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We present results from analytic solutions to the running coupling, full next-to-leading order, and
collinearly improved next-to-leading order Balitsky-Kovchegov equations in the saturation region with
the smallest dipole size QCD running coupling prescription. The analytic results of the S matrix of the
latter two equations show that the expð−OðY3=2ÞÞ rapidity dependence of the solutions is replaced by
expð−OðYÞÞ dependence once the running coupling prescription is switched from parent dipole to the
smallest dipole prescription, which indicates that the S matrix has a strong dependence on the choice of
running coupling prescription. We compute the numerical solutions of these Balitsky-Kovchegov equations
with the smallest and parent dipole running coupling prescriptions; the numerical results confirm the
analytic outcomes. The rare fluctuations of the S matrix on top of full next-to-leading order corrections are
also studied under the smallest dipole running coupling prescription in the center of mass frame. It shows
that the rare fluctuations are strongly suppressed and less important in the smallest dipole running coupling
prescription case as compared to the parent dipole running coupling prescription case.
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I. INTRODUCTION

Perturbative QCD predicts that the gluon density in high-
energy hadronic collisions is rapid growth with decreasing
Bjorken x (or increasing energy) due to each emitted gluon
itself as a source of further emission, which leads to fill up
the available phase space for gluon radiation, and forms a
state of saturated gluons called the color glass condensate
(CGC) [1]. The rapidity evolution of the CGC is described
by the Balitsky-JIMWLK1 [2–6] infinite hierarchy of
renormalization group equations for the multipoint corre-
lators of Wilson lines which describe a high-energy quark
or a gluon traveling through a dense target color field. In the
mean field approximation, the hierarchy Balitsky-JIMWLK
equations decouple and result in a single nonlinear inte-
grodifferential equation known as the Balitsky-Kovchegov
(BK) equation [2,7]. The BK equation is a closed equation,

which significantly simplifies the direct applications to
phenomenologies, such as proton structure function in deep
inelastic scattering at HERA, and particle production in
heavy ion collisions at LHC. However, the BK equation
resums only large logarithms ∼αs lnð1=xÞ to all orders with
a fixed coupling constant αs; thus, it is a leading order (LO)
equation. It has been found that although the models (i.e.,
Iancu-Itakura-Munier model [8]) inspired by the LO BK
equation can give a successfully qualitative fits to the
small-x HERA data [9–12], there are some tensions when
one uses the LO BK equation to quantitatively compare
with the experimental data, since the higher order correc-
tions can be very large [13–18].
Over the past decade, the understanding of the nonlinear

evolution in QCD beyond leading order accuracy has
received important developments [19–23], which refers to
the first calculations of the next-to-leading order (NLO)
corrections to the Balitsky-JIMWLK and BK equations. The
NLO corrections to the BK equation were calculated by the
resummation of the αsNf contributions to all orders with Nf

to be as the number of flavors, which allows one to estimate
running coupling corrections to the evolution kernel and
result in the running coupling Balitsky-Kovchegov (rcBK)
equation. In the language of Feynman diagram, this type of
NLO corrections refer to the quark loop contributions. Soon
after the rcBK equation was derived [22,23], Balitsky and
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Chirilli in Ref. [24] found that the gluon loops and the tree
gluon diagrams with quadratic and cubic nonlinearities have
also significant contributions to the BK evolution equation.
By combining the quark part and gluon part contributions,
they obtained a full next-to-leading order (fNLO) BK
evolution equation. However, the first numerical studies to
the fNLO BK equation found that the solution strongly
depends on the details of the initial condition, and the
scattering amplitude decreases with increasing rapidity and
can even turn to negative for small dipoles [16,25], which
indicate that the fNLO BK equation is unstable. It was found
that the instability comes from a large double transverse
logarithm in the BK evolution kernel. Fortunately, the
authors in Ref. [26] devised a novel method to resum those
single and double collinear logarithms to all orders and got a
stabilized evolution equation known as collinearly improved
BK equation. In addition to the progress along the BK
equation, we would like to mention that the authors in
Refs. [19–21] studied the JIMWLK evolution at NLO and
obtained a NLO JIMWLKHamiltonian. They found that the
NLO evolution kernels in Ref. [24] can be reproduced
correctly with the NLO JIMWLK Hamiltonian.
The stabilized fNLO BK equation was solved numeri-

cally and its numerical solution gives a rather good
description to the small x HERA data [17,18,27].
However, this numerical process is very cumbersome to
use in practice, due to the intricate programming for solving
an integrodifferential equation and time-costing for running
the program. In order to facilitate the use of the BK
equation in direct phenomenological application, a lot of
efforts were devoted to establish an analytical dipole
scattering amplitude in the literature [28–33]. Among them,
we analytically solved the fNLO BK equation in the
saturation region [32]. We find that the expð−OðYÞÞ
rapidity dependence of the scattering S matrix in the case
of running coupling corrections (including quark loop
contributions) is replaced by expð−OðY3=2ÞÞ in the
fNLO case (with both quark and gluon loop contributions).
In addition, the authors in Ref. [29] used another approach
to independently solve the fNLO BK equation in the
saturation region and also got expð−OðY3=2ÞÞ rapidity
dependence of the S matrix. They established a piecewise
dipole scattering amplitude based on the analytic solution.
It was found that the piecewise amplitude gives a rather
successful fits to the small x HERA data. We would like
to note that all the calculations mentioned above are
used the size of the parent dipole as the argument of the
running coupling constant αs. For several years, as we
know that the argument of the coupling constant αs in the
NLO BK equation was interpreted to the size of the parent
dipole, especially in the applications to phenomenology
[14,15,34], although the authors in Ref. [24] have pointed
out that the proper interpretation of the argument of the
coupling constant is the size of the smallest dipole rather
than the size of the parent dipole. Recently, it was found

that a very good description of the small x HERA data
was obtained by using the collinearly improved NLO BK
equation with the smallest dipole running coupling (SDRC)
prescription among several different prescriptions of QCD
running coupling. The significance of the argument of the
coupling constant αs was aroused [17,18].
In this paper, we shall solve analytically the NLO BK

equations with the SDRC prescription in the saturation
region. To see the significance of the prescription of the
running coupling, we firstly recall the analytic solutions of
the rcBK, fNLO BK, and collinearly improved NLO BK
equations with the parent dipole running coupling (PDRC)
prescription in the saturation region, and we shall use these
solutions for the latter comparisons. Second, we analyti-
cally solve the rcBK, fNLO BK, and collinearly improved
NLO BK equations again with emphasizing on the SDRC
prescription, and we compare the solutions resulting from
two different running coupling prescriptions to see how big
difference is.
Interestingly, we get that the solutions of the rcBK

equation are exactly same under the PDRC and SDRC two
different prescriptions, which means that its solution is
independent on the choice of the running coupling pre-
scription. We find that the expð−OðY3=2ÞÞ rapidity depend-
ence of the S matrix (solution of the fNLO BK equation)
obtained by our previous studies with the PDRC prescrip-
tion in Ref. [32] is replaced by expð−OðYÞÞ rapidity
dependence once the running coupling prescription is
switched to the SDRC prescription, which indicates that
the SDRC prescription suppresses the evolution of the
dipole scattering amplitude and renders the rapidity
dependence of the exponent of the S matrix keeping a
linear dependence as the one in rcBK case; see Fig. 1 for a
diagrammatic depiction. With the SDRC prescription, we
now get that all the solutions of the NLO BK (rcBK, fNLO
BK, and collinearly improved NLO BK) equations have the
same rapidity dependence expð−OðYÞÞ.
In order to test these analytic outcomes, we numerically

solve the abovementioned NLO BK equations with the
focusing on physics in the saturation region. The numerical
results support the analytic findings. In addition, we also
study the rare fluctuations of the S matrix on top of the full
NLO corrections with the SDRC prescription. We find that
the rare fluctuation effects take a negligible contribution to
the suppression of the evolution of the dipole amplitude,
which is unlike the one obtained with the PDRC prescrip-
tion in our previous publication [35] where a factor of

ffiffiffi
2

p
suppression of the exponential factor of the S matrix is
occurred when the rare fluctuation effects are included.

