PHYSICAL REVIEW D 101, 076002 (2020)

Event generation with normalizing flows

Christina Gao ,1 Stefan Hoche ,1 Joshua Isaacson ,1 Claudius Krause ,1’* and Holger Schulz

'Fermi National Accelerator Laboratory, Batavia, Illinois, 60510, USA
2Department of Physics, University of Cincinnati, Cincinnati, Ohio 45219, USA

® (Received 18 February 2020; accepted 9 March 2020; published 6 April 2020)

We present a novel integrator based on normalizing flows which can be used to improve the unweighting
efficiency of Monte Carlo event generators for collider physics simulations. In contrast to machine learning
approaches based on surrogate models, our method generates the correct result even if the underlying
neural networks are not optimally trained. We exemplify the new strategy using the example of Drell-Yan
type processes at the LHC, both at leading and partially at next-to-leading order QCD.

DOI: 10.1103/PhysRevD.101.076002

I. INTRODUCTION

Numerical simulation programs are a cornerstone of
collider physics. They are used for the planning of future
experiments, analysis of current measurements and, finally,
reinterpretation based on an improved theoretical under-
standing of nature. They employ Monte Carlo methods to
link theory and experiment by generating virtual collider
events, which can then be analyzed like actual events
observed in detectors [1,2].

With more and more data available from the Large
Hadron Collider (LHC) and the high-luminosity upgrade,
the task of simulating collisions at high precision becomes
a matter of concern for the high-energy physics community.
The projected amount of computational resources falls far
short of the needs for precision event generation [3]. Past
studies of the scaling behavior of multijet simulations have
shown that the computing needs are largely determined by
the gradually decreasing unweighting efficiency [4,5].
Except for dedicated integrators, which require a detailed
understanding of the physics problem at hand, adaptive
Monte Carlo methods seem to be the only choice to address
this problem [6—13].

With the rise of machine learning, this topic has seen a
resurgence of interest recently. The possibility of using
these techniques for integration in high-energy physics was
first discussed in [14]. Boosted decision trees and gen-
erative adversarial networks (GANs) were investigated as
possible general purpose integrators. This new technique

*Corresponding author.
ckrause @fnal.gov

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010,/2020,/101(7)/076002(8)

076002-1

improved the integration of nonseparable high dimensional
functions, for which traditional algorithms failed. The first
true physics application was presented in [15]. The authors
used dense neural networks (DNN) in order to perform a
variable transformation and demonstrate that they obtain
significantly larger efficiencies for three body decay
integrals than standard approaches [16]. The major draw-
back of this method is its computational cost. Since the
network acts as a variable transformation, its gradient must
be computed for each inference point in order to determine
the Jacobian. This becomes computationally heavy for high
multiplicity processes.

A completely orthogonal approach utilizes machine
learning techniques directly for amplitude evaluation
[17] or event generation [18-24]. Training data for these
approaches are obtained from traditional event generation
techniques, and hence the problem of efficient event
generation still remains. In addition, one needs to ensure
that the neural networks are trained well in order to
approximate the original integrand. If this is not the case,
the resulting generator will not only be inefficient but may
actually yield the wrong result [25].

In this publication we propose a novel idea to address the
problem: We replace standard adaptive algorithms like
VEGAS [6,7], by the extension [26,27] of a nonlinear
independent components estimation (NICE) technique
[28,29], also known as a normalizing flow. This algorithm
is combined with a recursive multichannel [30,31] to form a
generic integrator for collider event generation. We test its
performance in Drell-Yan type processes at the LHC,
computed both at leading and partially at next-to-leading
order QCD. We focus our study on the event generation
efficiency in comparison to the general-purpose matrix
element generator COMIX [31]. While the training of neural
networks during the adaptation stage of the normalizing
flow integrator is a very time consuming operation, event
generation is inexpensive, because no gradients need to be

Published by the American Physical Society

https://orcid.org/0000-0002-8599-3966
https://orcid.org/0000-0002-1370-6059
https://orcid.org/0000-0001-6164-1707
https://orcid.org/0000-0003-0924-3036
https://orcid.org/0000-0003-3428-8922
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.076002&domain=pdf&date_stamp=2020-04-06
https://doi.org/10.1103/PhysRevD.101.076002
https://doi.org/10.1103/PhysRevD.101.076002
https://doi.org/10.1103/PhysRevD.101.076002
https://doi.org/10.1103/PhysRevD.101.076002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

GAO, HOCHE, ISAACSON, KRAUSE, and SCHULZ

PHYS. REV. D 101, 076002 (2020)

computed. This could make the technique a prime candi-
date for LHC event generation in the near future.
Normalizing flows have also been combined with
Markov chain Monte Carlo methods, showing promising
results [32-34].

This manuscript is organized as follows. Section II
briefly reviews the technique of Monte Carlo integration
and introduces the concept of normalizing flows.
Section III presents our new integrator. Section IV dis-
cusses its computing performance and presents some first
applications to LHC event generation. Section V contains
an outlook.

