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Effects of the quantum interference in collisions of particles have a twofold nature: they arise because of
the autocorrelation of a complex scattering amplitude and due to spatial coherence of the incoming wave
packets. Both these effects are neglected in a conventional scattering theory dealing with the delocalized
plane waves, although they sometimes must be taken into account in particle and atomic physics. Here, we
study the role of a transverse coherence length of the packets, putting special emphasis on the case in which
one of the particles is twisted, that is, it carries an orbital angular momentum lℏ. In ee; ep, and pp
collisions the interference results in corrections to the plane-wave cross sections, usually negligible at the
energies

ffiffiffi
s

p
≫ 1 GeV but noticeable for smaller ones, especially if there is a twisted hadron with jlj > 103

in initial state. Beyond the perturbative QCD, these corrections become only moderately attenuated
allowing one to probe a phase of the hadronic amplitude as a function of s and t. In this regime, the
coherence effects can compete with the loop corrections in QED and facilitate testing the phenomeno-
logical models of the strong interaction at intermediate and low energies.

DOI: 10.1103/PhysRevD.101.076009

I. INTRODUCTION

Scattering outcomes generally depend on the quantum
states of particles brought into collisions. While a conven-
tional scattering theory deals with the delocalized plane-
waves having definite momenta, it is not applicable to a
number of realistic scenarios—for instance, when the
particles collide at large impact parameters [1], if they
are unstable [2,3], or if their quantum states are different
from the simplified plane-waves [4–17]. For photons, such
states as the so-called twisted photons, the Airy beams, the
squeezed states, the Schrödinger’s cat states, and so on have
been studied for years, both theoretically and experimen-
tally (see, e.g., [18–23]). However, it was only in 2010 that
the first nonplane-wave states of the massive particles were
generated—namely, the moderately relativistic vortex (or
twisted) electrons carrying orbital angular momentum
(OAM) with respect to the propagation axis [24–26].
More recently, the Airy electrons and the twisted cold
neutrons were also produced [27–29], as well as the vortex
electrons with the orbital momenta as high as 1000ℏ [30]
(see the recent review [31] for more detail).

The spatial profile of the majority of these novel wave
packets is not Gaussian even approximately and, therefore,
the standard scattering theory is not applicable to them. The
width of these packets or the transverse coherence length
can be as small as σ⊥ ∼ 0.1 nm [32] for vortex electrons,
which corresponds to the transverse momentum uncertainty
of the order of ℏ=σ⊥ ∼ 1 keV. Such a tight focusing can
result in noticeable quantum interference effects in scatter-
ing of the electron packets by atoms [12].
In this paper, we study the role of the transverse coherence

length of packets in relativistic collisions, putting special
emphasis on the case in which one of the incoming particles
is twisted (a single-twisted scenario [8]). The mean trans-
verse momentum of the vortex packet grows as

ffiffiffiffiffiffijljp
, so for

the beamswith jlj ≫ 1 the interference between the packets
results in a noticeable shift of an effective transverse
momentum of the 2-particle in-state, p⊥ ∝

ffiffiffiffiffiffijljp
, and in

the corresponding shift of the scattering angles.
For ultrarelativistic energies, for which the perturbative

QCD works well (conventionally, at the energies in the
center-of-mass frame

ffiffiffi
s

p
≫ 1 GeV), the coherence effects

are usually too weak, but for the smaller energies—that is,
in the nonperturbative regime—the corresponding correc-
tions to the plane-wave cross sections become only
moderately attenuated and accessible to experimental
study. Exactly as the plane-wave cross section itself, the
corrections to it are Lorentz invariant being proportional to
an invariant small parameter
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p2⊥=s ∝ jlj;

where p⊥ ∼ ð0.1–100Þ ffiffiffiffiffiffijljp
keV for the twisted leptons

and hadrons.
In contrast to the previous calculations of the single-

twisted scattering with the Bessel beams, here we employ a
generalized Laguerre-Gaussian state ψl;n¼0 [33], which is a
more general model of the relativistic vortex packet. While
for the Bessel beam the cross section is generally insensi-
tive to the OAM in the single-twisted scenario, this is not
the case for the Laguerre-Gaussian packet, whose mean
transverse momentum grows as

ffiffiffiffiffiffijljp
. Accordingly, the

difference between two approaches becomes noticeable for
the highly twisted particles with jlj ≫ 1, as the coherence
effects grow stronger.
Finally, while the plane wave cross-section, dσ ∝ jMfij2,

does not depend on a phase of the scattering amplitudeMfi,
the coherence effects result in such a dependence already at
the tree-level [11,34,35], which is also attenuated as
p⊥=

ffiffiffi
s

p
≪ 1. As a Coulomb phase can in principle be

calculated in QED [36,37], this dependence allows one to
probe the phase of the hadronic amplitude as a function of s
and t beyond the perturbative regime of QCD—that is,
when the kinetic energies of the colliding particles are less
than 1 GeV—and thereby to test phenomenological models
of the strong interactions. An analogous phase dependence
also arises in the noncentral collisions of the ordinary
packets.
The system of units ℏ ¼ c ¼ 1 is used.

II. RELATIVISTIC SCATTERING
OF WAVE PACKETS

A. Generalized cross section

Consider a general scattering or annihilation process
with two particles in an in-state and some number Nf of
particles in an out-state. Let the incoming states be generic
(not necessarily Gaussian) wave packets, the final states be
unlocalized plane waves with the momenta pf,

j2 wave packetsi →
YNf

f

jpfi; ð1Þ

and the scattering matrix element be

Sfi ¼
YNf

f

hpfjŜj2 wave packetsi: ð2Þ

We describe these packets with the quantum phase-space
distributions or the Wigner functions niðri; pi; tÞ (i ¼ 1, 2,
see Sec. II B below) and with a particle correlator

Lðpi; kÞ ¼ υðpiÞ
Z

d4xd3ReikRn1ðr; p1; tÞn2ðrþ R; p2; tÞ;

ð3Þ

where

υðpiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1μp

μ
2Þ2 −m2

1m
2
2

q
ε1ðp1Þε2ðp2Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1 − u2Þ2 − ½u1 × u2�2

q
;

εðpÞ≡ ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
; u ¼ p

εðpÞ : ð4Þ

If the initial states are plane waves, the scattering matrix
element reads

SðpwÞfi ¼ ið2πÞ4δð4Þ
�
p1 þ p2 −

XNf

f

pf

�
TðpwÞ
fi

Vð2þNfÞ=2 ;

TðpwÞ
fi ¼ MðpwÞ

fiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ε12ε2

Q
f2εf

q ; ð5Þ

where the amplitudes TðpwÞ
fi andMðpwÞ

fi do not depend on the
normalization volume V.
The generalized scattering cross section,

dσgen ¼
dW
L

; ð6Þ

can be uniquely defined [1] as a ratio of a process
probability dW

dW ¼ jSfij2
Y
f

V
d3pf

ð2πÞ3 ¼
Z

d3p1

ð2πÞ3
d3p2

ð2πÞ3
d3k
ð2πÞ3 Lðpi; kÞdσðpi; kÞ;

dσðpi; kÞ ¼ ð2πÞ4δ
�
ε1ðp1 þ k=2Þ þ ε2ðp2 − k=2Þ −

XNf

f

εfðpfÞ
�
δð3Þ

�
p1 þ p2 −

XNf

f

pf

�

× TðpwÞ
fi ðp1 þ k=2; p2 − k=2ÞTðpwÞ

fi
�ðp1 − k=2; p2 þ k=2Þ 1

υðpiÞ
Y
f

d3pf

ð2πÞ3 ; ð7Þ
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and a luminosity L

L ¼
Z

d3p1

ð2πÞ3
d3p2

ð2πÞ3
d3k
ð2πÞ3 Lðpi; kÞ

¼
Z

d3p1

ð2πÞ3
d3p2

ð2πÞ3 d
4xυðpiÞn1ðr; p1; tÞn2ðr; p2; tÞ: ð8Þ

Note that

d3p1

ð2πÞ3
d3p2

ð2πÞ3 υðpiÞ

¼ d3p1

2ε1ð2πÞ3
d3p2

2ε2ð2πÞ3
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1μp

μ
2Þ2 −m2

1m
2
2

q
¼ inv; ð9Þ

and so the generalized cross section and the luminosity are
Lorentz invariant.
The complex function dσðpi; kÞ we call simply the cross

section. For k ¼ 0, it is real and coincides with the
customary plane-wave cross section,

dσðpwÞðpiÞ≡ dσðpi; 0Þ
¼ ð2πÞ4δð4Þðp1 þ p2 − pfÞ

×
jMðpwÞ

fi j2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1μp

μ
2Þ2 −m2

1m
2
2

q Y
f

1

2εf

d3pf

ð2πÞ3 ; ð10Þ

in which the amplitudes with different momenta do not
interfere, which signifies a fully incoherent regime or the
plane-wave approximation.
The general formula (6), in which the incoming states are

described with the Wigner functions, is totally equivalent to
the standard approach (see, e.g., [38,39]) with the wave
functions or the density matrices. The current representa-
tion, however, is more illustrative when dealing with the
spatially localized wave packets instead of plane waves,
and allows one to conveniently describe effects of the finite
impact parameters [1] and of the non-Gaussianity of the
packets [11].