II. SOLUTIONS TO THE EVOLUTION
EQUATIONS WITH PARENT DIPOLE RUNNING

COUPLING PRESCRIPTION

To introduce notations and explain the kinematics, we
review the rc, fNLO, and collinearly improved NLO BK
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equations and their solutions in the case of PDRC pre-
scription. These solutions will be used for the latter
comparisons with the results obtained under the SDRC
prescription in the next section.

A. Leading order Balitsky-Kovchegov equation
and its solution

We consider the high-energy scattering between a dilute
projectile, consisting of a quark-antiquark color dipole with
quark leg at transverse coordinate x⊥ and an antiquark leg
at transverse coordinate y⊥, and a dense target which may
be another dipole, a hadron, or a nucleus. The evolution of
the S matrix in the fixed coupling case is described by the
BK equation, which we write as [2,7]

∂
∂Y Sðr; YÞ ¼

Z
d2r1KLOðr; r1; r2Þ

× ½Sðr1; YÞSðr2; YÞ − Sðr; YÞ�; ð1Þ

where the evolution kernel is given by

KLOðr; r1; r2Þ ¼
ᾱs
2π

r2

r21r
2
2

; ð2Þ

with ᾱs ¼ αsNc=π. Here we use the notation r ¼ x⊥ − y⊥
as the transverse size of parent dipole and r1 ¼ x⊥ − z⊥
and r2 ¼ z⊥ − y⊥ as the transverse sizes of the two emitted
daughter dipoles, respectively. The BK equation resums
only the leading logarithmic αs lnð1=xÞ in the fixed
coupling case; therefore, it is a leading order equation.
We would like to note that the BK equation is a mean field
version of the Balitsky-JIMWLK hierarchy [3–6] equa-
tions, in which higher order correlations are neglected.
Due to the simple structure of the BK equation, one can

analytically solve it in the saturation region, in which the
parton density is so high that the dipole scattering ampli-
tude approaches unit, N ∼ 1 (N ¼ 1 − S), thus S ∼ 0. So,
we can neglect the quadratic term of the S matrix in the BK
equation in the saturation region, and Eq. (1) becomes

∂
∂Y Sðr; YÞ ≃ −

Z
r

1=Qs

d2r1KLOðr; r1; r2ÞSðr; YÞ; ð3Þ

where Qs is the saturation momentum. The Qs is an
intrinsic momentum scale which provides a separation
between dense and dilute parton system. The lower bound
of the integral in Eq. (3) is set to 1=Qs since the saturation
condition requires that the transverse dipole size should be
larger than the typical transverse dipole size, rs ∼ 1=Qs. We
would like to note that although there are few radiated
daughter dipoles having transverse size larger than parent
dipole, we still set the upper bound of the integral to r
because the kernel has a rapid decay when the size of the
daughter dipole is larger than the parent dipole; therefore,
the contribution from the region, r1 > r, is negligible. It is
not hard to find that the integral is governed by the region
either from the radiated dipole closing to quark leg of the
parent dipole, 1=Qs ≪ jr1j ≪ jrj and jr2j ∼ jrj, or the
radiated dipole closing to antiquark leg of the parent
dipole, 1=Qs ≪ jr2j ≪ jrj and jr1j ∼ jrj. In this study,
we choose to work in the region jr2j ∼ jrj, and Eq. (3)
becomes

∂
∂Y Sðr; YÞ ≃ −2π

Z
r2

1=Q2
s

dr21
ᾱs
2π

1

r21
Sðr; YÞ: ð4Þ

Note that the factor 2 on the right-hand side of Eq. (4)
comes from the symmetry of the two regions mentioned
above. Now, we can easily obtain the analytic solution of
the LO BK equation in the saturation region by integrating
over r1 and Y [28,36],

Sðr; YÞ ¼ exp

�
−
c
2
ᾱ2sðY − Y0Þ2

�
Sðr; Y0Þ; ð5Þ

where we have used Q2
sðYÞ ¼ exp ½cᾱsðY − Y0Þ�Q2

sðY0Þ
with Q2

sðY0Þr2 ¼ 1. Equation (5) shows that in the satu-
ration region the S matrix has a quadratic rapidity depend-
ence in its exponent. It has been found that this S matrix
cannot precisely describe the experimental data from
HERA [15], since the evolution speed of the scattering
amplitude N is too fast; in other words, the S matrix is too

FIG. 1. The S matrix from solving the LO, rc, fNLO, and collinearly improved NLO BK equations with the PDRC and SDRC
prescriptions in the saturation region.
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small. So, one needs to take into account the NLO
corrections which can make the S matrix becoming
larger, or slow down the evolution speed of the dipole
scattering amplitude.

B. Running coupling Balitsky-Kovchegov equation
and its solution

The first NLO corrections to the LO BK equation were
derived by Refs. [22,23], which consider the quark loop
contributions to the BK evolution kernel and resum αsNf to
all orders. We usually call these modifications as running
coupling corrections. The evolution equation including the
quark loop corrections reads [14]

∂Sðr; YÞ
∂Y ¼ F ½Sðr; YÞ�; ð6Þ

where F can be decomposed into two parts, “running
coupling contribution” and “subtraction contribution,”

F ½S� ¼ R½S� − S½S�: ð7Þ

The running coupling contribution,

R½S� ¼
Z

d2r1Krcðr; r1; r2Þ½Sðr1; YÞSðr2; YÞ − Sðr; YÞ�;

ð8Þ

resumes all power of αsNf corrections to evolution kernel,
which has the same structure as the LO BK equation but
with a modified evolution kernel. We would like to note
that the decomposition of F into running coupling and
subtraction contributions is not unique since two different
separation schemes have been proposed in Refs. [22,23],
which lead to two types of expressions of modified kernels,
Balitsky type and Kovchegov-Weigert type. The Balitsky
type of kernel reads [23]

KrcBalðr; r1; r2Þ ¼
Ncαsðr2Þ

2π2

�
r2

r21r
2
2

þ 1

r21

�
αsðr21Þ
αsðr22Þ

− 1

�

þ 1

r22

�
αsðr22Þ
αsðr21Þ

− 1

��
; ð9Þ

and Kovchegov-Weigert type expresses as [22]

KrcKWðr; r1; r2Þ ¼
Nc

2π2

�
αsðr21Þ

1

r21
− 2

αsðr21Þαsðr22Þ
αsðR2Þ

r1 · r2
r21r

2
2

þ αsðr22Þ
1

r22

�
; ð10Þ

with

R2ðr; r1; r2Þ ¼ r1r2

�
r2
r1

�r2
1
þr2

2

r2
1
−r2

2

−2
r2
1
r2
2

r1 ·r2
1

r2
1
−r2

2 : ð11Þ

From Eqs. (9) and (10), it is easy to see that the argument
of the coupling constant αs is a function of the transverse
size of a dipole, which is different from the leading order
kernel, Eq. (2), where the coupling constant is a constant. In
this study, the running coupling is given by the one loop
expression,