II. NORMALIZING FLOWS

Monte Carlo or quasi-Monte Carlo methods are known
as the only viable option to tackle high-dimensional
integration problems. The basic technique relies on
approximating the integrand by randomly sampling points
in the integration domain € and weighting each point, x, by
the value of the integrand, f(x). The value of the integral is
then obtained as the statistical average of all points, and the
uncertainty is determined by its variance:

1= [far =37 = 941

()=)2

U[:Q N—1 .

(1)
In this context, (), indicates that the average is taken with
respect to a uniform distribution in x. The variance of the
integral can be reduced by importance sampling or strati-
fied sampling [35]. In particular, using the transformation
dx = dG(x)/g(x), with G(x) the primitive of g(x), one
obtains

[0 e
o; = Q\/<(f/g)2]Z,G__l<f/g>ZG (2)

The function g(x) can now be chosen appropriately, such as
to minimize the variance. In the limit g(x) — f(x)/I,
Eq. (2) would be estimated with vanishing uncertainty.
The goal is thus to find a distribution g(x) that resembles
the shape of f(x) most closely, while being integrable and
invertible in order to allow for faster sampling.

For multidimensional integrals, where the variable trans-
formation reads dx — dx'|dx(X')/dX’|, we can simply
replace the Jacobian g(x) — |dx’/dX|, and Eq. (2) remains
valid. This forms the basis for the concept of a normalizing
flow: For a bijective map, G(X), of the random variable X
that is drawn from a flat probability distribution, the
variable X' = G(X) follows the probability distribution

-1~
0) _gagm).)

d¥ = 4G~ (¥)| g

Applying a series of transformations, Gy, where k =
1,..., K, one defines the normalizing flow as a bijective
mapping between statistical distributions of the random
variables X and Xg,

d¥x = dGg(Gg_1(- - G,(G,(X))))

, where X, = X. (4)

K
= de |9k (Xk-1)
k=1

In practice, G is often limited to simple functions, in order
to make the determinant of the Jacobian easy to compute.
This constrains the level of complexity that can be modeled
by the normalizing flow. The complexity can be increased
using so-called coupling layers, which were first introduced
in [28,29]. An alternative technique is based on autore-
gressive models [36,37]. In this study we focus on [26,27]
which generalizes the design of the coupling layers
proposed by [29].

A. Coupling layers
A coupling layer is a special design of a bijector, first
proposed in [28,29]. Figure 1 shows its basic structure. For
each bijective mapping, the input variable X = {x;,...,xp}
is partitioned into two subsets, X, = {x,...,x,} and
Xg = {X441,---xp}. Under the bijective map, g, the
resulting variable transforms as

Xy = xy, A€ [l,d],

xp = Clxg;m(xs)), Beld+1.D. (5)

In this context, m represents a neural network that takes x4
as an input and then outputs the parameters of the invertible
“coupling transform,” C, that will be applied to xp. The
inverse map G~! is given by

Xy =X,

xp = C7' (Xpm(%,)) = C (xpm(34"). (6)
which leads to the simple Jacobian

XA

FIG. 1. Structure of a coupling layer. m is the output of a neural
network and defines the coupling transform, C, that will be
applied to xp.

076002-2

EVENT GENERATION WITH NORMALIZING FLOWS

PHYS. REV. D 101, 076002 (2020)

-1

‘ 9G(3)

T OC(ER M)
ox

6XB

-1 T 0
— |\ acom oc
OmO%, Oxp

(7)

Note that Eq. (7) does not require the computation of the
gradient of m(X,), which would scale as O(D?) with D
the number of dimensions. In addition, since C is diagonal,
the computation of the determinant of OC/0xp scales
linearly with the number of dimensions, and is therefore
tractable even for high dimensional problems. The normal-
izing flow method is thus evidently superior to existing
integration techniques based on neural networks. To con-
struct a complete normalizing flow, one simply compounds
a series of coupling layers with the freedom of choosing
any of the input dimensions to be transformed in each layer.
We show in Ref. [38] that at most 2[log, D] coupling
layers are required in order to express arbitrarily compli-
cated, nonseparable structures of the integrand.

In order to implement a normalizing flow integrator
in practice, the user must provide a neural network,
represented by m(X,), a function f to integrate, and the
definition of a loss function. This is discussed in more
detail in Ref. [38].

B. Piecewise Polynomial and rational quadratic spline
coupling transforms

So far we have not yet specified the invertible coupling
transforms C. The design of this function impacts the
flexibility of coupling layer based normalizing flow algo-
rithms and is an active field of research. A very powerful
definition of C was introduced in Ref. [26]. Both the
domain and codomain of each coupling layer are defined to
be the unit hypercube. If the random variable X' is
|

A, (a,b; 1,n) = [H p, S(p?
’ o 2m)®

=)0 ()| 215 (5, = >)
i=1

uniformly distributed, it follows from Eq. (7) that the
initial variable X follows the distribution |0C/0x3|. Thus
the coupling transform can be interpreted as the cumulative
distribution function (CDF) of X. Each dimension is then
divided into K bins and models this CDF with a mono-
tonically increasing polynomial function per bin. In par-
ticular, Ref. [26] experiments with piecewise linear and
piecewise quadratic coupling transforms. In the implemen-
tation of a piecewise quadratic coupling transform, the bin
width is allowed to vary in order to increase the flexibility
of the coupling layer.