B. Relativistic Wigner functions

The incoming states in Eq. (7) are characterized by a
bosonic part of the particle’s Wigner function nðr; p; tÞ,
which is Lorentz invariant and normalized as

Z
d3p
ð2πÞ3 d

3xnðr; p; tÞ ¼ 1 ¼ inv: ð11Þ

If the particles are fermions, their spins are taken into
account in Eq. (7) exactly, because the corresponding
bispinors uðpÞ are factorized in the momentum space
and enter the scattering amplitude. That is why in the
approach based on Eq. (7), in which the momentum
representation plays the key role, there is no need in

fermionic relativistic Wigner functions (studied, e.g., in
Refs. [40,41]). For a pure state with a Lorentz invariant
(bosonic part of a) wave function ψðpÞ, the relativistic
Wigner function is

nðr; p; tÞ ¼
Z

d3k
ð2πÞ3 e

ikr ψ
�ðp − k=2; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εðp − k=2Þp ψðpþ k=2; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2εðpþ k=2Þp ;

ð12Þ

where

ψðp; tÞ ¼ ψðpÞe−itεðpÞ;

and the factors
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εðp� k=2Þp

are separated for conven-
ience, as they provide Lorentz invariance of the wave
function and of the normalization,

Z
d3p
ð2πÞ3 d

3xnðr; p; tÞ

¼
Z

d3p
ð2πÞ3

1

2εðpÞ jψðpÞj
2 ¼ 1 ¼ inv: ð13Þ

One can also employ the coordinate wave function,

ψðr; tÞ ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffi
2εðpÞp ψðp; tÞeirp; ð14Þ

and the Wigner function becomes

nðr; p; tÞ ¼
Z

d3ye−ipyψ�ðr − y=2; tÞψðrþ y=2; tÞ: ð15Þ

Although the function ψðr; tÞ is not Lorentz invariant, its
normalization is so,

Z
d3p
ð2πÞ3 d

3xnðr; p; tÞ ¼
Z

d3xjψðr; tÞj2 ¼ 1 ¼ inv: ð16Þ

C. Paraxial approximation in scattering

Let us derive an approximate formula in which the
effects of the amplitude self-interference enter perturba-
tively, but coherent properties of the incoming packets are
taken into account exactly. In contrast to the standard
textbook way of reasoning, we do not imply first that the
packets are extremely narrow in momentum space. The
only condition is that we deal with the one-particle states,
for which the coordinate uncertainty of each packet σ⊥,
which is at rest on average, must be larger than its Compton
wavelength λc ¼ 1=m≡ ℏ=mc (see, e.g., Sec. 1 in [38]),

σ⊥ > λc; δp≡ 1=σ⊥ < m; ð17Þ
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and these inequalities are Lorentz invariant. In the labo-
ratory frame where the packet moves with a constant speed
its longitudinal size is Lorentz-contracted [see Eq. (42)
below], while the transverse coherence length σ⊥ stays
the same.
The nonparaxial packets that violate the condition (17)

can be created with the aid of external electromagnetic
fields only. If the momentum uncertainty δp is larger
than m, the field creates electron-positron pairs and the
effects of the packets’ quantum self-interference are no
longer negligible. Therefore within the conventional scat-
tering theory we imply that the invariant condition (17) is
fulfilled, the vacuum is stable, the external fields are absent,
and the packets’ self-interference is also absent, which is
closely connected with the positivity of the corresponding
Wigner functions (see Ref. [12] for an example in which the
latter is not the case).
Due to the oscillating factor eikR in the correlator (8), the

main contribution to the integral over k in (7) comes from
the following region:

jkj≲ 1=R ∼ 1=σ⊥ ¼ δp;

given that the Wigner functions are well-localized in space.
Expanding the cross section dσðpi; kÞ in (7) in a series in k,
we get

dσðpi; kÞ ¼ dσðpwÞðpiÞ þ k
∂dσðpi; kÞ

∂k
����
k¼0

þOðk2Þ; ð18Þ

and therefore

dσgen ¼ dσincoh þ dσint þOððδpÞ2Þ; ð19Þ

where the leading contribution,

dσincoh ¼ dWincoh

L
;

dWincoh ¼
Z

d3p1

ð2πÞ3
d3p2

ð2πÞ3 d
4xυðpiÞn1ðr; p1; tÞ

× n2ðr; p2; tÞdσðpwÞðpiÞ; ð20Þ

contains an incoherent integration of the plane-wave cross
sections. The first correction,

dσint ¼ −
1

L

Z
d3p1

ð2πÞ3
d3p2

ð2πÞ3 d
4xυðpiÞn1ðr; p1; tÞ

×
∂n2ðr; p2; tÞ

∂r
∂Imdσðpi; kÞ

∂k
����
k¼0

; ð21Þ

is due to quantum self-interference of the amplitudes.
Importantly, the coherent properties of the wave packets
are taken into account in Eqs. (20) and (21) exactly. As a
result, the following purely quantum features of a packet

make nonvanishing contributions to the generalized cross
section: (i) the possible self-interference, closely connected
with the negative values of the state’s Wigner function (see,
e.g., [12]), (ii) the spreading with time, (iii) the possible
non-Gaussianity of its spatial profile, and (iv) a finite
impact-parameter between the incoming packets as well as
the finite transverse coherence length. All these effects are
completely neglected in the plane-wave approximation
based on Eq. (10).
The correction dσint can be written in a more illustrative

way if we represent the amplitude as follows:

MðpwÞ
fi ¼ jMðpwÞ

fi j exp fiζðpwÞfi g;

ζðpwÞfi ¼ arctan
ImMðpwÞ

fi

ReMðpwÞ
fi

¼ inv: ð22Þ

This yields the following simple result:

∂Imdσðpi; kÞ
∂k

����
k¼0

¼ dσðpwÞðpiÞ∂Δpζ
ðpwÞ
fi ðpiÞ;

∂Δp ¼
∂
∂p1 −

∂
∂p2 ; ð23Þ

and therefore

dσint ¼ −
1

L

Z
d3p1

ð2πÞ3
d3p2

ð2πÞ3 d
4xυðpiÞn1ðr; p1; tÞ

×
∂n2ðr; p2; tÞ

∂r dσðpwÞðpiÞ∂Δpζ
ðpwÞ
fi ðpiÞ: ð24Þ

Thus, this correction depends on how the phase of the

amplitude ζðpwÞfi ðpiÞ changes with the incoming momenta
p1, p2 or with the invariant variables s, t.
The expansion (19) does not invoke the perturbation

theory and, therefore, little can generally be said about the
ratio dσint=dσincoh. Within the perturbative approach with a
small parameter α, which is α ≈ 1=137 in QED or α≲ 1 in
the perturbative QCD, the momentum-dependent phase
appears beyond the tree level only,

ζðpwÞfi ¼ constþOðαÞ: ð25Þ

As a result,

dσint

dσincoh
¼ O

�
α
p⊥ffiffiffi
s

p
�
; ð26Þ

where s ¼ ðp1 þ p2Þ2 and p⊥ is some transverse momen-
tum, which can be connected either with the wave packets’
transverse coherence length or with a finite impact param-
eter (see Sec. VI C for more detail). Importantly, the
interference contribution dσint can also be enhanced when
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the initial state represents a coherent superposition of one-
particle states—see specific examples in Refs. [12,42,43].
We call the paraxial approximation a regime in which

the packets are wide in the transverse plane or very narrow
in the vicinity of some momenta pi ≈ hpii,

σ⊥ ≫ λc; δp≡ 1=σ⊥ ≪ m: ð27Þ
If we take the cross section dσðpwÞðpiÞ in (20) out of the
integral at these momenta, this brings about the customary
plane-wave result,

dσgen ¼ dσincoh ¼ dσðpwÞðhpiiÞ; dσint ¼ 0: ð28Þ
It is tempting to expand dσðpwÞðpiÞ in (20) into series in the
vicinity of hpii and keep the corrections to dσðpwÞðhpiiÞ of
the order of ðpi − hpiiÞ2 ∼ ðδpiÞ2, so that

dσincoh ¼ dσðpwÞðhpiiÞ þOðλ2c=σ2⊥Þ: ð29Þ
For available beams of the particle accelerators and the
electron microscopes these corrections are (see details in
Sec. IV)

λ2c
σ2⊥

≡ ðδpÞ2
m2

< 10−6: ð30Þ

We would like to emphasize, however, that the coor-
dinates and momenta in the Wigner functions do not
generally factorize even in the paraxial approximation
(see the examples in Sec. III), which is why such a
perturbative approach (29) stays valid only

(i) Neglecting the possible finite impact parameters
between the packets—in particular, the MD effect
[1]. The effect persists even if the impact parameter
vanishes but the packets have different spatial
widths, which is typical for packets of different
masses (say, ep → X).

(ii) Neglecting the possible phase vortices of the in-
coming states. As we show in Sec. VI, a phase vortex
shifts the mean transverse momentum to a non-
vanishing value, as a result of which Eq. (29) ceases
to be applicable at small scattering angles.

(iii) Neglecting the packets’ dynamics—that is, a pos-
sible finite lifetime of an unstable particle [2,3], as
well as the packet spreading. In particular, the latter
implies (in a packet’s rest frame)

t ≪ td; td ¼
m

ðδpÞ2 ¼ tc
m2

ðδpÞ2 ≫ tc;

tc ¼ λc=c ≈ 1.3 × 10−21 sec :; ð31Þ
where td is the packet’s effective diffraction time in
its rest frame.