αsðr2Þ ¼
1

b lnð 1
r2Λ2Þ ; ð12Þ

with b ¼ ð11Nc − 2NfÞ=12π. We would like to point out
although we have found that the Balitsky and Kovchegov-
Weigert kernels reduce to the same one,

Krcðr; r1; r2Þ ¼
Nc

2π2
αsðr21Þ
r21

; ð13Þ

in the saturation region in our previous studies [31], it
has been found by numerical studying the rcBK equation
that the Balitsky kernel gives a more reasonable solution as
suggested in Ref. [23]. Therefore, we will only use the
Balitsky kernel in the all following studies.
The second term on the right-hand side of Eq. (6) is the

subtraction contribution, which has form as [14]

S½S� ¼
Z

d2z⊥1d2z⊥2K①ðx⊥; y⊥; z⊥1; z⊥2Þ

× ½Sðx⊥ − w⊥; YÞSðw⊥ − y⊥; YÞ
− Sðx⊥ − z⊥1; YÞSðz⊥2 − y⊥; YÞ�; ð14Þ

where w⊥ is the subtraction point, respectively. The
subtraction point can be chosen to be the transverse
coordinate of the emitted gluon z⊥ [22] or the transverse
coordinate of either the quark z⊥1 or the antiquark z⊥2 [23].
The evolution kernel in Eq. (14) is written as

K①ðx⊥; y⊥; z⊥1; z⊥2Þ

¼ α2μCF

X1
m;n¼0

ð−1ÞmþnK①ðx⊥m; y⊥n; z⊥1; z⊥2Þ; ð15Þ

where the αμ is the bare coupling and the K①ðx⊥m; y⊥n;

z⊥1; z⊥2Þ is the resummed JIMWLK kernel [14],
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α2μK①ðx⊥; y⊥; z⊥1; z⊥2Þ ¼ −
3b
2π3

Z
1

0

dα
1

½αðz⊥1 − x⊥Þ2 þ ᾱðz⊥2 − x⊥Þ2�½αðz⊥1 − y⊥Þ2 þ ᾱðz⊥2 − x⊥Þ2�z4⊥12

× f½−4αᾱz⊥12 · ðz⊥ − x⊥Þz⊥12 · ðz⊥ − y⊥Þ þ z2⊥12ðz⊥ − x⊥Þ · ðz⊥ − y⊥Þ�
× αsðR2

Tðx⊥ÞÞαsðR2
Tðy⊥ÞÞ þ 2αᾱðα − ᾱÞz2⊥12½z⊥12 · ðz⊥ − x⊥ÞαsðR2

Tðx⊥ÞÞ
× αsðR2

Lðy⊥ÞÞ þ z⊥12 · ðz⊥ − y⊥ÞαsðR2
Lðx⊥ÞÞαsðR2

Tðy⊥ÞÞ�
þ 4α2ᾱ2z4⊥12αsðR2

Lðx⊥ÞÞαsðR2
Lðy⊥ÞÞg; ð16Þ

with α to be as the fraction of the gluon’s momentum carried by the quark, ᾱ ¼ 1 − α, z⊥12 ¼ z⊥1 − z⊥2, and
z⊥ ¼ αz⊥1 þ ð1 − αÞz⊥2. The RTðx⊥Þ and RLðx⊥Þ in Eq. (16) are defined by

ln

�
1

R2
Tðx⊥Þμ2M̄S

�
¼ ln

�
4e−2γ−5=3

½αðz⊥1 − x⊥Þ2 þ ᾱðz⊥2 − x⊥Þ2�μ2M̄S

�
þ αᾱz2⊥12

ðz⊥ − x⊥Þ2
ln

�
αðz⊥1 − x⊥Þ2 þ ᾱðz⊥2 − x⊥Þ2

αᾱz2⊥12

�
ð17Þ

and

ln

�
1

R2
Lðx⊥Þμ2M̄S

�
¼ ln

�
4e−2γ−5=3

½αðz⊥1 − x⊥Þ2 þ ᾱðz⊥2 − x⊥Þ2�μ2M̄S

�
− ln

�
αðz⊥1 − x⊥Þ2 þ ᾱðz⊥2 − x⊥Þ2

αᾱz2⊥12

�
; ð18Þ

where the MS renormalization scheme is used, and the
subscripts T and L denote transverse and longitudinal
gluon polarizations. When one substitutes Eq. (15) into
Eq. (14), it seems that the Eq. (14) is so complicated that the
evolution equation, Eq. (6), cannot be solved analytically.
Fortunately, in this study, we only focus on the physics in
the high-energy region, in which the unitarity corrections
become important and the S matrix is small; thus, the
quadratic terms of the S matrix can be neglected. Keeping
the linear term of the S matrix only, Eq. (6) simplifies to

∂Sðr; YÞ
∂Y ≃ −2

Z
r

1=Qs

d2r1
ᾱsðr21Þ
2πr21

Sðr; YÞ; ð19Þ

where the factor 2 on the right-hand side of Eq. (19) comes
from considering of the symmetry of the two integral
regions as the case of fixed coupling. Performing the
integral over the dipole size r1 in Eq. (19), one gets

∂Sðr; YÞ
∂Y ≃ −

Nc

bπ

�
ln

�
ln
Q2

s

Λ2

�
− ln

�
ln

1

r2Λ2

��
Sðr; YÞ;

ð20Þ

whose solution is [31]

Sðr; YÞ ¼ exp

�
−

Nc

bcπ
ln2

Q2
s

Λ2

�
ln

�
ln Q2

s
Λ2

ln 1
r2Λ2

�
−
1

2

��
Sðr; Y0Þ;

ð21Þ

with the saturation momentum in the NLO case,

ln
Q2

s

Λ2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðY − Y0Þ

p
þOðY1=6Þ: ð22Þ

We would like to note that in the exponent of the S matrix
the rapidity is changed from quadratic dependence in the
fixed coupling case, Eq. (5), to linear dependence in the
running coupling case, Eq. (21). This change significantly
slows down the evolution speed of the dipole scattering
amplitude, which is supported by the HERA data [15,37].

C. Full next-to-leading order Balitsky-Kovchegov
equation and its solution

We know that the rcBK equation mainly considers the
NLO corrections from quark loop contributions. It has been
shown in Ref. [24] that a comprehensive NLO corrections
to the BK equation should include both the contributions
from the quark and gluon loops as well as from the tree
gluon diagrams with quadratic and cubic nonlinearities.
Including all the above mentioned NLO corrections, one
obtains the fNLO BK evolution equation as [24]

