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The attractive class of higher-dimensional scenarios, based on a brane-localized Higgs boson coupled to
bulk fermions, can address both the puzzle of the structure of the flavor space and the gauge hierarchy
problem. In this framework, a key question arises due to the possibility of fermion wave function
discontinuities at the Higgs boundary: how to build rigorously the Lagrangian and calculate the fermion
mass spectrum as well as the effective four-dimensional (4D) Yukawa couplings. We show that the proper
treatment, leading to physically consistent solutions, does not rely on any Higgs peak regularization but
requires the presence of certain bilinear brane terms. In particular, no profile jump should appear, and the
Higgs regularizations turn out to suffer from mathematical discrepancies reflected in two noncommu-
tativities of calculation steps debated in the literature. The introduction of bilinear brane terms can
alternatively be replaced by vanishing conditions for probability currents at the considered flat interval
boundaries. Indeed, both contribute to the definition of the field geometrical configuration of the model,
even in the free case. The bilinear brane terms could allow us to elaborate an ultraviolet origin of the chiral
nature of the Standard Model and of its chirality distribution among quarks/leptons. The current conditions
are implemented through essential boundary conditions to be contrasted with the natural boundary
conditions derived from the action variation. All these theoretical conclusions are confirmed in particular
by the converging exact results of the 4D versus five-dimensional approaches. The analysis is completed by
a description of the appropriate energy cutoff procedure in the present context. The new calculation
methods presented, implying the independence of excited fermion masses and 4DYukawa couplings on the
“wrong-chirality” Yukawa terms, have impacts on phenomenological results like the relaxing of previously
obtained strong bounds on Kaluza-Klein masses induced by flavor changing reactions generated via tree-
level exchanges of the Higgs field.
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I. INTRODUCTION

The paradigm of scenarios with extra spatial dimensions
(and the composite Higgs models dual via the AdS=CFT
correspondence) represents an alternative to supersym-
metry for addressing the deep gauge hierarchy problem
of the Standard Model (SM). In particular, the warped
dimension scenarios [1] with SM fields in the bulk [2],
although relying on a unique fundamental energy scale,
allow us to generate the SM fermion mass hierarchy [3]
from a simple geometrical picture of fermion profiles

(see, e.g., Refs. [4–9]). To realize those two hierarchical
features, the Brout-Englert-Higgs scalar field [10,11],
providing a mass via the electroweak (EW) symmetry
breaking, must be either stuck exactly on the so-called TeV-
brane (boundary of the finite extra dimension)1 or located in
the bulk with a wave function only peaked at the TeV brane.
Branes are hypersurfaces located in an higher-dimensional
space and can arise in the framework of string theories as
D-branes which are dynamical objects with quantum
properties [18,19] (see also Refs. [20,21] for the super-
gravity limit of string theories). In contrast, in the gauge-
Higgs unification models, as described, for instance, in
Ref. [22], protecting the Higgs mass down to lower
energies, the Higgs field propagates all along the extra
dimension together with matter.
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1There exist other phenomenological motivations, like within
neutrino mass models, for the Higgs boson to be stuck at the
boundary of an interval [12–16] or fermions to propagate in the
bulk [17].
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Recently, some attention has been paid to the math-
ematical context of the interaction between Higgs and
fermions both propagating along a (warped) extra dimen-
sion [23]; it was found that to avoid possible pathological
behaviors in the fermion sector constraints on the fermionic
field Lagrangian must be imposed. Besides, when includ-
ing gravity, the description of braneworld models (brane-
localized fields or operators) within an effective field theory
must be done carefully as discussed in the holographic
context of Ref. [24]. The energy-momentum tensor of
brane-localized fields (scalar, spinor, and vector) must also
satisfy some constraints induced by Einstein’s equations
[25]. Such theoretical consistency considerations are inter-
esting from the purely theoretical side and are crucial for
the clear understanding of higher-dimensional models
being now searched and constrained at the LHC explor-
atory phase.
In the present paper, we discuss the rigorous treatment of

the other case of a boundary-localized Higgs scalar field,
interacting with bulk quark/leptons propagating in a finite
interval, which presents subtleties that deserve to be looked
at more deeply. Such a field configuration occurs in the
realistic warped models addressing the fermion mass and
gauge hierarchy. The case of bulk matter without inter-
actions is also studied.
Let us recall these subtle aspects. First, a question arises

about the correct treatment of the specific object that is the
Dirac peak entering each Lagrangian term which involves
the brane-Higgs boson. Second, this Dirac peak may induce
an unusual discontinuity2 in the wave function along the
extra dimension (at the Higgs boundary where further
conditions arise from the Lagrangian variations) for some
of the bulk fermions: the so-called jump problem [27,28].
These five-dimensional (5D) aspects have motivated the
introduction [27,28] of a process of regularization of the
Higgs Dirac peak (smoothing the peak or shifting it from
the boundary) in the calculation of Kaluza-Klein (KK)
fermion mass spectra and effective four-dimensional (4D)
Yukawa couplings. Although there is no profound theoreti-
cal reason to apply such a regularization procedure (forcing
interaction-free boundary conditions for fermions), nowa-
days all the theoretical and phenomenological studies of the
warpedmodelswith brane-Higgs (see, e.g., Refs. [5,29–33])
are relying on this Higgs peak regularization.
In this paper, we first present the mathematical incon-