As the cross section (20) contains integration over all times
and over all transverse radii (impact parameters), the above
effects can be only moderately attenuated, giving a

contribution to the cross section many orders of magnitude
larger than the corrections (30)—up to tens of percent (see
Refs. [1–3] for specific examples).
It is alsoworth noting that neglect of the packet spreading

is not always justifiable. For instance, scattering of the
Gaussian packets by atomic targets was experimentally
shown to strongly depend on a distance between a particle
source and the target due to the finite transverse coherence
length of the projectile [13,14]. If the packet is not Gaussian
(say, the vortex- or Airy beam), it also possesses an intrinsic
electric quadrupole moment [44–46], as well as higher
multipole moments. The contribution of this quadrupole
moment is negligible only if the condition (31) is satisfied,
because the moment itself grows with time as the packet
propagates and spreads [45]. The magnitude of these effects
can also be much larger than the estimate (30).

III. WIGNER FUNCTION OF A PARAXIAL
GAUSSIAN PACKET

For a fermion, a scalar part of the wave function ψðpÞ
and its spin-related bispinor uðpÞ are factorized in the
momentum representation, which is why the general
formula (7) for the cross section depends only on the
scalar Wigner functions. Let us derive the latter function for
a paraxial Gaussian wave packet. A packet of a relativistic
massive particle in momentum representation can depend
on two four-vectors

pμ ¼ fεðpÞ; pg; hpiμ ¼ fεðhpiÞ; hpig;
p2
μ ¼ hpi2μ ¼ m2: ð32Þ

Its invariant wave function in the general nonparaxial
case—that is, when the condition (17) holds but (27)
may not—can be defined as follows (see, e.g., [33,47]):

ψðpÞ ¼ 23=2π

δp
e−m

2=ðδpÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1ð2m2=ðδpÞ2Þ

p

× exp

�
ixð0Þμ pμ þ ðpμ − hpiμÞ2

2ðδpÞ2
�
;

Z
d3p
ð2πÞ3

1

2εðpÞ jψðpÞj
2 ¼ 1: ð33Þ

Here,K1 is a modified Bessel function, xð0Þμ ¼ ft0;−r0g is a
four-vector defining the initial moment of time t0 and the
impact parameter r0. In what follows, we choose

t0 ¼ 0; r0 ¼ fρ0; 0g:
Clearly, in the rest frame of the packet with hpi ¼ 0 all the
momentum uncertainties coincide,

δpx ¼ δpy ¼ δpz ¼ δp ¼ inv:

Now we return to the paraxial approximation (27) and,
taking the invariant ratio δp=m as a small parameter, we
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expand the wave function (33) into series and neglect the
terms OððδpÞ2=m2Þ. The corresponding paraxial function,

ψparðpÞ¼
�
2

ffiffiffi
π

p
δp

�
3=2 ffiffiffiffiffiffiffi

2m
p

×exp

�
ixð0Þμ pμ−

1

2ðδpÞ2 ðp−hpiÞiUijðp−hpiÞj
�
;

Uij¼δij−huiihuij; hui¼ hpi
εðhpiÞ ;Z

d3p
ð2πÞ3

1

2εðhpiÞjψ
parðpÞj2¼1; ð34Þ

stays invariant for Lorentz boosts along the packet’s mean
momentum. Indeed, let the mean momentum have only a
z-component,

hpi ¼ f0; 0; hpig:
Then we get

ðp − hpiÞiUijðp − hpiÞj
¼ p2⊥ þ m2

ε2ðhpiÞ ðpz − hpiÞ2 ¼ inv: ð35Þ

Importantly, this invariance is preserved thanks to the
energy terms,

ðpμ − hpiμÞ2 ∝ ðεðpÞ − εðhpiÞÞ2
¼ huiihuijðp − hpiÞiðp − hpiÞj þOððp − hpiÞ3Þ; ð36Þ

absent in a nonrelativistic Gaussian packet with a non-
invariant envelope

exp f−ðp − hpiÞ2=2ðδpÞ2g:

For ultrarelativistic particles with a Lorentz factor

γ̄ ¼ εðhpiÞ
m

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − hui2

p ≫ 1; ð37Þ

the relativistic corrections are crucially important, because
they increase the momentum uncertainty along the z-axis in
the laboratory frame,

δpz ¼ δp
εðhpiÞ
m

≡ δpγ̄ ≫ δp: ð38Þ

Accordingly, in the configuration space the packet shrinks
along the z axis [see Eq. (41) below], so that

δpzσz ¼ inv:

Note that in Ref. [11] a matrix σij was used instead of the
single scalar δp, and the above transformation properties of
the packet’s width were postulated rather than derived. In
the current approach they emerge naturally.
According to Eq. (12), the corresponding paraxial

Wigner function is

nparðr; p; tÞ ¼
�
2

ffiffiffi
π

p
δp

�
3

2m
Z

d3k
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εðpþ k=2Þ2εðp − k=2Þp exp

�
ikðr − r0Þ

− itðεðpþ k=2Þ − εðp − k=2ÞÞ − 1

ðδpÞ2 ðp − hpiÞiUijðp − hpiÞj −
1

ð2δpÞ2 kiUijkj

�
: ð39Þ

Calculating the Gaussian integral over k in a Wentzel–Kramers–Brillouin fashion and neglecting the terms Oðk2Þ ¼
OððδpÞ2Þ in the preexponential factor, we arrive at the following everywhere positive function:

nparðr; p; tÞ ¼ 8 exp

�
−

1

ðδpÞ2 ðp − hpiÞiUijðp − hpiÞj − ðδpÞ2ðr − r0 − utÞiU−1
ij ðr − r0 − utÞj

�
;

Z
d3p
ð2πÞ2 d

3xnparðr; p; tÞ ¼ 1 ¼ inv; ð40Þ

where u ¼ p=εðpÞ. Note that the power of 2 here, 8 ¼ 23, is related to the dimension of space and that

U−1
ij ¼ δij þ γ̄2huiihuij:

In the special case with hpi ¼ f0; 0; hpig, we get a yet simpler result

nparðr; p; tÞ ¼ 8 exp

�
−

1

ðδpÞ2 ðp
2⊥ þ γ̄−2ðpz − hpiÞ2Þ − ðδpÞ2ððρ − ρ0 − u⊥tÞ2 þ γ̄2ðz − uztÞ2Þ

�
; ð41Þ

and the Lorentz invariance of this function is easily seen.
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Clearly, the coordinates and momenta do not fully
factorize in this paraxial expression [48], as the coordinate
part depends on u≡ uðpÞ ¼ fu⊥; uzg, not hui. That is why
this packet does spread with time, and its width in the
configuration space at t ¼ 0 is [recall Eq. (38)]

σ⊥ ¼ 1=δp ¼ inv; σz ¼ γ̄−1σ⊥;
and so δpσ⊥ ¼ δpzσz ¼ 1 ¼ inv: ð42Þ

Although everywhere positive, this Wigner function is not
quasiclassical as it takes into account finite uncertainties of
the coordinates and momenta, as well as spreading with
time.

IV. A BENCHMARK CASE: COLLISION
OF TWO GAUSSIAN PACKETS

Let us first represent the luminosity (8) as follows:

L ¼
Z

d3p1

ð2πÞ3
d3p2

ð2πÞ3 υðpiÞI
corrðpiÞ;

IcorrðpiÞ ¼
Z

d4xn1ðr; p1; tÞn2ðr; p2; tÞ ¼ inv: ð43Þ

Then the incoherent contribution (20) to the generalized
cross section is

dσincoh ¼
R
d3p1d3p2υðpiÞIcorrðpiÞdσðpwÞðpiÞR

d3p1d3p2υðpiÞIcorrðpiÞ
: ð44Þ

Now that we have found the paraxial Wigner function, we
are able to calculate the correlator IcorrðpiÞ within this
model exactly.
Consider a head-on collision of two paraxial Gaussian

packets with the momenta

hp1i ¼ f0; 0; hp1ig; hp2i ¼ f0; 0; hp2ig;

with the Wigner functions (41), and suppose that

ρ1;0 ¼ 0; ρ2;0 ≡ b ¼ fbx; by; 0g;

where b is an impact parameter between the packets’
centers. After somewhat tedious calculations, we arrive
at the following correlator:

Icorrðpi; bÞ ¼
Z

d4xnpar1 ðr; p1; tÞnpar2 ðr; p2; t; bÞ

¼ ð8πÞ2
ððδp1Þ2 þ ðδp2Þ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδp1zÞ2 þ ðδp2zÞ2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ212ðΔu⊥Þ2 þ σ212;zðΔuzÞ2

q

× exp

�
−

1

ðδp1Þ2
ðp12⊥ þ γ̄−21 ðp1z − hp1iÞ2Þ −

1

ðδp2Þ2
ðp22⊥ þ γ̄−22 ðp2z − hp2iÞ2Þ − σ212biΔijbj

�
ð45Þ

where we have denoted:

Δu¼u1ðp1Þ−u2ðp2Þ¼fΔu⊥;Δuzg;

