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The possibility of the Y(4260) being the molecular state of DD̄1ð2420Þ þ c:c: is investigated in the one
boson exchange model. It turns out that the potential of JPC ¼ 1−− state formed by DD̄1ð2420Þ þ c:c: is
attractive and strong enough to bind them together when the momentum cutoff Λ ≳ 1.4 GeV. To produce
the Y(4260) with correct binding energy, we need Λ ≈ 2.25 GeV. Besides, DD̄1ð2420Þ þ c:c: can also
form a state with exotic quantum numbers, JPC ¼ 1−þ, and its potential is more attractive than that of the
JPC ¼ 1−− state. Therefore, an exotic state with mass around 4240 MeV [called ηc1ð4240Þ] is expected to
exist. Our estimation of the mass of the JPC ¼ 1−þ state in charmonium region is in agreement with those
predicted by the chiral quark model and the lattice QCD. The possible decay modes and their relative
widths are estimated and the results suggest that this exotic state can be searched for in ηηc and ηχc1
channels.
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I. INTRODUCTION

In 2005 a vector charmoniumlike state, the Yð4260Þ, was
reported by BABAR Collaboration [1] in the initial-state
radiation process eþe− → γISRJ=ψπþπ− with a mass of
ð4259� 8þ2

−6Þ MeV and a width of 50–90 MeV, which was
confirmed by CLEO Collaboration [2] and Belle
Collaboration [3] later. Recently, the eþe− → πþπ−J=ψ
cross section reported by BESIII [4] showed that the
Yð4260Þ contains two substructures, the Yð4220Þ and
Yð4320Þ, and the Yð4220Þ is consistent with the previous
Yð4260Þ. A combined analysis of BESIII data in four
channels, eþe− → ωχc0 [5], πþπ−hc [6], πþπ−J=ψ [4] and
D0D�−πþ þ c:c: [7], yields a mass of ð4219.6� 3.3�
5.1Þ MeV and a width of ð56.0� 3.6� 6.9Þ MeV [8].
Different analyses give quite different resonant parameters
of Yð4260Þ and the average values in the latest PDG [9]
read m ¼ ð4230� 8Þ MeV and Γ ¼ ð55� 19Þ MeV.
It is clear that the Yð4260Þ contains cc̄ quarks and is

above the thresholds for DD̄, DD̄� þ c:c: and D�D̄�.

However, no signals of the Yð4260Þ appear in these
channels [10–12], which indicates that it is not a conven-
tional charmonium. Besides, there seems no room for the
Yð4260Þ in the 1−− cc̄ spectrum [13]. As a candidate for
the exotic meson, its nature still remains controversial and
has been attracting much attention. Several models were
proposed to account for the peculiar behaviors of the
Yð4260Þ including a hybird state [14–16], an excited
charmonium [17–19], a baryonium composed of ΛcΛ̄c
[20], a hadrocharmonium [21,22], a tetraquark state
[23–25], an interference effect [26,27], or a hadronic
molecule of ωχc0 [28] or D̄D1 þ c:c: See, e.g., Ref. [29]
for a detailed discussion.
Among these explanations, a molecular state of

DD̄1ð2420Þ þ c:c: seems to be a good choice since the
Yð4260Þ is just below the threshold of DD̄1ð2420Þ þ c:c:
and they can couple in S-wave. The mechanisms of the
formation of the molecular Yð4260Þ was discussed in
Refs. [30,31] by solving the Schrödinger equation with
effective potential via meson exchange. The quenched
lattice QCD also favors the DD̄1ð2420Þ þ c:c: molecule
explanation [32]. Although it was argued in Ref. [33] that
the production of DD̄1ð2420Þ þ c:c: in the electron-posi-
tron collisions is forbidden in the heavy quark limit due to
the heavy quark spin symmetry (HQSS) and in turn
suppressed in the real world, Ref. [34] showed that the
HQSS breaking is strong enough so that the molecule
interpretation of the Yð4260Þ does not contradict with
the current experimental data. From the light-quark
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perspective, it is claimed that the Yð4260Þ has a sizeable
DD̄1ð2420Þ þ c:c: component, which is, however, not
completely dominant [35]. By assuming the Yð4260Þ being
the DD̄1ð2420Þ þ c:c: molecule, its properties have been
discussed in Refs. [34,36–42]. Furthermore, such interpre-
tation is supported by the new experimental data: the
observations of Zcð3900Þπ [43,44] and Xð3872Þγ [45] in
the mass region of the Yð4260Þ. We refer to Ref. [46] for
more details of this molecular picture.
The DD̄1ð2420Þ þ c:c: can also form a system with

positive C-parity, which is definitely an exotic state, if
exists, since JPC ¼ 1−þ is not allowed for traditional qq̄
mesons. Within the chiral quark model, Ref. [31] showed
that the DD̄1ð2420Þ þ c:c: with JPC ¼ 1−þ can form a
bound state with a mass of 4253–4285 MeV. Besides, it is
predicted by using the lattice QCD [47] that the JPC ¼ 1−þ
state in the charmonium region has a mass of mð1−þÞ ¼
mηc þ 1233� 16 MeV ¼ 4217� 16 MeV, just below the
Y(4260), which gives us more confidence in the existence
of the DD̄1ð2420Þ þ c:c: bound state with JPC ¼ 1−þ. On
the other hand, the production and the decay of such exotic
state were discussed in Ref. [48] under the assumption of
the Y(4260) being a molecule of DD̄1ð2420Þ þ c:c: where
some guidance for the experiments was given.
In this paper we use the vector meson exchange

