PHYSICAL REVIEW D 101, 076009 (2020)

Effects of the transverse coherence length in relativistic collisions

Dmitry V. Karlovets " and Valeriy G. Serbo™?
"Tomsk State University, Lenina Avenue 36, 634050 Tomsk, Russia
*Novosibirsk State University, RUS-630090 Novosibirsk, Russia
3Sobolev Institute of Mathematics, RUS-630090 Novosibirsk, Russia

® (Received 7 February 2020; accepted 29 March 2020; published 8 April 2020)

Effects of the quantum interference in collisions of particles have a twofold nature: they arise because of
the autocorrelation of a complex scattering amplitude and due to spatial coherence of the incoming wave
packets. Both these effects are neglected in a conventional scattering theory dealing with the delocalized
plane waves, although they sometimes must be taken into account in particle and atomic physics. Here, we
study the role of a transverse coherence length of the packets, putting special emphasis on the case in which
one of the particles is twisted, that is, it carries an orbital angular momentum 4. In ee, ep, and pp
collisions the interference results in corrections to the plane-wave cross sections, usually negligible at the

energies /s > 1 GeV butnoticeable for smaller ones, especially if there is a twisted hadron with |#| > 103
in initial state. Beyond the perturbative QCD, these corrections become only moderately attenuated
allowing one to probe a phase of the hadronic amplitude as a function of s and ¢. In this regime, the
coherence effects can compete with the loop corrections in QED and facilitate testing the phenomeno-
logical models of the strong interaction at intermediate and low energies.

DOI: 10.1103/PhysRevD.101.076009

I. INTRODUCTION

Scattering outcomes generally depend on the quantum
states of particles brought into collisions. While a conven-
tional scattering theory deals with the delocalized plane-
waves having definite momenta, it is not applicable to a
number of realistic scenarios—for instance, when the
particles collide at large impact parameters [1], if they
are unstable [2,3], or if their quantum states are different
from the simplified plane-waves [4—17]. For photons, such
states as the so-called twisted photons, the Airy beams, the
squeezed states, the Schrodinger’s cat states, and so on have
been studied for years, both theoretically and experimen-
tally (see, e.g., [18-23]). However, it was only in 2010 that
the first nonplane-wave states of the massive particles were
generated—namely, the moderately relativistic vortex (or
twisted) electrons carrying orbital angular momentum
(OAM) with respect to the propagation axis [24-26].
More recently, the Airy electrons and the twisted cold
neutrons were also produced [27-29], as well as the vortex
electrons with the orbital momenta as high as 10007 [30]
(see the recent review [31] for more detail).
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The spatial profile of the majority of these novel wave
packets is not Gaussian even approximately and, therefore,
the standard scattering theory is not applicable to them. The
width of these packets or the transverse coherence length
can be as small as 6; ~ 0.1 nm [32] for vortex electrons,
which corresponds to the transverse momentum uncertainty
of the order of #/c6, ~ 1 keV. Such a tight focusing can
result in noticeable quantum interference effects in scatter-
ing of the electron packets by atoms [12].

In this paper, we study the role of the transverse coherence
length of packets in relativistic collisions, putting special
emphasis on the case in which one of the incoming particles
is twisted (a single-twisted scenario [8]). The mean trans-
verse momentum of the vortex packet grows as \/|7| , so for

the beams with |#| > 1 the interference between the packets
results in a noticeable shift of an effective transverse

momentum of the 2-particle in-state, p | « \/|7 , and in
the corresponding shift of the scattering angles.

For ultrarelativistic energies, for which the perturbative
QCD works well (conventionally, at the energies in the
center-of-mass frame \/E > 1 GeV), the coherence effects
are usually too weak, but for the smaller energies—that is,
in the nonperturbative regime—the corresponding correc-
tions to the plane-wave cross sections become only
moderately attenuated and accessible to experimental
study. Exactly as the plane-wave cross section itself, the
corrections to it are Lorentz invariant being proportional to
an invariant small parameter
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Pl/s
where p, ~ (0.1-100),/|7| keV for the twisted leptons
and hadrons.

In contrast to the previous calculations of the single-
twisted scattering with the Bessel beams, here we employ a
generalized Laguerre-Gaussian state yr, ,,_( [33], which is a
more general model of the relativistic vortex packet. While
for the Bessel beam the cross section is generally insensi-
tive to the OAM in the single-twisted scenario, this is not
the case for the Laguerre-Gaussian packet, whose mean

transverse momentum grows as \/m . Accordingly, the
difference between two approaches becomes noticeable for
the highly twisted particles with || > 1, as the coherence
effects grow stronger.

Finally, while the plane wave cross-section, do « |M fi 2
does not depend on a phase of the scattering amplitude M g;,
the coherence effects result in such a dependence already at
the tree-level [11,34,35], which is also attenuated as
p1/y/s < 1. As a Coulomb phase can in principle be
calculated in QED [36,37], this dependence allows one to
probe the phase of the hadronic amplitude as a function of s
and ¢ beyond the perturbative regime of QCD—that is,
when the kinetic energies of the colliding particles are less
than 1 GeV—and thereby to test phenomenological models
of the strong interactions. An analogous phase dependence
also arises in the noncentral collisions of the ordinary
packets.

The system of units 7 = ¢ = 1 is used.

II. RELATIVISTIC SCATTERING
OF WAVE PACKETS

A. Generalized cross section

Consider a general scattering or annihilation process
with two particles in an in-state and some number N, of
particles in an out-state. Let the incoming states be generic
(not necessarily Gaussian) wave packets, the final states be
unlocalized plane waves with the momenta Dy

Ny

|2 wave packets) — H Pr). (1)
!

and the scattering matrix element be
Ny

= H(pf|3’|2 wave packets). (2)
f

We describe these packets with the quantum phase-space
distributions or the Wigner functions n;(r;,p;, 1) (i = 1, 2,
see Sec. II B below) and with a particle correlator

L(pl’,k) = U(pi)/d4xd3ReikRn|(r,pl,t)nz(r—l—R,pz,t),
(3)

where

\/(1171,410’5)2 — mim3
e1(p1)ex(p2)
- \/(u1 —uy)? = [y xuy]?,

ep) = = /p? +m?, u:fm. (4)

If the initial states are plane waves, the scattering matrix
element reads

v(p;) =

(pw S i
4 - St
Sfl —1(271') 5t (p1+p2 ;Pf) y(@+Np)/2°

(pw)
M
T(PW) — fi , (5)

i \/ 2812€2Hf2€f

where the amplitudes Tg’.w) and M;‘;W) do not depend on the

normalization volume V.
The generalized scattering cross section,

aw
ngen = T ’ (6)

can be uniquely defined [1] as a ratio of a process
probability dW

&3 43 a3 Bk
W = |sf,|2Hv Pr / PLdpy Ik Kydo(p. k).

27)°

(27)> (27)* (2

7)?

da(pi,k>=<2n>45(el<p1+k/2>+e2<p2—k/2 Ze,@f) (pitr- ipf)

XTpW (I’1+k/2P2—k/2)

(Pl —k/2.p, +k/2)

1 &’
o Lo 7
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and a luminosity L

:/d3p1 d3p2 d3k
(27)* (2x) (27)°

d p 43 p 7
/(2,,)1 S on )z xo(p)ni(r,py, t)ny(r,ps,t).  (8)

Note that

Lpi.k)

&’py &p, o(p;)

(27)* (2z)*
_ dpy &p,
" 2¢/(27) 2¢,(27)?

4/ (prph)? = mim3 = inv, (9)

and so the generalized cross section and the luminosity are
Lorentz invariant.

The complex function do(p;, k) we call simply the cross
section. For k=0, it is real and coincides with the
customary plane-wave cross section,

da(pm(l’i) = do(p;.0)
= (27)*" (py + pr — Py)
|M ‘2 1 d®p;s

3 3’
4\/(P1ﬂP§) —mim; " f 2€f (27)

(10)

in which the amplitudes with different momenta do not
interfere, which signifies a fully incoherent regime or the
plane-wave approximation.

The general formula (6), in which the incoming states are
described with the Wigner functions, is totally equivalent to
the standard approach (see, e.g., [38,39]) with the wave
functions or the density matrices. The current representa-
tion, however, is more illustrative when dealing with the
spatially localized wave packets instead of plane waves,
and allows one to conveniently describe effects of the finite
impact parameters [1] and of the non-Gaussianity of the
packets [11].