It may seem natural to generalize the piecewise poly-
nomial coupling transform to include even higher order
terms in order to increase the expressivity of the coupling
layer. This has been proposed in Ref. [27], which gener-
alized the piecewise quadratic coupling transform to allow
a monotonically increasing rational-quadratic function in
each bin of the coupling transform. To implement this, the
bin heights, bin widths and also the derivatives in between
each bin are allowed to vary and are predicted by the neural
network.

ITI. PHASE-SPACE INTEGRATION

In this section we briefly summarize the diagram-based
[39] recursive [31] multichannel [30] integration used in
our numerical routines. The latter are designed to cope with
especially large numbers of outgoing particles and exhibit
exponential scaling, reduced from factorial scaling by
means of dynamic programming.

Consider a 2 — n scattering process, where we denote
the incoming particles by a and b and the outgoing particles
by 1...n. The corresponding n-particle differential phase
space element reads

where m; are the on-shell masses of outgoing particles. The full phase space can be factorized as [35]

d®,(a,b;1,...,n) =d®,_, . (a,b;z,m + 1,...,n) —dD,,(7;1,....,m),

where 7 = {1,...,m} corresponds to a set of particle
indices. Denoting the missing subset as @ = {a,b,
I,....,nH\a for all @« C{a,b,1,...,n}, Eq. (9) allows
one to decompose the complete phase space into build-
ing blocks corresponding to the ¢- and s-channel

decay processes TZ:Z”” = dd,(a, b;z,abxr) and Sg-'r\/) —
d®,(7;p, w\p) and an s-channel production process D, ;,
which corresponds to overall momentum conservation and
the associated overall weight factor. These objects have
been introduced as phase space vertices in Ref. [31], while

ds,

> ©)

|

the integral P, = ds,/2x, in Eq. (9), was called a phase
space propagator. In this notation, there is a one-to-one
correspondence between the computation of hard matrix
elements in the Berends-Giele recursion [40-43] and
the computation of phase-space weights. Thus, the com-
putation of phase-space weights can be carried out in a
recursive fashion, yielding the same (exponential) scaling
as the computation of the hard matrix element. The
basic building blocks of phase space integration can be
summarized as

076002-3

GAO, HOCHE, ISAACSON, KRAUSE, and SCHULZ

PHYS. REV. D 101, 076002 (2020)

ds
P :—”
T 2z’
A(Szs 8,y S2\p)
a\p _ Mz 5p S7\p
S = ewas, 08Oty
—— MSaps Sp» S7—)
w,abmw ab> 2z P abr
= —— W@ dcos O, dg,,
@b 167225, €05 0y

Da,b = (2ﬂ)4d4p%5(4)(pa + Ppr— p%)' (10)

Here, A is given by the Killen function A(a,b,c) =
V/(a—b—c)>—4bc. Note that, in the context of
Monte Carlo integration, each basic integral ds, dcosé

and d¢ in Eq. (10) corresponds to a random variable,
|

dog(m) =)

(7y,7,)€OP(r)

o (@)= Y

(m).7,)€OP(ab)

In this context we defined the one- and no-particle phase
space as d®(i) =1 and d®(0) =0. The numbers @
correspond to vertex-specific weights, which are normal-
ized as), @™ =1 and >or @2 4 @y, =1 and
can be adapted to optimize the integrator. The sums run
over all possible S- and T-type vertices which have a
correspondence in the matrix element. The full differential
phase space element is given by

d®,(a.b; 1,....n) = dd\(a). (12)

The recursive integrator is typically improved by combin-
ing it with the VEGAS algorithm [6,7]. In this configuration,
VEGAS generates the input random numbers, X, that are used
to perform the basic integrals ds, d cos € and d¢ in Eq. (10).
We adopt the same strategy and simply replace VEGAS by
the neural network + normalizing flow algorithm proposed
in Refs. [28,29] and extended in Refs. [26,27], which is
implemented in the 1I-FLOW package [38]. We include the
multichannel weights, w, in the integration, which allows
us to work with a single network for all channels. All other
components of the integrator remain the same. This makes
it possible to directly compare the performance to existing
algorithms. As the normalizing flow method is capable of
capturing correlations in the multidimensional phase space,
while still exhibiting polynomial scaling with the problem
size, one would expect a performance improvement par-
ticularly when the number of dimensions in the problem is
large.

chosen in the appropriate range. Details on the construction
of the phase-space recursion are given in Ref. [31]. Here we
simply recall the result in a schematic form:
(1) Select an ordered partition of the multi-index 7 —
(1,) (s-channel) or ab — (an,b, m,) (t-channel).
(2) If the partition is an s-channel, insert an s-channel
vertex Sz else insert a f-channel vertex 77,',™.
(3) Ifr; (z,)isamulti-index, insert a propagator P, (P,).
(4) Proceed until there is no multi-index left.
We can improve this procedure by forming an average over
all possible ordered partitions (OP) of each multi-index.
Assigning each splitting an adjustable weight defines the
recursive multichannel. This is formalized as follows:

wz 87 P, dDg(7y)P, dDg(7,),

g TZ];”ZPmd@s(m)Pnzd@(Tb) (amy) + wq p D, ,dDg(ab). (11)