Δij¼δij−
σ212

σ212ðΔu⊥Þ2þσ212;zðΔuzÞ2
ðΔuÞiðΔuÞj;

σ212¼
ðδp1Þ2ðδp2Þ2
ðδp1Þ2þðδp2Þ2

¼
�

1

ðδp1Þ2
þ 1

ðδp2Þ2
�

−1
¼ 1

σ1
2⊥þσ2

2⊥
;

σ212;z¼
ðδp1zÞ2ðδp2zÞ2
ðδp1zÞ2þðδp2zÞ2

; δp1z¼ γ̄1δp1; δp2z¼ γ̄2δp2:

ð46Þ

The functions σ12 and σ12;z have the following limits:

lim
δp1→0

σ12 ¼ δp1; lim
δp2→0

σ12 ¼ δp2;

lim
δp1z→0

σ12;z ¼ δp1z; lim
δp2z→0

σ12;z ¼ δp2z: ð47Þ

Let us introduce an invariant transverse correlation length
of the in-state,

ρeff ¼ σ−112 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ1

2⊥ þ σ2
2⊥

q
¼ inv; ð48Þ

which is defined by the widest of the two packets due to
(47), and so ρeff ≈ σ1⊥ when σ1⊥ ≫ σ2⊥ and vice versa.
For instance, in collision of a light particle with a heavy one
(say, ep → X) we have σ12≈δpe≪δpp;ρeff≈σe⊥≫σp⊥.
The analogous longitudinal correlation length,

lsc ¼ σ−112;z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ1

2
z þ σ2

2
z

q
; ð49Þ

defines an effective distance where the packets overlap at
the moment of time t ¼ 0 and, unlike its transverse
counterpart, it decreases as the packets shrink due to the
Lorentz contraction in the laboratory frame. In these terms,
the prefactor in (45) can be rewritten as follows:
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1

ððδp1Þ2 þ ðδp2Þ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδp1zÞ2 þ ðδp2zÞ2

p ¼ V1V2

Vsc
; ð50Þ

where

V ¼ σ2⊥σz ¼ γ̄−1σ3⊥ and Vsc ¼ ρ2efflsc ð51Þ

are an effective volume of the packet in the laboratory
frame and that of the scattering region, respectively.
Now let us study in more detail the simplest scenario

in which both the colliding particles are stable, ultra-
relativistic,

γ̄1 ≫ 1; γ̄2 ≫ 1;

and we neglect the spreading. The z-components of the
momentum uncertainties δpz are much larger than their
transverse counterparts δp, which is why we can put p1;⊥ ¼
p2;⊥ ¼ 0 under the integrals in (44)—that is, neglect
the terms OððδpÞ2=m2Þ—but keep the corrections of the
order of

ðδpzÞ2=m2 ¼ γ̄2ðδpÞ2=m2 ≫ ðδpÞ2=m2:

Expanding the cross section dσðpwÞðpiÞ≡ dσðpwÞðp1z; p2zÞ
into the series, we arrive at the following simple result:

dσincoh ≃ dσðpwÞðhpiiÞ þ
�
δp1z

2m1

�
2 ∂2dσðpwÞðhpiiÞ

∂ γ̄21
þ
�
δp2z

2m2

�
2 ∂2dσðpwÞðhpiiÞ

∂ γ̄22 ;

L ¼ 1

π
σ212 exp f−σ212b2g; ð52Þ

where we have put hp1;2i ≈ εðhp1;2iÞ ¼ γ̄1;2m1;2 ≫ m1;2.
The key question is how the correction to the plane-wave

cross section,

δσincoh ¼ dσincoh − dσðpwÞðhpiiÞ; ð53Þ

behaves as a function of the energy. As an example, let the
particles have the same mass, m1 ¼ m2 ≡m. Then in the
center-of-mass frame with

γ̄1 ¼ γ̄2 ≡ γ̄ ¼ ffiffiffi
s

p
=2m;

the cross section of the annihilation process eþe− → μþμ−

or eþe− → hadrons decays in the ultrarelativistic limit as
follows [39]

dσðpwÞ

dt
∝
α2

s2
; ð54Þ

which yields

�
δpz

2m

�
2 ∂2dσðpwÞ

∂γ̄2

∼
�
δp
m

�
2 ∂dσðpwÞ

∂ ln s ∼
ðδpzÞ2

s
dσðpwÞ;

where
ðδpzÞ2

s
¼

�
δp
2m

�
2

¼ inv;

and so δσincoh ¼ OððδpÞ2=m2Þ; ð55Þ

exactly like in Eq. (29). Moreover, any power-law decay

dσðpwÞ

dt
∝

1

sn
; n ≥ 1; ð56Þ

yields the same result, Eqs. (29) and (55).
Irrespective of the specific process, the high-energy

behavior of an elastic cross section is limited by the
Froissart bound [49]

dσðpwÞ

d cos θsc
≤ const

ffiffiffi
s

p
ln3s= sin θsc; 0 < θsc < π;

dσðpwÞ

d cos θsc
≤ const s ln4s; θsc ¼ 0; π: ð57Þ

Here, θsc is a scattering angle. Clearly, even if the bound is
saturated ∂dσðpwÞ=∂ ln s does not grow with the energy
faster than dσðpwÞ. Therefore the corrections to the plane-
wave result do not really grow with the energy and are of
the same order of magnitude as those that we already
neglected when deriving (52) or the paraxial Wigner
function (40). If the Froissart bound were violated, which
would be connected with violation of the unitarity of the
S-matrix, this could result in a polynomial growth of the
corrections to the plane-wave cross section with the energy.
Therefore, within the paraxial approximation with the

Gaussian beams we recover the standard result,

dσincoh ¼ dσðpwÞðhpiiÞ: ð58Þ

Corrections to this can be estimated as follows. For
available beams of the electron microscopes with σ⊥ ≳
0.1 nm [32], we have the estimate (30). For high-
energy electron (positron) colliders, the typical energy
spread is [50]

δε

ε
≡ Δ ∼ 10−4–10−3: ð59Þ

The momentum uncertainty in the laboratory frame is
connected with this parameter as

δpz ¼
εδε

p
∼ εΔ; ε ≫ m: ð60Þ
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And the transverse coherence length of each wave packet in
a beam is obtained as

σ⊥ ¼ γ

δpz
∼
λc
Δ
∼ ð103–104Þλc: ð61Þ

For electrons this amounts to

σ⊥ ∼ 0.1–1 nm; ð62Þ

which is 3–5 orders of magnitude smaller than the beam
width. Therefore the estimate (30) also holds valid for the
electron accelerators.
For proton and antiproton colliders, the energy spread is

Δ ¼ δε=ε≳ 10−4 [50], and so the proton transverse coher-
ence length is

σ⊥ ∼ λc;p=Δ ∼ 1 pm; δp ∼ 100 keV; ð63Þ

at least two orders of magnitude smaller than the width of
an electron packet (62). That is why the analogous estimate
for protons is

λ2c;p
σ2⊥

≡ ðδpÞ2
m2

p
< 10−8: ð64Þ

V. WIGNER FUNCTION OF A PARAXIAL
VORTEX PACKET

Let us now find a Wigner function of a paraxial massive
particle with a phase vortex. The spinless part of its wave
function represents the corresponding generalization of that
of the Gaussian beam, Eq. (34), and looks as follows:

ψpar
l ðpÞ ¼

�
2

ffiffiffi
π

p
δp

�
3=2 ffiffiffiffiffiffiffi

2m
p 1ffiffiffiffiffiffiffijlj!p

�
p⊥
δp

�jlj

× exp

�
ilϕp þ ixð0Þμ pμ

−
1

2ðδpÞ2 ðp − hpiÞiUijðp − hpiÞj
�
;

×
Z

d3p
ð2πÞ3

1

2εðhpiÞ jψ
par
l ðpÞj2 ¼ 1;

hui ¼ f0; 0; huig: ð65Þ

Clearly, the mean value of the operator L̂z ¼ −i∂=∂ϕp is
hL̂zi ¼ l, and at the point of the phase vortex, p⊥ → 0, the
intensity vanishes,

jψpar
l ðpÞj2 ∝ p2jlj

⊥ → 0: ð66Þ

The function (65) is just a fundamental mode of a
generalized Laguerre-Gaussian beam ψpar

l;n¼0 [33] and it

is Lorentz invariant for boosts along the mean momentum
(z). The Bessel state is a limiting case of this beam,
obtained when n → ∞, σ⊥ → ∞ [33]. In this paper, we
restrict ourselves to the case with one radial maximum
(n ¼ 0) and, therefore, transition to the scattering with the
Bessel state is not possible. On the other hand, we will see
in Sec. VI that the latter case is effectively reproduced for
the small values of jlj, which is a property of the single-
twisted scenario.
Evaluating the Wigner function according to Eq. (12),

we make the following expansion in the exponent:

ilðϕpðpþ k=2Þ − ϕpðp − k=2ÞÞ

¼ −ilk
p × ẑ
p2⊥

þOðk3⊥=p3⊥Þ: ð67Þ

It is important that this expansion be made in the exponent
and not in the preexponential factor. The corresponding
paraxial Wigner function is

nparl ðr;p;tÞ

¼ 8

jlj!
�
p⊥
δp

�
2jlj

exp

�
−

1

ðδpÞ2 ðp
2⊥þ γ̄−2ðpz−hpiÞ2Þ

−ðδpÞ2
��

ρ−ρ0−u⊥t−l
p× ẑ
p2⊥

�
2

þ γ̄2ðz−uztÞ2
��

:

ð68Þ

It is exponentially suppressed at p⊥ → 0, which is just a
consequence of the phase vortex.
Clearly, because of the paraxiality condition this expres-

sion for the Wigner function is not unique. Indeed, if we
derive this function starting from the coordinate represen-
tation instead, Eq. (15), we would get a similar result but
with a preexponential factor ðρδpÞ2jlj instead of
ðp⊥=δpÞ2jlj. Then, the expansion similar to (67),

ilðϕrðrþ y=2Þ − ϕrðr − y=2ÞÞ

¼ −ily
ρ × ẑ
ρ2

þOðy3⊥=ρ3Þ; ð69Þ

would also result in the following replacement [51]:

p2⊥ →

�
p⊥ þ l

ρ × ẑ
ρ2

�
2

;

which provides the exponential suppression of the Wigner
function at ρ → 0. If needed, one can rewrite the Wigner
function in a x − p symmetric form, which for the
preexponential factor would be

ðp⊥=δpÞ2jlj ¼ ðp⊥=δpÞjljðp⊥=δpÞjlj ¼ ðρp⊥Þjlj;
where the last equality is valid only in the paraxial
approximation. So the prefactor in Eq. (68) does not
depend on the momentum uncertainty δp at all and the
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Wigner function vanishes both when ρ → 0 and p⊥ → 0.
For our current purposes, it is convenient to use the
representation (68).

VI. COLLISION OF A GAUSSIAN BEAM
WITH A VORTEX PACKET

A. The cross section

Let us study collision of the Gaussian wave packet
with a vortex particle. The incoherent cross section dσincoh

cannot be represented as the plane-wave expansion (29),
because the phase vortex leads to a shift of the mean
transverse momentum, which is somewhat analogous to a
finite impact parameter in the MD effect. As the case with
l ¼ 0 reduces to the one in Sec. IV, we suppose that the
OAM is not vanishing, jlj ≥ 1.
The corresponding correlator is

Icorrl ðpi; bÞ ¼
Z

d4xnpar1 ðr; p1; tÞnpar2;lðr; p2; t; bÞ

¼ 1

jlj!
�
p2⊥
δp2

�
2jlj

Icorr
�
pi; bþ l

p2 × ẑ
p2

2⊥

�
; ð70Þ

where Icorrðpi; bþ l p2×ẑ
p2

2⊥
Þ is the Gaussian correlator (45)

with

b → bþ l
p2 × ẑ
p2

2⊥
:

When b ¼ 0, the part in the correlator’s exponent that
depends on p2⊥ looks as

Icorrl ðpi; 0Þ ∝ exp
�
−

p22⊥
ðδp2Þ2

− σ212
l2

p2
2⊥

×

�
1 −

σ212
σ212ðΔu⊥Þ2 þ σ212;zðΔuzÞ2

×
½u1⊥ × p2⊥�2z

p2
2⊥

��
; ð71Þ

and it does not depend on the sign of the OAM. Then,
exactly as in Sec. IV, we can put p1⊥ → 0 everywhere; as a
result the term ½u1⊥ × p2⊥�2z=p2

2⊥ vanishes.

The function in the exponent,

Icorrl ðpi; 0Þ ∝ exp

�
−

p22⊥
ðδp2Þ2

− σ212
l2

p2
2⊥

�
; ð72Þ

can be expanded in the vicinity of the point
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ12δp2jlj

p
where the phase is stationary,

exp

�
−

p22⊥
ðδp2Þ2

− σ212
l2

p2
2⊥

�

≃ exp

�
−2jlj σ12

δp2

−
�

2

δp2

�
2

ðp2⊥ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ12δp2jlj

p
Þ2
�
:

ð73Þ
Here, σ12 is from Eq. (46).
Remarkably, the effective mean value of p2⊥,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ12δp2jlj
p

; ð74Þ
also depends on the momentum uncertainty δp1 of the other
(Gaussian) packet, due to the quantum interference
between the incoming particles. It coincides with the mean
transverse momentum of the vortex packet hp2⊥i ≃
δp2

ffiffiffiffiffiffijljp
[33],

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ12δp2jlj

p
≈ δp2

ffiffiffiffiffiffi
jlj

p
; ð75Þ

only
(i) When the incoming states have the same uncertain-

ties, δp1 ¼ δp2 (say, for e−e− → X; pp → X, etc.),
(ii) And when δp1 ≫ δp2 (σ1⊥ ≪ σ2⊥). This happens

when the Gaussian packet corresponds to a particle
which is much heavier than the twisted one—say, a
proton and a vortex electron, respectively.

In the opposite regime with δp2 ≫ δp1 (σ1⊥ ≫ σ2⊥), we
have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ12δp2jlj

p
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δp1δp2jlj

p
≪ δp2

ffiffiffiffiffiffi
jlj

p
: ð76Þ

This scenario is realized when the twisted particle is much
heavier than the Gaussian packet—say, a vortex proton and
an electron, respectively.
Thus, the final expression for the correlator is

Icorrl ðpi; 0Þ ¼
1

jlj!
�
p2⊥
δp2

�
2jlj

ð8πÞ2 V1V2

Vsc

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ212ðΔu⊥Þ2 þ σ212;zðΔuzÞ2

q

× exp

�
−

1

ðδp1Þ2
ðp12⊥ þ γ̄−21 ðp1z − hp1iÞ2Þ − 2jlj σ12

δp2

−
�

2

δp2

�
2

ðp2⊥ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ12δp2jlj

p
Þ2 − 1

ðδp2Þ2
γ̄−22 ðp2z − hp2iÞ2

�
: ð77Þ

The correlator, the luminosity, and the scattering probability are exponentially suppressed for very large OAM. One can
represent the first term in the r.h.s. of Eq. (73) as follows:
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exp

�
−2jlj σ12

δp2

�
¼ exp

�
−2

ffiffiffiffiffiffi
jlj

p hρ2i
ρeff

�
; ð78Þ

where

hρ2i ¼ σ2⊥
ffiffiffiffiffiffi
jlj

p
¼

ffiffiffiffiffiffi
jlj

p
=δp2 ð79Þ

is a mean radius of the vortex packet [33] and the transverse
correlation length ρeff is from Eq. (48). Obviously, for large
l the first maximum of the probability density is far from
the Gaussian packet’s center, which is why the packets do
not nearly overlap.
Now we return to the general formula for the incoherent

cross section (44) and notice that at p1 → hp1i ¼
f0; 0; hp1ig the ratio

υðpiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ212ðΔu⊥Þ2 þ σ212;zðΔuzÞ2

q

does not depend on the azimuthal angle ϕ2. As a result, the
generalized cross section is simply connected with the
plane-wave one,

dσincoh ¼
Z

2π

0

dϕ2

2π
dσðpwÞðhp1i; p2ðϕ2ÞÞ; ð80Þ

where

p2ðϕ2Þ ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ12δp2jlj

p
cosϕ2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ12δp2jlj

p
sinϕ2; hp2ig:

ð81Þ

Unlike the probability, this cross section is not attenuated at
large l, and when l ¼ 0 we return to the customary plane-
wave result for the Gaussian beams (58). For nonvanishing
OAM, Eq. (80) explicitly violates the naive expression for
the corrections to the plane-wave result, Eq. (29).
There are two main differences between Eq. (80) and the

analogous expression within the simplified model of the
Bessel beam (Eq. (31) in [8]):

(i) The cross section now depends on absolute value of
the OAM jlj, as the vortex packet’s transverse
momentum grows as

ffiffiffiffiffiffijljp
,

(ii) It also depends on δp1 due to interference between
the packets.

That is why the difference from the model of the Bessel
beam will be most pronounced for highly twisted particles
with jlj ≫ 1 and when the twisted particle is much heavier
than the OAM-less one (δp2 ≫ δp1).