B. Relativistic Wigner functions

The incoming states in Eq. (7) are characterized by a
bosonic part of the particle’s Wigner function n(r,p, 1),
which is Lorentz invariant and normalized as

3
/(6217:;3 &xn(r,p,t) = 1 =inv. (11)

If the particles are fermions, their spins are taken into
account in Eq. (7) exactly, because the corresponding
bispinors u(p) are factorized in the momentum space
and enter the scattering amplitude. That is why in the
approach based on Eq. (7), in which the momentum
representation plays the key role, there is no need in

fermionic relativistic Wigner functions (studied, e.g., in
Refs. [40,41]). For a pure state with a Lorentz invariant
(bosonic part of a) wave function y(p), the relativistic
Wigner function is

Pk
n(r,p,t):/(2”)3e

where

wr W0 —k/2.1) wp+k/2.1)
V2e(p —k/2) \/2¢(p + k/2)’
(12)

l//(p, t) _ l/I(p)e—ite(p)’

and the factors /2e(p £ k/2) are separated for conven-
ience, as they provide Lorentz invariance of the wave
function and of the normalization,

dp
/ ) &xn(r,p,t)

@p 1 2=1=inv
- | Gy IF = 1= (13

One can also employ the coordinate wave function,

dp 1 ,
v = [ 55 YO (9

and the Wigner function becomes
n(r.p.t) = /d3ye‘i”yw*(r =y/2,p(r+y/2.1). (15)

Although the function y (r,
normalization is so,

t) is not Lorentz invariant, its

3
/ éﬂ'; dxn(r.p.1) = / daly(r. ) =1=inv. (16)

C. Paraxial approximation in scattering

Let us derive an approximate formula in which the
effects of the amplitude self-interference enter perturba-
tively, but coherent properties of the incoming packets are
taken into account exactly. In contrast to the standard
textbook way of reasoning, we do not imply first that the
packets are extremely narrow in momentum space. The
only condition is that we deal with the one-particle states,
for which the coordinate uncertainty of each packet o,
which is at rest on average, must be larger than its Compton
wavelength A. = 1/m = h/mc (see, e.g., Sec. 1 in [38]),

6 > A, Sp=1/o, <m, (17)
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and these inequalities are Lorentz invariant. In the labo-
ratory frame where the packet moves with a constant speed
its longitudinal size is Lorentz-contracted [see Eq. (42)
below], while the transverse coherence length o, stays
the same.

The nonparaxial packets that violate the condition (17)
can be created with the aid of external electromagnetic
fields only. If the momentum uncertainty Jp is larger
than m, the field creates electron-positron pairs and the
effects of the packets’ quantum self-interference are no
longer negligible. Therefore within the conventional scat-
tering theory we imply that the invariant condition (17) is
fulfilled, the vacuum is stable, the external fields are absent,
and the packets’ self-interference is also absent, which is
closely connected with the positivity of the corresponding
Wigner functions (see Ref. [12] for an example in which the
latter is not the case).

Due to the oscillating factor ™" in the correlator (8), the
main contribution to the integral over k in (7) comes from
the following region:

ikR

k| <1/R~1/0, =6p.

given that the Wigner functions are well-localized in space.
Expanding the cross section do(p;, k) in (7) in a series in k,
we get

dolpy ) = do'™ (p) + K 2222K)

2
T + O(k?),

(18)

and therefore
d6 yen = do™" + do™ + O((6p)?), (19)

where the leading contribution,

dwincoh

d Jincoh — 7 ,

. &py &p
JWincoh — / (27[)13 (27[)23 d4xu(pi)n] (r,Pl ) t)

S n2(rap27 t)da(pW) (pi>7 (20)

contains an incoherent integration of the plane-wave cross
sections. The first correction,

, 1 [ dpy d&p,
i == | Gz o m )

» On, (r,p,, t) Olmdo(p;, k)
or Ok k<0

(21)

is due to quantum self-interference of the amplitudes.
Importantly, the coherent properties of the wave packets
are taken into account in Egs. (20) and (21) exactly. As a
result, the following purely quantum features of a packet

make nonvanishing contributions to the generalized cross
section: (i) the possible self-interference, closely connected
with the negative values of the state’s Wigner function (see,
e.g., [12]), (ii) the spreading with time, (iii) the possible
non-Gaussianity of its spatial profile, and (iv) a finite
impact-parameter between the incoming packets as well as
the finite transverse coherence length. All these effects are
completely neglected in the plane-wave approximation
based on Eq. (10).

The correction do™ can be written in a more illustrative
way if we represent the amplitude as follows:

M = M exp (i)},

fi
(pw)
ImM 5,
¢ = arctan—2— = inv. (22)
Ji Re M(PW)
fi

This yields the following simple result:

Olmdo ,‘,k w
Olmdo(p; k)| _ da(pw)(Pi)aApC(I; '(p).
Ok k=0
0 0
_ 9 0 2
Onp op,  Op,’ ®)
and therefore
. 1 d3p1 d3P2
do™ = _Z/ 20 X em (e )
X Onalr.pa. 1) do(PV) (I’i)aApC(I;W) Pi)- (24)

or

Thus, this correction depends on how the phase of the
amplitude ¢ ;‘;W) (p;) changes with the incoming momenta
P1, P> or with the invariant variables s, ?.

The expansion (19) does not invoke the perturbation
theory and, therefore, little can generally be said about the
ratio do'™ /de™™°P. Within the perturbative approach with a
small parameter @, whichis @~ 1/137 in QED or ¢ < 1 in
the perturbative QCD, the momentum-dependent phase
appears beyond the tree level only,

C}gw) = const + O(a). (25)
As a result,
dGmt pJ_
doincoh =0 <a 7) ’ (26)

where s = (p; + p»)? and p, is some transverse momen-
tum, which can be connected either with the wave packets’
transverse coherence length or with a finite impact param-
eter (see Sec. VIC for more detail). Importantly, the
interference contribution do™ can also be enhanced when
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the initial state represents a coherent superposition of one-
particle states—see specific examples in Refs. [12,42,43].

We call the paraxial approximation a regime in which
the packets are wide in the transverse plane or very narrow
in the vicinity of some momenta p; ~ (p;),

o> A, ép=1/o, <m. (27)

If we take the cross section do'®)(p,) in (20) out of the
integral at these momenta, this brings about the customary
plane-wave result,

dgen = do™" = do®)((p;)), de™ =0. (28)

It is tempting to expand do®¥) (p;) in (20) into series in the
vicinity of (p;) and keep the corrections to de®) ({(p,)) of
the order of (p; — (p;))* ~ (6p;)?, so that

doi"eoh — dG(PW)(<p[>) + (9(/1%/03_) (29)

For available beams of the particle accelerators and the
electron microscopes these corrections are (see details in
Sec. 1V)

< 107°, (30)

We would like to emphasize, however, that the coor-
dinates and momenta in the Wigner functions do not
generally factorize even in the paraxial approximation
(see the examples in Sec. IIl), which is why such a
perturbative approach (29) stays valid only

(i) Neglecting the possible finite impact parameters
between the packets—in particular, the MD effect
[1]. The effect persists even if the impact parameter
vanishes but the packets have different spatial
widths, which is typical for packets of different
masses (say, ep — X).

(i1) Neglecting the possible phase vortices of the in-
coming states. As we show in Sec. VI, a phase vortex
shifts the mean transverse momentum to a non-
vanishing value, as a result of which Eq. (29) ceases
to be applicable at small scattering angles.

(iii) Neglecting the packets’ dynamics—that is, a pos-
sible finite lifetime of an unstable particle [2,3], as
well as the packet spreading. In particular, the latter
implies (in a packet’s rest frame)

m m2

(6p)*  “(6p)
te=2/c~13x107 sec., (31)

Lty tg = t. > 1.,

where 1, is the packet’s effective diffraction time in
its rest frame.
As the cross section (20) contains integration over all times
and over all transverse radii (impact parameters), the above
effects can be only moderately attenuated, giving a

contribution to the cross section many orders of magnitude
larger than the corrections (30)—up to tens of percent (see
Refs. [1-3] for specific examples).

It is also worth noting that neglect of the packet spreading
is not always justifiable. For instance, scattering of the
Gaussian packets by atomic targets was experimentally
shown to strongly depend on a distance between a particle
source and the target due to the finite transverse coherence
length of the projectile [13,14]. If the packet is not Gaussian
(say, the vortex- or Airy beam), it also possesses an intrinsic
electric quadrupole moment [44-46], as well as higher
multipole moments. The contribution of this quadrupole
moment is negligible only if the condition (31) is satisfied,
because the moment itself grows with time as the packet
propagates and spreads [45]. The magnitude of these effects
can also be much larger than the estimate (30).

III. WIGNER FUNCTION OF A PARAXIAL
GAUSSIAN PACKET

For a fermion, a scalar part of the wave function y(p)
and its spin-related bispinor u(p) are factorized in the
momentum representation, which is why the general
formula (7) for the cross section depends only on the
scalar Wigner functions. Let us derive the latter function for
a paraxial Gaussian wave packet. A packet of a relativistic
massive particle in momentum representation can depend
on two four-vectors

p" ={elp).p}, (P ={e((p)). )},
pi=(p);=m" (32)

Its invariant wave function in the general nonparaxial
case—that is, when the condition (17) holds but (27)
may not—can be defined as follows (see, e.g., [33,47]):

23/27[ e—mz/(z‘ip)2
o VK 2m?/(5p))
2
. (0) (PM—<P>,¢)
xexp{lx,, )4 +72(6p)2 ,

3
| sy R = 1. (33)
(0)

Here, K is a modified Bessel function, x,,” = {#,, —r(} is a
four-vector defining the initial moment of time #; and the
impact parameter r(. In what follows, we choose

ro = {po.0}.