interaction between DD̄1ð2420Þ þ c:c: to investigate
whether it is possible for them to form the JPC ¼ 1−−

and JPC ¼ 1−þ molecules. In addition, we also discuss the
influence of σ exchange on the potential. The possible
bound states of DD̄1ð2430Þ þ c:c: via one boson exchange
has also studied in Ref. [49]. They showed that the
JPC ¼ 1−þ system is attractive and can form a bound state
while the JPC ¼ 1−− system is repulsive, which conflicts
with the chiral quark model [31]. In Refs. [50,51], Y(4260)
were interpreted as a bound state of D1ð2430ÞD̄� and its
exotic C-parity partner was predicted in the vicinity of Y
(4260). However, the binding energies in this case are more
than one hundred MeV, which we think is too deep for a
hadronic molecule. Such deep bound states were also
disfavored in Ref. [52] since its signal disappear due to
its too large width. Note that there are two D1 states with
similar masses while quite different decay widths [9],

D1ð2420Þ∶ m ¼ 2420.8� 0.5 MeV;

Γ ¼ 31.7� 2.5 MeV;

D1ð2430Þ∶ m ¼ 2427� 40 MeV;

Γ ¼ 384þ130
−110 MeV:

We only use the narrow one (denoted by D1 throughout the
rest of the paper) since D1ð2430Þ is too wide to form a
molecular state [52]. We assume that the potential between
the components of the DD̄1 þ c:c: moleecule is dominated
by the vector meson exchange interactions since the

pseudoscalar meson exchange between DD̄1 þ c:c: is
forbidden by parity conservation. It is different from the
assumption in Ref. [30] where the Y(4260) was considered
as the molecule of DD1 or D0D� through pseudoscalar
mesons exchange (off-diagonal potential) and σ exchange
(diagonal potential). The vector mesons exchange was not
included because some of the related coupling constants
were not available. We emphasize that this picture is not
advisable because D0 is too wide to be the component of
the Y(4260).
This paper is organized as follows: In Sec. II, the meson

exchange potential between DD̄1 þ c:c: is derived and the
bound states for DD̄1 þ c:c: with both JPC ¼ 1−− and 1−þ

are produced; The possible decay channels of the 1−�
molecules and their decay widths are discussed in Sec. III;
We finally give a short summary and discussion in Sec. IV.

II. BINDING

A. C-parity conventions

Both D and D1 are not the eigenstates of C-parity
so the phases of D and D1 under charge conjugation
transformation are not fixed. We adopt the following
conventions

CjDð1Þi ¼ jD̄ð1Þi ð1Þ

and the flavor wave functions of positive and negative
C-parity jDD̄1i states now read

C ¼ �∶
1ffiffiffi
2

p ðjDD̄1i � jD̄D1iÞ: ð2Þ

Actually, the physical results do not depend on C-parity
conventions as long as the related Lagrangians are con-
sistent with such conventions.
The potential betweenDðD̄Þ and D̄1ðD1Þ is related to the

corresponding scattering amplitude. For the state with
JPC ¼ 1−�, the element of S matrix reads

hD̄D1 �DD̄1jSjD̄D1 �DD̄1i
¼ hD̄D1jSjD̄D1i þ hDD̄1jSjDD̄1i
� ðhD̄D1jSjDD̄1i þ hDD̄1jSjD̄D1iÞ: ð3Þ

There are four Feynman diagrams for DD̄1 þ c:c: elastic
scattering by one boson (vector mesons and σ) exchange,
shown in Fig. 1. Note that the scattering amplitudes of
u-channel processes in the positive and negative C-parity
cases carry opposite signs and in turn yield opposite
potentials.

DONG, LIN, and ZOU PHYS. REV. D 101, 076003 (2020)

076003-2



B. The vector exchange potential

1. The Langrangian

The couplings of heavy mesons and light vector meson
nonet can be described by the effective Lagrangians, which
satisfies the hidden gauge symmetry [53]. For D and D1

mesons, the Lagrangians read explicitly [30]