IV. NUMERICAL RESULTS

This section presents a numerical study of the novel
phase-space integrator. All computations are performed
using the event generation framework SHERPA [44-46],
with matrix elements provided by comix [31]. This use
case differs slightly from Ref. [47], where matrix elements
are computed by AMEGIC [48]. AMEGIC performs an explicit
sum over color degrees of freedom, while COMIX uses
Monte Carlo sampling. The neural network 4+ normalizing
flow integrator could in principle be trained on a combined
color-momentum space when used with comix. We have
tested this approach but have not found an advantage for
processes beyond W/Z + 1. Hence we refrain from using
this technique.

A. Definition of efficiency

In order to assess the performance of the new integrator
we investigate its unweighting efficiency. The most basic
definition of unweighting efficiency would be the average
weight during event generation [i.e., the integral, Eq. (1)],
divided by the maximum weight,

o <f/9>G
Mbasic = max{f/g} . (13)

Its inverse corresponds to the number of events to be drawn
on average, before an event is accepted with unit weight. If
the distribution of weights does not exhibit a sharp upper
edge, the denominator in Eq. (13) will depend on the
sample size, and the efficiency will decrease with increas-
ing number of events. This is particularly worrisome when
events are generated in a distributed computing approach

076002-4

EVENT GENERATION WITH NORMALIZING FLOWS

PHYS. REV. D 101, 076002 (2020)

(e.g., on the LHC computing grid). Each individual
computing job will have its own, individual maximum,
say max{f/g}; In order to realize the accuracy of the
combined event sample, each subsample must then be
weighted by max{f/g};/max;{max{f/g}}.

Here we follow a different approach. It has recently been
pointed out that a weighted combination of event samples is
prone to outliers in the weight distribution, unless adaptive
algorithms continue to be optimized during event gener-
ation [49]. If event generation is performed in a distributed
fashion, this cannot be achieved, as the individual compute
jobs do not communicate. The efficiency should therefore
be computed based on the number of points during the last
iteration of the optimization. This definition is still prone to
possible outliers, which are removed by performing a
bootstrap:

(1) Assuming the number of events during optimization

was Ny, draw nN,y events.

(2) From these events, select m replicas of N, events

each and compute their maximum weight.

(3) Compute the total maximum, wy,,,, as the median of

the individual maxima.
The efficiency is then given by

Nos = <f/g>G (14)

Wmax

There will be a number of event weights that exceed wy,,y.
We can account for the mismatch on an event-by-event
basis by recording their relative weight. Formally, if an
event is generated with weight w;, we keep it with weight
w;, where

w,._wmaxe)< Wi —R){W" @(i —1)
Wmax Wmax Wmax
W.
of1-2), 15
+ (Wmax):| ()

with R € [0,1] a uniformly distributed random number.
The event sample will then be partially weighted,
unweighted against a maximum that corresponds—on a
statistical basis—to the largest weight probed by the
adaptive integrator during optimization. This allows one
to reach in principle arbitrary precision by applying the
bootstrap and jackknife techniques of Ref. [50]. Possible
practical implementations of this method are discussed
in Ref. [49].

B. Hyperparameter optimization

We use a quasirandom search strategy to optimize the
hyperparameters of the neural networks. The basic idea of
random search has been proposed in Ref. [51], and follows
the known strategy used in tuning Monte Carlo event
generators [52]. It was pointed out that a random search

strategy typically covers the space of hyperparameters
better than a grid-based search, since the influence of
hyperparameters is often uncorrelated. Since computing
resources are limited and the computational cost of the
training is fairly large, we resort to Sobol sequences to
adequately populate the hyperparameter space, H.

The figure of merit for a configuration ¢ € H is its
unweighting efficiency. Due to the limited computing
resources we redefine for the purpose of tuning wp,, in
Eq. (14) to be the 99.9th percentile of the distribution of
nonzero absolute values of weights. We have tested that this
makes the definition of w,,,, stable against variations in the
random seed and gives results that are qualitatively com-
patible with the technique described in Sec. IV A. The main
advantage of the alternative definition is that it allows one
to determine the target number of points for the compu-
tation of Wy as 1/(n.0%€), where 1., is the cut
efficiency, o is the desired Monte Carlo accuracy, and &
is the desired percentile defining w .

Table I shows the sampling boundaries for 7, and the
optimal choice for W + 1jet. Figure 2 shows the distribu-
tion of sampling points in the Nepochs-LR and Nying-N gamples
planes. The first suggests a high learning rate, coupled with
a large number of epochs to be beneficial. The second
suggests a strong preference for a small number of bins. We
also performed a parameter scan for W + 2jet and found the
best configuration to be comparable to the above and to
yield similar unweighting efficiency as the best configu-
ration in the W + 1jet setup. Due to limited computing
resources, we did not perform a separate hyperparameter
scan for W+ > 3.