∂Sðr; YÞ
∂Y ¼

Z
d2r1K1½Sðr1; YÞSðr2; YÞ − Sðr; YÞ�

þ
Z

d2r1d2r02K2½Sðr1; YÞSðr3; YÞSðr02; YÞ

− Sðr1; YÞSðr2; YÞ�

þ
Z

d2r1d2r02K3½Sðr01; YÞSðr2; YÞ

− Sðr1; YÞSðr2; YÞ�; ð23Þ

where the kernels are
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K1 ¼
ᾱsðr2Þ
2π

r2

r21r
2
2

�
1þ ᾱsðr2Þ

�
b ln r2μ2 − b

r21 − r22
r2

ln
r21
r22

þ 67

36
−
π2

12
−

5Nf

18Nc
−
1

2
ln
r21
r2
ln
r22
r2

��
; ð24Þ

K2 ¼
ᾱ2sðr2Þ
8π2

�
−

2

r43
þ
�
r21r

02
2 þ r021 r

2
2 − 4r2r23

r43ðr21r022 − r021 r
2
2Þ

þ r4

r21r
02
2 ðr21r022 − r021 r

2
2Þ

þ r2

r21r
02
2 r

2
3

�
ln
r21r

02
2

r021 r
2
2

�
; ð25Þ

K3 ¼
ᾱ2sðr2ÞNf

8π2Nc

�
2

r43
−
r021 r

2
2 þ r022 r

2
1 − r2r23

r43ðr21r022 − r021 r
2
2Þ

ln
r21r

02
2

r021 r
2
2

�
: ð26Þ

We use the notation r¼x⊥−y⊥, r1¼x⊥−z⊥, r2¼y⊥−z⊥,
r01 ¼ x⊥ − z0⊥, r02 ¼ y⊥ − z0⊥, and r3 ¼ z⊥ − z0⊥, which are
the transverse size of dipoles. In Eq. (24), b is the first
coefficient of the β function, and μ is the renormalization
scale. To simplify the calculation, we firstly absorb the term
involving the renormalization scale μ into the running
coupling αs, then the terms involving b are absorbed into αs
by using the Balitsky running coupling scheme which was
developed in Ref. [23]. The kernel K1 can be rewritten as

K1¼
ᾱsðr2Þ
2π

�
r2

r21r
2
2

þ 1

r21

�
αsðr21Þ
αsðr22Þ

−1

�
þ 1

r22

�
αsðr22Þ
αsðr21Þ

−1

�

þ ᾱsðr2Þr2
r21r

2
2

�
67

36
−
π2

12
−

5Nf

18Nc
−
1

2
ln
r21
r2
ln
r22
r2

��
: ð27Þ

Note that the Balitsky running coupling prescription

resums all αsβ contributions, especially the term ∼b ln r2
1

r2
2

.

We focus on dipole scattering in the saturation region in
which the unitarity corrections are very important or S
approaches to zero. Thus, one can neglect the nonlinear
terms in Eq. (23). The fNLO BK evolution equation
simplifies to

∂Sðr; YÞ
∂Y ¼ −

Z
d2r1K1Sðr; YÞ: ð28Þ

Let us turn to analytically solve Eq. (28) in either 1=Qs ≪
jr1j ≪ jrj; jr2j ∼ jrj or 1=Qs ≪ jr2j ≪ jrj; jr1j ∼ jrj region
as mentioned in the LO case. If we choose to work in the
first regime, the NLO kernel K1 reduces to

K1 ¼
ᾱsðr21Þ
2πr21

þ ᾱ2sðr2Þ
2πr21

�
67

36
−
π2

12
−

5Nf

18Nc

�
: ð29Þ

Substituting the simplified kernel into Eq. (28), the evo-
lution equation becomes

∂Sðr; YÞ
∂Y ¼ −2

1

2π

Z
r

1=Qs

d2r1

�
ᾱsðr21Þ
r21

þ ᾱ2sðr2Þ
r21

�
67

36
−
π2

12
−

5Nf

18Nc

��
Sðr; YÞ ð30Þ

and has a solution as follows [32]:

Sðr; YÞ ¼ exp

�
−

2BN2
c

3b2cπ2
ln3

Q2
s

Λ2

−
Nc

bcπ

�
ln

�
ln 1

r2Λ2

ln Q2
s

Λ2

�
−
1

2

�
ln2

Q2
s

Λ2

þ BN2
c ln

1
r2Λ2

b2cπ2
ln2

Q2
s

Λ2

�
Sðr; Y0Þ; ð31Þ

where the NLO saturation momentum has the same
definition as Eq. (22) and B ¼ ð67=36 − π2=12 − 5Nf=
18NcÞ= ln2ð1=r2Λ2Þ. Let us look at the solutions in LO
Eq. (5), running coupling Eq. (21), and fNLO Eq. (31), and
compare the variation of these solutions. We can see that
the NLO corrections slow down the evolution speed of the
dipole scattering amplitude, the running coupling effect
(quark loop contribution) makes the exponent of the S
matrix changing from quadratic rapidity dependence to
linear rapidity dependence. However, the full NLO effects,
which include quark loop and gluon loop contributions,
force the linear rapidity dependence back to the rapidity
raised to the power of 3=2 dependence due to gluon loops
bringing part of compensation to offset the decrease; see
Fig. 1 for a diagrammatic depiction.

D. Collinearly improved next-to-leading order
Balitsky-Kovchegov equation and its solution

We would like to point out that although we get an
analytic solution of the fNLO BK equation in the saturation
region, it has been found that the numerical solutions of
the fNLO BK equation in Ref. [16] become unstable for
many values of initial conditions. The dipole amplitude can
decrease with growing energy and can switch to a negative
value, which is in disagreement with the theoretical expect-
ations. It has been shown that the main source for such an
instability comes from a large double-logarithmic contri-
bution [26]. To solve this unstable problem, one needs to
resum double transverse logarithms to all orders under
double logarithmic approximation (DLA). There is also a
large single transverse logarithms (STL) which appear in
the NLO corrections to the BK equation. Such single
logarithms must be kept under control to ensure a good
convergence of the αs expansion. The single and double
logarithmic resummations were done in Refs. [17,26]; they
gave a collinearly improved evolution equation as
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∂Sðr; YÞ
∂Y ≃

Z
d2r1KCI

1 ½Sðr1; YÞSðr2; YÞ − Sðr; YÞ�; ð32Þ

where the collinearly improved kernel is [25]

KCI
1 ¼ KDLAKSTL ᾱsðr2Þ

2π

�
r2

r21r
2
2

þ 1

r21

�
αsðr21Þ
αsðr22Þ

− 1

�

þ 1

r22

�
αsðr22Þ
αsðr21Þ

− 1

��

−
ᾱsðr2Þ
2π

r2

r21r
2
2

�
−ᾱsðr2ÞA1

				 ln r2

minfr21; r22g
				
�

þ ᾱ2sðr2Þr2
2πr21r

2
2

�
67

36
−
π2

12
−

5Nf

18Nc

�
; ð33Þ

with the DLA kernel

KDLA ¼ J1ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ᾱsðr2Þρ2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ᾱsðr2Þρ2
p ≃ 1 −

ᾱsðr2Þρ2
2

þOðᾱ2sÞ ð34Þ

and the STL kernel

KSTL ¼ exp

�
−ᾱsðr2ÞA1

				 ln r2

minfr21; r22g
				
�
: ð35Þ

The constant A1 in above equations comes from the
DGLAP anomalous dimension, the J1 is the Bessel
function with ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln r21=r

2 ln r22=r
2

p
. Note that when

ln r21=r
2 ln r22=r

2 < 0, then an absolute value is used and
the Bessel function J1 turns into I1 [17]. Here, we would
like to note the following several points: (i) we focus on the
physics in saturation region in this paper, thus we neglect
the uninteresting terms in Eq. (32) as compared to Eq. (23);
(ii) the double logarithmic resummation is included in the