LDDV ¼ igDDVðDb∂
↔

μD
†
aÞVμ

ba þ igD̄ D̄ VðD̄b∂
↔

μD̄
†
aÞVμ

ab ð4Þ

LD1D1V¼ igD1D1VðDν
1b∂

↔

μD
†
1aνÞVμ

ba

þig0D1D1V
ðDμ

1bD
ν†
1a−Dμ†

1aD
ν
1bÞð∂μVν−∂νVμÞba

þigD̄1D̄1VðD̄1bν∂
↔

μD̄
ν†
1aÞVμ

ab

þig0̄D1D̄1V
ðD̄μ

1bD̄
ν†
1a−D̄μ†

1aD̄
ν
1bÞð∂μVν−∂νVμÞab ð5Þ

LDD1V ¼ gDD1VD
μ
1bVμbaD

†
a

þ g0DD1V
ðDμ

1b∂
↔

νD†
aÞð∂μVν− ∂νVμÞba

þ gD̄D̄1VD̄
†
aVμabD̄

μ
1b

þ g0̄DD̄1V
ðD̄μ

1b∂
↔

νD̄†
aÞð∂μVν− ∂νVμÞabþH:c: ð6Þ

where

Dð1Þ ¼ ðD0
ð1Þ; D

þ
ð1ÞÞ ð7Þ

V ¼
 ρ0ffiffi

2
p þ ωffiffi

2
p ρþ

ρ− − ρ0ffiffi
2

p þ ωffiffi
2

p

!
ð8Þ

and

gDDV ¼ −gD̄ D̄ V ¼ 1ffiffiffi
2

p βgV ð9Þ

gD1D1V ¼ −gD̄1D̄1V ¼ 1ffiffiffi
2

p β2gV ð10Þ

g0D1D1V
¼ −g0̄D1D̄1V

¼ 5λ2gV
3
ffiffiffi
2

p MD1
ð11Þ

gDD1V ¼ −gD̄D̄1V ¼ −
2ffiffiffi
3

p ζ1gV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MDMD1

p ð12Þ

g0DD1V
¼ −g0̄DD̄1V

¼ −
1ffiffiffi
3

p μ1gV: ð13Þ

It can be easily verified that the charge conjugation
invariance of the above Lagrangians, Eqs. (4), (5), (6), is
consistent with the conventions, Eq. (1).

2. Estimation of coupling constants

There are several parameters in the effective Lagrangians
introduced in the last subsection. The already known ones
are collected in the following,

gV ≈ 5.8; ð14Þ

β ≈ 0.9; ð15Þ

λ1 ≈ 0.1 GeV2; ð16Þ

see Refs. [54,55] and [53], respectively. These lead to
gDDV ≈ 3.7. The rest constants β2, μ1, and ζ1 are not
available now.
The LD1D1V contains two types of interaction, which are

denoted by gD1D1V and g0D1D1V
in Eq. (5). The second type

vanishes in the nonrelativistic limit since ∂μVν ∼ qμVν and
the exchanged four-momentum qμ ¼ ð0; qÞ vanishes.
Therefore, we only consider the first interaction, which
has nothing to do with the angular momentum of D1. As a
rough estimation, we take gD1D1V ≈ −gDDV since they all
describe the P-wave coupling of heavy mesons and the light
vector meson. D and D1 have the same behaviors in such
case where the spin of D1 does not participate in. On the
quark level, the force between isoscalar light quark and
antiquark is attractive by vector exchange [31,56], so is the
force between D and D1. Therefore, we adopt the minus
sign here so that the vector exchange between D and D̄1

leads to an attractive force, Eq. (21).
The LDD1V also contains two types of interaction,

denoted by gDD1V and g0DD1V
in Eq. (6). The first one

describes the S-wave coupling, which dominates the
interaction and hence the second one is neglected. In
principle, the coupling constant ξ1 in Eq. (12) should be
fixed from experimental data relating the DD1V vertex, for

(c) (d)

(a) (b)

FIG. 1. Feynman diagrams for vector meson exchange between
DD̄1 þ c:c: Diagrams (c) and (d) have opposite signs between
C ¼ þ and C ¼ − cases.
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example the decayD1 → Dρ=ω. Unfortunately, such decay
is forbidden kinetically. We notice that the coupling of
KK1V should be approximately the same as that of DD1V
because s quarks in K and K1 and c quarks in D and D1 are
all spectators during the interactions. This treatment is
supported by the following observations:

(i) gDDV ¼ βgKKV ≈ 0.9gKKV, see Eq. (9) and, e.g.,
Ref. [56],

(ii) gD�Dπffiffiffiffiffiffiffiffiffiffiffi
mD�mD

p ≈ 0.96 gK�Kπffiffiffiffiffiffiffiffiffiffiffi
mK�mK

p in Ref. [57,58],
(iii) gD�D�ρ ≈ 0.84gK�K�ρ in Ref. [58,59].

Therefore, we take

gD1DVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimD1
mD

p ≈ 0.9
gK1 KVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimK1

mK
p ð17Þ

as a rough estimation and gK1 KV can be fixed by the decay
width of K1 → Kρ. Finally we obtain

gDD1V ≈ 2.3 GeV; ð18Þ

see Appendix.

