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We demonstrate that solitons of a simple real scalar field model that are static and linearly stable do exist
when considered in a (3þ 1)-dimensional, spatially compact space-time background, the static Einstein
universe, which is a good approximation to the observed Universe for sufficiently small time intervals. We
study the properties of these solutions for a Φ4-potential and demonstrate that next to the fundamental
solutions, excited configurations exist. We also investigate general perturbations about the solitons,
determine their eigenfrequency spectra, and compare them to those of the perturbations about the vacua of
the model. We find that the degeneracy with respect to the multipoles of the perturbation, which is present
for the vacua, no longer exists in the presence of the soliton. Moreover, specific perturbations correspond to
zero modes of the system. Our results have applications in condensed matter physics as well as
computations of quantum effects (e.g., the Casimir energy) in spatially compact space-times in the presence
of solitonlike objects.
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I. INTRODUCTION

After the discovery [1,2] of the Englert-Brout-Higgs-
Guralnik-Hagen-Kibble boson [3–5] in 2012, a fundamen-
tal scalar field in nature, the study of scalar fields in diverse
contexts of physics has become of interest again. Scalar
fields had previously been present in a number of high and
low energy physics models, such as in the theory of
inflation in the primordial universe that is supposed to
be driven by a slow-roll scalar field, as well as in condensed
matter, where collective phenomena are often effectively
described by a scalar field. The typical example for the
latter case is the Ginzburg-Landau model [6] describing
superconductivity.
So-called solitonic solutions of these field theory models

are of particular interest, especially due to their possible
interpretation as relativistic particles [7]. The existence of
such configurations is limited by some important features
of the model, e.g., its integrability [8] and/or the existence
of a topological degree characterizing the field as a
topological soliton [9]. Besides, important restrictions

are imposed by the dimensionality of space and the types
of fields which are present in the model with the possibility
of finding a static solitonic solution; this is given by
Derrick’s theorem [10]. For theories in (dþ 1)-dimensional
Minkowski space-time with only scalar fields and no terms
involving derivatives higher than second order, this theo-
rem predicts that only in d ¼ 1 or d ¼ 2 can static solitons
be found. However, even in flat space-time, there are ways
to evade this theorem, as in the case of Q-balls [11–13],
which are nontopological solitonic scalar field configura-
tions that exist in more than one spatial dimension and
possess a time-dependent phase. In (3þ 1)-dimensional
Minkowski space-time, the scalar field model needs (at
least) a sixth order self-interaction potential for Q-balls to
exist [13–16]. When extending these models to curved
space-time, self-gravitating counterparts of Q-balls, so-
called boson stars exist [15–21]. In curved space-time, no
general direct extension of Derrick’s theorem seems to
restrict the solitonic solutions, and the possibility of finding
them is open for exploration, although there has been recent
progress for asymptotically flat space-times [22].
In this paper, we study a real scalar field model in a

(3þ 1)-dimensional Einstein universe which is spatially
compact. This model was previously studied in [23], but
only for one very specific case. The Einstein universe
describes a universe filled with a perfect fluid that has
positive energy density and vanishing pressure. In addition,
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there is a positive cosmological constant that allows for
the existence of a static solution to the Einstein equation.
While it is well known that the Universe is acceleratingly
expanding and, as such, contains a substantial amount of
dark energy that can mathematically be described by a
positive cosmological constant, the Einstein universe is
often used as an approximation to the “real Universe” for
sufficiently small time intervals, which makes, e.g., com-
putations of quantum states feasible (see, e.g., [24–27]).
Moreover, the compactness of this space-time is of interest
in condensed matter physics, in particular, in Bose-Einstein
condensation (see, e.g., [28–31]) since it is well known that
the geometry of a finite system plays an important role in
the thermal behavior of the bosons and the actual con-
densation process.
Here, we extend the analysis of [23] considerably to show

that additional solutions with interesting properties exist.
Moreover, we study general linear perturbations about these
solutions and compute the eigenfrequency spectra. The
outline of our manuscript is as follows. We give the model
in Sec. II, while we discuss the numerical solutions of
themodel in Sec. III. In Sec. IV, we present our results on the
eigenfrequency spectra of the perturbations about the
solutions obtained in Sec. III. We conclude in Sec. V.