C. Comparison to existing approaches

In this section we compare the performance of our
integrator based on the normalizing flow technique to
the best alternative method available in the public event
generation program SHERPA [44-46]. The basic computa-
tional setup is analogous to Ref. [4]. We consider W*-
and Z-boson production in proton-proton collisions at
the high-luminosity LHC at /s = 14 TeV. We use the

TABLE 1. Parameter ranges and prior distributions in H and
values of the optimal point in the scan. We use LR as abbreviation
for the learning rate.

Parameter Cnin Crnax prior Chest

LR 1073 1072 log 4.55 x 107
LR decay rate 0 1 lin 0.534
LR decay e-folds 2 10 lin 5
N, 23 2 ln 29

N gamples 1000 10000 log 4148
Nepochs 500 5000 log 3824
Nyins 10 100 log 16
Niayers 6 10 lin 8

076002-5

GAO, HOCHE, ISAACSON, KRAUSE, and SCHULZ

PHYS. REV. D 101, 076002 (2020)

- -0.6
-2.5
° B--07
-3.0 -087@
=
¢ 8
5) X -0.9 &
S —35 o
o Q
° ¢ 10S
e T o
=
-4.0 s =
'S - ,1 1 2
-4.5 ° -1.2
e ©
. ° ° -1.3
Optimum) .
-5.0 !
2.8 3.0 3.2 3.4 3.6
IogloNepochs

|
Optimum
° - —0.6
(]
3.8 B _
s =--07
[] —
" A 0.8 @
3 3.6 E
§ ° -0.9 ?
= 1
3 e 1.0 <
2 3.4 N -1.03
- i
g
B -11—
3.2
[]
-1.2
° ®
° o -
3.0 13
1.0 1.2 1.4 1.6 1.8 2.0

10910Nbins

FIG. 2. Projections of the sampled parameters and color coded acceptances. The plot on the left suggest a high learning rate, coupled
with a large number of epochs to be beneficial. The plot on the right suggests a strong preference for a small number of bins. The best

performing configuration is indicated with a star.

NNPDF3.0 NNLO PDF set [53] and evaluate the strong
coupling accordingly. Jets are defined using the k; cluster-
ing algorithm with R = 0.4, pr; > 20 GeV and |5;| < 6.
Following the good agreement between parton-level and
particle-level results established in Ref. [54], and the good
agreement between fixed-order and MINLO [55] results
established in Ref. [56], the renormalization and factori-
zation scales are set to H%./2 [57].

Table II shows a comparison of unweighting efficiencies
defined according to Eq. (14), where N, =2 x 104,
n =50, and m = 10°. We give results for both leading-
order cross sections, and for the subtracted real-emission
corrections to next-to-leading order cross sections, using
the dipole method of Catani and Seymour [58]. The
subtracted real-emission corrections typically present the
biggest challenge in cross-section calculations at next-to-
leading order in the perturbative expansion, and therefore
drive the computing demands of precision simulations for

TABLE II

LHC experiments. The new integrator based on neural
networks and normalizing flows gives a much larger
unweighting efficiency than SHERPA in processes with
few jets, both at LO and at NLO precision. In processes
with more final-state jets it performs similarly to the
existing integration techniques in SHERPA. The neural
network technique generally performs better when we do
not combine it with a multichannel approach for initial-
state integration. Only the major features of the final state
should be mapped out, for example the Breit-Wigner
resonance in W* production. This indicates, unsurpris-
ingly, that the normalizing flow approach is more efficient
in approximating smooth structures of the integrand than in
differentiating between effectively independent integration
domains. It leads to the strikingly lower efficiencies in
Z-boson production processes, where we have combined a
1/5 integrator and a Breit-Wigner mapping. In general, the
new method is best applied to low-multiplicity problems,

Unweighting efficiencies at the LHC at /s = 14 TeV using the NNPDF 3.0 NNLO PDF set and a correspondingly

defined strong coupling. Jets are identified using the k7 clustering algorithm with R = 0.4, p7 ; > 20 GeV and |5;| < 6. In the case of
Z/y* production, we also apply the invariant mass cut 66 < m; < 116 GeV.

Unweighting efficiency LO QCD NLO QCD (RS)
(W) /Winax n=0 n=1 n=2 n=3 n=4 n=20 n=1
W+ + n jets SHERPA 28x 107" 38x102 75x107% 15x103 83x10* 95x102 45x1073
NN+ NF 6.1 x 107! 1.2 x 107! 1.0x1072 1.8x102% 89x10™* 16x107" 4.1x1073
Gain 22 3.3 1.4 1.2 1.1 1.6 0.91
W~ +n jets SHERPA 20x 107! 40x102 77x103 20x1073 97x10* 1.0x10°! 45x1073
NN+NF 7.0x 10! 1.5%x 107! 1.1x1072 22x10% 79x10™* 15x107' 42x1073
Gain 2.4 3.3 1.4 1.1 0.82 1.5 0.91
Z + n jets SHERPA 3.1 x 107! 3.6 x 1072 151072 47x1073 1.2 x 107! 53x 1073
NN+NF 38x107! 1.0 x 107! 14%x1072 24x1073 1.8x1073 57x1073
Gain 1.2 2.9 0.91 0.51 1.5 1.1