3. The potential in position space

For the vector exchange in the first two diagrams in
Fig. 1, the scattering amplitude is

iM1 ¼ −igDDVgD1D1V
4mDmD1

jqj2 þm2
V

ð19Þ

and the corresponding potential in momentum space reads

Ṽv1ðq;mVÞ¼−
M1

4mDmD1

¼ gDDVgD1D1V
1

jqj2þm2
V
: ð20Þ

After Fourier transformation we obtain the potential in
position space

Vv1ðr; mVÞ ¼ gDDVgD1D1VmVYðmVrÞ ð21Þ

where YðxÞ ¼ e−x=4πx is the Yukawa potential.
For the vector exchange in the last two diagrams,

iM2 ≈ ig2DD1V

�
1þ ϵ1 · qϵ2 · q

m2
V

�
1

jqj2 þ m̃2
ð22Þ

where m̃2 ¼ m2
V − ðmD1

−mDÞ2. ϵ1 and ϵ2 are the polar-
izations of initial and final D1’s, respectively. The potential
(see, e.g., Refs. [60,61] for more details of such Fourier
transformation) reads

Vv2ðr; mVÞ ¼ −
g2DD1V

4mDmD1

��
m̃ −

m̃3

3m2
V

�
Yðm̃rÞ

þ 1

3m2
V
δð3ÞðrÞ

�
: ð23Þ

Taking the isospin factor into account, we obtain

VI¼0
vi ðr; mVÞ ¼

1

2
ð3Viðr; mρÞ þ Viðr; mωÞÞ; ð24Þ

VI¼1
vi ðr; mVÞ ¼

1

2
ðViðr; mρÞ − Viðr; mωÞÞ; ð25Þ

where i ¼ 1, 2. For the JPC ¼ 1−� state, the total vector
exchange potential reads

VC¼�
v ¼ VI

v1 � VI
v2: ð26Þ

where I ¼ 0, 1. Note that mρ ≈mω so the potentials for
isovector (I ¼ 1) are very weak. We only consider the
isoscalar state here.

4. Form factor

Up to now we have treated every hadron as a point
particle and the potentials diverge at the origin. To account
for the finite size of actual hadrons and regularize the
singularity of the potential, we introduce a monopole form
factor

Fðq;m;ΛÞ ¼ Λ2 −m2

Λ2 − q2
ð27Þ

into each vertex with the same momentum cutoff Λ, which
in position space can be looked upon as a spherical source
of the exchanged mesons [62,63]. Actually, such form
factor was initially introduced to describe the nucleon
scattering via pion (or other light mesons) exchange (see,
e.g., Refs. [62,64]) and now it is widely used in one boson
exchange model (see, e.g., Refs. [30,49,56]). The value of
Λ is model-dependent and varies in the range of 0.8–
2.0 GeV from different analyses (see, e.g., Ref. [65] and the
discussion in Ref. [64]). This is one of the origins of
uncertainty in our model.
As discussed in Refs. [66–68], although the form factor

makes the contact δ potential in Eq. (23) finite, such term is
still nonphysical because it introduces a much strong force
in the short range, which is unexpected in the boson
exchange model. Besides, such term may results in a
repulsive force at long distance for an expected bound
system, which is not self-consistent. Considering these
arguments, we also exclude the δ potential in our
calculation.
After introducing the form factor, the potentials in

position space, Eqs. (21), (23), are modified,
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Vv1ðr; mVÞ ¼ −gDDVgD1D1V

�
mVYðmVrÞ

− ΛYðΛrÞ − 1

2
ðΛ2 −m2

VÞrYðΛrÞ
�
; ð28Þ

Vv2ðr; mVÞ ¼ −
g2DD1V

4mDmD1

�
½m̃VYðm̃VrÞ − Λ̃YðΛ̃rÞ

−
1

2
ðΛ̃2 − m̃2

VÞrYðΛ̃rÞ�

−
m̃2

V

3m2
V
½m̃VYðm̃VrÞ − Λ̃YðΛ̃rÞ

−
1

2
ðΛ̃2 − m̃2

VÞrYðΛ̃rÞ�
�

ð29Þ

with

Λ̃2 ¼ Λ2 − ðmD1
−mDÞ2: ð30Þ

C. The σ exchange potential

The σ exchange potential has been deduced in Ref. [30].
For the t-channel process,

Vσ1ðrÞ ¼ −gσg00σ
�
mσYðmσrÞ − ΛYðΛrÞ

−
1

2
ðΛ2 −m2

σÞrYðΛrÞ
�

ð31Þ

and for the u-channel process,

Vσ2 ¼
2

9

h2σ0
f2π

m̃2

�
Yðm̃rÞ − Λ̃YðΛ̃rÞ

−
1

2
ðΛ̃2 − m̃2ÞrYðΛ̃rÞ

�
ð32Þ

with m̃2 ¼ m2
σ − ðmD1

−mDÞ2 and Λ̃ the same as Eq. (30).
Here we have also excluded the δ potential. In our
calculation, the constants in the above potentials are taken
to be

gσg00σ ¼ 0.58; ð33Þ

h0σ ¼ 0.35; ð34Þ

fπ ¼ 132 MeV ð35Þ

as in Ref. [30].
The isospin factor is trivial in this case. For the

JPC ¼ 1−� state, the total σ exchange potential reads

VC¼�
σ ¼ Vσ1 � Vσ2: ð36Þ

D. Binding energies

We use the following values from PDG [9],

mD ¼ 1.867 GeV; ð37Þ

mD1
¼ 2.420 GeV; ð38Þ

mρ ¼ 0.775 GeV; ð39Þ

mω ¼ 0.783 GeV; ð40Þ

mσ ≈ 0.600 GeV: ð41Þ

Besides, we take gD1D1V ≈ −gDDV ≈ −3.7, as analyzed
above. Using the decay of K1 we estimate gD1D1V to be
around 2.3 GeV. The vector and σ exchange potentials and
the total potentials are shown in Fig. 2 from where we see
that