B. Specific example: 2 → 2

For a special case of a 2 → 2 collision (see Fig. 1) the
cross section is

dσincoh¼
Z

2π

0

dϕ2

2π

d3p3

2ε3ð2πÞ3
d3p4

2ε4ð2πÞ3
ð2πÞ4δð4Þðp1þp2ðϕ2Þ

−p3−p4Þ
jMðpwÞ

fi j2
4I

; ð82Þ

where I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1μp

μ
2Þ2 −m2

1m
2
2

q
and

p1 ¼ fε1; 0; 0; hp1ig; ε1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hp1i2 þm2

1

q
;

p2ðϕ2Þ ¼ fε2; p⊥ cosϕ2; p⊥ sinϕ2; hp2ig;
ε2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hp2i2 þ p2⊥ þm2

2

q
;

p⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ12δp2jlj

p
: ð83Þ

Note that the mean momentum of the twisted particle,

hp2i ¼ f0; 0; hp2ig ≠ p2ðϕ2Þ;
does not coincide with the spatial part of the 4-
vector p2ðϕ2Þ.
Thus, the cross section (80), (82) is obtained from the

standard one by averaging over the azimuthal angles in a
nonhead-on collision. Analogously to the standard pro-
cedure, it is tempting to rotate first the axes so that p⊥ → 0,
to obtain the angular distributions dσincoh=dΩ, and then
return to the nonvanishing transverse momentum. However,
the azimuthal angle is not invariant under such a rotation,
which is why one can eliminate the energy-momentum
delta-function in the center-of-mass frame with

hp1i ¼ −hp2i≡ hpi: ð84Þ
In contrast to the plane-wave case, the transversemomentum
p2⊥ is not vanishing even in this frame. The integral over p4
can be removed, and so

p4 ¼ fp2⊥ − p3⊥;−p3zg; p2⊥ ¼ p⊥fcosϕ2; sinϕ2g:

FIG. 1. Collision of a Gaussian packet with a generalized
Laguerre-Gaussian beam ψl;n¼0. Due to the quantum interfer-
ence, the effective transverse momentum p⊥ in Eqs. (74), (81),
(83) does not generally coincide with the mean transverse
momentum hp2⊥i ≃ δp2

ffiffiffiffiffiffijljp
. The latter is analogous to ϰ of

the Bessel state.
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The remaining delta-function cannot be eliminated by
integrating over ε3 þ ε4, but we can represent it as follows:

1

2ε4
δðε − ε3 − ε4Þ

¼ δðε24 − ðε − ε3Þ2Þ

¼ 1

2p3⊥p⊥
δðcosðϕ2 − ϕ3Þ − cosðϕ23ÞÞ

¼ 1

4Δ
ðδðϕ2 − ϕ3 − ϕ23Þ þ δðϕ2 − ϕ3 þ ϕ23ÞÞ; ð85Þ

where ε ¼ ε1 þ ε2 ≥ m3 þm4,

ϕ23 ¼ arccos
p2⊥ þ p3

2⊥ − p4
2⊥

2p3⊥p⊥
ð86Þ

is an angle between the vectors p2⊥ and p3⊥ in a triangle
p2⊥ ¼ p3⊥ þ p4⊥,

p2⊥ þ p3
2⊥ − p4

2⊥ ¼ p2⊥ þm2
4 þ p2

3 − ðε − ε3Þ2;
p4

2⊥ ¼ ðε − ε3Þ2 − p3
2
z −m2

4; ð87Þ
and

Δ ¼ 1

2
p3⊥p⊥ sinϕ23 ð88Þ

is an area of the triangle. This area can be represented as
follows:

4Δ ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2p⊥p3⊥Þ2 − ðp2⊥ þ p3

2⊥ − p4
2⊥Þ2

q
j; ð89Þ

where p4⊥ is from Eq. (87).
As the invariant I does not depend on the azimuthal

angle ϕ2, we integrate over it and arrive at the following
result for the angular distribution in the center-of-mass
frame:

dσincohCM

dΩ3

¼ 1

16π3
1

4I

Z
djp3jjp3j2

ε3

1

4Δ
ðjMðpwÞ

fi j2jϕ2−ϕ3¼ϕ23

þ jMðpwÞ
fi j2jϕ2−ϕ3¼−ϕ23

Þ

¼ 1

16π3
1

4I

Z
ε−m4

m3

dε3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε23 −m2

3

p
4Δ

ðjMðpwÞ
fi j2jϕ2−ϕ3¼ϕ23

þ jMðpwÞ
fi j2jϕ2−ϕ3¼−ϕ23

Þ; ð90Þ

where p3 ¼ jp3jfsin θ3 cosϕ3; sin θ3 sinϕ3; cos θ3g and we
have used the identity djp3jjp3j ¼ dε3ε3. In contrast to the
plane-wave case, there appears a certain distribution over
the final particle’s energy.
Note that the quantum interference in (90) between two

kinematic configurations [35] vanishes for the totally
unpolarized case. Indeed, when we average over the
incoming spins and sum over the final ones, the square

of the matrix element, jMðpwÞ
fi j2, can depend only on the

scalar products p2 · p3 ∝ cosðϕ2 − ϕ3Þ → cosðϕ23Þ, which
is even in ϕ23 → −ϕ23. As a result,

jMðpwÞ
fi j2jϕ2−ϕ3¼ϕ23

¼ jMðpwÞ
fi j2jϕ2−ϕ3¼−ϕ23

; ð91Þ

and it does not depend on ϕ3 alone. In this case we get

dσincohCM

dcosθ3
¼ 1

ð2πÞ2
1

4I

Z
ε−m4

m3

dε3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε23−m2

3

p
4Δ

jMðpwÞ
fi j2jϕ2−ϕ3¼ϕ23

:

ð92Þ

The ϕ23-odd terms sinðϕ2 − ϕ3Þ → sinϕ23 can arise from
the products with a spin vector ζ like

jMðpwÞ
fi j2 ∝ ζ · ½p2 × p3� ∝ sinðϕ2 − ϕ3Þ; ð93Þ

that is, when at least one of the particles is polarized.
Let us now take another approach and obtain a repre-

sentation, which is more general than Eq. (90) and where
the azimuthal integral is kept. First we eliminate the energy-
momentum delta-function in Eq. (82) in an arbitrary frame
of reference. By introducing the notation

p≡ p1 þ p2 ¼ fε; pg; s ¼ p2 ¼ ðp1 þ p2Þ2; ð94Þ

it is convenient to employ the following representation:

Z
d3p3

2ε3

d3p4

2ε4
δð4Þðp − p3 − p4Þ

¼
Z
p0
3
≥0;p0

4
≥0

d4p3d4p4δðp2
3 −m2

3Þδðp2
4 −m2

4Þδðε − p0
3 − p0

4Þδð3Þðp − p3 − p4Þ

¼
Z
p0
3
≥0

d4p3δðp2
3 −m2

3Þδððε − p0
3Þ2 − ðp − p3Þ2 −m2

4Þ ¼
Z

dΩ3

1

4

ðp0
3Þ2 −m2

3

jε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0

3Þ2 −m2
3

q
− p0

3ðpn3Þj
; ð95Þ
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where n3 ¼ p3=jp3j ¼ fsin θ3 cosϕ3; sin θ3 sinϕ3; cos θ3g,
and

p0
3 ¼

1

2

1

ε2 − ðpn3Þ2
ðεðsþm2

3 −m2
4Þ

þ ðpn3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþm2

3 −m2
4Þ2 − ð2m3Þ2ðε2 − ðpn3Þ2Þ

q
Þ:
ð96Þ

Note that ε2 − ðpn3Þ2 > 0; ðsþm2
3 −m2

4Þ2 − ð2m3Þ2ðε2−
ðpn3Þ2Þ ≥ 0, and p0

3 ≥ 0.
As a result, we arrive at the following compact formula

in an arbitrary frame:

dσincoh

dΩ3

¼
Z

2π

0

dϕ2

2π

dσðpwÞ

dΩ3

¼ 1

16π2
1

4I

×
Z

2π

0

dϕ2

2π

ðp0
3Þ2 −m2

3

jε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0

3Þ2 −m2
3

q
− p0

3ðpn3Þj
jMðpwÞ

fi j2:

ð97Þ

As the energy of the final particle p0
3 depends on the

azimuthal angle ϕ2, the integration over ϕ2 is equivalent to
that over ε3 and in the center-of-mass frame (84) with

p ¼ p2⊥ðϕ2Þ; ðpn3Þ ¼ p⊥ sin θ3 cosðϕ2 − ϕ3Þ

equation (97) is analogous to Eq. (90).
If we neglect all the masses in the reaction, we get

p0
3 ¼

1

2

s
ε − ðpn3Þ

; ð98Þ

and the formula (97) simplifies to:

dσincohCM

dΩ3

¼ 1

64π2

Z
2π

0

dϕ2

2π

jMðpwÞ
fi j2

ðε − ðpn3ÞÞ2
: ð99Þ

1. s-channel

Let us study the s-channel in the center-of-mass frame
with

ε ¼ ε1 þ ε2; ε2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε21 þ p2⊥

q
; s ¼ 2εε1: ð100Þ

Note that s depends on the transverse momentum p⊥ and
when p⊥ ≪ ε1, we have

s ≈ s0 þ p2⊥; s0 ¼ sðp⊥ ¼ 0Þ ¼ ð2ε1Þ2: ð101Þ

The square of the matrix element can be obtained from
the massless limit of the QED process [53]

eþðp1Þe−twðp2ðϕ2ÞÞ → μþðp3Þμ−ðp4Þ:

For the totally unpolarized case it is [39]

jMðpwÞ
fi j2 ¼ 8ð4παÞ2

s2
ððp2p3Þ2 þ ðp1p3Þ2Þ;ffiffiffi

s
p

≫ mμ; ð102Þ

where

2ðp1p3Þ ¼ sε1
1 − cos θ3
ε − pn3

; 2ðp2p3Þ ¼ s − 2ðp1p3Þ:

We deal with the following integral in Eq. (99):

In¼
Z

2π

0

dϕ
2π

1

ðε−p⊥ sinθ3cosϕÞn

¼ð−1Þn−1
ðn−1Þ!