Clearly, in the rest frame of the packet with (p) = 0 all the
momentum uncertainties coincide,

w(p)

t():o,

opy = 6py, = 6p, = 6p = inv.

Now we return to the paraxial approximation (27) and,
taking the invariant ratio 6p/m as a small parameter, we
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expand the wave function (33) into series and neglect the
terms O((6p)?/m?). The corresponding paraxial function,

= (25

(0)

xexp !~ 0= ) Uyl ), .
Uijj=6;—(u);(u);, (u) _€(<I<;>>>

[ s R=1 3

(27)*2¢((p))

stays invariant for Lorentz boosts along the packet’s mean
momentum. Indeed, let the mean momentum have only a
z-component,

(p) ={0.0.(p)}.

Then we get

0 - 0):Us(p - ),
: (35)

=P+ gy (e = () = inv.

Importantly, this invariance is preserved thanks to the
energy terms,

(Pu = (P)u)? = (e(p) — e({p)))?
= ();(u);(p = ))ilp = @)); + O(lp = (p))*). (36)

&’k

absent in a nonrelativistic Gaussian packet with a non-
invariant envelope

exp{—(p — (p))*/2(6p)*}.
For ultrarelativistic particles with a Lorentz factor

e((p)) !

mo VT

> 1, (37)

the relativistic corrections are crucially important, because
they increase the momentum uncertainty along the z-axis in
the laboratory frame,

€ _
op, = 5p% = opy > op.

(38)
Accordingly, in the configuration space the packet shrinks
along the z axis [see Eq. (41) below], so that

op.,0, = inv.

Note that in Ref. [11] a matrix ;; was used instead of the
single scalar dp, and the above transformation properties of
the packet’s width were postulated rather than derived. In
the current approach they emerge naturally.

According to Eq. (12), the corresponding paraxial
Wigner function is

1

R 1) = (25{?) o / (2n)° \/2e(p + k)2)2(p —k)2) eXp{ik(r ~)

—it(e(p +k/2) — e(p —k/2))

- épp

1 1
- 0):Usp— o)), - Wk,-v,,k,}. (39)

Calculating the Gaussian integral over k in a Wentzel-Kramers—Brillouin fashion and neglecting the terms O(k?) =
O((8p)?) in the preexponential factor, we arrive at the following everywhere positive function:

1

nP(r.p. 1) = 8eXp{—2(P = @)U = (p)); = (6p)*(r —rg —ut), U (r —ro — ut),-},

(6p)

d3
/ (27[[;2 dxnP(r,p,t) = 1 = inv, (40)
where u = p/e(p). Note that the power of 2 here, 8 = 23, is related to the dimension of space and that
Ui_jl =06;j + 72<u>i<“>j-
In the special case with (p) = {0,0, (p)}, we get a yet simpler result
1 __ _
) =Sep{ = o 08 47~ ()P) = 0P (=g P+ P u?) | @)

and the Lorentz invariance of this function is easily seen.
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Clearly, the coordinates and momenta do not fully
factorize in this paraxial expression [48], as the coordinate
part depends onu = u(p) = {u, u_}, not (u). That is why
this packet does spread with time, and its width in the
configuration space at t = 0 is [recall Eq. (38)]

o, =1/6p =inv, o, =7

and so 6po, =6p.6, =1 =inv. (42)

Although everywhere positive, this Wigner function is not
quasiclassical as it takes into account finite uncertainties of
the coordinates and momenta, as well as spreading with
time.

IV. A BENCHMARK CASE: COLLISION
OF TWO GAUSSIAN PACKETS

Let us first represent the luminosity (8) as follows:

_ / &p) &ps
(27)* (27)°

I°7(p;) = /d4xn1(r,p1, Nny(r,py,t) =inv.  (43)

()T (p;),

17 (p;; b) = /d“xn1 “(r,py, )5 (r,pa. 13b)

(87)

Then the incoherent contribution (20) to the generalized
cross section is

fd3p1d3P2“(Pi)ICOH(Pi)d0<pW)(Pi)
fd3P1d3P20(Pi)IC0”(Pi)

d Gincoh —

(44)

Now that we have found the paraxial Wigner function, we
are able to calculate the correlator /°°(p;) within this
model exactly.

Consider a head-on collision of two paraxial Gaussian
packets with the momenta

p1) ={0,0,{p1)}, (p2) =1{0,0,{ps)},

with the Wigner functions (41), and suppose that
P1o=0, pro=b={b,. by, 0},

where b is an impact parameter between the packets’
centers. After somewhat tedious calculations, we arrive
at the following correlator:

1

~(6p1)?

+ (5p2)2)\/<5plz)2 + (5p2z)2 \/0%2(Aul)2 + G%Z’Z(Auz)z

1 1
X eXP{—W(Pﬁ + 772 (p1. = (p1)?) — m (P27 + 727 (Paz = (p2))?) — oD Aljbj} (45)

where we have denoted:

Au=u,(p\)—u(p;)=
A — i

i =0 o-% (Au,)? +0122(Au1)2
o2 — (6p1)*(6p>)* < 1 1 )_1: 1
e (5171)2 +(op ) (5191)2 (51?2)2 012¢+022L
2 (6p12)2(5p2z)
01— 2

“ (0p12)7+(6pa2)

{Au ,Au_},

(Au);(Au)

j’

5, OP1:=710P1, 6P2.=726P>.

(40)
The functions ¢, and oy, have the following limits:

lim Oy = 5p1, lim O|1p = 5])2,
op1—0 op,—0

51}%{20012,2 = 5plz7 51}2{20612,2 = 5p2z' (47)

Let us introduce an invariant transverse correlation length
of the in-state,

— 1 2 2 3
Petf = O = \/ 01 + 03] =1V,

which is defined by the widest of the two packets due to

(47), and so p. ~ o1, when o7, > 0, and vice versa.

For instance, in collision of a light particle with a heavy one

(say, ep — X) we have 6,R0p, K0P, Peff RO, | >0, |
The analogous longitudinal correlation length,

_ —1 _ /.2 2
lsc - Glz,z - 017 + 027,

defines an effective distance where the packets overlap at
the moment of time 7= 0 and, unlike its transverse
counterpart, it decreases as the packets shrink due to the
Lorentz contraction in the laboratory frame. In these terms,
the prefactor in (45) can be rewritten as follows:

(48)

(49)
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1 v
((5]71)2 + (5172)2)\/(51711)2 + (51721)2 Vsc

where

. (50)

V=0clo.=7"'03 and V. =pl, (51)

are an effective volume of the packet in the laboratory
frame and that of the scattering region, respectively.

Now let us study in more detail the simplest scenario
in which both the colliding particles are stable, ultra-
relativistic,

71> 1, 72> 1,

and we neglect the spreading. The z-components of the
momentum uncertainties dp, are much larger than their
transverse counterparts 6p, which is why we can putp; |, =
P> = 0 under the integrals in (44)—that is, neglect

the terms O((5p)?/m?*)—but keep the corrections of the
order of

(6p.)*/m* = 7*(6p)*/m* > (p)*/m*.

Expanding the cross section da®) (p;) = do®™)(p,., p,.)
into the series, we arrive at the following simple result:

20%ds™) ((p;))
o7

. 0
dGmCOthO'(pw)(@i» + ( plz)

2m1

n <6p2z>2 0*ds™)((p;))

21’}12 8}7% ’

1
L =—ohexp{-ah,b’}, (52)

where we have put (p;2) ® e({p12)) = 712m12 > my,.
The key question is how the correction to the plane-wave
cross section,

Soincoh — Jincoh _ dG(pW)(@i>), (53)

behaves as a function of the energy. As an example, let the
particles have the same mass, m; = m, = m. Then in the
center-of-mass frame with

71=72=7=+/s/2m,

the cross section of the annihilation process ete™ — pu*u~
or ete™ — hadrons decays in the ultrarelativistic limit as
follows [39]

de®™) 2

which yields

% 2 82 da(pw)
oy?

2m
<6_p>28do<PW> (3p.)?

do'PW)
m Olns K ?

2 2
where M = (5_p> = inv,
s 2m

and so 56" = O((6p)*/m?), (55)

exactly like in Eq. (29). Moreover, any power-law decay

w) 1
dadt x—, nx1, (56)
s

yields the same result, Eqs. (29) and (55).

Irrespective of the specific process, the high-energy
behavior of an elastic cross section is limited by the
Froissart bound [49]

do®v) .
< consty/sln®s/sin@,., 0 <0, <z,
dcost,,
do®Pw)
° < constsIn*s, 6, =0,x. (57)

dcos0,,

Here, 6, is a scattering angle. Clearly, even if the bound is
saturated ddo'®™)/dIns does not grow with the energy
faster than doP"). Therefore the corrections to the plane-
wave result do not really grow with the energy and are of
the same order of magnitude as those that we already
neglected when deriving (52) or the paraxial Wigner
function (40). If the Froissart bound were violated, which
would be connected with violation of the unitarity of the
S-matrix, this could result in a polynomial growth of the
corrections to the plane-wave cross section with the energy.