II. THE MODEL

We study a self-interacting scalar field model in (3þ 1)
dimensions with action given by

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
∂μΦ�∂μΦ−VðjΦjÞ

�
;

VðjΦjÞ ¼ λ

4
ðjΦj2−η2Þ2; ð1Þ

where g denotes the determinant of the metric tensor gμν of
the (3þ 1)-dimensional space-time background, which we
assume to be nondynamical. The self-coupling constant λ is
chosen positive such that the potential is positive definite,
i.e., has its lowest value V ≡ 0 at what we will refer to as
the “vacua” in the following, i.e., at jϕj0 ¼ �η. A priori, we
allow the scalar field to be complex valued, and hence the
star denotes complex conjugation.
The equation of motion following from the variation of

the action (1) with respect to the scalar field reads

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p ∂μΦÞ − 2
∂V
∂jΦj2 Φ ¼ 0

⇒
1ffiffiffiffiffiffi−gp ∂μð

ffiffiffiffiffiffi
−g

p ∂μΦÞ − λðjΦj2 − η2ÞΦ ¼ 0; ð2Þ

while we assume the space-time background to be fixed. In
the following, we will choose the static Einstein universe
[32] with metric

ds2 ¼ −dt2 þ R2
0½dχ2 þ sin2 χðdθ2 þ sin2 θdφ2Þ�; ð3Þ

where the coordinates ðt; χ; θ;φÞ have the following ranges:
t ∈� −∞∶∞½, χ ∈ ½0∶π�, θ ∈ ½0∶π�, φ ∈ ½0∶2π½. Constant
t-sections are three-spheres with radius R0; i.e., the top-
ology of this compact space-time is R × S3. The metric
given by Eq. (3) is a Friedman-Lemâitre-Robertson-Walker
(FLRW) space-time and a solution to the Einstein equation
Gμν þ Λgμμ ¼ 8πdiagðρ;−p;−p;−pÞ, where ρ ¼ Λ=4,
p ¼ 0 are the energy-momentum components of a perfect
fluid with energy density ρ and pressure p. Moreover, the
cosmological constant Λ ¼ R−2

0 is positive. While the
observed Universe is known to be accelerately expanding,
the Einstein universe is normally considered a good
approximation to the FLRW space-time in sufficiently
small time intervals and has frequently been considered
in computations of the quantum vacuum energy in the
Universe (see, e.g., [25]).
In the following, we will demonstrate that next to the

vacuum solution jΦj0 ≡�η, this model contains nontrivial,
localized, and static solutions that resemble kinks and
antikinks. In the following, we will hence assume that
Φðr⃗; tÞ ∼ ϕðχÞ, i.e., that the scalar field depends only on χ.
Note that in Minkowski space-time the existence of real,
static scalar field solutions of this simple model is for-
bidden by Derrick’s theorem [10]. Moreover, in a curved
space-time background, solutions do not exist if the space-
time is asymptotically flat [22]. However, in the spatially
compact space-time that we are studying here, the addi-
tional length scale—the radius of the three-sphere R0—
leads to the existence of solitonic solutions. This was
shown in [23] for the Φ4-potential, albeit only for one
specific value of the radius (in relation to the mass of the
scalar field). Note that scalar field solitons on an S3, i.e., in
a compact space, were also studied previously in a non-
linear sigma model [33].
With these assumptions, the nonvanishing components

of the energy-momentum tensor Tμν ¼ gμνL − 2 ∂L
∂gμν read

Tt
t ¼Tθ

θ ¼Tφ
φ ¼−

1

2

ϕ02

R2
0

−VðϕÞ; Tχ
χ ¼ 1

2

ϕ02

R2
0

−VðϕÞ; ð4Þ

where the prime now and in the following denotes the
derivative with respect to χ. The energy density of the
solutions is given by ε ¼ −Tt

t, and associating the Noether
charge related to the time-translation invariance to the total
conserved energy E of the solution, we can write

E ¼
Z

d3x
ffiffiffiffiffiffi
−g

p
ε

¼ 4πR3
0

Z
π

0

dχ sin2 χ

�
1

2

ϕ02

R2
0

þ λ

4
ðϕ2 − η2Þ2

�
: ð5Þ

As is obvious from the expression, we do not need to
require the solutions to tend to the vacua of the potential to
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obtain finite energy solutions, which would be necessary in
Minkowski or asymptotically Minkowski space-time. In
fact, we will show below that the values of ϕðχ ¼ 0Þ and
ϕðχ ¼ πÞ, respectively, depend solely on the ratio between
R0 and the relevant length/mass scale in the model.

III. NONTRIVIAL SOLUTIONS

Rescaling ϕðχÞ → ηϕðχÞ, the equation of motion for the
scalar field reads

ϕ00 þ 2 cot χϕ0 − αϕðϕ2 − 1Þ ¼ 0; ð6Þ

where α ¼ λη2R2
0 is the only dimensionless parameter and

corresponds to the ratio between the radius of the three-
sphere and the core radius of the solution ∼ð ffiffiffi

λ
p

ηÞ−1.
Equation (6) cannot be solved analytically requiring non-
triviality. We have hence employed a numerical technique
[34] and used the following boundary conditions to insure
regularity of the solutions at χ ¼ 0 and χ ¼ π:

ϕ0ðχ ¼ 0Þ ¼ ϕ0ðχ ¼ πÞ ¼ 0: ð7Þ

Equation (6) was solved numerically in [23]—however,
only for a very specific value of α≡ 4. In the following, we
will discuss the behavior of the solutions for generic values
of α and refer to solutions tending from a positive value at
χ ¼ 0 to a negative value at χ ¼ π as antikinks, while the
corresponding kinks are obtained easily by letting ϕ → −ϕ,
which is clearly a symmetry of Eq. (6).
The dimensionless energy density ε̃ and dimensionless

energy Ẽ of the solutions then reads

ε̃ ¼ 1

2
ϕ02 þ α

4
ðϕ2 − 1Þ2; Ẽ ¼ 4π

Z
π

0

dχsin2χε̃; ð8Þ

with ε ¼ η2ε̃=R2
0 and E ¼ R0η

2Ẽ, respectively.
Note that Eq. (6) can be rewritten in the following form:

ϕ02

2
−
α

4
ðϕ2 − 1Þ2 ¼ C − 2

Z
χ

0

cot χ̃ϕ02dχ̃; ð9Þ

where C is an integration constant. One can construct a
mechanical analog of this equation by considering χ to be
“time” and ϕ the position describing a particle moving
along a trajectory ϕðχÞ. Then the left-hand side of Eq. (9)
can be interpreted as the sum of kinetic and potential energy
UðϕÞ ¼ − α

4
ðϕ2 − 1Þ2 of this particle, with C being the

“energy” and the integral term on the right-hand side a
friction term. The presence of this friction term is essential
for the existence of the nontrivial solutions that we
will present below. In Fig. 1, we show UðϕÞ for different
values of α. This indicates—taking the periodicity of the
χ-direction into account—what type of solutions are
possible. In contrast to flat space-time, the value of ϕðχÞ

has to be “fine-tuned” with respect to α because α
determines the slope of the potential, i.e., the value of ϕ0
and hence the value of the friction term in Eq. (9).
Moreover, ϕðχ¼ 0Þ≠ 1 for α finite because we have the
additional condition that ϕðχ ¼ 0Þ ¼ �ϕðχ ¼ πÞ due to
periodicity (see below for more details). In other words, for
the particle to roll back to�ϕðχ ¼ 0Þ in a given α-potential
(which possesses increased slope when α increases), we
have to choose ϕðχ ¼ 0Þ appropriately. Moreover, Fig. 1
indicates that given enough “initial energy,” i.e., starting at
ϕðχ ¼ 0Þ sufficiently large, the particle can role back to
ϕðχ ¼ πÞ ¼ ϕðχ ¼ 0Þ and, additionally, oscillate a number
of times around ϕ ¼ 0; i.e., we would expect configura-
tions whose shape resembles that of a pair of antikink kinks
as well as excited kinks and antikink kinks, respectively, to
exist as well. Our numerical results below show that these
solutions do indeed exist in this model. It is clear that the
existence of these solutions is fundamentally linked to the
periodicity of the χ-direction as well as to the fact that we
are in three spatial dimensions.

A. Fundamental kinks and antikinks

The antikinks of the ϕ4-model have been constructed in
[23] for α ¼ 4. In Fig. 2, we show the solutions to the
model for different values of α as well as the corresponding
energy densities ε̃. This figure demonstrates that the value
of ϕð0Þ is a function of α. In fact, when varying the value of
α, we observe that the solutions exist only to a minimal,
nonvanishing value of α ¼ αmin;1, which we find numeri-
cally to be αmin;1 ¼ 3. The reason for this is that the value of
ϕðχ ¼ 0Þ is a decreasing function of α and, for α suffi-
ciently small, the kinks cease to exist. This is also obvious

FIG. 1. We show the potential UðϕÞ ¼ − α
4
ðϕ2 − 1Þ2 [see the

discussion below Eq. (9)], in which the “particle” would move on
a “trajectory” ϕðχÞ under the influence of a friction term for
different values of α.
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when considering the plots of the energy density ε̃. For
decreasing α, the energy density spreads over the χ-
direction and becomes equivalent to zero for α ¼ αmin;1.
This is related to the fact that α is the ratio between the
width of the kink and the radius of the S3 sphere. So, one
would naturally expect that solutions exist only for a radius
larger than the width of the kink. This is shown in Fig. 3,
where we give the value of ϕðχ ¼ 0Þ in dependence of the
coupling α. Clearly for α < αmin;1 ¼ 3 we find that ϕð0Þ ¼
0 and hence ϕðχÞ≡ 0. Increasing α from this value, we find
that ϕð0Þ increases up to ϕð0Þ ¼ 1, which it reaches
roughly when α ¼ Oð100Þ.
The limit of α → ∞ corresponds to the limit of flat,

(3þ 1)-dimensional Minkowski space-time. The existence
of nontrivial, real scalar field solutions is forbidden by
Derrick’s theorem in this case. The approach to this limit
can also be seen in Fig. 2 and is confirmed by our numerics:
for α → ∞, the value of ϕð0Þ → 1, but at the same time, the
function ϕðχÞ has an increasing derivative at χ ¼ π=2. In

the limit α → ∞, we expect that ϕðχÞ ¼ 1 for χ ∈ ½0∶π=2½,
ϕðπ=2Þ ¼ 0, and ϕðχÞ ¼ −1 for χ ∈�π=2∶π� with an
infinite derivative of ϕ and hence an infinite value of the
energy density ε̃ at χ ¼ π=2.