VC¼þ
Tot < VC¼−

Tot < 0: ð42Þ

Therefore, it is expected that the DD̄1 bound state with
JPC ¼ 1−þ should exist if the Y(4260) can be interpreted as
a DD̄1 bound state with JPC ¼ 1−−.
The Schrödinger equations for both VC¼þ

v and VC¼−
v are

solved and the dependence of binding energy on Λ is
shown in Fig. 3. Bound states come into existence when
Λ≳ 1.4 GeV. Y(4260), as a pure bound state of DD̄1 with
JPC ¼ 1−−, has a binding energy of around 60 MeV and
consequently we need a Λ0 of around 2.25 GeV to produce
such binding energy. In turn, this specific Λ0 leads to a
bound state of JPC ¼ 1−þ DD̄1 with a binding energy of
about 70 MeV. We also include the σ exchange potential
and it turns out to be insignificant. If we assume that
the Y(4260) is a pure DD̄1 þ c:c: bound state with
Λ0 ≈ 2.25 GeV, its 1−þ partner should has a mass around
4220 MeV. Generally, we do not expect a hadronic
molecule to have such a big binding energy, namely
60 or 70 MeV. Since the Y(4260) may be a mixture of
DD̄1 þ c:c: molecule and ψðnDÞ [42], the binding energy
of DD̄1 þ c:c: molecule in Y(4260) is not necessarily
so large. Confining Λ in the commonly used range
0.8–2.0 GeV, we conclude that the 1−þDD̄1þc:c:molecule
has a binding energy ≲40 MeV. Therefore, we expected
this exotic DD̄1 þ c:c: molecule (called ηc1ð4240Þ) to be
around 4240 MeV. We should keep in mind that there are
several uncertainties in our calculation from such as the
coupling constants, the masses of involved hadrons, the
form factor and so on, which are not take into account. It
reminds us that we should not take the certain value
4240 MeV seriously. Instead, what we can assert is that
if we assume that there is 1−− DD̄1 þ c:c: molecule
component in Y(4260), i.e., their attractive force is strong

PREDICTION OF AN EXOTIC STATE AROUND 4240 MEV … PHYS. REV. D 101, 076003 (2020)

076003-5



enough to bind themselves together, the 1−þ DD̄1 þ c:c:
molecule should also exist with a larger binding energy.

III. DECAYS

With the masses ofDD̄1 þ c:c:molecule states obtained,
we can estimate their decay patterns by using the effective
Lagrangian method as we did in the meson-baryon mol-
ecules sector previously [57–59]. The three-body DD̄�π
decay through the component meson D̄1 decaying directly
into D̄�π is considered naturally. All other possible two-
body decay channels are collected in Table I. By con-
vention, as illustrated in Fig. 4, the three-body decay
happens in the tree level and two-body decays happen
through the triangle mechanism where a Gaussian regulator
(at the vertex of YDD̄1) and a multipole form factor (in the
propagator of the exchanged particle C), formulated
as following, are included to study out the ultraviolet
divergence.

f1ðp2
E=Λ2

0Þ ¼ expð−p2
E=Λ2

0Þ; ð43Þ

f2ðq2Þ ¼
Λ4
1

ðm2 − q2Þ2 þ Λ4
1

; ð44Þ

where pE is the four dimensional Euclidean Jacobi
momentum defined as ðm1p2 −m2p1Þ=ðm1 þm2Þ with
m1ðm2Þ and p1ðp2Þ the mass and momentum of DðD̄1Þ,
m and q is the mass and momentum of the exchanged
particle. In addition to the DD1V vertex shown in Eq. (6),
the other effective Lagrangians that D1 has involved in our
calculation are listed as following,

LYDD̄1
¼ gYDD̄1

D̄†μ
1 YμDþ H:c:; ð45Þ

LD�D1P ¼ gD�D1P

h
3D�†μDν

1∂μ∂νP −D�†μD1μ∂ν∂νP

þ 1

MD�MD1

∂τD�†μ∂νD1μ∂ν∂τP
i
þ H:c:; ð46Þ
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FIG. 3. Dependence of binding energies on the cutoff Λ.
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FIG. 2. The potentials with Λ ¼ 1.5 GeV. The “t-channel”
represents the potential for (a) and (b) in Fig. 1 and the “u-channel”
for (c) and (d). “C¼þ” and “C¼−” represent the potentials for
positive and negative C-parity states, respectively.

TABLE I. Two-body decay channels for the DD̄1 þ c:c: mol-
ecule states considered in our calculation.