DLA kernel, which is to remove the double logarithmic
term from the last line in Eq. (33) in order to avoid double
counting; (iii) the second (subtraction) term in Eq. (33) is
to subtract the α2s part of the single transverse logarithm
included in K2 to avoid double counting; see Ref. [25] for
more detailed discussions about the subtraction term.
Now, let us turn to analytically solve Eq. (32) in the

saturation region in which the quadratic term of S matrix
can be neglected due to very small S. As it was done in
previous subsections, we choose to work in the region,
1=Qs ≪ jr1j ≪ jrj; jr2j ∼ jrj. In this regime, ρ is equal to
zero leading to the DLA kernel KDLA ≃ 1, which corrob-
orates the statement that the double logarithm only impor-
tant in phase space where the scattering is weak [26]. So,
we neglect the quadratic term of S matrix and double
logarithmic corrections, and then Eq. (32) becomes

∂Sðr; YÞ
∂Y ≃ −

Z
d2r1KCI

1 Sðr; YÞ; ð36Þ

with a simplified kernel

KCI
1 ¼ KSTL ᾱsðr2Þ

2π

�
r2

r21r
2
2

þ 1

r21

�
αsðr21Þ
αsðr22Þ

− 1

�

þ 1

r22

�
αsðr22Þ
αsðr21Þ

− 1

��

−
ᾱsðr2Þ
2π

r2

r21r
2
2

�
−ᾱsðr2ÞA1 ln

r2

r21

�

þ ᾱ2sðr2Þr2
2πr21r

2
2

�
67

36
−
π2

12
−

5Nf

18Nc

�
; ð37Þ

whose solution is

Sðr; YÞ ¼ exp

�
−

2BN2
c

3b2cπ2
ln3

Q2
s

Λ2
−
�
Nc

bcπ

�
1þ NcA1

bπ

��
ln

�
ln Q2

s
Λ2

ln 1
r2Λ2

�
−
1

2

�

−
N2

c

b2cπ2

�
A1 þ B ln

1

r2Λ2

��
ln2

Q2
s

Λ2
−
2N2

cA1 ln
1

r2Λ2

b2cπ2
ln
Q2

s

Λ2

�
Sðr; Y0Þ: ð38Þ

If one compares the two solutions Eqs. (31) and (38),
one can find that the dominant terms in the exponent of
the S matrix are the same, which indicates that in the
saturation region the resummations of double and single
transverse logarithms are negligible under the parent
dipole running coupling prescription. However, in the
next section, we shall show that the situation has a
dramatic change once the parent dipole running cou-
pling prescription is replaced by the smallest dipole
prescription.

III. SOLUTIONS TO THE EVOLUTION
EQUATIONS WITH THE SMALLEST DIPOLE

RUNNING COUPLING PRESCRIPTION

In the last section, we discuss the BK evolution equations
with the PDRC prescription. However, recent studies in
Refs. [17,18,38] found that the evolution equation with the
SDRC prescription has been advocated to be the correct
QCD running coupling prescription, since it is favored by
the HERA data at a phenomenological level. It was also
pointed out in Ref. [24] that the proper interpretation of the
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argument of QCD coupling runs according to the size of
the smallest dipole for the BK equation at NLO. In this
section, we start with our discussion on the rcBK evolution
equation, since the coupling of the LO BK evolution
equation is fixed; thus, the argument of the coupling does
not affect the solution of the LO BK equation.

A. Balitsky-Kovchegov equation and its solution
in the running coupling case

As it is shown in Sec. II B that the rcBK equation can be
written as

∂Sðr;YÞ
∂Y ¼

Z
d2r1Krcðr;r1;r2Þ½Sðr1;YÞSðr2;YÞ−Sðr;YÞ�;

ð39Þ

with the Balitsky kernel

Krcðr; r1; r2Þ ¼
Ncαsðr2Þ

2π2

�
r2

r21r
2
2

þ 1

r21

�
αsðr21Þ
αsðr22Þ

− 1

�

þ 1

r22

�
αsðr22Þ
αsðr21Þ

− 1

��
: ð40Þ

Here, in order to clearly see the effect of the coupling
argument, we keep only the running coupling part of the
evolution equation and neglect the subtraction terms in
Eq. (39). Indeed, the subtraction terms are dropped even-
tually, since they are proportion to the square of the S
matrix, while the Smatrix is small in this paper’s interesting
region (saturation regime). We choose to work in the
region, 1=Qs ≪ jr1j ≪ jrj; jr2j ∼ jrj, as done in the pre-
vious section; the Balitsky kernel reduces to [24,31]

Krcðr; r1; r2Þ ¼
Nc

2π2
αsðr21Þ
r21

: ð41Þ

From the above equation, one can see that the argument
of the QCD coupling is the smallest dipole size r1.
Interestingly, the kernel in Eq. (41) is exactly the same
as the one in Eq. (13), which implies that the rcBK kernel
is independent of the choice of the running coupling
prescription in the saturation region. So, the solution of
Eq. (39) is

Sðr; YÞ ¼ exp

�
−

Nc

bcπ
ln2

Q2
s

Λ2

�
ln

�
ln Q2

s
Λ2

ln 1
r2Λ2

�
−
1

2

��
Sðr; Y0Þ;

ð42Þ

which is exactly the same as Eq. (21).

B. Balitsky-Kovchegov equation and its solution
in the full next-to-leading order case

In the fNLO case, the BK evolution equation is given by
Eq. (23). Here, we focus on the physics in the saturation
region in which the S matrix is small; therefore, we neglect
the quadratic terms of the Smatrix, and the fNLO evolution
equation reduces to

∂Sðr; YÞ
∂Y ≃ −2

1

2π

Z
r

1=Qs

d2r1

�
ᾱsðr21Þ
r21

þ ᾱ2sðr21Þ
r21

�
67

36
−
π2

12
−

5Nf

18Nc

��
Sðr; YÞ: ð43Þ

We need to emphasize that the argument of the QCD
coupling in the second term on the right-hand side of the
above equation is the smallest dipole size r1 rather than the
parent dipole size as in Eq. (30). One can see that this
change shall significantly affect the behavior of the dipole
scattering amplitude.
To solve Eq. (43), we use the running coupling at one

loop accuracy which is given by Eq. (12); thus, the equation
becomes

∂Sðr; YÞ
∂Y ¼ −

Z
r2

1=Q2
s

dr21

�
Nc

bπr21 lnð 1
r2
1
Λ2Þ

þ B0N2
c

b2π2r21ln
2ð 1

r2
1
Λ2Þ

�
Sðr; YÞ; ð44Þ

whose solution is

Sðr; YÞ ¼ exp

�
−

Nc

bcπ

�
ln

�
ln Q2

s
Λ2

ln 1
r2Λ2

�
þ B0Nc

bπ ln 1
r2Λ2

−
1

2

�
ln2

Q2
s

Λ2

þ 2B0N2
c

b2cπ2
ln
Q2

s

Λ2

�
Sðr; Y0Þ; ð45Þ

where the saturation momentum is given by Eq. (22) and
B0 ¼ 67=36 − π2=12 − 5Nf=18Nc. By comparing Eq. (45)
with Eq. (31), one can see that in the exponent of S matrix
the rapidity raised to power of 3=2 dependence is replaced
by the linear rapidity dependence once the SDRC pre-
scription is used. The numerical studies in the next section
shall prove this finding. We would like to point out that the
solution of the fNLO BK equation now has a similar linear
rapidity dependence as the one obtained by solving to the
rcBK equation with the SDRC prescription, although the
evolution speed of the scattering amplitude is slightly
rebounded due to the coefficient of the first term in the
exponent becoming larger than the running coupling one.
The rebound is caused by the gluon loop contributions as
we discussed in our previous studies [32].
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C. Collinearly improved Balitsky-Kovchegov equation
and its solution in the full next-to-leading order case