B. Kinks and antikinks

Next to the fundamental kink solution described in
Eq. (3.1) for which ϕðχ¼0Þ¼−ϕðχ¼πÞ, we have con-
structed solutions of Eq. (6) fulfilling ϕðχ¼ 0Þ¼ϕðχ¼ πÞ.
The latter solutions have two nodes in the profile function
ϕðχÞ. Using the notation of solutions of the ϕ4-model in
(1þ 1) dimensions, we refer to these solutions as kinks and
antikinks. In Fig. 4, we show an example of such a solution
for α ¼ 10 together with the energy density ε̃.
The dependence of the value of the scalar field function

ϕðχ ¼ 0Þ on α is shown in Fig. 3. Obviously, we need to
choose the ratio between the width of the kink or antikink
and the radius of the three-sphere larger to obtain these
solutions. We find that at αmin;2¼8, the value of ϕðχ¼ 0Þ→
0 for these solutions; i.e., kinks and antikinks exist only
for α ≥ 8.

C. m-excited kinks and kinks and antikinks

Next to the solutions described in Eqs. (3.1) and (3.2), we
have constructed excited solutions of the former that differ in
the number of nodes of the scalar field functionϕðχÞ. This is
shown in Fig. 5, where we give examples of first excited
antikink and the first excited kink-antikink solutions,
respectively. Figure 3 further demonstrates that first excited
antikinks exist only for α ≥ 15, i.e., αmin;3 ¼ 15, while first
excited kinks and antikinks exist only for α ≥ 24, i.e.,
αmin;4 ¼ 24. The behavior of αmin;m can be explained easily

FIG. 2. We show the profile of the function ϕðχÞ in (left panel)
the ϕ4-model as well as (right) the energy density ε̃ of these
solutions for different values of α.

FIG. 3. We show the value of ϕðχ ¼ 0Þ≡ ϕð0Þ as a function of
α for the fundamental antikink solution (m ¼ 1) and the kink or
antikink (m ¼ 2) as well as the first excited antikink (m ¼ 3) and
the first excited kink or antikink (m ¼ 4), respectively.
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when considering the small ϕ limit of Eq. (6). In this limit,
we can drop the ϕ3 term and the equation becomes linear.
Changing coordinates to z ¼ cos χ, the equation then
becomes a hypergeometric equation that has regular sol-
utions in the form of Gegenbauer polynomials if

αm ¼ mðmþ 2Þ; m ¼ 1; 2; 3; 4;…: ð10Þ

This relation gives exactly the values of αmin;m that we find
numerically when ϕðχ ¼ 0Þ → 0.

IV. PERTURBATIONS AND THEIR SPECTRA

The aim of our study of perturbations around the
constructed solutions is twofold: (a) since no-go theorems
related to real scalar field solitons often require the addi-
tional property of stability, we will study whether the

solutions discussed above are linearly stable or unstable,
and (b) the obtained spectra are important for comparing
quantum fluctuations around the vacua of the model with
those around solitons.
We use the following ansatz for the perturbations about

the solutions ϕðχÞ to Eq. (6):

Φðr⃗; tÞ ¼ ϕðχÞ þ Ψðr⃗; tÞ; ð11Þ

where Ψðr⃗; tÞ is a priori complex valued and we rescale
Φ → ηΦ. The equation for Ψ then reads

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p ∂μΨÞ−α½ϕ2ð2ΨþΨ�Þ−Ψþϕð2jΨj2þΨ2Þ

þ jΨj2Ψ� ¼ 0: ð12Þ

In the following, we will restrict our analysis to linear
perturbations and hence neglect all terms of order OðΨ2Þ

FIG. 4. (Left panel) We show the profile of a fundamental kink-
antikink solution as well as its energy density ε̃ for α ¼ 10.0. The
profile function ϕðχÞ of this solution has m ¼ 2 nodes (purple
lines). We also show the first excited kink-antikink solution and
its energy density ε̃ for α ¼ 100.0 (green lines). Note that this
solution possesses m ¼ 4 nodes in the profile function ϕðχÞ.