076002-6

EVENT GENERATION WITH NORMALIZING FLOWS

PHYS. REV. D 101, 076002 (2020)

where the training of the neural networks can be performed
at reasonable speed with relatively few samples per epoch.
We expect that in the high multiplicity cases the neural
network + normalizing flow technique will also outper-
form SHERPA, if it can be trained over sufficiently many
epochs with sufficiently many sample points. However, due
to restricted computing resources, we were not able to
verify this claim for the case of W*/Z + 4j production. The
picture might be altered by future implementations of
matrix element generators on accelerators. For exploratory
work on this topic, see Refs. [59,60].

V. CONCLUSIONS

We have presented a novel approach to phase-space
integration for collider physics simulations, which is
based on neural networks and normalizing flows. The
integrator is implemented as an add-on to the existing
event generator SHERPA and can be used with both
internal matrix-element generators, COMIX and AMEGIC.
Neural network hyperparameters were tuned using a
quasirandom search strategy. For the optimal set of
parameters, the unweighting efficiency of the integrator
exceeds that of conventional methods by a factor 2-3 in
simple processes. In high-multiplicity processes, tradi-
tional techniques tend to perform similarly well, while
also requiring fewer computing resources. We expect this
picture to change as implementations of matrix element
generators on accelerators such as GPUs and TPUs
become available. These findings are corroborated by
the results presented in Refs. [38,47].

ACKNOWLEDGMENTS

We are grateful to John Campbell and Tobias Neumann
for many interesting discussions on the definition of
unweighting efficiency. We thank Enrico Bothmann,
Marek Schonherr, Steffen Schumann and Frank Siegert
for comments and for discussions on unweighted event
generation and adaptive integration using neural networks.
We thank Tilman Plehn for discussions on neural networks
and Joao M. Goncalves Caldeira, Felix Kling, Luisa Lucie-
Smith, Nhan Tran, and the participants of the Aspen
workshop “The Energy Frontier Beyond the LHC Run
2” for their comments. This manuscript has been authored
by Fermi Research Alliance, LLC under Contract No. DE-
AC02-07CH11359 with the U.S. Department of Energy,
Office of Science, Office of High Energy Physics. The
work of H.S. and S.H. was supported by the U.S.
Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Scientific
Discovery through Advanced Computing (SciDAC) pro-
gram, grants “HEP Data Analytics on HPC,” No. 1013935
and “HPC framework for event generation at colliders.”
C. K. acknowledges the support of the Alexander von
Humboldt Foundation. This work was performed in part
at Aspen Center for Physics, which is supported by
National Science Foundation Grant No. PHY-1607611. It
used computing resources of SLAC National Accelerator
Laboratory, and of the National Energy Research Scientific
Computing Center (NERSC), a U.S. Department of Energy
Office of Science User Facility operated under Contract
No. DE-AC02-05CH11231.

[1] B. Webber, Annu. Rev. Nucl. Part. Sci. 36, 253 (1986).

[2] A. Buckley et al., Phys. Rep. 504, 145 (2011).

[3] The ATLAS Collaboration, https://twiki.cern.ch/twiki/bin/
view/AtlasPublic/ComputingandSoftwarePublicResults
(2019).

[4] S. Hoche, S. Prestel, and H. Schulz, Phys. Rev. D 100,
014024 (2019).

[5] A. Buckley, arXiv:1908.00167.

[6] G.P. Lepage, J. Comput. Phys. 27, 192 (1978).

[7] G.P. Lepage, Report No. CLNS-80/447, 1980, http://cds
.cern.ch/record/123074/.

[8] J. H. Friedman and M. H. Wright, J. Assoc. Comput. Mach.
7, 76 (1981).

[9] W. H. Press and G. R. Farrar, Comput. Phys. 4, 190 (1990).

[10] T. Ohl, Comput. Phys. Commun. 120, 13 (1999).

[11] S. Jadach, Comput. Phys. Commun. 130, 244 (2000).

[12] T. Hahn, Comput. Phys. Commun. 168, 78 (2005).

[13] K. Kroninger, S. Schumann, and B. Willenberg, Comput.
Phys. Commun. 186, 1 (2015).

[14] J. Bendavid, arXiv:1707.00028.

[15] M. D. Klimek and M. Perelstein, arXiv:1810.11509.

[16] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O.
Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro,
J. High Energy Phys. 07 (2014) 079.

[17] F. Bishara and M. Montull, arXiv:1912.11055.

[18] S. Otten, S. Caron, W. de Swart, M. van Beekveld, L.
Hendriks, C. van Leeuwen, D. Podareanu, R. R. de Austri,
and R. Verheyen, arXiv:1901.00875.

[19] B. Hashemi, N. Amin, K. Datta, D. Olivito, and M. Pierini,
arXiv:1901.05282.

[20] R. Di Sipio, M.F. Giannelli, S.K. Haghighat, and S.
Palazzo, J. High Energy Phys. 08 (2019) 110.