In the saturation region, the NLO BK equation with
resummation, Eq. (32), can be rewritten as

∂Sðr; YÞ
∂Y ¼ −

Z
r2

1=Q2
s

dr21

�
ᾱsðr21Þ
r21

�
1 − ᾱsðr21ÞA1 ln

r2

r21

�

þ ᾱ2sðr21Þ
r21

�
67

36
−
π2

12
−

5Nf

18Nc

��
Sðr; YÞ ð46Þ

under the SDRC description. We need to point out that the
argument of the QCD coupling in the above equation is the
smallest dipole size r1 instead of parent dipole size r, which
gives rise to a great impact on the evolution speed of the
dipole scattering amplitude. Substituting the one loop
running coupling, Eq. (12), into Eq. (46), one gets the
evolution equation as

∂Sðr; YÞ
∂Y ¼ −

Z
r2

1=Q2
s

dr21

�
Nc

bπr21 lnð 1
r2
1
Λ2Þ −

N2
cA1

b2π2r21ln
2ð 1

r2
1
Λ2Þ

þ B0N2
c

b2π2r21ln
2ð 1

r2
1
Λ2Þ

�
Sðr; YÞ; ð47Þ

whose solution is

Sðr; YÞ ¼ exp

�
−

Nc

bcπ

��
1 −

NcA1

bπ

�
ln

�
ln Q2

s
Λ2

ln 1
r2Λ2

�

þ B0Nc

bπ ln 1
r2Λ2

−
1

2
−
3NcA1

2bπ

�
ln2

Q2
s

Λ2

þ 2N2
c

b2cπ2

�
B0 − A1 ln

1

r2Λ2

�
ln
Q2

s

Λ2

�
Sðr; Y0Þ:

ð48Þ

This result deserves several important comments which are
as follows:

(i) One can see that in the exponent the rapidity raised
to power of 3=2 dependence with the PDRC
prescription, Eq. (38), is now replaced by linear
rapidity dependence under the SDRC prescription,
which indicates that the argument of the coupling
plays an important role on the rapidity dependence
of the S matrix.

(ii) By comparing the coefficients of the dominant terms
between Eqs. (45) and (48), one can find that in the
saturation region the resummation of single trans-
verse logarithms takes a significant effect on the
suppression of the evolution of the scattering am-
plitude, although the resummation of the double
logarithmic corrections has a negligible effect on it.
This finding is supported by the numerical results
performed in the next section.

(iii) We can see that under the SDRC prescription all the
solutions of the NLO BK equation, Eqs. (42), (45),
and (48), have linear rapidity dependence in the
exponent of the S matrix, while under the parent
dipole prescription only the solution of the rcBK
equation, Eq. (21), has linear rapidity dependence
and the other two solutions, Eqs. (31) and (38), have
the rapidity raised to power of 3=2 dependence; see
Fig. 1 for a diagrammatic depiction. These results
imply that the running coupling corrections (quark
loop corrections) is a dominant effect over all the
other NLO corrections, like gluon loop corrections,
in the suppression of the evolution of the dipole
scattering amplitude in the saturation region.

To conclude, we can see from the above discussion that
the prescription of the QCD running coupling has a strong
impact on the rapidity dependence of the S matrix. The
SDRC prescription takes a dramatic suppression on the
evolution speed of the dipole scattering amplitude, which is
favored by HERA data [18,38] and satisfies the theoretical
expectations [24].

IV. NUMERICAL ANALYSIS

In this section, we perform the numerical studies to the
NLO BK evolution equations in order to test the analytic
solutions obtained in the above sections. The translational
invariant approximation is used in our numerical studies;
we suppose that the scattering matrix is independent of
the impact parameter of the collision, S ¼ Sðjrj; YÞ. The
evolution equations are complicated integrodifferential
equations, but they can numerically straightforward solve
on a lattice. The variable r is discretized into 800 points
which are equally separated in the logarithmic space
between rmin ¼ 10−8 GeV−1 and rmax ¼ 50 GeV−1. We
solve these equations by using the GNU Scientific Library.
To be more specific, the Runge-Kutta method with a step
size in rapidity ΔY ¼ 0.1 is used to solve the differential
equations; all the integrals are performed using adaptive
integration routines, and the cubic spline interpolation
method is employed to interpolate the data points.
To solve the evolution equations, we use the McLerran-

Venugopalan model as the initial condition [39],

NMVðr; Y ¼ 0Þ ¼ 1 − exp

�
−
r2Q2

sðYÞ
4

ln

�
1

r2Λ2
þ e

��
;

ð49Þ

where we set QsðYÞ ¼ 1 at Y ¼ 0, and put Λ ¼ 0.2 GeV.
For the running coupling αsðr2Þ in the evolution equations,
we use the one-loop running coupling, Eq. (12), with
Nf ¼ 3. We freeze the coupling to a fixed value αsðrfrÞ ¼
0.75 for larger dipole size, r > rfr, to regularize the infrared
behavior.
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The left-hand panel of Fig. 2 shows the solutions of the
fNLO BK equation as a function of the dipole transverse
size in the cases of PDRC and SDRC prescriptions for five
different rapidities. To clearly show the numerical solutions
in the saturation region, we plot a zooming in diagram in
Fig. 2. By comparing the fNLO dipole scattering ampli-
tudes with these two different prescriptions, we can see that
the amplitudes with the SDRC prescription are smaller than
the ones with the PDRC prescription, respectively. This
numerical result is in agreement with the analytic finding,
Eq. (45) in Sec. III B, in which the rapidity raised to power
of 3=2 dependence in the exponent of the S matrix is
replaced by the linear rapidity dependence once the SDRC
prescription is used. The right-hand panel of Fig. 2 gives
the comparison between the solutions of fNLO BK
equation and collinearly improved NLO BK equation
(including a resummation of large single and double
transverse logarithms) with the SDRC prescription for five
different rapidities. We would like to note that the inner
zooming in diagram is to clearly show the corresponding
solutions in the saturation region. One can see that the
evolution of the dipole scattering amplitude is significantly
slowed down by the resummation corrections. This out-
come supports the analytic results in Sec. III B, where the
amplitude, Eq. (48), is suppressed by the resummation
corrections as compared to the one, Eq. (45), without
resummations.
The left-hand panel of Fig. 3 gives the solutions of the rc

and fNLO BK equations as a function of the dipole size
with the SDRC prescription for five different rapidities. By
comparing the corresponding dipole scattering amplitudes
between the rc and fNLO cases for each rapidity, we can see
that the fNLO scattering amplitude is larger than the

running coupling one, which indicates that the gluon loop
effect compensates part of decrease made by quark loop
effect (running coupling effect). The outcomes is similar as
the findings in our previous paper [32] in which the
solution was calculated with the PDRC prescription.
One can see that the gluon loop has a rebound effect
regardless of which running coupling prescription is used.
However, we would like to point out that the compensation
to the decrease of the dipole scattering amplitude in the
SDRC prescription is less than the parent dipole case.
In other words, the SDRC prescription slows down the
evolution speed of the dipole scattering amplitude more
than the PDRC prescription, which is consistent with the
phenomenological desire [17]. The right-hand panel of
Fig. 3 shows the dipole scattering amplitudes in the rcBK
case and the collinearly improved NLO BK (resummations
of single and double transverse logarithms) for five differ-
ent rapidities in the case of the SDRC prescription. If one
compares the corresponding amplitudes between two cases,
respectively, one finds that the amplitude is dramatically
suppressed by the resummation corrections, especially by
the resummation of single logarithm. The resummation of
the single logarithm takes effect not only in the non-
saturation region but also in the saturation region (see the
zooming in diagram on the right-hand panel of Fig. 3); it is
unlike the resummation of double logarithm which takes a
negligible effect in the saturation region [32].
To show the rapidity dependence of the saturation

momentum, we extract the values ofQs from the numerical
solutions presented in Figs. 2 and 3 and the analytic
solutions in Eqs. (5), (31), (45), and (48) via the definition
Nðr ¼ 1=QsðYÞ; YÞ ¼ κ, with κ to be a constant of order 1.
The corresponding results are given by Fig. 4, where all