FIG. 5. We show the profile of a fundamental antikink solution
(for α ¼ 5.0, purple lines) together with a first excited antikink
solution (for α ¼ 20.0, green lines). We also give the energy
density of these two solutions (right panel, same color coding).
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and higher. Note that these nonlinear terms would mix the
modes of the linear spectrum, a fact well known from the
Fermi-Pasta-Ulam-Tsingou problem [35]. We will use
the following ansatz for the linear perturbations:

Ψðr⃗;tÞ¼F1ðχ;θ;φÞexpð−iωtÞþF2ðχ;θ;φÞexpðiωtÞ; ð13Þ

where Fi, i ¼ 1, 2 are assumed to be real-valued functions
of the spatial coordinates and ω ∈ R is chosen positive.
Inserting this into the linearized version of Eq. (12), we find

1ffiffiffiffiffiffi−gp ∂kð
ffiffiffiffiffiffi
−g

p ∂kFiÞ − α½ϕ2ð2Fi þ FjÞ − Fi�

¼ −ω2Fi; i; j ¼ 1; 2; i ≠ j; k ¼ 1; 2; 3: ð14Þ

This clearly demonstrated that negative and positive fre-
quency modes couple even for the vacuum, i.e., the absolute
minimum of the theory with ϕ2 ≡ 1. In the following, we
will set F1 ¼ F2 ≡ F and use a product ansatz for F that
reads

Fðχ; θ;φÞ ¼ ψðχÞYlμðθ;φÞ; ð15Þ

where Ylμðθ;φÞ, l¼ 0;1;2;3;…, μ ¼ −l;−lþ 1;…;
l − 1;l are the spherical harmonics. Using the rescalings
t → t=R0, ω → R0ω, the equation for ψðχÞ then becomes

ψ 00 þ 2 cot χψ 0 − αð3ϕ2 − 1Þψ −
lðlþ 1Þ
sin2 χ

ψ ¼ −ω2ψ ;

ð16Þ

where the prime here and in the following denotes the
derivative with respect to χ. To solve this equation and find
the eigenfrequencies ω, we introduce a new function via
ψ̃ ¼ sin−lðχÞψ such that the equation reads

ψ̃ 00 þ2ðlþ1Þcotχψ̃ 0−αð3ϕ2−1Þψ̃ −lðlþ2Þψ̃ ¼−ω2ψ̃ :

ð17Þ

We now have to employ appropriate boundary conditions.
These are

ψ̃ 0ðχ ¼ 0Þ ¼ ψ̃ 0ðχ ¼ πÞ ¼ 0; ð18Þ

and without loss of generality we will construct solutions
that have ψ̃ðχ ¼ 0Þ ¼ 1.
In the following, we will investigate the perturbations

about the vacua as well as the kink and antikink solutions.
Related to the question of stability of the solutions, we will
investigate whether ω2 > 0 (ω2 < 0), which indicates that
the solution is stable (unstable). We will also use the
following notation: ωk;m;l will denote the energy eigen-
values of the kth excited perturbation with angular number
l, i.e., a solution to Eq. (16) with k nodes, of the scalar field

solution of Eq. (4) with m nodes associated with the lth
spherical harmonic. In this notation, m ¼ 0 corresponds to
the vacua, m ¼ 1 the (anti)kink, m ¼ 2 to the kink and
antikink, and higher m to the excitations, respectively.

A. Perturbations about the vacua (m = 0)

For the vacua ψðχÞ≡�1, i.e., the global minima of the
potential, we obtain the equation

ψ 00 þ 2 cot χψ 0 − 2αψ −
lðlþ 1Þ
sin2 χ

ψ ¼ −ω2ψ : ð19Þ

This equation is similar to that discussed in the case of a
conformally coupled scalar field in an Einstein universe
[24], and the general solutions to the equation are

ψk;lðχÞ ¼ sinlðχÞClþ1
k−l ðcos χÞ; k ¼ 0; 1; 2;…; ð20Þ

where Clþ1
k−l are the Gegenbauer functions and l is now

restricted by l ≤ k. The corresponding discrete eigenfre-
quencies read

ω2
k;0;l ¼ kðkþ 2Þ þ 2α; k ¼ 0; 1; 2; 3;…; ð21Þ

which do not depend on l. Hence, all multipoles have the
same eigenfrequency, such that for a fixed value of k the
number of degenerate modes is ðkþ 1Þ2.
Note that ω2

k;0;l is always positive and always larger than
2α. This indicates that the trivial solutions ϕðχÞ ¼ �1, i.e.,
the vacua, are stable.

B. Perturbations about the (anti)kink (m = 1)

For the (anti)kink solutions discussed in Sec. III A,
Eq. (16) has to be solved numerically. We find a discrete
spectrum of modes that depends on α. In the following, we
will first discuss our results for the case l ¼ 0, i.e., the
monopole contribution to the perturbations, and we will
then comment on l > 0, i.e., higher multipoles.