Therefore, within the paraxial approximation with the
Gaussian beams we recover the standard result,

do™oh = do™)((p)). (58)

Corrections to this can be estimated as follows. For
available beams of the electron microscopes with ¢, 2
0.1 nm [32], we have the estimate (30). For high-
energy electron (positron) colliders, the typical energy
spread is [50]

oe

~ 10741073, (59)
&

The momentum uncertainty in the laboratory frame is
connected with this parameter as

0
op, :ENE’A,

e>m. (60
p )
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And the transverse coherence length of each wave packet in
a beam is obtained as

4 /10 3 4
=L (103104 .. 6l
O 5pz A ( )c ( )

For electrons this amounts to
6, ~0.1-1 nm, (62)

which is 3-5 orders of magnitude smaller than the beam
width. Therefore the estimate (30) also holds valid for the
electron accelerators.
For proton and antiproton colliders, the energy spread is
A = 8e/e = 107 [50], and so the proton transverse coher-
ence length is
o ~Ap/A~1pm, 6p ~100 keV,  (63)
at least two orders of magnitude smaller than the width of

an electron packet (62). That is why the analogous estimate
for protons is

<1078, (64)

V. WIGNER FUNCTION OF A PARAXIAL
VORTEX PACKET

Let us now find a Wigner function of a paraxial massive
particle with a phase vortex. The spinless part of its wave
function represents the corresponding generalization of that
of the Gaussian beam, Eq. (34), and looks as follows:

X exp{iiqﬁp + ix,(lo)p”

1
s = U= ),
dp 1 ar -
X/wmh”? (PP =1,
) = (0.0, u)}. (65)

Clearly, the mean value of the operator L., = —i0/d¢ 18
(L,) = ¢, and at the point of the phase vortex, p, — 0, the

intensity vanishes,

2/17|

W (p)* & p1' = 0. (66)

The function (65) is just a fundamental mode of a
generalized Laguerre-Gaussian beam yY', _, [33] and it

is Lorentz invariant for boosts along the mean momentum
(z). The Bessel state is a limiting case of this beam,
obtained when n — o0, 6| — oo [33]. In this paper, we
restrict ourselves to the case with one radial maximum
(n = 0) and, therefore, transition to the scattering with the
Bessel state is not possible. On the other hand, we will see
in Sec. VI that the latter case is effectively reproduced for
the small values of |#|, which is a property of the single-
twisted scenario.

Evaluating the Wigner function according to Eq. (12),
we make the following expansion in the exponent:

ie(,(p +k/2) = b, (p —k/2))
P22 0w /p). (67)

=—itk

Pl

It is important that this expansion be made in the exponent

and not in the preexponential factor. The corresponding
paraxial Wigner function is

n2 (r.p.1)

:;ﬁ(%)we"p{‘wlTWi+7‘2<pz—<p>>2>

—(5P)2<<p —po—uLt—fppLj)z—I—?Z(z—uzt)z) }

(68)

It is exponentially suppressed at p; — 0, which is just a
consequence of the phase vortex.

Clearly, because of the paraxiality condition this expres-
sion for the Wigner function is not unique. Indeed, if we
derive this function starting from the coordinate represen-
tation instead, Eq. (15), we would get a similar result but
with a preexponential factor (pdp)2¢l instead of
(p./8p)*l. Then, the expansion similar to (67),

lf(¢r(r+y/2) _¢r(r_y/2))
p X
P

) Z
= —ity—~=+ Oy} /p%). (69)

would also result in the following replacement [51]:
2 pxZ\?
pl— \pL+7? )

which provides the exponential suppression of the Wigner
function at p — 0. If needed, one can rewrite the Wigner
function in a x— p symmetric form, which for the
preexponential factor would be

(p1/3p)H1 = (p1/8p) N (pL/p)T = (pp 1)\,

where the last equality is valid only in the paraxial
approximation. So the prefactor in Eq. (68) does not
depend on the momentum uncertainty op at all and the
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Wigner function vanishes both when p — 0 and p, — O.
For our current purposes, it is convenient to use the
representation (68).

VI. COLLISION OF A GAUSSIAN BEAM
WITH A VORTEX PACKET

A. The cross section

Let us study collision of the Gaussian wave packet
with a vortex particle. The incoherent cross section do™"*°!
cannot be represented as the plane-wave expansion (29),
because the phase vortex leads to a shift of the mean
transverse momentum, which is somewhat analogous to a
finite impact parameter in the MD effect. As the case with
¢ = 0 reduces to the one in Sec. IV, we suppose that the
OAM is not vanishing, |£] > 1.

The corresponding correlator is

Icfon(l’ﬁb) —/d4xnﬁ’ar(r,p1,t)ngi;(r,pz,t;b)

1 2/7] 4
Sl ol ) oo
1

where I°7(p;;b + f”zxz) is the Gaussian correlator (45)

21
with

Do X Z
Pu

b—-b+7¢

When b =0, the part in the correlator’s exponent that
depends on p, | looks as

2 2
1(pi0) sexpf - Lo, L
(6p2) 25l
% <1 _ 6%2
o1, (Au,)? + o1, (Au.)?
2
% [ullpiszL]z>}’ (71)
1

and it does not depend on the sign of the OAM. Then,
exactly as in Sec. IV, we can put p, | — 0 everywhere; as a
result the term [u;; X p,,]?/p,% vanishes.

I?”(Pi; 0) =

ViV,

The function in the exponent,

2 2
I9™(p;;0) x exp {— P21 - O-%ZLQ}? (72)
(5172) P21

can be expanded in the vicinity of the point \/c,6p,|Z]
where the phase is stationary,

2 2

) 00 2 4 }
expq — — 09—
{ (6p ) lzpzi

sexp{ 26172 = (22) (p2s = Vouanal AV }.

op2
(73)

Here, 0, is from Eq. (46).
Remarkably, the effective mean value of p, |,

V6120p,|7). (74)

also depends on the momentum uncertainty ép, of the other
(Gaussian) packet, due to the quantum interference
between the incoming particles. It coincides with the mean

transverse momentum of the vortex packet (p, )=~

dp2+/ 7| [33],
V0120p,|¢| % dpy/ 4], (75)

only
(i) When the incoming states have the same uncertain-
ties, op; = Op, (say, for e"e™ — X, pp — X, etc.),
(i) And when 6p; > dp, (67| < 0, ). This happens
when the Gaussian packet corresponds to a particle
which is much heavier than the twisted one—say, a
proton and a vortex electron, respectively.
In the opposite regime with dp, > dp; (61, > 0, ), we
have

V0120p2 || % \/8p15ps || < Span/ €] (76)

This scenario is realized when the twisted particle is much
heavier than the Gaussian packet—say, a vortex proton and
an electron, respectively.

Thus, the final expression for the correlator is

1

op>

1 Pu) 11 2
8
|f|' <5p2 ( ) Vsc

x exp{—m 03 + 772 (p1e — (p1))?) = 21¢]

_ (2)2<pu ol -

ofy(Auy)? + ot (Au)?

o1
op>

le)zy;%pZZ - <p2>>2}. (77)

The correlator, the luminosity, and the scattering probability are exponentially suppressed for very large OAM. One can

represent the first term in the r.h.s. of Eq. (73) as follows:
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exp {—2|f|g—;2} = exp {—2\/ 7] o

2)
Peff

b0y

(p2) = 2.V 1¢] = V/¢]/6ps (79)

is a mean radius of the vortex packet [33] and the transverse
correlation length p. is from Eq. (48). Obviously, for large
¢ the first maximum of the probability density is far from
the Gaussian packet’s center, which is why the packets do
not nearly overlap.

Now we return to the general formula for the incoherent
cross section (44) and notice that at p; - (p,) =
{0,0, (p;)} the ratio

where

v(pi)
Vo (bu ) + o (Au,)?

does not depend on the azimuthal angle ¢,. As a result, the
generalized cross section is simply connected with the
plane-wave one,

] 27 (
dGmCOh — / %dd(pw)(@1>vp2(¢2))’ (80)
0 T
where

P2($2) = {/0120p2|€| cos a, \/ 61285 | €] sin by, (p2) }.
(81)

Unlike the probability, this cross section is not attenuated at
large £, and when £ = 0 we return to the customary plane-
wave result for the Gaussian beams (58). For nonvanishing
OAM, Egqg. (80) explicitly violates the naive expression for
the corrections to the plane-wave result, Eq. (29).

There are two main differences between Eq. (80) and the
analogous expression within the simplified model of the
Bessel beam (Eq. (31) in [8]):

(1) The cross section now depends on absolute value of
the OAM |7|, as the vortex packet’s transverse
momentum grows as \/m

(i1) It also depends on dp; due to interference between
the packets.