FIG. 2. Numerical solutions to the fNLO and collinearly improved NLO BK equations with the PDRC and the SDRC prescriptions for
five different rapidities. The left-hand panel gives the comparison of the amplitudes between two different running coupling
prescriptions. The right-hand panel gives the comparison of the amplitudes with and without resummation corrections. The inner
diagrams are the zooming in amplitudes in the saturation region.
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solid lines represent the saturation momentum extracting
from numerical solutions, and all dashed lines denote the
saturation scale resulting from the analytic solutions. By
comparing analytic lines with the numerical lines in Fig. 4,
one can see that they coincide with each other especially at
high rapidities, which indicate the analytic method used in
the paper is valid. In addition, one can see from Fig. 4 that
the LO saturation momentum (ANA LO BK) has the fastest
growth with the rapidity, and the collinearly improved
fNLO saturation momentum (ANA fNLOþ DLAþ STL

BK w/ SDRC) has the slowest growth with the rapidity.
This outcome means that the NLO effects significantly
suppress the evolution speed of the saturation momentum,
which is consistent with the theoretical expectations.

V. RARE FLUCTUATIONS OF THE S MATRIX
WITH THE SMALLEST DIPOLE RUNNING

COUPLING PRESCRIPTION

We have studied in Refs. [31,35] that the rare fluctua-
tions can play an important effect in the suppression of the
evolution speed of the dipole scattering amplitude in the
saturation region. It was shown that in the case of fixed
coupling (LO) the exponential factor of the S matrix
without the rare fluctuation effect is twice as large as the
result when the rare fluctuations are taken into account
[40]. We also demonstrated that in the saturation regime the
exponential factor of the fNLO S matrix is

ffiffiffi
2

p
as large as

the result which emerges when the rare fluctuation effects
are considered. Although it seems that the rare fluctuations
are important in the LO and fNLO BK cases, our studies
showed that in the rcBK case the rare fluctuations take a
tiny effect in the suppression of the evolution speed of the
dipole scattering amplitude; thus, they can be ignored. We
need to point out that all just aforementioned running
couplings used the PDRC prescription. In this study, we
want to see if one switches the QCD running coupling
prescription of the NLO BK equations to the SDRC
prescription, whether the rare fluctuations are still impor-
tant or not in the suppression of the evolution speed of the
dipole amplitude. In this section, we only present the rare
fluctuations of the Smatrix on top of the fNLO effect in the
center of mass frame, since the relevant results are exactly

FIG. 4. The rapidity dependence of the saturation momentum.
Qs is extracted from the numerical (NUM) solutions plotted in
Figs. 2 and 3 and the analytic (ANA) solutions in Eqs. (5), (31),
(45), and (48) via the definition Nðr ¼ 1=QsðYÞ; YÞ ¼ 0.5.
All solid lines represent Qs coming from numerical calculations,
while all dashed lines give Qs resulting from analytic compu-
tations.

FIG. 3. Numerical solutions to the rc and fNLO BK equations with the SDRC prescription for five different rapidities. The left-hand
panel gives the comparison of the amplitudes with the running coupling and fNLO corrections. The right-hand panel gives the
comparisons between the collinearly improved amplitudes and running coupling modified amplitudes. The inner diagrams are the
zooming in amplitudes in the saturation region.

HIGH-ENERGY ASYMPTOTIC BEHAVIOR OF THE S MATRIX … PHYS. REV. D 101, 076005 (2020)

076005-11



the same when one works in a general frame; please see the
Appendix.
Following the framework of Ref. [40], we consider a high-

energy scattering of a left-moving dipole on a right-moving
dipole at zero impact parameter in the center of mass frame.
We let the right-moving and left-moving dipoles have
normal Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution
[41,42] in the rapidity intervals 0 < y < Y0=2 and
−Y0=2 < y < 0, respectively. In order to produce the rare
configuration, we need to constrain the rapidity evolution of
the system in such a way that the wave functions of the right-
moving and left-moving dipoles consist of only parent dipole
with size r0 in the rapidity intervals Y0=2 < y < Y=2 and
−Y=2 < y < Y0=2, respectively. However, the aforemen-
tioned constraint of the evolution is a optimal case which
cannot be obtained in a real dipole scattering, since one
cannot require that all the evolutions are absent. What we can
do is to only allow the evolutions to produce dipoles with
size much smaller than r0 in order to avoid the daughter
dipoles evolving into ones with similar size as r0 in
intermediate rapidities; see Fig. 5. We require that the gluon
emission from the parent dipoles, as part of the evolution
which forms the left- and right-moving states which scatter
on each other, is forbidden if the gluon has k⊥ and y lying in
the shaded triangles of Fig. 5. The upper line in Fig. 5 is
determined by the requirement that gluons on the right-hand
side of that line cannot evolve by normal BFKL evolution
into shaded triangle,

lnðk⊥r20Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

�
y −

Y0

2

�s
; ð50Þ

and the same requirement is applied to the lower line.
According to the above description, one knows that the

probability of rare configuration Sðr; Y − Y0Þ satisfies the
evolution equation [31,35,40]

∂
∂Y Sðr; Y − Y0Þ ¼ −

Z
d2r1KfNLOðr; r1; r2ÞSðr; Y − Y0Þ;

ð51Þ

with the kernel

KfNLO ¼ ᾱsðr21Þ
2πr21

þ ᾱ2sðr21Þ
2πr21

�
67

36
−
π2

12
−

5Nf

18Nc

�
; ð52Þ

whose solution of Eq. (51) is

Sðr; Y − Y0Þ ¼ exp

�
−

Nc

bcπ

�
ln

�
ln Q2

s
Λ2

ln 1
r2Λ2

�
þ B0Nc

bπ ln 1
r2Λ2

−
1

2

�
ln2

Q2
s

Λ2
þ 2B0N2

c

b2cπ2
ln
Q2

s

Λ2

�
; ð53Þ

with B0 ¼ 67=36 − π2=12 − 5Nf=18Nc. Note that Eq. (53) is derived by using the SDRC prescription instead of the PDRC
prescription, since we focus on studying the rare fluctuation effects of the S matrix in the case of the SDRC prescription in
this study.
To obtain the S matrix including the rare fluctuations in the center of mass frame, we need to compute

Sðr; YÞ ¼ S
�
r;
Y − Y0

2

�
S
�
r;
Y − Y0

2

�
Sðr; Y0Þ; ð54Þ

then the S matrix can be calculated as

FIG. 5. A next-to-leading order rare configuration in the center
of mass frame.
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Sðr; YÞ ¼ S