[21] A. Butter, T. Plehn, and R. Winterhalder, SciPost Phys. 7,
075 (2019).

[22] S. Carrazza and F. A. Dreyer, Eur. Phys. J. C 79, 979
(2019).

[23] C. Ahdida et al. (SHiP Collaboration), J. Instrum. 14,
P11028 (2019).

076002-7

https://doi.org/10.1146/annurev.ns.36.120186.001345
https://doi.org/10.1016/j.physrep.2011.03.005
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults
https://doi.org/10.1103/PhysRevD.100.014024
https://doi.org/10.1103/PhysRevD.100.014024
https://arXiv.org/abs/1908.00167
https://doi.org/10.1016/0021-9991(78)90004-9
http://cds.cern.ch/record/123074/
http://cds.cern.ch/record/123074/
http://cds.cern.ch/record/123074/
https://doi.org/10.1145/355934.355939
https://doi.org/10.1145/355934.355939
https://doi.org/10.1063/1.4822899
https://doi.org/10.1016/S0010-4655(99)00209-X
https://doi.org/10.1016/S0010-4655(00)00047-3
https://doi.org/10.1016/j.cpc.2005.01.010
https://doi.org/10.1016/j.cpc.2014.08.024
https://doi.org/10.1016/j.cpc.2014.08.024
https://arXiv.org/abs/1707.00028
https://arXiv.org/abs/1810.11509
https://doi.org/10.1007/JHEP07(2014)079
https://arXiv.org/abs/1912.11055
https://arXiv.org/abs/1901.00875
https://arXiv.org/abs/1901.05282
https://doi.org/10.1007/JHEP08(2019)110
https://doi.org/10.21468/SciPostPhys.7.6.075
https://doi.org/10.21468/SciPostPhys.7.6.075
https://doi.org/10.1140/epjc/s10052-019-7501-1
https://doi.org/10.1140/epjc/s10052-019-7501-1
https://doi.org/10.1088/1748-0221/14/11/P11028
https://doi.org/10.1088/1748-0221/14/11/P11028

GAO, HOCHE, ISAACSON, KRAUSE, and SCHULZ

PHYS. REV. D 101, 076002 (2020)

[24] A. Butter, T. Plehn, and R. Winterhalder, arXiv:1912.08824.

[25] K. T. Matchev and P. Shyamsundar, arXiv:2002.06307.

[26] T. Miiller, B. Mcwilliams, F. Rousselle, M. Gross, and J.
Novdk, ACM Trans. Graph. 38, 145:1 (2019).

[27] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios,
arXiv:1906.04032.

[28] L. Dinh, D. Krueger, and Y. Bengio, in 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, 2015, Workshop Track Proceedings
(2015), http://arxiv.org/abs/1410.8516.

[29] L. Dinh, J. Sohl-Dickstein, and S. Bengio, arXiv:
1605.08803.

[30] R. Kleiss and R. Pittau, Comput. Phys. Commun. 83, 141
(1994).

[31] T. Gleisberg and S. Hoche, J. High Energy Phys. 12 (2008)
039.

[32] J. Song, S. Zhao, and S. Ermon, arXiv:1706.07561.

[33] D. Levy, M.D. Hoffman, and J. Sohl-Dickstein, arXiv:
1711.09268.

[34] M. Hoffman, P. Sountsov, J. V. Dillon, I. Langmore, D.
Tran, and S. Vasudevan, arXiv:1903.03704.

[35] F. James, CERN Report No. CERN-68-15, 1968, http://cds

.cern.ch/record/275743.

[36] D.P. Kingma, T. Salimans, and M. Welling, arXiv:
1606.04934.

[37] G. Papamakarios, T. Pavlakou, and 1. Murray, arXiv:
1705.07057.

[38] C. Gao, J. Isaacson, and C. Krause, arXiv:2001.05486.

[39] E. Byckling and K. Kajantie, Nucl. Phys. B9, 568 (1969).

[40] F. A. Berends and W.T. Giele, Nucl. Phys. B306, 759
(1988).

[41] F. Caravaglios and M. Moretti, Phys. Lett. B 358, 332
(1995).

[42] A. Kanaki and C. G. Papadopoulos, Comput. Phys. Com-
mun. 132, 306 (2000).

[43] C. Duhr, S. Hoche, and F. Maltoni, J. High Energy Phys. 08
(2006) 062.

[44] T.Gleisberg, S. Hoche, F. Krauss, A. Schilicke, S. Schumann,
and J. Winter, J. High Energy Phys. 02 (2004) 056.

[45] T. Gleisberg, S. Hoche, F. Krauss, M. Schonherr, S.
Schumann, F. Siegert, and J. Winter, J. High Energy Phys.
02 (2009) 007.

[46] E. Bothmann et al., SciPost Phys. 7, 034 (2019).

[47] E. Bothmann, T. Janen, M. Knobbe, T. Schmale, and S.
Schumann, arXiv:2001.05478.

[48] F. Krauss, R. Kuhn, and G. Soff, J. High Energy Phys. 02
(2002) 044.