That is why the difference from the model of the Bessel
beam will be most pronounced for highly twisted particles
with |#| > 1 and when the twisted particle is much heavier
than the OAM-less one (6p, > op;).

B. Specific example: 2 — 2

For a special case of a 2 — 2 collision (see Fig. 1) the
cross section is

03

(p21) = dpar/I|¢

FIG. 1. Collision of a Gaussian packet with a generalized
Laguerre-Gaussian beam y,,_o. Due to the quantum interfer-
ence, the effective transverse momentum p ; in Egs. (74), (81),
(83) does not generally coincide with the mean transverse
momentum (p, ) ~35p, \/m . The latter is analogous to » of
the Bessel state.

. wdp, dPpy  dp
doineoh :A 2 3 4 3 (27[)45(4) ([71 +P2(¢2)

27 2e5(27)32e,4(2m)
| M(gw) 2
41

—P3—D4) (82)

where [ = \/(plﬂp’z‘)2 — mim3 and

P1= {81109()’ <P1>}’

Pa(dh2) = {2, P cOs . p, sings, (pa)},
& = \/<P2>2 + pi + m3,

P11 = \/6125P2|f|- (83)

Note that the mean momentum of the twisted particle,

(P2) = 1{0,0,(p2)} # p2(eh2),

does not coincide with the spatial part of the 4-
vector p,(¢,).

Thus, the cross section (80), (82) is obtained from the
standard one by averaging over the azimuthal angles in a
nonhead-on collision. Analogously to the standard pro-
cedure, it is tempting to rotate first the axes so that p;, — 0,
to obtain the angular distributions do'™°"/dQ, and then
return to the nonvanishing transverse momentum. However,
the azimuthal angle is not invariant under such a rotation,
which is why one can eliminate the energy-momentum
delta-function in the center-of-mass frame with

(P1) = —(p2) = (p). (84)

In contrast to the plane-wave case, the transverse momentum
P> is not vanishing even in this frame. The integral over py4
can be removed, and so

ey =/ (p1)* +mi,

Ps = {P21 = P31.—P3: ) P21 = pi{cos¢,,sing,}.
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The remaining delta-function cannot be eliminated by
integrating over &3 + &4, but we can represent it as follows:

1
(e — ey —e4)

2¢y
(e —&3)%)

5(cos(¢hy

=6(e5 -

= 203171 = ¢p3) — cos(¢23))

= i (8(hs = b3 — 23) + (o — b3 + ¢23)),  (85)

where € = €1 +€2 > ms +I’H4,

Pl +pst - pid (6)

¢,3 = arccos
2psipy

is an angle between the vectors p, | and ps3; in a triangle
P21 = P31 + P4y,

PL+psl = pal = pl+mi+pi—(e—e),
pai = (e —e3)* = pa: —mj, (87)
and
A= lpupi sin ¢p3 (88)

2

is an area of the triangle. This area can be represented as
follows:

48 = \/@2pipa)? — (0} + pst — a2 . (89)
where p,, is from Eq. (87).

As the invariant / does not depend on the azimuthal
angle ¢,, we integrate over it and arrive at the following
result for the angular distribution in the center-of-mass
frame:

dat[:]l(\:/?h _ 1 d|p3||p3| (| W)|2|
dQ, - 167° 41 £3 4A hr—p3=3
(pw) 12
+ |M i | |¢z—¢3:—¢z3)
1 1 £—my g%
o o e YT M P,
(pw) |2
+ |Mfi | |¢2—¢3:—¢23)’ (90)

dpsdp
/ 2250 (p - py = pa)

where p3 = |p3|{sin 65 cos ¢, sin 65 sin ¢h3, cos O3 } and we
have used the identity d|ps||p3| = dese;. In contrast to the
plane-wave case, there appears a certain distribution over
the final particle’s energy.

Note that the quantum interference in (90) between two
kinematic configurations [35] vanishes for the totally
unpolarized case. Indeed, when we average over the
incoming spins and sum over the final ones, the square

(pw) 2

I
scalar products p, - p3 « cos(¢, — ¢p3) = cos(¢hy3), which
is even in ¢z — —¢o3. As a result,

, can depend only on the

|M | ‘(ﬁz —3=th3 |M§CII’W)|2|(/)2—(/)3:—(/)23’ (91)

and it does not depend on ¢ alone. In this case we get

(2x 241/

d O_mcoh

dcos 6'3

\/ 83 m3 |2

|¢2—¢3:¢23 :

(92)

The ¢y3-0dd terms sin(¢, — ¢p3) — sin g3 can arise from
the products with a spin vector ¢ like

IMPVR o & - [py x p3] o sin(ghy — ), (93)

that is, when at least one of the particles is polarized.

Let us now take another approach and obtain a repre-
sentation, which is more general than Eq. (90) and where
the azimuthal integral is kept. First we eliminate the energy-
momentum delta-function in Eq. (82) in an arbitrary frame
of reference. By introducing the notation

p=pi+p=1epl,  s=p>=(pi+p)’ (94

it is convenient to employ the following representation:

283 284
/ d* p3d* p48(p3 — m3)8(pi — m3)8(e — p§ — p§)6® (p —p3 —p4)
9>0,p9>0
! (P5)? —m3
= [ @R == PP~ o ) = [y B o5)
20 ley/(P9)* = m3 — pi(pns)|
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where ny = p3/|ps| = {sin 65 cos ¢, sin 65 sin ¢h3, cos 63 },
and

1 1
T2 pny

(o) (5 -+ md = ) = (2m3)2 (€ — (pns)?)).
(96)

0 2 2
P3 s + m3 — my)

Note that & — (pn3)? > 0, (s + m3 — m3)* — (2m3)*(e*—
(pn3)?) > 0, and pJ > 0.

As a result, we arrive at the following compact formula
in an arbitrary frame:

dGinCOh_/Z”%dG(pw)_ 1 i
dQs  Jo 27 dQs 162241
(p9)?* —m3

/ o MR,
0 27 1o [(p9)? = m3 — p(pm3))|

(97)

As the energy of the final particle pJ depends on the
azimuthal angle ¢,, the integration over ¢, is equivalent to
that over €3 and in the center-of-mass frame (84) with

P =D21($2), (pn3) = p, sin@scos(p, — ¢3)

equation (97) is analogous to Eq. (90).
If we neglect all the masses in the reaction, we get

1 s

P — 98
p3 De— (pn3) ’ ( )
and the formula (97) simplifies to:
do | e MR
dQ;  64x% Jy 2z (e — (pny))?

1. s-channel

Let us study the s-channel in the center-of-mass frame

with
Ey) = 1/ 8% + pi,

Note that s depends on the transverse momentum p | and
when p| < &, we have

e=¢g + &, s =2ee.  (100)

seso+ PR sp=s(pL=0)=(2e)%  (101)
The square of the matrix element can be obtained from

the massless limit of the QED process [53]

et (p1)ew(pa(da)) = w(p3)u (pa)-

For the totally unpolarized case it is [39]

W 8(4na)?
|M(I; )|2 = ( 2 ) ((p2p3)* + (P1P3)?),
Vs>m,, (102)
where
1 —cos O,
2 = _ 2 =s5s-2 .
(P1p3) = sy p— (P2p3) = s —2(p1p3)

We deal with the following integral in Eq. (99):

, _/2ﬂd¢ 1
" Jo 2m(e—p, sin@zcosg)”
-1 n—1 An-1 1
:( )= 0 n=2,3,4.

(n=1)10e"" /2= p? sin20;

Integrating over ¢,, we arrive at the following result:

(103)

d incoh 2
ZEZI\;I = %(12 - 281(1 - COS03)I3

+2e3(1 —cos 03)%1,).

(104)

Expanding this expression over the small parameter p? /s,
we obtain

dogiih _doly (| P} jal
— 12100 PL
a0, do, | T3, 90)+0 2))

cos @
g(03) = —TOS;QB (2 + cos @3 — 4 cos? 05
+5cos® 05), (105)
where g(6;) - -2 at 6; - 0 and
(pw) 2
d
oM _ X (1 4 cos? 03) (106)

de, a 4S0

is the standard cross section of the plane-wave approxi-
mation. In Fig. 2 we demonstrate how the correction to the
plane-wave result depends on the scattering angle.

Thus, the difference of the generalized cross section (105)
from the standard one is attenuated as p? /sy < 1:

dog" ) doly) i
=1+0(—). 107
dQ3 dQ3 + So ( )
For realistic parameters of the lepton scattering,
Spr <1 keV, VS0 > 1 GeV, (108)
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-g (65)
4-

50 Yoo 150

f3 (deg)

FIG. 2. The function g(65) from the correction to the plane-
wave cross section in the s-channel (105).

we have

ﬁN (6]72)2 |f| < 10_12|£|
So So - '

(109)
which for available OAM is many orders of magnitude
smaller than the corrections that we have already neglected.
In particular, the analogous corrections due to the finite
mass of the electron would be [see Eq. (30)]

P P
EL <1070 > 25 as (/fsp > m. (110)
m So

These geometric corrections were discussed in [11].