1. The monopole (l= 0)

The lowest mode with k ¼ 1 has a profile for ψ that
resembles the (anti)kink solution itself, while higher
modes, k > 1, resemble the radially excited solutions
discussed in Sec. III C. Note that a mode with ψ ≡
constant ≠ 0 does not exist in this case, as is apparent
from Eq. (16); i.e., the first mode fulfilling the periodic
boundary conditions is a solution with one node, k ¼ 1.
For α → αmin;1 ¼ 3, we find ω2

1;1;0 → 0, ω2
2;1;0 → 5,

ω2
3;1;0 → 12, which indicates that

ω2
k;1;0 → kðkþ 2Þ − 3 for α → 3: ð22Þ

Moreover, Fig. 6 (left panel) demonstrates that the value of
ω2
k;1;0 increases when we increase α from its limiting value
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αmin;1 ¼ 3. Hence, the eigenvalues ω2
k;1;0 of all l ¼ 0

perturbations about the (anti)kink solution are positive.

2. The dipole (l= 1) and quadrupole (l= 2)

We have studied the dipole (l ¼ 1) and quadrupole
(l ¼ 2) contribution for different values of k. Our results
for the lowest modes are shown in Fig. 6. As is obvious
from this figure, the degeneracy of the eigenfrequencies
with respect to the angular number l no longer exists in the

presence of the (anti)kink. We find that ω2
k;1;l for a fixed k

increases with increasing l; see the values for ω2
1;1;l

(dashed lines). Moreover, the eigenfrequencies ω2
1;1;2 are

comparable in value to the eigenfrequencies ω2
2;1;1 and

ω2
3;1;0, and in the limit α → αmin;1 ¼ 3 they tend to the same

value. This suggests that for a fixedm, the eigenfrequencies
ω2
k;m;l with kþ l constant are comparable in value and

degenerate for α → αmin;m. Similar to the monopole dis-
cussed above, the eigenfrequencies for all k and l that we
have studied are positive, and since their values increase
with both k and l, we find that the (anti)kink is linearly
stable under general perturbations.

C. Perturbations about the kink and antikink (m= 2)

Again, we will first discuss the monopole perturbation,
l ¼ 0, then comment on l > 0.

1. The monopole (l= 0)

In Fig. 6 (right panel), we give the dependence of the
eigenvalues ω2

k;2;0, k ¼ 1, 2, 3 on α. In contrast to the
perturbations about the vacuum and the (anti)kink, respec-
tively, we find one mode with a negative eigenvalue. This is
the lowest mode, k ¼ 1, for which the profile ψ1 possesses
one node and eigenvalue ω2

1;2;0 < 0. For α → αmin;2 ¼ 8,
we find that ω2

1;2;0 → −5. This eigenvalue increases when α
increases, but it stays negative for all values of α that we
have investigated. We find, e.g., that ω2

1;2;0 ≈ −2.12 for
α ¼ 100, and our numerical results further indicate that
ω2
1;2;0 → 0 for α → ∞. On the other hand, the eigenvalues of

higher modes—in Fig. 6 (right panel) shown for k ¼ 2, 3—
are positive for all values of α ≥ αmin;2 ¼ 8 with ω2

2;2;0 → 0

for α → αmin;2. We conclude that the kink-antikink solution
has (at least) one unstable mode and hence is linearly
unstable.

2. The dipole (l= 1) and quadrupole (l= 2)

Considering the dipole and quadrupole contributions of
the perturbations, we find again that the degeneracy with
respect to l no longer exists in the presence of the kink and
antikink. Moreover, a few other interesting things appear.
The first thing to note is that the dipole contribution of the
k ¼ 1 perturbation about the kink and antikink has eigen-
frequency ω2

1;2;1 ≡ 0 for all values of α that we have
studied. Hence, this perturbations corresponds to a zero
mode of the system. Moreover, similar to the (anti)kink
case, the eigenfrequencies ω2

3;2;0, ω2
2;2;1 and ω2

1;2;2 are
comparable in value and become degenerate in value for
α → αmin;2 ¼ 8. This strengthens the claim made above for
m ¼ 1 that for a fixed m, the eigenfrequencies ω2

k;m;l with
kþ l constant are comparable in value and degenerate for
α → αmin;m. There is one further interesting point that is
new in comparison to perturbations about the (anti)kink.

FIG. 6. We show the lowest eigenfrequencies ω2
k;m;l of the kth

perturbation about the mth soliton with angular quantum number
l in dependence on α. (Left panel) The value of ω2

k;1;0 for the
monopole (l ¼ 0) perturbations (solid lines) about the (anti)kink
solution (m ¼ 1) for k ¼ 1, 2, 3. We also give the value of ω2

k;1;1

of the dipole (l ¼ 1) perturbation for k ¼ 1, 2 and ω2
1;1;2 of the

quadrupole (l ¼ 2) perturbation for k ¼ 1 (dashed lines). (Right
panel) The values of ω2

k;2;0 for the monopole (l ¼ 0) perturbation
about the kink-antikink solution (m ¼ 2) for k ¼ 1, 2, 3 (solid
lines). We also give the value of ω2

k;2;1 of the dipole (l ¼ 1)
perturbation for k ¼ 1, 2 and ω2

1;2;2 of the quadrupole (l ¼ 2)
perturbation for k ¼ 1 (dashed lines).
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We find that the eigenfrequency ω2
1;2;2, i.e., the quadrupole

contribution to the k ¼ 1 perturbations has decreasing
values for α increasing—in contrast to all other perturba-
tions that we have discussed so far.