[49] J. Campbell and T. Neumann, J. High Energy Phys. 12
(2019) 034.

[50] B. Efron, J. R. Stat. Soc. Ser. B 54, 83 (1992).

[51] J. Bergstra and Y. Bengio, J. Mach. Learn. Res. 13, 281
(2012), http://www.jmlr.org/papers/v13/bergstral 2a.html.

[52] A. Buckley, H. Hoeth, H. Lacker, H. Schulz, and J. E. von
Seggern, Eur. Phys. J. C 65, 331 (2010).

[53] R.D. Ball et al. (NNPDF), Eur. Phys. J. C 77, 663
(2017).

[54] J. Bellm et al., Eur. Phys. J. C 80, 93 (2020).

[55] K. Hamilton, P. Nason, and G. Zanderighi, J. High Energy
Phys. 10 (2012) 155.

[56] F.R. Anger, F. Febres Cordero, S. Hoche, and D. Maitre,
Phys. Rev. D 97, 096010 (2018).

[57] C.F. Berger, Z. Bern, L.J. Dixon, F. Febres-Cordero, D.
Forde, T. Gleisberg, H. Ita, D. A. Kosower, and D. Maitre,
Phys. Rev. Lett. 106, 092001 (2011).

[58] S. Catani and M.H. Seymour, Nucl. Phys. B485, 291
(1997).

[59] W. Giele, G. Stavenga, and J.-C. Winter, Eur. Phys. J. C 71,
1703 (2011).

[60] K. Hagiwara, J. Kanzaki, Q. Li, N. Okamura, and T. Stelzer,
Eur. Phys. J. C 73, 2608 (2013).

076002-8

https://arXiv.org/abs/1912.08824
https://arXiv.org/abs/2002.06307
https://doi.org/10.1145/3341156
https://arXiv.org/abs/1906.04032
http://arxiv.org/abs/1410.8516
http://arxiv.org/abs/1410.8516
http://arxiv.org/abs/1410.8516
https://arXiv.org/abs/1605.08803
https://arXiv.org/abs/1605.08803
https://doi.org/10.1016/0010-4655(94)90043-4
https://doi.org/10.1016/0010-4655(94)90043-4
https://doi.org/10.1088/1126-6708/2008/12/039
https://doi.org/10.1088/1126-6708/2008/12/039
https://arXiv.org/abs/1706.07561
https://arXiv.org/abs/1711.09268
https://arXiv.org/abs/1711.09268
https://arXiv.org/abs/1903.03704
http://cds.cern.ch/record/275743
http://cds.cern.ch/record/275743
http://cds.cern.ch/record/275743
https://arXiv.org/abs/1606.04934
https://arXiv.org/abs/1606.04934
https://arXiv.org/abs/1705.07057
https://arXiv.org/abs/1705.07057
https://arXiv.org/abs/2001.05486
https://doi.org/10.1016/0550-3213(69)90271-5
https://doi.org/10.1016/0550-3213(88)90442-7
https://doi.org/10.1016/0550-3213(88)90442-7
https://doi.org/10.1016/0370-2693(95)00971-M
https://doi.org/10.1016/0370-2693(95)00971-M
https://doi.org/10.1016/S0010-4655(00)00151-X
https://doi.org/10.1016/S0010-4655(00)00151-X
https://doi.org/10.1088/1126-6708/2006/08/062
https://doi.org/10.1088/1126-6708/2006/08/062
https://doi.org/10.1088/1126-6708/2004/02/056
https://doi.org/10.1088/1126-6708/2009/02/007
https://doi.org/10.1088/1126-6708/2009/02/007
https://doi.org/10.21468/SciPostPhys.7.3.034
https://arXiv.org/abs/2001.05478
https://doi.org/10.1088/1126-6708/2002/02/044
https://doi.org/10.1088/1126-6708/2002/02/044
https://doi.org/10.1007/JHEP12(2019)034
https://doi.org/10.1007/JHEP12(2019)034
https://doi.org/10.1111/j.2517-6161.1992.tb01866.x
http://www.jmlr.org/papers/v13/bergstra12a.html
http://www.jmlr.org/papers/v13/bergstra12a.html
http://www.jmlr.org/papers/v13/bergstra12a.html
http://www.jmlr.org/papers/v13/bergstra12a.html
https://doi.org/10.1140/epjc/s10052-009-1196-7
https://doi.org/10.1140/epjc/s10052-017-5199-5
https://doi.org/10.1140/epjc/s10052-017-5199-5
https://doi.org/10.1140/epjc/s10052-019-7574-x
https://doi.org/10.1007/JHEP10(2012)155
https://doi.org/10.1007/JHEP10(2012)155
https://doi.org/10.1103/PhysRevD.97.096010
https://doi.org/10.1103/PhysRevLett.106.092001
https://doi.org/10.1016/S0550-3213(96)00589-5
https://doi.org/10.1016/S0550-3213(96)00589-5
https://doi.org/10.1140/epjc/s10052-011-1703-5
https://doi.org/10.1140/epjc/s10052-011-1703-5
https://doi.org/10.1140/epjc/s10052-013-2608-2