The situation is different, however, if there is a twisted
hadron (say, a proton) in initial state, that is, for the
processes

PP =X, PP =X, epuw —ep, etc.
As the proton’s transverse momentum Sp,, is some 2-3

orders of magnitude higher than that of the electron Jp,
[see Eq. (63)],

8p, ~ 100 keV ~ (10>-10°)8p,. o, ~1pm, (111)

the corresponding transverse momentum p | = /0 ,6p ,|¢|
can also be higher. To be more precise,

C1a~0pe,  PL~\/0pop,lt| for epy) — X,
012~ 6P, PL~Op,V || for Piw)P — X. (112)

As a result, for /5o 21 GeV we have the following
estimates of the corrections to the plane-wave cross
sections for processes with the twisted hadrons:

2 2
PL_ 0P 4 < g8,

113
5 s (113)

Clearly, for |£] > 10° these corrections can compete with
the higher-loop QED contributions.

2. t-channel

The analogous calculations can also be performed for the
lepton scattering in QED,

H=(P1)ew(p2(92) = w(p3)e™(pa)-

For the totally unpolarized case we have

W 8(4ra)?
M= popip (i) (119
with
1 —coséd
= _2<P1p3> = _2(P2P4) = —S5¢€ —3.
& —pny
In the center-of-mass frame we arrive at
doi(':‘ﬁ,}’h 202
= 2—2¢&/(1— 0;)1
dQs;  s(1 —cosH3)2( &i(l = cos03)l
+ €3(1 = cos 63)21,), (115)

where 1, is from (103). Expanding this over the small
P> /5o, we finally get the following result:

incoh (pw) 2 4
st 05 (2L o)
S

aQ, | do, 5% 2
h6s) = %4 + <fiff§s gy (3~ 2c0sts
+ 3 cos? 63). (116)
where
Aoy a4+ (1+ 00593)2’ (117)

dQ3 a 2S0 (1 —COSG3)2
is the standard plane-wave cross section. In Fig. 3 we show
the angular dependence of A (63).

Although the correction to the plane-wave cross section
is found to be of the same order of magnitude as in the
s-channel, we stress that beyond the perturbative QCD the
corrections cease to be small and for the kinetic energies
less than 10 MeV they can be seen with a naked eye (see,
for instance, Refs. [15,16]).
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h (6;)
04}
03}
02}
0.1F
50 100 150
03 (deg)
FIG. 3. The function %(63) from the correction to the plane-

wave cross-section in the t-channel (116).

C. Nonperturbative phase effects

The expansion (19) does not appeal to the perturbation
theory and, therefore, it is applicable even beyond the
perturbative regime—say, when the kinetic energies of the
incoming particles are much less than 1 GeV in ep or pp
collisions. Let us study the nonperturbative effects brought
about by the interference term, do™ from Eq. (24). For
paraxial packets with the Wigner functions from Eq. (41) or
Eq. (68), we have

ony"(r.p.t) _ o (r,p,1)

81‘ 8r0
pxZ
= —2(5p)2{p —po—C—5—ut,
Pl

P=z0-un) g, (119
where ry = {py, 2o }. In what follows, we imply z, = 0 and
po =b. For collision of the Gaussian packet with the
twisted one, we get

Oony(r,p,, t;b)
4 2 2
/d xnl(r’pl’t)iar

_ OIP"(p;sb)
B Ob

267 (b %z Au(Aub ))
= 20 eff — e

P o, (A )? + 61, (A, )? !
x 12" (pi;b) (119)
with 19" (p;;b) from Eq. (70) and
by = b+ 2275 (120)
P21

These formulas can easily be generalized for other non-
Gaussian packets—say, for the Airy beams (cf. Eq. (4.13)
in [11]).

Thus, we have the following expression for the inter-
ference correction cf. [Eq. (44)]:

. 1 [ &p, &
do™ = —252 _/ Pi ﬁl) i)];OIT(Pi;b)d(;@W)(pi)

21 ) 2x) (2x)?
X (b - %z Au(Aub ))
T oh(Buy ) + o}, (Au,)? .
0l 0)), (121)

which is odd in b and, therefore, the ratio do™/do™"!
can be quantified by the following asymmetry:

_ dagen (beff) - do—gen (_beff) — daim (beff)
ngen (beff) + dUgen (_beff) dUmCOh (beff) ‘

A (122)

This asymmetry vanishes together with do™ for the
vanishing effective impact parameter b ;—say, for a
head-on collision of two Gaussian packets. Clearly, beyond
the perturbative regime this asymmetry is not attenuated by
any dimensionless small parameter.

Let us suppose now that the integrand in Eq. (121) is a
smooth function of the momenta (which may not be the
case for £ #0, p,, — 0). Then for the Gaussian packets
with £ =0, (p;) ={0,0,(p;)} collided at the impact-
parameter b the interference contribution can be estimated
as follows:

A~ 63b - Oy (0 iy~
o™ (s.1)
o i)
t=(p1—p3)*

2
~o1,b - ps

s =(p1+p2)*, (123)
in accord with Ref. [11]. Both b and &, are determined by
the widest packet of the two,

b~ GJ_,max’ 6?2 = l/pesz ~ (5p)3nm = 1/63_,max’

and therefore

A = O(6pmin), (124)
as expected.

Thus, a nonvanishing asymmetry (122) requires viola-
tion of the azimuthal symmetry in the initial two-particle
state. In other words, the in-state has an angular momen-
tum, which for collision of the Gaussian packets at a finite
impact-parameter is extrinsic (that is, frame-dependent) and
is of the order of bop i, ~ 1. Actually, these estimates also
hold for the twisted packet with the intrinsic angular
momentum |#| > 1 or for any other non-Gaussian packet,
because the maximum value of the effective impact
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parameter does not exceed much the transverse coherence
length o .

Let us turn now to the ultrarelativistic perturbative
regime with the small parameter o and consider elastic
scattering with

Vs> m,

In this case we can conveniently rewrite the rh.s. of
Eq. (123) as follows [recall Eq. (26)]:

o min ag(l:W) QSC

pP1L = 6pmin = l/peffa

t~ —s62,, 0, < 1.

(125)

where ¢, is an azimuthal angle of the impact parameter.
Again, for ep, pp, or pp collisions with the energies /s of
at least several GeV, we have

s - -
A~a—=<a(107-107%),
V™

and this estimate is /|Z| times larger if there is a twisted
particle in the in-state. For TeV energies, this estimate is
some 3—4 orders of magnitude smaller (see Ref. [11] for
more detail). Besides, this asymmetry vanishes after the
integration over the azimuthal angle ¢; of the scattered
particle.

Beyond the perturbative regime—for the kinetic energies
less than 1 GeV—a naive estimate of the interference
effects is

(126)

pPL -5 104 2
~—=~(107=10 A Pe 127
AxTin Widze  (127)

for the processes like ep(w) = ep, pw)P = PP> Paw)P —
pp, etc. Clearly, corrections of the same order of magnitude
also arise from the 2-loop diagrams in QED. Thus, a
dedicated study for the specific models of the hadronic

phase ¢ Ef;w) is needed at the kinetic energies much less

than 1 GeV.

We emphasize once again that to get a nonvanishing
asymmetry one needs to have an initial state with some
angular momentum, which can be either extrinsic (for
noncentral collisions of the vortexless particles) or intrinsic
(for central collisions with the twisted particles).
Analogously to scattering of the highly twisted packets,
in the former case the effect is also enhanced for highly
peripheral collisions. For instance, the corresponding extrin-
sic orbital momenta can reach 10007 in nuclear collisions at
RHIC [54], as a result of which the produced A hyperons
possess the transverse momenta as high as p|, < 3 GeV for
the energies of /s ~ 10-200 GeV. Therefore, in this case
de™/de™ < p | /\/s ~1073-107!, analogously to the
MD effect [1].

VII. DISCUSSION

In collisions of particles, the transverse coherence length
of the wave packets reveals itself in corrections to the
conventional cross sections, which are defined by an
effective transverse mometum (74) of the incoming state
and are additionally enhanced if there are vortex particles
with high angular momenta, |#| > 103, somewhat analo-
gously to collisions at large impact parameters. The
standard calculations based on the plane-wave approxima-
tion stay applicable with the large margin both for elastic
and for the deep-inelastic scattering of relativistic electrons
on hadrons, when the perturbative QCD works well.

Beyond the perturbative regime, however, the correc-
tions to the standard results become only moderately
attenuated and accessible to experimental study at the
kinetic energies €, much less than 1 GeV for the processes
like e(w)p — ep,epuw) = €p, Puw)P — PP, €tc. In par-
ticular, the measurements of the asymmetry (122) can
become a useful tool for testing phenomenological models
of the strong interactions at intermediate, €. < 1 GeV, and
low, e. < 1 GeV, energies. While the maximum kinetic
energy of the twisted electrons achieved so far is
e, = 300 keV, generation of the moderately relativistic
twisted electrons with the energies of at least several MeV
as well as of the nonrelativistic twisted protons with |£|>>1

would facilitate these studies, as the asymmetry is \/|—ZT
times enhanced if one of the particles has a phase vortex.
Alternatively, the collisions at large impact parameters can
be used for these purposes, similar to those at RHIC [54].