D. Perturbations for m > 2 and/or l > 2 and/or k > 3

To strengthen the claims about the eigenfrequency
spectra, we have studied several other values of k, m, l.
The values of ω2

k;m;l for α¼ αmin;mþ1 and α ¼ αmin;m þ 2,
respectively, and all possible combinations for k ∈ ½1∶3�,
m ∈ ½1∶3� and l ∈ ½0∶3� are given in Table I. For the
perturbations about the (anti)kink (m ¼ 1), we find that

higher l follow the pattern identified before. For all values
of k;l, we find that ω2

k;1;l is positive and increases with α.
When considering perturbations about the kink and

antikink (m ¼ 2), we find that the eigenfrequencies for
kþ l ¼ constant have the lowest value for the highest
possible l. This indicates that multipole perturbations
along the θ, φ directions on the S3 cost less energy than
the perturbations in the χ-direction. We also find that for
l > k the eigenfrequency decreases with increasing α.
Avery similar pattern to that described above appears for

the case m ¼ 3; however, there are some small differences.
First, we find a number of negative eigenfrequencies:

TABLE I. The value of ω2
k;m;l for different choices of m, k, l at

αmin;m þ 1 and αmin;m þ 2, respectively. For m ¼ 1, m ¼ 2,
m ¼ 3, the value is αmin;1 ¼ 3.0, αmin;2 ¼ 8.0, αmin;3 ¼ 15.0,
respectively.

m k l
ω2
k;m;l for

αmin;mþ1

ω2
k;m;l for

αmin;m þ 2

1 1 0 1.90 3.65
1 1 1 6.28 7.61
1 2 0 7.05 9.14
1 1 2 12.89 13.91
1 2 1 13.65 15.38
1 3 0 14.01 16.02
1 1 3 21.61 22.40
1 2 2 22.33 23.79
1 3 1 22.77 24.58
1 2 3 33.08 34.32
1 3 2 33.54 35.16
1 3 3 46.33 47.79
2 1 0 −4.22 −3.74
2 1 1 0 0
2 2 0 1.89 3.59
2 1 2 6.64 6.34
2 2 1 7.95 8.93
2 3 0 9.04 11.10
2 1 3 15.46 14.99
2 2 2 16.36 16.86
2 3 1 17.36 18.78
2 2 3 26.99 27.14
2 3 2 27.83 28.79
2 3 3 40.43 41.03
3 1 0 −11.66 −11.52
3 1 1 −7.24 −7.47
3 2 0 −5.95 −5.23
3 1 2 −0.39 −0.75
3 2 1 0 0
3 3 0 1.91 3.62
3 2 2 8.56 8.18
3 1 3 8.60 8.20
3 3 1 9.76 10.54
3 2 3 19.41 18.85
3 3 2 20.07 20.25
3 3 3 32.68 32.48

FIG. 7. We show the value of jψ j of the perturbations about
the kink solution (m ¼ 1) for α ¼ 4. (Left panel) The
octupole contribution (l ¼ 3) to the first perturbation (k ¼ 1)
which has ω2

1;1;3 ≈ 21.61. (Right panel) The quadrupole contri-
bution (l ¼ 2) to the second perturbation (k ¼ 2) which has
ω2
2;1;2 ≈ 22.33.
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ω2
k;3;l ≤ 0 for k < m and l < m and the equality holding

for k ¼ m − 1 ¼ 2, l ¼ 1. Moreover, the statement that for
kþ l constant the highest l has the lowest eigenfrequency
is true only for kþ l ≤ 3. For kþ l ¼ 4, we find that the
k ¼ l ¼ 2 perturbation has a lower eigenfrequency value
than the k ¼ 1;l ¼ 3 perturbation. Moreover, all pertur-
bations with l ≥ k now have a decreasing value of the
eigenfrequency when α increases.
In Fig. 7, we show jψ j for two perturbations about

the (anti)kink solution for kþl¼constant—in this case,
kþ l ¼ 4. We have chosen the octupole contribution
(l ¼ 3) of the first excitation (k ¼ 1) as well as the
quadrupole contribution (l ¼ 2) of the second excitation
(k ¼ 2). These perturbations are obviously very different in
nature, but they have comparable eigenfrequencies at α ¼ 4.