�
r;
Y − Y0

2

�
S

�
r;
Y − Y0

2

�
Sðr; Y0Þ

¼ exp

8<
:−

2Nc

bcπ

�
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
cðY−Y0Þ

2

q
ln 1

r2Λ2

�
þ B0Nc

bπ ln 1
r2Λ2

−
1

2

�
cðY − Y0Þ

2
þ 4B0N2

c

b2cπ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðY − Y0Þ

2

r 9=
; × Sðr; Y0Þ

¼ exp

8<
:−

Nc

bcπ

�
ln

� ffiffi
2

p
2
ln Q2

s

Λ2

ln 1
r2Λ2

�
þ B0Nc

bπ ln 1
r2Λ2

−
1

2

�
ln2

Q2
s

Λ2
þ 2

ffiffiffi
2

p
B0N2

c

b2cπ2
ln
Q2

s

Λ2

9=
; × Sðr; Y0Þ: ð55Þ

If one compares Eq. (55) with Eq. (45), one can find that
the dominant terms in the exponent of the S matrix are
almost same, which indicates that the rare fluctuations are
not important in the case of the SDRC prescription. Thus,
the rare fluctuation effects can be neglected when one
works with the SDRC prescription. It is simple to find that
the rare fluctuations are also not important in the collinearly
improved NLO BK case if one uses the SDRC prescription
instead of the PDRC prescription. However, it is necessary
to remind that we found a 1=

ffiffiffi
2

p
suppression to the

exponential factor of the S matrix when the rare fluctua-
tions are taken into account in our previous studies [35],
where the PDRC prescription was used.
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APPENDIX: RARE FLUCTUATIONS OF THE
S MATRIX IN A GENERAL FRAME

To ensure the relevant results of the S matrix are
independent of the frame choice, we study the rare
fluctuations of the S matrix on top of the full NLO
corrections with the SDRC description in a general frame.
We let a right-moving dipole with size r0 and rapidity
Y − Y2 scattering off a left-moving dipole with size r1 and
rapidity −Y2; see Fig. 6 for the scattering picture. For later
convenience, we assume Y2 ≤ ðY − Y0Þ=2, where Y0 is the
rapidity difference between the two scattering dipoles at the
“time” of the onset of unitarity corrections. Since we

suppose that Y2 ≤ ðY − Y0Þ=2, it indicates that the left-
moving dipole takes the smaller rapidity. Thus, it is easy to
suppress its evolution. We do not allow any additional
daughter dipoles created by gluon emission, which means
that we have to suppress the emission of those dipoles
which, after a normal BFKL evolution during the inter-
mediate rapidities −Y2 < y < 0, could become of size
1=Qs or larger. Therefore, we require that the gluon
emission is forbidden if the gluon has k⊥ and y lying in
the lower shaded triangle of Fig. 6. For the right-moving
dipole, we suppress the evolution in such a way that the
gluons laying on the right-hand side of the line,

lnðk2⊥r20Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðy − Y1 − Y0Þ

p
; ðA1Þ

cannot evolve into the upper shaded triangle in Fig. 6
through normal BFKL evolution in the rapidity interval
Y1 þ Y0 < y < Y − Y2. We let the parent dipole undergo a

FIG. 6. A next-to-leading order rare configuration in a general
frame.
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normal evolution during Y1 < y < Y0 þ Y1, where Y1 is determined by maximizing the S matrix later. The unshaded
triangle, 0 < Y < Y1, denotes the saturation region where the right-moving dipole has already evolved into
a CGC state.
In terms of the scattering picture depicted above, we can calculate the rare fluctuations of the Smatrix on top of the NLO

corrections as [35]

Sðr0; r1; YÞ ¼ SRðr0; Y − Y0 − Y1 − Y2ÞSðr0; r1; Y0 þ Y1ÞSLðr1; Y2Þ; ðA2Þ

where the S is the Smatrix of an elementary dipole scattering off a CGC. The S can be computed by using the full NLO BK
equation with SDRC prescription. After using Eq. (45), one gets

Sðr0; r1; Y0 þ Y1Þ ¼ exp

�
−

Nc

bcπ

�
ln

� ffiffiffiffiffiffiffiffi
cY1

p
ln 1

r2Λ2

�
þ B0Nc

bπ ln 1
r2Λ2

−
1

2

�
cY1 þ

2B0N2
c

b2cπ2
ffiffiffiffiffiffiffiffi
cY1

p �
Sðr; Y0Þ: ðA3Þ

Now, we turn to compute the suppression factors, SR, and SL, which denote no gluon emission from the right-moving and
left-moving dipoles, and can be estimated in terms of the area of the upper and lower shaded triangles in Fig. 6 [35,40],

SRðr0; Y − Y0 − Y1 − Y2Þ ¼ exp

�
−

Nc

bcπ

�
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðY − Y0 − Y1 − Y2Þ

p
ln 1

r2Λ2

�
þ B0Nc

bπ ln 1
r2Λ2

−
1

2

�

× cðY − Y0 − Y1 − Y2Þ þ
2B0N2

c

b2cπ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðY − Y0 − Y1 − Y2Þ

p �
ðA4Þ

and

SLðr1; Y2Þ ¼ exp

�
−

Nc

bcπ

�
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðY1 þ Y2Þ

p
ln 1

r2Λ2

�
þ B0Nc

bπ ln 1
r2Λ2

−
1

2

�
cðY1 þ Y2Þ þ

2B0N2
c

b2cπ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðY1 þ Y2Þ

p

þ Nc

bcπ

�
ln
� ffiffiffiffiffiffiffiffi

cY1

p
ln 1

r2Λ2

�
þ B0Nc

bπ ln 1
r2Λ2

−
1

2

�
cY1 −

2B0N2
c

b2cπ2
ffiffiffiffiffiffiffiffi
cY1

p �
: ðA5Þ

By substituting Eqs. (A3)–(A5) into Eq. (A2), we get

Sðr0; r1; YÞ ¼ exp

�
−

Nc

bcπ

�
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðY − Y0 − Y1 − Y2Þ

p
ln 1

r2Λ2

�
þ B0Nc

bπ ln 1
r2Λ2

−
1

2

�
cðY − Y0 − Y1 − Y2Þ

þ 2B0N2
c

b2cπ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðY − Y0 − Y1 − Y2Þ

p
−

Nc

bcπ

�
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðY1 þ Y2Þ

p
ln 1

r2Λ2

�
þ B0Nc

bπ ln 1
r2Λ2

−
1

2

�
cðY1 þ Y2Þ

þ 2B0N2
c

b2cπ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðY1 þ Y2Þ

p �
Sðr; Y0Þ; ðA6Þ

where the unknown variable Y1 can be determined by maximizing the S matrix, or equivalently via minimizing of the
exponent of Eq. (A6). One gets

Y1 ¼
1

2
ðY − Y0Þ − Y2: ðA7Þ

We substitute Y1 into Eq. (A6) and obtain

Sðr; YÞ ¼ exp

�
−

Nc

bcπ

�
ln

� ffiffi
2

p
2
ln Q2

s

Λ2

ln 1
r2Λ2

�
þ B0Nc

bπ ln 1
r2Λ2

−
1

2

�
ln2

Q2
s

Λ2
þ 2

ffiffiffi
2

p
B0N2

c

b2cπ2
ln
Q2

s

Λ2

�
× Sðr; Y0Þ; ðA8Þ

which is exactly the same as Eq. (55) obtained in the center of mass frame.
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