We would like to emphasize that the above conclusions
stay valid within the model, in which the vortex packets
represent the generalized Laguerre-Gaussian states [33]. The
mean transverse momentum of them coincides at |£| > 1

with the momentum uncertainty, \/ (p? ) — (p)*> ~ 5p+/|Z],

and it cannot therefore be larger than the particle’s mass.
There is an alternative description of the relativistic twisted
packets [9,55], in which the mean transverse momentum
represents an independent parameter, like in the Bessel beam,
and it can be larger than the particle’s mass. These packets
represent a superposition of the Bessel beams with a Gaussian
envelope. Although the Bessel beam is just a special case of
the generalized Laguerre-Gaussian state [33], the model of
Refs. [9,55] may predict larger corrections to the plane-wave
cross sections and it leads to new interesting effects if both the
colliding particles are twisted [55]. Which of the two models
is more suitable for describing the real vortex beams is an
open question.

Although our analysis was made for the single packets
and not for the multiparticle beams, the very similar
conclusions hold in the latter case as well, provided that
the quantum interference between the packets in the beam
is negligible. The latter holds in the paraxial approximation,
6, > A.,0p < m. For available accelerator beams of the
width o, ~ 10-100 gm, which is at least 4 orders of
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magnitude larger than the transverse coherence length of an
electron packet (62), these interference effects can be safely
neglected.

However for the next generation colliders with the
nanometer-sized beams (like ILC and CLIC [50]), the
interparticle distance in a beam becomes of the order of
the packet’s width itself, o,, = ¢,,, and so the packets
start to overlap, which is especially important for spin-
polarized electrons and positrons due to the Pauli principle.
As a result, the quantum interference between the packets
may reveal itself in the effects of the order of

A A

c _4 c
— 3107 s —,

128
Ol Ole ( )

which in their turn can compete both with the correc-
tions described in this paper and with the 2-loop QED
contributions. The analogous effects in scattering of the
nonrelativistic electrons by atoms can reach 10% [12].
Therefore, when studying the role of the transverse
coherence length with the spin-polarized nanometer-sized
beams the overlap of the electron (positron) packets in a
beam must be taken into account.

ACKNOWLEDGMENTS

We are grateful to P. Kazinski and I. Ivanov for fruitful
discussions. This work is supported by the Russian Science
Foundation (Project No. 17-72-20013).

[1] G. L. Kotkin, V. G. Serbo, and A. Schiller, Processes with
large impact parameters at colliding beams, Int. J. Mod.
Phys. A 07, 4707 (1992).

[2] K. Melnikov, G.L. Kotkin, and V.G. Serbo, Physical
mechanism of the linear beam size effect at colliders, Phys.
Rev. D 54, 3289 (1996).

[3] K. Melnikov and V. G. Serbo, Processes with the T channel
singularity in the physical region: Finite beam sizes make
cross-sections finite, Nucl. Phys. B483, 67 (1997).

[4] 1. G. Halliday, R.R. Beever, and C.J. Maxwell, Wave
packets and the space-time structure of production proc-
esses, Nucl. Phys. B149, 61 (1979).

[5] E. Kh. Akhmedov and A. Yu. Smirnov, Paradoxes of neu-
trino oscillations, Phys. At. Nucl. 72, 1363 (2009).

[6] E.Kh. Akhmedov and J. Kopp, Neutrino oscillations:
Quantum mechanics vs. quantum field theory, J. High
Energy Phys. 04 (2010) 008.

[7] E. K. Akhmedov and A.Y. Smirnov, Neutrino oscillations:
Entanglement, energy-momentum conservation and QFT,
Found. Phys. 41, 1279 (2011).

[8] L. P. Ivanov, Colliding particles carrying non-zero orbital
angular momentum, Phys. Rev. D 83, 093001 (2011).

[9] L. P. Ivanov and V. G. Serbo, Scattering of twisted particles:
Extension to wave packets and orbital helicity, Phys. Rev. A
84, 033804 (2011); 84, 065802(A) (2011).

[10] V.G. Serbo, I. Ivanov, S. Fritzsche, D. Seipt, and A.
Surzhykov, Scattering of twisted relativistic electrons by
atoms, Phys. Rev. A 92, 012705 (2015).

[11] D. V. Karlovets, Scattering of wave packets with phases, J.
High Energy Phys. 03 (2017) 049.

[12] D.V. Karlovets and V.G. Serbo, Possibility to Probe
Negative Values of a Wigner Function in Scattering of a
Coherent Superposition of Electronic Wave Packets by
Atoms, Phys. Rev. Lett. 119, 173601 (2017).

[13] L. Sarkadi, I. Fabre, F. Navarrete, and R. O. Barrachina,
Loss of wave-packet coherence in ion-atom collisions, Phys.
Rev. A 93, 032702 (2016).

[14] M. Schulz, The role of projectile coherence in the few-body
dynamics of simple atomic systems, Adv. At. Mol. Opt.
Phys. 66, 507 (2017).

[15] J. A. Sherwin, Compton scattering of Bessel light with large
recoil parameter, Phys. Rev. A 96, 062120 (2017).

[16] J. A. Sherwin, Two-photon annihilation of twisted posi-
trons, Phys. Rev. A 98, 042108 (2018).

[17] A. V. Afanasev, D. V. Karlovets, and V. G. Serbo, Schwinger
scattering of twisted neutrons by nuclei, Phys. Rev. C 100,
051601 (2019).

[18] M. V. Berry and N. L. Balazs, Nonspreading wave packets,
Am. J. Phys. 47, 264 (1979).

[19] L. Allen, M. W. Beijersbergen, and R.J.C. Spreeuw, and
J. P. Woerdman, Orbital angular momentum of light and the
transformation of Laguerre-Gaussian laser modes, Phys.
Rev. A 45, 8185 (1992).

[20] G. A. Siviloglou and D.N. Christodoulides, Accelerating
finite energy Airy beams, Opt. Lett. 32, 979 (2007).

[21] G. A. Siviloglou, J. Broky, A. Dogariu, and D.N.
Christodoulides, Observation of Accelerating Airy Beams,
Phys. Rev. Lett. 99, 213901 (2007).

[22] Twisted photons. Applications of Light with Orbital Angular
Momentum, edited by J. P. Torres and L. Torner (WILEY-
VCH, New York, 2011).

[23] B. A. Knyazev and V.G. Serbo, Beams of photons with
nonzero projections of orbital angular momenta: New
results, Phys. Usp. 61, 449 (2018).

[24] M. Uchida and A. Tonomura, Generation of electron beams
carrying orbital angular momentum, Nature (London) 464,
737 (2010).

[25] J. Verbeeck, H. Tian, and P. Schlattschneider, Production
and application of electron vortex beams, Nature (London)
467, 301 (2010).

[26] B.J. McMorran, A. Agrawal, I.M. Anderson, A.A.
Herzing, H.J. Lezec, J.J. McClelland, and J. Unguris,
Electron vortex beams with high quanta of orbital angular
momentum, Science 331, 192 (2011).

076009-17


https://doi.org/10.1142/S0217751X92002131
https://doi.org/10.1142/S0217751X92002131
https://doi.org/10.1103/PhysRevD.54.3289
https://doi.org/10.1103/PhysRevD.54.3289
https://doi.org/10.1016/S0550-3213(96)00558-5
https://doi.org/10.1016/0550-3213(79)90157-3
https://doi.org/10.1134/S1063778809080122
https://doi.org/10.1007/JHEP04(2010)008
https://doi.org/10.1007/JHEP04(2010)008
https://doi.org/10.1007/s10701-011-9545-4
https://doi.org/10.1103/PhysRevD.83.093001
https://doi.org/10.1103/PhysRevA.84.033804
https://doi.org/10.1103/PhysRevA.84.033804
https://doi.org/10.1103/PhysRevA.84.065802
https://doi.org/10.1103/PhysRevA.92.012705
https://doi.org/10.1007/JHEP03(2017)049
https://doi.org/10.1007/JHEP03(2017)049
https://doi.org/10.1103/PhysRevLett.119.173601
https://doi.org/10.1103/PhysRevA.93.032702
https://doi.org/10.1103/PhysRevA.93.032702
https://doi.org/10.1016/bs.aamop.2017.01.001
https://doi.org/10.1016/bs.aamop.2017.01.001
https://doi.org/10.1103/PhysRevA.96.062120
https://doi.org/10.1103/PhysRevA.98.042108
https://doi.org/10.1103/PhysRevC.100.051601
https://doi.org/10.1103/PhysRevC.100.051601
https://doi.org/10.1119/1.11855
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1364/OL.32.000979
https://doi.org/10.1103/PhysRevLett.99.213901
https://doi.org/10.3367/UFNe.2018.02.038306
https://doi.org/10.1038/nature08904
https://doi.org/10.1038/nature08904
https://doi.org/10.1038/nature09366
https://doi.org/10.1038/nature09366
https://doi.org/10.1126/science.1198804

DMITRY V. KARLOVETS and VALERIY G. SERBO

PHYS. REV. D 101, 076009 (2020)

[27] N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A.
Arie, Generation of electron Airy beams, Nature (London)
494, 331 (2013).