Molecule Components Final states
Exchanged
particles

1−− Yð4260Þ DD̄1þc:c: ωσ, J=ψσ,ωχc0 D
D̄D�, J=ψη, ρπ D�, ρ, ω

hcη, Zcπ D�

D̄�D� π
D̄D ρ, ω

1−þ ηc1ð4240Þ DD̄1þc:c: D̄D�, ρπ D�, ρ, ω
χc1η, Zcπ D�

D̄�D�, J=ψω π, D
ππ, ηcη, D̄D D�, ρ, ω

χc0σ D
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LD�D1π ¼ gSD�†μD1μπ

þ gDD�†μDν
1

�
rμrν −

1

3
rβrβg̃μν

�
þ H:c:; ð47Þ

with g̃μν ≡ ðgμν − pμpν

M2
D1

Þ, rμ ≡ g̃μνðk1 − k2Þν. p, k1 and k2 are
the momenta of D1, D�, and π, respectively. It should be
mentioned that the Lagrangian LD�D1P in Eq. (46) can also
be applied to the vertex D1D�π. LD�D1P is a part of the
heavy meson chiral perturbation (HMχPT) theory which is
constructed starting from the heavy quark spin-flavor and
chiral symmetry and obtained by expanding the whole
effective Lagrangian in HMχPT to the leading order of
pseudo-Goldstone field. It implies the Lagrangian LD�D1P

in Eq. (46) is only valid for the vertex where the momentum
of the light boson can be treated as a relative small quantity.
In the channels of ππ and ρπ, however, the magnitude of the
three momentum of pion meson is around 2 GeV. Then
another phenomenology interaction in Eq. (47) is used for
the vertex D1D�π in these channels and gS, gD can be fitted
to the various ratios of D-wave contribution in the process
of D1 decaying into D�π where the total width of D1 is
assumed to be saturated by the D�π completely.
The coupling constants between the molecule states and

the component hadron pairs, gYDD̄1
, are estimated with

the composite condition [69,70]. In the chiral and heavy
quark limit, gD�D1P is defined as −

ffiffiffi
6

p
h0=ð3fπÞ with fπ ¼

0.132 GeV and h0 ¼ 0.65 GeV−1 [53]. And recent analysis
on the D1D�π coupling in Ref. [71] shows that the D-wave
contribution is around half of the total width of D1. This
ratio leads to gS ¼ 2.52 GeV and gD ¼ 10.6 GeV−1 in
Eq. (47). All other conventional effective Lagrangian and
couplings can be find in our previous work [57–59]. Note
that cutoffs Λ0 and Λ1 are the free parameters in our
calculation and we vary Λ1 in the range of 1.5–2.4 GeV to
scrutinize how the decay behaviors undergo changes as the
cutoffs are varied. Λ0 is empirically adopted as 1 GeV and
the numerical results are shown in Table II. In addition,
Table III shows the results when we get rid of the second
form factor f2ðq2Þ in the loop integrals.
In the case of the form factor f2ðq2Þ kept and Λ0 is

taken as 1.0 GeV, it does not escape attention that D�D̄� is
the dominant decay channel for both of 1−− and
1−þ DD̄1 þ c:c: molecules. The measured total width of

Yð4260Þ state, ∼50 MeV, can be reproduced well with
Λ1 ¼ 2.4 GeV. It implies that DD̄1 þ c:c: occupies sizable
component in Yð4260Þ which is consistent with the current
knowledge on the Yð4260Þ state [30,34–38,40,42]. And the
dozens-of-MeV width of D�D̄� channel is compatible with
the calculations in Ref. [72] within the parameter range.
The observation that the open charm decay channel DD̄�π
accounts for the most of total width of Yð4260Þ is also
reflected in our calculation since the largest two-body
channel D�D̄� will be entrapped further into the DD̄�π in
principle. With the same cutoffs, the total width of
1−þ DD̄1 þ c:c: molecule is estimated to be 88.9 MeV.
Although this value bears a large uncertainty due to the
values of the effective coupling constants and the choice of
cutoffs Λ0 and Λ1, the relative ratios among various
channels can be regarded as the direct consequence of
the molecule structure. In addition to D�D̄�, 1−þ state has
also large couplings with the ηηc and ηχc1 channels as
claimed in Refs. [48,73].
It should not be neglected that the partial width of

Yð4260Þ → Zcð3900Þπ in our calculation is too small, of
order 10−5 MeV in Table. II. Though no experimental
information on this decay channel is available up to now, it
may not be that small since the Yð4260Þ was first
discovered in this channel [43]. When we discard the
second form factor f2ðq2Þ, however, the much larger partial
width, 1.2 MeV, is obtained for the Zcπ channel. This value
seems to be more acceptable, and it is consistent with the
results in Refs. [37,40,41] where they also did not include

FIG. 4. Feynman diagrams for the 2- and 3-body decays of
Yð4260Þ. They are similar for ηc1ð4240Þ.

TABLE II. Partial widths of theDD̄1 þ c:c:molecule stateswith
quantum numbers 1−− and 1−þ. Here Λ0 ¼ 1.0 GeV is fixed. All
of decay widths are in unit ofMeVand cutoffs are in unit of GeV. 0
means that this channel is forbidden by symmetries.