∂n−1

∂εn−1
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε2−p2⊥sin2θ3
p ; n¼2;3;4: ð103Þ

Integrating over ϕ2, we arrive at the following result:

dσincohCM

dΩ3

¼ α2

2
ðI2 − 2ε1ð1 − cos θ3ÞI3

þ 2ε21ð1 − cos θ3Þ2I4Þ: ð104Þ

Expanding this expression over the small parameter p2⊥=s0,
we obtain

dσincohCM

dΩ3

¼ dσðpwÞCM

dΩ3

�
1þ p2⊥

s0
gðθ3Þ þO

�
p4⊥
s20

��
;

gðθ3Þ ¼ −
cos θ3

1þ cos2 θ3
ð2þ cos θ3 − 4 cos2 θ3

þ 5 cos3 θ3Þ; ð105Þ

where gðθ3Þ → −2 at θ3 → 0 and

dσðpwÞCM

dΩ3

¼ α2

4s0
ð1þ cos2 θ3Þ ð106Þ

is the standard cross section of the plane-wave approxi-
mation. In Fig. 2 we demonstrate how the correction to the
plane-wave result depends on the scattering angle.
Thus, the difference of the generalized cross section (105)

from the standard one is attenuated as p2⊥=s0 ≪ 1:

dσincohCM

dΩ3

. dσðpwÞCM

dΩ3

¼ 1þO
�
p2⊥
s0

�
: ð107Þ

For realistic parameters of the lepton scattering,

δp2 ≲ 1 keV;
ffiffiffiffiffi
s0

p
> 1 GeV; ð108Þ
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we have

p2⊥
s0

∼
ðδp2Þ2
s0

jlj≲ 10−12jlj; ð109Þ

which for available OAM is many orders of magnitude
smaller than the corrections that we have already neglected.
In particular, the analogous corrections due to the finite
mass of the electron would be [see Eq. (30)]

p2⊥
m2

≲ 10−6jlj ≫ p2⊥
s0

as
ffiffiffiffiffi
s0

p
≫ m: ð110Þ

These geometric corrections were discussed in [11].
The situation is different, however, if there is a twisted

hadron (say, a proton) in initial state, that is, for the
processes

pðtwÞp → X; pðtwÞp̄ → X; epðtwÞ → ep; etc:

As the proton’s transverse momentum δpp is some 2–3
orders of magnitude higher than that of the electron δpe
[see Eq. (63)],

δpp ∼ 100 keV ∼ ð102–103Þδpe; σ⊥ ∼ 1 pm; ð111Þ

the corresponding transverse momentum p⊥¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ12δppjlj

p
can also be higher. To be more precise,

σ12 ∼ δpe; p⊥ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δpeδppjlj

q
for epðtwÞ → X;

σ12 ∼ δpp; p⊥ ∼ δpp

ffiffiffiffiffiffi
jlj

p
for pðtwÞp → X: ð112Þ

As a result, for
ffiffiffiffiffi
s0

p ≳ 1 GeV we have the following
estimates of the corrections to the plane-wave cross
sections for processes with the twisted hadrons:

p2⊥
s0

∼
ðδppÞ2
s0

jlj≲ 10−8jlj: ð113Þ

Clearly, for jlj > 103 these corrections can compete with
the higher-loop QED contributions.

2. t-channel

The analogous calculations can also be performed for the
lepton scattering in QED,

μ−ðp1Þe−twðp2ðϕ2ÞÞ → μ−ðp3Þe−ðp4Þ:

For the totally unpolarized case we have

jMðpwÞ
fi j2 ¼ 8ð4παÞ2

t2
ððp2p3Þ2 þ ðp1p2Þ2Þ; ð114Þ

with

t ¼ −2ðp1p3Þ ¼ −2ðp2p4Þ ¼ −sε1
1 − cos θ3
ε − pn3

:

In the center-of-mass frame we arrive at

dσincohCM

dΩ3

¼ 2α2

sð1 − cos θ3Þ2
ð2 − 2ε1ð1 − cos θ3ÞI1

þ ε21ð1 − cos θ3Þ2I2Þ; ð115Þ

where In is from (103). Expanding this over the small
p2⊥=s0, we finally get the following result:

dσincohCM

dΩ3

¼ dσðpwÞCM

dΩ3

�
1þ p2⊥

s0
hðθ3Þ þO

�
p4⊥
s20

��
;

hðθ3Þ ¼
1

2

sin2 θ3
4þ ð1þ cos θ3Þ2

ð3 − 2 cos θ3

þ 3 cos2 θ3Þ: ð116Þ

where

dσðpwÞCM

dΩ3

¼ α2

2s0

4þ ð1þ cos θ3Þ2
ð1 − cos θ3Þ2

; ð117Þ

is the standard plane-wave cross section. In Fig. 3 we show
the angular dependence of hðθ3Þ.
Although the correction to the plane-wave cross section

is found to be of the same order of magnitude as in the
s-channel, we stress that beyond the perturbative QCD the
corrections cease to be small and for the kinetic energies
less than 10 MeV they can be seen with a naked eye (see,
for instance, Refs. [15,16]).

FIG. 2. The function gðθ3Þ from the correction to the plane-
wave cross section in the s-channel (105).
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C. Nonperturbative phase effects

The expansion (19) does not appeal to the perturbation
theory and, therefore, it is applicable even beyond the
perturbative regime—say, when the kinetic energies of the
incoming particles are much less than 1 GeV in ep or pp
collisions. Let us study the nonperturbative effects brought
about by the interference term, dσint from Eq. (24). For
paraxial packets with the Wigner functions from Eq. (41) or
Eq. (68), we have

∂nparl ðr; p; tÞ
∂r ¼ −

∂nparl ðr; p; tÞ
∂r0

¼ −2ðδpÞ2
�
ρ − ρ0 − l

p × ẑ
p2⊥

− u⊥t;

γ̄2ðz − z0 − uztÞ
�
nparl ðr; p; tÞ; ð118Þ

where r0 ¼ fρ0; z0g. In what follows, we imply z0 ¼ 0 and
ρ0 ≡ b. For collision of the Gaussian packet with the
twisted one, we get
Z

d4xn1ðr; p1; tÞ
∂n2ðr; p2; t; bÞ

∂r
¼ −

∂Icorrl ðpi; bÞ
∂b

¼ 2σ212

�
beff −

σ212
σ212ðΔu⊥Þ2 þ σ212;zðΔuzÞ2

ΔuðΔubeffÞ
�

× Icorrl ðpi; bÞ ð119Þ
with Icorrl ðpi; bÞ from Eq. (70) and

beff ¼ bþ l
p2 × ẑ
p2

2⊥
: ð120Þ

These formulas can easily be generalized for other non-
Gaussian packets—say, for the Airy beams (cf. Eq. (4.13)
in [11]).

Thus, we have the following expression for the inter-
ference correction cf. [Eq. (44)]:

dσint ¼ −2σ212
1

L

Z
d3p1

ð2πÞ3
d3p2

ð2πÞ3 υðpiÞI
corr
l ðpi; bÞdσðpwÞðpiÞ

×

�
beff −

σ212
σ212ðΔu⊥Þ2 þ σ212;zðΔuzÞ2

ΔuðΔubeffÞ
�

· ∂Δpζ
ðpwÞ
fi ðpiÞ; ð121Þ

which is odd in beff and, therefore, the ratio dσint=dσincoh

can be quantified by the following asymmetry:

A ¼ dσgenðbeffÞ − dσgenð−beffÞ
dσgenðbeffÞ þ dσgenð−beffÞ

¼ dσintðbeffÞ
dσincohðbeffÞ

: ð122Þ

This asymmetry vanishes together with dσint for the
vanishing effective impact parameter beff—say, for a
head-on collision of two Gaussian packets. Clearly, beyond
the perturbative regime this asymmetry is not attenuated by
any dimensionless small parameter.
Let us suppose now that the integrand in Eq. (121) is a

smooth function of the momenta (which may not be the
case for l ≠ 0; p2⊥ → 0). Then for the Gaussian packets
with l ¼ 0; hpii ¼ f0; 0; hpiig collided at the impact-
parameter b the interference contribution can be estimated
as follows:

A ∼ σ212b · ∂Δpζ
ðpwÞ
fi ðpiÞjpi¼hpii∼

∼ σ212b · p3
∂ζðpwÞfi ðs; tÞ

∂t
����
pi¼hpii

;

s ¼ ðp1 þ p2Þ2; t ¼ ðp1 − p3Þ2; ð123Þ

in accord with Ref. [11]. Both b and σ12 are determined by
the widest packet of the two,

b ∼ σ⊥;max; σ212 ≡ 1=ρ2eff ∼ ðδpÞ2min ¼ 1=σ2⊥;max;

and therefore

A ¼ OðδpminÞ; ð124Þ

as expected.
Thus, a nonvanishing asymmetry (122) requires viola-

tion of the azimuthal symmetry in the initial two-particle
state. In other words, the in-state has an angular momen-
tum, which for collision of the Gaussian packets at a finite
impact-parameter is extrinsic (that is, frame-dependent) and
is of the order of bδpmin ∼ 1. Actually, these estimates also
hold for the twisted packet with the intrinsic angular
momentum jlj ≫ 1 or for any other non-Gaussian packet,
because the maximum value of the effective impact

FIG. 3. The function hðθ3Þ from the correction to the plane-
wave cross-section in the t-channel (116).
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parameter does not exceed much the transverse coherence
length σ⊥.
Let us turn now to the ultrarelativistic perturbative

regime with the small parameter α and consider elastic
scattering with

ffiffiffi
s

p
≫ m; t ≈ −sθ2sc; θsc ≪ 1:

In this case we can conveniently rewrite the r.h.s. of
Eq. (123) as follows [recall Eq. (26)]:

A ∼
δpminffiffiffi

s
p cosðϕ3 − ϕbÞ

∂ζðpwÞfi ðθscÞ
∂θsc ¼ O

�
α
p⊥ffiffiffi
s

p
�
;

p⊥ ¼ δpmin ¼ 1=ρeff ; ð125Þ
where ϕb is an azimuthal angle of the impact parameter.
Again, for ep, pp, or pp̄ collisions with the energies

ffiffiffi
s

p
of

at least several GeV, we have

A ∼ α
p⊥ffiffiffi
s

p ≲ αð10−5–10−4Þ; ð126Þ

and this estimate is
ffiffiffiffiffiffijljp

times larger if there is a twisted
particle in the in-state. For TeV energies, this estimate is
some 3–4 orders of magnitude smaller (see Ref. [11] for
more detail). Besides, this asymmetry vanishes after the
integration over the azimuthal angle ϕ3 of the scattered
particle.
Beyond the perturbative regime—for the kinetic energies

less than 1 GeV—a naive estimate of the interference
effects is

A ∼
p⊥ffiffiffi
s

p ∼ ð10−5–10−4Þ
ffiffiffiffiffiffi
jlj

p ≳ α2 ð127Þ

for the processes like epðtwÞ → ep; pðtwÞp → pp; pðtwÞp̄ →
pp̄, etc. Clearly, corrections of the same order of magnitude
also arise from the 2-loop diagrams in QED. Thus, a
dedicated study for the specific models of the hadronic

phase ζðpwÞfi is needed at the kinetic energies much less
than 1 GeV.
We emphasize once again that to get a nonvanishing

asymmetry one needs to have an initial state with some
angular momentum, which can be either extrinsic (for
noncentral collisions of the vortexless particles) or intrinsic
(for central collisions with the twisted particles).
Analogously to scattering of the highly twisted packets,
in the former case the effect is also enhanced for highly
peripheral collisions. For instance, the corresponding extrin-
sic orbital momenta can reach 1000ℏ in nuclear collisions at
RHIC [54], as a result of which the produced Λ hyperons
possess the transverse momenta as high as p⊥ < 3 GeV for
the energies of

ffiffiffi
s

p
∼ 10–200 GeV. Therefore, in this case

dσint=dσincoh ≲ p⊥=
ffiffiffi
s

p
∼ 10−3–10−1, analogously to the

MD effect [1].

VII. DISCUSSION

In collisions of particles, the transverse coherence length
of the wave packets reveals itself in corrections to the
conventional cross sections, which are defined by an
effective transverse mometum (74) of the incoming state
and are additionally enhanced if there are vortex particles
with high angular momenta, jlj > 103, somewhat analo-
gously to collisions at large impact parameters. The
standard calculations based on the plane-wave approxima-
tion stay applicable with the large margin both for elastic
and for the deep-inelastic scattering of relativistic electrons
on hadrons, when the perturbative QCD works well.
Beyond the perturbative regime, however, the correc-

tions to the standard results become only moderately
attenuated and accessible to experimental study at the
kinetic energies εc much less than 1 GeV for the processes
like eðtwÞp → ep; epðtwÞ → ep; pðtwÞp → pp, etc. In par-
ticular, the measurements of the asymmetry (122) can
become a useful tool for testing phenomenological models
of the strong interactions at intermediate, εc ≲ 1 GeV, and
low, εc ≪ 1 GeV, energies. While the maximum kinetic
energy of the twisted electrons achieved so far is
εc ¼ 300 keV, generation of the moderately relativistic
twisted electrons with the energies of at least several MeV
as well as of the nonrelativistic twisted protons with jlj≫1

would facilitate these studies, as the asymmetry is
ffiffiffiffiffiffijljp

times enhanced if one of the particles has a phase vortex.
Alternatively, the collisions at large impact parameters can
be used for these purposes, similar to those at RHIC [54].
We would like to emphasize that the above conclusions

stay valid within the model, in which the vortex packets
represent the generalized Laguerre-Gaussian states [33]. The
mean transverse momentum of them coincides at jlj ≫ 1

with themomentum uncertainty,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hp2⊥i − hp⊥i2

p
≈ δp

ffiffiffiffiffiffijljp
,

and it cannot therefore be larger than the particle’s mass.
There is an alternative description of the relativistic twisted
packets [9,55], in which the mean transverse momentum
represents an independent parameter, like in the Bessel beam,
and it can be larger than the particle’s mass. These packets
represent a superposition of theBessel beamswith aGaussian
envelope. Although the Bessel beam is just a special case of
the generalized Laguerre-Gaussian state [33], the model of
Refs. [9,55] may predict larger corrections to the plane-wave
cross sections and it leads to new interesting effects if both the
colliding particles are twisted [55]. Which of the two models
is more suitable for describing the real vortex beams is an
open question.
Although our analysis was made for the single packets

and not for the multiparticle beams, the very similar
conclusions hold in the latter case as well, provided that
the quantum interference between the packets in the beam
is negligible. The latter holds in the paraxial approximation,
σ⊥ ≫ λc; δp ≪ m. For available accelerator beams of the
width σ⊥b ∼ 10–100 μm, which is at least 4 orders of
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magnitude larger than the transverse coherence length of an
electron packet (62), these interference effects can be safely
neglected.
However for the next generation colliders with the

nanometer-sized beams (like ILC and CLIC [50]), the
interparticle distance in a beam becomes of the order of
the packet’s width itself, σ⊥b ≳ σ⊥e, and so the packets
start to overlap, which is especially important for spin-
polarized electrons and positrons due to the Pauli principle.
As a result, the quantum interference between the packets
may reveal itself in the effects of the order of

λc
σ⊥b

≲ 10−4 ≲ λc
σ⊥e

; ð128Þ

which in their turn can compete both with the correc-
tions described in this paper and with the 2-loop QED
contributions. The analogous effects in scattering of the
nonrelativistic electrons by atoms can reach 10% [12].
Therefore, when studying the role of the transverse
coherence length with the spin-polarized nanometer-sized
beams the overlap of the electron (positron) packets in a
beam must be taken into account.
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ρ2
in the exponents were mistakenly

omitted—see the Corrigendum.
[52] D. Karlovets, On Wigner function of a vortex electron, J.

Phys. A 52, 05LT01 (2019); 52, 389501(C) (2019).
[53] The final state is not important now, and it can also be

hadrons, provided that
ffiffiffi
s

p
is large enough.

[54] L. Adamczyk et al. (STAR Collaboration), Global Λ
hyperon polarization in nuclear collisions, Nature (London)
548, 62 (2017).

[55] I. P. Ivanov, N. Korchagin, A. Pimikov, and P. Zhang, Doing
spin physics with unpolarized particles, arXiv:1911.08423;
Twisted particle collisions: A new tool for spin physics,
arXiv:2002.01703; Kinematic surprises in twisted-particle
collisions, Phys. Rev. D 101, 016007 (2020).

DMITRY V. KARLOVETS and VALERIY G. SERBO PHYS. REV. D 101, 076009 (2020)

076009-18

https://doi.org/10.1038/nature11840
https://doi.org/10.1038/nature11840
https://doi.org/10.1038/nature15265
https://doi.org/10.1103/PhysRevLett.120.090402
https://doi.org/10.1103/PhysRevLett.120.090402
https://doi.org/10.1088/1367-2630/aae3ac
https://doi.org/10.1073/pnas.1906861116
https://doi.org/10.1063/1.4977879
https://doi.org/10.1016/j.physrep.2017.05.006
https://doi.org/10.1016/j.physrep.2017.05.006
https://doi.org/10.1063/1.3662012
https://doi.org/10.1063/1.3662012
https://doi.org/10.1103/PhysRevA.98.012137
https://doi.org/10.1103/PhysRevD.85.076001
https://doi.org/10.1103/PhysRevD.94.076001
https://doi.org/10.1103/PhysRev.172.1413
https://doi.org/10.1140/epjc/s10052-016-4399-8
https://doi.org/10.1103/PhysRevA.46.645
https://doi.org/10.1051/epjconf/20147801001
https://doi.org/10.1051/epjconf/20147801001
https://doi.org/10.1103/PhysRevLett.121.010402
https://doi.org/10.1103/PhysRevLett.121.010402
https://doi.org/10.1103/PhysRevD.101.016006
https://doi.org/10.1103/PhysRevD.101.016006
https://arXiv.org/abs/2002.04629
https://doi.org/10.1103/PhysRevA.99.022103
https://doi.org/10.1103/PhysRevA.99.022103
https://doi.org/10.1103/PhysRevA.99.043824
https://doi.org/10.1103/PhysRevLett.122.063201
https://doi.org/10.1103/PhysRevLett.122.063201
https://doi.org/10.1088/0954-3899/37/10/105014
https://doi.org/10.1007/s11182-010-9458-2
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1088/1751-8121/aaf9d8
https://doi.org/10.1088/1751-8121/aaf9d8
https://doi.org/10.1088/1751-8121/ab374e
https://doi.org/10.1038/nature23004
https://doi.org/10.1038/nature23004
https://arXiv.org/abs/1911.08423
https://arXiv.org/abs/2002.01703
https://doi.org/10.1103/PhysRevD.101.016007