[28] Ch. W. Clark, R. Barankov, M. G. Huber, M. Arif, D.G.
Cory, and D. A. Pushin, Controlling neutron orbital angular
momentum, Nature (London) 525, 504 (2015).

[29] R. L. Cappelletti, T. Jach, and J. Vinson, Intrinsic Orbital
Angular Momentum States of Neutrons, Phys. Rev. Lett.
120, 090402 (2018); D. Sarenac, J. Nsofini, I. Hincks, M.
Arif, C.W. Clark, D.G. Cory, M.G. Huber, and D. A.
Pushin, Methods for preparation and detection of neutron
spin-orbit states, New J. Phys. 20, 103012 (2018); D.
Sarenac, C. Kapahi, W. Chen, C. W. Clark, D. G. Cory,
M. G. Huber, I. Taminiau, K. Zhernenkov, and D. A. Pushin,
Generation and detection of spin-orbit coupled neutron
beams, Proc. Natl. Acad. Sci. U.S.A. 116, 20328 (2019).

[30] E. Mafakheri, A. H. Tavabi, P.-H. Lu et al., Realization of
electron vortices with large orbital angular momentum using
miniature holograms fabricated by electron beam lithogra-
phy, Appl. Phys. Lett. 110, 093113 (2017).

[31] K. Y. Bliokh, I.P. Ivanov, G. Guzzinati, L. Clark, R. Van
Boxem, A. Béchéd, R. Juchtmans, M.A. Alonso, P.
Schattschneider, F. Nori, and J. Verbeeck, Theory and
applications of free-electron vortex states, Phys. Rep.
690, 1 (2017).

[32] J. Verbeeck, P. Schattschneider, S. Lazar, M. Stoger-Pollach,
S. Loftler, A. Steiger-Thirsfeld, and G. Van Tendeloo,
Atomic scale electron vortices for nanoresearch, Appl.
Phys. Lett. 99, 203109 (2011).

[33] D. Karlovets, Relativistic vortex electrons: Paraxial versus
nonparaxial regimes, Phys. Rev. A 98, 012137 (2018).

[34] L P. Ivanov, Measuring the phase of the scattering amplitude
with vortex beams, Phys. Rev. D 85, 076001 (2012).

[35] L. P. Ivanov, D. Seipt, A. Surzhykov, and S. Fritzsche, Elastic
scattering of vortex electrons provides direct access to the
Coulomb phase, Phys. Rev. D 94, 076001 (2016).

[36] G.B. West and D. R. Yennie, Coulomb interference in high-
energy scattering, Phys. Rev. 172, 1413 (1968).

[37] G. Antchev et al. (TOTEM Collaboration), Measurement of
elastic pp scattering at /s = 8 TeV in the Coulomb-nuclear
interference region: Determination of the p-parameter and
the total cross-section, Eur. Phys. J. C 76, 661 (2016).

[38] V.B. Berestetskii, E.M. Lifshitz, and L.P. Pitaevskii,
Quantum Electrodynamics (Pergamon, Oxford, 1982).

[39] M.E. Peskin and D.V. Schroeder, An Introduction to
Quantum Field Theory (Addison-Wesley, Reading, MA,
1995).

[40] G.R. Shin, I. Bialynicki-Birula, and J. Rafelski, Wigner
function of polarized, localized relativistic spin 1/2 par-
ticles, Phys. Rev. A 46, 645 (1992).

[41] I Bialynicki-Birula, Relativistic Wigner functions, EPJ Web
Conf. 78, 01001 (2014).

[42] A. Angioi and A.Di Piazza, Quantum Limitation to the
Coherent Emission of Accelerated Charges, Phys. Rev. Lett.
121, 010402 (2018).

[43] A. Ilderton, Coherent quantum enhancement of pair pro-
duction in the null domain, Phys. Rev. D 101, 016006
(2020); A. Ilderton, B. King, and S. Tang, Toward the
observation of interference effects in non-linear Compton
scattering, arXiv:2002.04629.

[44] D. Karlovets and A. Zhevlakov, Intrinsic multipole mo-
ments of non-Gaussian wave packets, Phys. Rev. A 99,
022103 (2019).

[45] D. Karlovets, Dynamical enhancement of nonparaxial
effects in the electromagnetic field of a vortex electron,
Phys. Rev. A 99, 043824 (2019).

[46] A.J. Silenko, P. Zhang, and L. Zou, Electric Quadrupole
Moment and the Tensor Magnetic Polarizability of Twisted
Electrons and a Potential for their Measurements, Phys. Rev.
Lett. 122, 063201 (2019).

[47] D. V. Naumov and V. A. Naumov, A diagrammatic treat-
ment of neutrino oscillations, J. Phys. G 37, 105014 (2010);
V. A. Naumov and D. V. Naumov, Relativistic wave packets
in the quantum field approach to the theory of neutrino
oscillations, Russ. Phys. J. 53, 549 (2010).

[48] For a pure state, such a factorization would imply
P (r,p, 1) o |y (r, )2y (p)|?, which is obviously
not the case even in the paraxial approximation.

[49] N.N. Bogolubov, A.A. Logunov, A.I. Oksak, and I.T.
Todorov, General Principles of Quantum Field Theory
(Springer, Dordrecht, 1990).

[50] M. Tanabashi, K. Hagiwara, K. Hikasa et al., Review of
particle physics, Phys. Rev. D 98, 030001 (2018).

[51] Note that in the Wigner function derived in Ref. [52] the

terms —f’% and 7 ’% in the exponents were mistakenly
1

omitted—see the Corrigendum.

[52] D. Karlovets, On Wigner function of a vortex electron, J.
Phys. A 52, 05LTO1 (2019); 52, 389501(C) (2019).

[53] The final state is not important now, and it can also be
hadrons, provided that +/s is large enough.

[54] L. Adamczyk et al. (STAR Collaboration), Global A
hyperon polarization in nuclear collisions, Nature (London)
548, 62 (2017).

[55] L P. Ivanov, N. Korchagin, A. Pimikov, and P. Zhang, Doing
spin physics with unpolarized particles, arXiv:1911.08423;
Twisted particle collisions: A new tool for spin physics,
arXiv:2002.01703; Kinematic surprises in twisted-particle
collisions, Phys. Rev. D 101, 016007 (2020).

076009-18


https://doi.org/10.1038/nature11840
https://doi.org/10.1038/nature11840
https://doi.org/10.1038/nature15265
https://doi.org/10.1103/PhysRevLett.120.090402
https://doi.org/10.1103/PhysRevLett.120.090402
https://doi.org/10.1088/1367-2630/aae3ac
https://doi.org/10.1073/pnas.1906861116
https://doi.org/10.1063/1.4977879
https://doi.org/10.1016/j.physrep.2017.05.006
https://doi.org/10.1016/j.physrep.2017.05.006
https://doi.org/10.1063/1.3662012
https://doi.org/10.1063/1.3662012
https://doi.org/10.1103/PhysRevA.98.012137
https://doi.org/10.1103/PhysRevD.85.076001
https://doi.org/10.1103/PhysRevD.94.076001
https://doi.org/10.1103/PhysRev.172.1413
https://doi.org/10.1140/epjc/s10052-016-4399-8
https://doi.org/10.1103/PhysRevA.46.645
https://doi.org/10.1051/epjconf/20147801001
https://doi.org/10.1051/epjconf/20147801001
https://doi.org/10.1103/PhysRevLett.121.010402
https://doi.org/10.1103/PhysRevLett.121.010402
https://doi.org/10.1103/PhysRevD.101.016006
https://doi.org/10.1103/PhysRevD.101.016006
https://arXiv.org/abs/2002.04629
https://doi.org/10.1103/PhysRevA.99.022103
https://doi.org/10.1103/PhysRevA.99.022103
https://doi.org/10.1103/PhysRevA.99.043824
https://doi.org/10.1103/PhysRevLett.122.063201
https://doi.org/10.1103/PhysRevLett.122.063201
https://doi.org/10.1088/0954-3899/37/10/105014
https://doi.org/10.1007/s11182-010-9458-2
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1088/1751-8121/aaf9d8
https://doi.org/10.1088/1751-8121/aaf9d8
https://doi.org/10.1088/1751-8121/ab374e
https://doi.org/10.1038/nature23004
https://doi.org/10.1038/nature23004
https://arXiv.org/abs/1911.08423
https://arXiv.org/abs/2002.01703
https://doi.org/10.1103/PhysRevD.101.016007