Widths (MeV)

1−−Yð4260Þ 1−þηc1ð4240Þ
Mode Λ1¼1.5 Λ1¼2.0 Λ1¼2.4 Λ1¼1.5 Λ1¼2.0 Λ1¼2.4

ππ 0 0 0 0.4 3.7 9.6
D�D̄� 18.1 26.7 31.3 20.2 29.4 33.5
πZc ∼0 ∼0 ∼0 ∼0 ∼0 ∼0
πρ 0.1 0.8 2.3 0.06 0.4 1.3
DD̄ 0.02 0.02 0.02 0.02 0.02 0.02
ηηc 0 0 0 3.9 13.9 22.7
ηχc1 0 0 0 4.1 11.7 17.4
ηhc 1.3 3.9 5.8 0 0 0
σχc0 0 0 0 0.4 1.0 1.3
ηJ=ψ 0.4 1.4 2.6 0 0 0
σJ=ψ 0.03 0.1 0.2 0 0 0
ωσ 0.04 0.3 0.8 0 0 0
ωJ=ψ 0 0 0 0.003 0.01 0.02
ωχc0 0.03 0.09 0.1 0 0 0
DD̄� 0.04 0.07 0.08 0.04 0.06 0.08
DD̄�π 1.9 1.9 1.9 3.0 3.0 3.0

Total 21.9 35.3 45.1 32.1 63.2 88.9
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any suppression on the momentum of exchanged D� in
these channels with Zcπ involved. Note that the total widths
also get quite large once we discard f2ðq2Þ. These behavior
should be noticed when one would like to compare our
results with the experimental data or other estimations from
different models.

IV. SUMMARY AND DISCUSSION

In summary, we have used the one boson exchange
potential between the DD̄1 þ c:c., for both JPC ¼ 1−− and
JPC ¼ 1−þ systems, to investigate if it is possible for them
to form bound states. We use the effective Lagrangians,
which satisfy the heavy quark symmetry, to describe the
interaction betweenD andD1. We have considered both the
vector and σ exchange but the latter has little influence. It
turns out that with a momentum cutoff Λ ≈ 2.25 GeV, the
attractive force between the DD̄1 þ c:c: with JPC ¼ 1−− is
strong enough to form a bound state with a binding energy
of around 60 MeV, corresponding to Yð4260Þ as a pule
DD̄1 þ c:c: molecule. The C-parity partner of the Y(4260),
i.e., the exotic DD̄1 þ c:c: bound state, is predicted to exist
and have a binding energy larger than that of Y(4260). If we
consider the mixture of DD̄1 þ c:c: molecule and ψðnDÞ,
the mass of this exotic state is estimated to be around
4240 MeV, which is consistent with the prediction by
lattice QCD and chiral quark model.

The decay properties of the two possible molecules are
investigated by using the effective Lagrangian method. For
both 1−− and 1−þ states, D�D̄� decay channel dominates.
The ηηc and ηχc1 channels, absent in the 1−− case, have
sizeable contributions to the 1−þ molecule, which may help
to identify such exotic state experimentally.
Given the DD̄1 þ c:c: bound states, HQSS indicates

the possible existence of other open charm bound states
such as D�D̄1 þ c:c., Dð�ÞD̄2 þ c:c: as well as their Ds
partners. Recently, Belle Collaboration [74] reported
a vector charmoniumlike state observed in eþe− →
Dþ

s Ds1ð2536Þ− þ c:c: with m ¼ 4625.9þ6.2
−6.0 � 0.4 MeV

and Γ ¼ 49.8þ13.9
−11.5 � 4.0 MeV. This state was considered

as a molecule of D�
sD̄s1ð2536Þ in Ref. [75]. There are also

some structures in channels eþe− → πþπ−ψð3770Þ,
D̄D1ð2400Þ þ c:c: at around 4.4 GeV [76,77], which are
possible evidences of Yð4360Þ=Yð4390Þ=ψð4415Þ. Further
theoretical and experimental studies are needed to identify
their structures.
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APPENDIX: ESTIMATION OF gDD1V

The partial wave amplitude of the decay K1 → Kρ for
L ¼ 0 can be expressed as (see, e.g., [78])

M ¼
ffiffiffiffiffiffiffiffi
3=2

p
gK1KρK

�μ
1 ðm1Þρμðm2Þ ðA1Þ

where Kμ
1ðρμÞ is the polarization of K1ðρÞ and

ffiffiffiffiffiffiffiffi
3=2

p
accounts for the isospin factor, Fig. 5. The decay width
reads

Γ ¼ jgK1Kρj2
jp2j

16πm2
K1

�
3þ jp2j2

m2
ρ

�
: ðA2Þ

In PDG [9], there are two different K1 states,

K1ð1270Þ∶ m ¼ 1272� 7 MeV;

Γ ¼ 90� 20 MeV;

BrðK1ð1270Þ → KρÞ ¼ ð42� 6Þ%;

K1ð1400Þ∶ m ¼ 1403� 7 MeV;

Γ ¼ 174� 13 MeV;

BrðK1ð1270Þ → KρÞ ¼ ð3.0� 3.0Þ%;

TABLE III. Partial widths of the DD̄1 þ c:c: molecule states
with quantum numbers 1−− and 1−þ. Here the form factor f1ðq2Þ
is not included. All of decay widths are in unit of MeVand cutoffs
are in unit of GeV. 0 means that this channel is forbidden by
symmetries.

