμ− λ
4πm2 ϵμνσ∂νaσþOð λ2m4Þ,

where we have used the equation of motion for c recur-
sively to replace dc by da. Using this relation, we finally
get

−
1

2π
ada −

�
−

λ

16π2m2
þ g
16π2

�
f2a þ

1

2π
Ada: ð20Þ

Comparing the Chern-Simons coefficient of (20) with (18)
(after rescaling a → a=2), we see that this phase corre-
sponds to the case with M > 0 on the fermionic side.
Furthermore, matching the Maxwell term gives the relation

m2 ¼ −
3

4π
jMjλ: ð21Þ

This result is consistent with the mechanism proposed in
[8] to deform the critical duality by the addition of mass
terms in both sides, which leads to a relation of the
type m2 ∼ −Mλ.
In the symmetric phase, by integrating out the scalar field

gives

−
1

96πjmj ð1þOðκÞÞf2a−c −
1

4π
cdcþ 1

4π
ada

−
1

2π
adc −

g
ð4πÞ2 f

2
a þ

1

2π
Ada: ð22Þ

Integrating c out, we have c ¼ −aþ 1
12jmjdaþOð1=m2Þ.

Plugging this back into (22), we obtain

−
�

g
16π2

þ 1

24πjmj
�
f2a þ

1

2π
adaþ 1

2π
Ada; ð23Þ

which can be compared to (18) after rescaling a → a=2.
We see that this corresponds to the fermionic phase with
M < 0. Therefore we can write an identification between
masses in an unified way,

m2 ¼ −
3

4π
Mλ; ð24Þ

which is valid in the two phases, i.e., M > 0 ⇒ m2 < 0

(Higgs phase) and M < 0 ⇒ m2 > 0 (symmetric phase).
Comparison of the Maxwell term fixes the value of λ

jmj,

λ

jmj ¼
2π

3
: ð25Þ

This is the specific point at which the duality is valid in the
regime of energy E ≪ jmj. The fact that the coupling
constant λ is not a free parameter is a consistency require-
ment, since the fermionic side does not contain any
dependence on λ. This also happens in the original duality,
which holds at the Wilson-Fisher fixed point. Furthermore,
we see that the value (25) leads to a properly perturbative
parameter κ,

κ ≡ 1

ð4πÞ32
λ

jmj ¼
1

12π
1
2

∼ 0.047; ð26Þ

consistent with the initial assumption that κ is small.
It is interesting to notice that the matching of the

Maxwell terms is automatic for the Thirring coupling g.
This indicates that our calculation also gives a matching for
the original duality (2) to the order of 1=M if we turn off g.
On the other hand, in the strict limit jMj → ∞, it gives the
mapping

iψ̄=DAψ −Mψ̄ψ −
g
2
ðψ̄γμψÞ2 ⇔

jMj→∞
−
sgnðMÞ

2π
ada

þ 1

2π
Ada −

g
16π2

f2a;

ð27Þ

which, after the rescaling a → a=2, is precisely the
Fradkin-Schaposnik mapping [30] shown in (4). There is
a massive excitation appearing on the right-hand side with
mass ∼1=g2. This corresponds to a fermion-antifermion
bound-state on the left hand side. In the UV limit, where the
Thirring model is strongly coupled, g → ∞, the bound state
becomes massless.

V. CONCLUSIONS

We have provided a bosonization of the Thirring model
in 2þ 1 dimensions for the case of a single fermion specie
with arbitrary mass. Therefore it extends previous works on
the Thirring model that relied mostly on large N techniques
or large mass limit. This was obtained from the bosoniza-
tion duality of a Dirac fermion coupled to a background
gauge field, which lies in the heart of the web of dualities.
By carrying out manipulations of the corresponding par-
tition functions we were able to produce the Thirring model
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on one side and the corresponding bosonic theory on the
other. A number of consistency checks were performed,
including the infinite mass limit where we recover the
known Fradkin-Schaposnik map, placing it in the context
of the web of dualities. We have also explicitly shown the
validity of the duality for large but finite mass, which
encompasses automatically the original duality. As a by-
product of our analysis, we confirmed the relation implied
in [8] connecting the mass parameters of the models and the
coupling constant of the quartic bosonic interaction.
The duality we have proposed for the Thirring model

involves on the bosonic side a combination of gauge fields,
where the four-fermion coupling constant is directly tied to
the Maxwell term. Thus the highly nontrivial task of
analyzing the strong coupling properties of the Thirring
model can become manageable using its dual version since
it corresponds to a quadratic term. Indeed, a simple
dimensional analysis shows that the bosonic model has a
trivial fixed point in the UV. The duality relation then
implies that this should correspond to a nontrivial UV
fixed point in the Thirring model. This is an important
physical information that is extremely hard to be extracted
when we do not have benefits of the large N or large mass
expansions.

In the above context, it is interesting to make further
contact with the work [8], which suggests that the UV fixed
point of the Gross-Neveu model is described in terms of a
free scalar theory. Up to a decoupled Maxwell term, this is
the type of theory that emerges in the UV limit of our
duality for the Thirring model. We believe that this is a
reflection of the fact that the Thirring interaction in 3D with
a single spinor in the irreducible representation is equiv-
alent to the Gross-Neveu interaction. In this sense, the
UV limit of our duality is in compliance with that one
proposed in [8].
We conclude by saying that further checks of the duality

proposed in this work are currently under investigation and
shall be reported elsewhere. Nevertheless, we expect that
discussions in this work could be helpful in the under-
standing of strongly interacting four-fermion theories in
2þ 1 dimensions.
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