V. CONCLUSIONS

We have demonstrated that the no-go theorem for real,
static, stable scalar field solitons in (3þ 1) dimensions in a
curved space-time background do not extend to a space-
time that is spatially compact. We have constructed
(anti)kink and kink-antikink solutions in an Einstein uni-
verse background and have shown that the (anti)kink
solutions are linearly stable. Moreover, m-excited solutions
do exist that possess m nodes in the scalar field profile.
The study of the linear perturbations about the solutions

has shown a number of interesting features. The degeneracy
with respect to the angular number l that is present for
the perturbations about the vacua no longer exists in the
presence of the solitoniclike objects. Moreover, we find that
for an m-kink the eigenfrequencies are associated with the
perturbations ω2

k;m;l ≤ 0, hence indicating instability,
whenever k < m and—at the same time—l < m. Since
the lowest order perturbation about the (anti)kink (m ¼ 1)
is k ¼ 1, there are no negative eigenfrequency perturba-
tions and the (anti)kink is linearly stable. For the particular
case in which k ¼ m − 1 and l ¼ 1, we find that the
corresponding eigenfrequency ω2

m−1;m;1 has value zero.
Hence, the corresponding perturbations correspond to zero
modes of the model.
The eigenfrequency spectra and the corresponding per-

turbations ψ are important in the computation of quantum
effects in given space-times, especially in those with a
nonvanishing curvature; see, e.g., [24,25]. Compact space-
times are often considered, rendering the eigenfrequency
spectra discrete. Here, we have studied the example of a
positively curved, spatially compact space-time given by
the Einstein universe. While this static universe is not the
Universe we observe, it has features similar to the latter: it
contains a perfect fluid with positive energy density and
vanishing pressure (ordinary matter) as well as a positive
cosmological constant. In computations of quantum effects,
it is often considered a good approximation to the observed
Universe in sufficiently small time intervals. What we have

demonstrated in this paper is that the presence of solitonic-
like objects [in the form of (anti)kinks] modifies the
eigenfrequency spectra of a possible quantum perturbation
(given by the field ψ) considerably. Since the Universe is
supposed to havegone through a number of phase transitions
in the early Universe during which topological defects, i.e.,
localized solitoniclike objects, (could) have formed, com-
putations of quantum effects (e.g., the Casimir effect) should
certainly take these into account.
Let us finally remark that in this paper we have only

studied static solutions and have demonstrated (see the
Appendix) that a full backreacted solution with space-time
symmetries equivalent to that of the Einstein universe
cannot be static. However, one can consider the nonlinear
dynamics of the scalar field itself on a static space-time
background. The first possibility would then be to study the
dynamical decay of the unstable solutions in our model
and get an estimate for the scalar radiation emitted in this
process. Moreover, a simulation of the scattering of the
solutions in our model would be interesting to see how the
fact that the background is not (asymptotically) Minkowski
will influence the scattering properties of the diverse
solutions. Since the model at hand is not integrable, we
would expect internal modes to be excited in the scattering.
Moreover, the study of the nonlinear dynamics of the
full backreacted system would be interesting to understand
how the stability of the solutions is influenced by a
dynamical space-time and how and whether—next to scalar
radiation—gravitational radiation would be emitted in the
decay or scattering of the solitons. This is currently under
investigation.
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APPENDIX: NO STATIC UNIVERSE FOR
SCALAR MATTER

Let us assume the metric to be of the FLRW type,

ds2 ¼ −dt2 þ RðtÞ2½dχ2 þ sin2χðdθ2 þ sin2θdφ2Þ�; ðA1Þ

such that the nonvanishing components of the Einstein
tensor read

Gtt ¼ 3

�
_R2

R2
þ 1

R2

�
; Gχχ ¼ −ð2R̈Rþ _R2 þ 1Þ;

Gθθ ¼ sin2χGχχ ; Gφφ ¼ sin2χsin2θGχχ ; ðA2Þ
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and the dot denotes the derivative with respect to t. Using
the components of the energy-momentum tensor of a static
scalar field given in Eq. (4) and replacing R0 → RðtÞ, the
relevant components of the Einstein equation Gμν þ
Λgμν ¼ 8πGTμν are

3

�
_R2

R2
þ 1

R2

�
− Λ ¼ 8πG

�
1

2

ϕ02

R2
þ VðϕÞ

�
; ðA3Þ

−
�
2
R̈
R
þ

_R2

R2
þ 1

R2

�
þ Λ ¼ 8πG

�
1

2

ϕ02

R2
− VðϕÞ

�
: ðA4Þ

Combining these two equations for the case of a static
universe, _R ¼ R̈≡ 0, we find that 4πGϕ02 ¼ 1, which
implies ϕðχÞ ∼ χ þ constant. This solution is not compat-
ible with the periodicity condition, and hence no static
universe exists when choosing a static scalar field as the
given matter source.
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