Widths (MeV)

1−−Yð4260Þ 1−þηc1ð4240Þ
Mode Λ0¼0.6 Λ0¼1.0 Λ0 ¼ 1.4 Λ0¼0.6 Λ0¼1.0 Λ0¼1.4

ππ 0 0 0 58.3 109.9 97.8
D�D̄� 25.3 51.1 86.4 29.7 55.6 92.5
πZc 1.2 1.2 1.2 1.0 1.0 1.0
πρ 7.6 26.5 67.8 4.4 15.6 38.3
DD̄ 0.006 0.01 0.02 0.007 0.01 0.2
ηηc 0 0 0 18.1 39.2 54.8
ηχc1 0 0 0 34.1 67.4 98.2
ηhc 13.5 26.9 40.0 0 0 0
σχc0 0 0 0 2.4 4.4 6.1
ηJ=ψ 3.2 5.6 7.1 0 0 0
σJ=ψ 0.2 0.4 0.6 0 0 0
ωσ 2.5 6.7 12.1 0 0 0
ωJ=ψ 0 0 0 0.01 0.03 0.04
ωχc0 0.3 0.5 0.7 0 0 0
DD̄� 0.05 0.1 0.1 0.05 0.1 0.1
DD̄�π 1.9 1.9 1.9 3.0 3.0 3.0

Total 55.8 120.9 218.1 151.2 296.1 392.1
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which lead to

gK1ð1270ÞKρ ≈ 4.7 GeV ðA3Þ

gK1ð1400ÞKρ ≈ 0.75 GeV: ðA4Þ

So we are faced with a problem, which one to use.
These two mass eigenstates K1 are considered as the

mixture of two flavor eigenstates from the axial vector
nonets JPC ¼ 1þþ (3P1) and JPC ¼ 1þ− (1P1) [79–86]. It
was also explored in [87–89] that the K1ð1270Þmay have a
two-pole structure in vector-pseudoscalar scattering since
there is always a discrepancy when fitting the experimental
data with only one pole [90,91]. Here we ignore the
possible two pole structure.
Following Ref. [80], we denote the 3P1 state as Ka and

the 1P1 state as Kb. The mixing of Ka and Kb is para-
metrized as

� jKai
jKbi

�
¼
�

cos θK sin θK
− sin θK cos θK

�� jK1ð1400Þi
jK1ð1270Þi

�
ðA5Þ

and the mixing angle is determined to be around 33° or
58° [79–86].
On the other hand, as mentioned in the Introduction, the

decay width of D1ð2420Þ is much smaller than that of
D1ð2430Þ. This phenomenon can be explained in the heavy
quark limit, where the spin of heavy quark, sh, is decoupled
with the angular momentum of the light quark, sl ¼ sq þ L
with sq the spin of light quark and L the orbital angular
momentum. Note that D1 with sl ¼ 1=2 can decay into
D�π in S-wave while such decay for D1 with sl ¼ 3=2
can only happen in D-wave, which has a smaller

width. Therefore, D1ð2420Þ is regarded as the state
jsh ¼ 1=2; sl ¼ 3=2; j ¼ 1; mi, which can be decomposed
into the L − S basis,

jj ¼ 1; mi ¼
ffiffiffi
1

3

r
jl ¼ 1; s ¼ 1; j ¼ 1; mi

−
ffiffiffi
2

3

r
jl ¼ 1; s ¼ 0; j ¼ 1; mi: ðA6Þ

In other words,

jD1ð2420Þi ¼
ffiffiffi
1

3

r
jDai −

ffiffiffi
2

3

r
jDbi ðA7Þ

where Da and Db correspond to Ka and Kb, respectively.
Therefore, the K1 state corresponding to jD1ð2420Þi,
denoted by jK̃1i, is related to the two mass eigenstates via

jK̃1i ¼
ffiffiffi
1

3

r
jKai −

ffiffiffi
2

3

r
jKbi

¼
� ffiffiffi

1

3

r
cos θK þ

ffiffiffi
2

3

r
sin θK

�
jK1ð1400Þi

þ
� ffiffiffi

1

3

r
sin θK −

ffiffiffi
2

3

r
cos θK

�
jK1ð1270Þi: ðA8Þ

Substituting θK ¼ 33° or 58° into Eq. (A8) and together
with Eqs. (A3), (A4) we get

gK̃1KV≈ ∓ 1.0 GeV: ðA9Þ

Now gDD1ð2420ÞV can be estimated via Eq. (17)

gDD1ð2420ÞV ≈ 0.9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimD1

mD
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimK̃1

mK
p gK̃1KV ≈∓ 2.3 GeV ðA10Þ

where we have used mK̃1
¼ 1390 MeV as the approxima-

tion of the expectation value of K̃1 ’s mass. Actually, the
sign of gDD1ð2420ÞV does not matter in our calculation so we
just use the positive one.
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