sistencies of this regularization procedure used in the
literature. Then, instead of regularizing, we develop the
rigorous determination of the profiles—taking into account
the mathematical nature of the Dirac peak in the Higgs
coupling—which leads to bulk fermion wave functions
without discontinuities on the considered extra space. We
conclude from this whole approach that neither the profile
jump nor a particular problem arises when a proper

mathematical framework is used, so there is in fact no
motivation to introduce a brane-Higgs regularization.
As a consequence, we can now interpret two noncommu-

tativities of calculation steps for Higgs production and decay
rates [30–32,34] or for fermion masses and 4D Yukawa
couplings [35], previously studied in the literature, to be
similar effects and confirmations of the mathematical incon-
sistencies in the Higgs peak regularization. Besides, the
debate in the literature about those twononcommutativities is
thus closed by the useless nature of this regularization.
The correct methods without regularization, together

with their results, are illustrated here in the derivation of
the KK fermion mass spectrum—the same ideas apply to
the calculation of effective 4D Yukawa couplings. This
spectrum calculation is done in a simplified model with a
flat extra dimension, with the minimal field content (to
write down a Yukawa interaction), and without gauge
symmetry. Nevertheless, this toy model already possesses
all the key ingredients to study the delicate brane-Higgs
aspects. Hence, our conclusions can be directly extended to
the realistic warped models with bulk SM matter address-
ing the fermion flavor and gauge hierarchy.
Several new spectrum calculation methods are proposed

and further allow confirmations of the analytical results.
Those methods go through the 4D or 5D approaches (one
extra dimension case) and are based on the fermion current
determination from either the action variations or the
equations of motion. We had to generalize the Noether
theorem to include brane-localized terms like the Yukawa
couplings. Besides, the correct derivation of the standard
free fermion mass spectrum (in the absence of Yukawa
interactions) turns out to be a useful starting guide in
particular for the 4D approach or more generically for a
solid comprehension of such higher-dimensional scenarios.
From a historical point of view, the correct method

established here arises naturally in the theory of variational
calculus as the Lagrangian boundary term (brane-Higgs
coupling to fermions) is included in a new boundary
condition instead of entering the equations of motion
[36] (via a regularization). Furthermore, the present analy-
sis follows the prescription of considering the Dirac delta to
be a distribution. By the way, the Dirac peak and distri-
butions were formalized and validated mathematically
during the 1940s by Schwartz [37,38] precisely for the
purpose of solving consistently physical problems. Hence,
today, it should not be avoided to respect the distribution
formalism when facing a physical problem involving an
object like the Dirac delta, as it occurs in the present higher-
dimensional context.
The rigorous results obtained for the KK mass spectrum

and effective 4D Yukawa couplings are different from the
ones derived in general through the Higgs peak regulari-
zation, as it is detailed in the present paper. This difference
is physical, affecting then phenomenological studies on
indirect searches of KK states at high-energy colliders2Field jumps may arise in other frameworks [26].
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(in particular via the Higgs production and flavor changing
neutral currents), and analytical (vanishing of the Yukawa
coupling with “wrong” fermion chiralities relatively to the
SM), which improves the precise theoretical understanding
of the higher-dimensional setup with a brane-localized
Higgs field.
Furthermore, the correct mass spectrum obtained here

allows us to point out the necessity, for bulk fermions (with
or without coupling to a brane-localized scalar field), to
have certain bilinear brane terms at boundaries which are
fermion mass terms from the point of view of the spinorial
structure but do not introduce new mass parameters.3

Indeed, such terms guarantee the existence of physical
solutions (with correct profile normalizations and
Hermitian conjugate boundary conditions and satisfying
the decoupling limit argument) derived via the least action
principle through the variation calculus. Their necessary
presence is confirmed by the nontrivial exact matching
between the 5D and 4D analytical calculations of the mass
spectrum.
At a brane without Yukawa coupling, instead of includ-

ing such a bilinear term, we find that one can alternatively
impose as an essential boundary condition (in contrast with
natural boundary conditions coming from the Lagrangian
variations) the condition of a fermion current along the
extra dimension vanishing at this brane—and exclusively
within the 4D approach in case of a brane with localized
Yukawa interaction. Indeed, the generic reason for the
presence of bilinear brane terms is the consistent and
complete geometrical definition of models with a finite
extra spatial interval in which fermionic matter is stuck.
Notice that the choice between the bilinear brane term
presence and the vanishing fermion current condition relies
on the UV completion of the model. Indeed, the vanishing
fermion current condition permits alternatively the exist-
ence of physical solutions.
Therefore, a first possibility is that the UV completion

generates bilinear brane terms for the fermions on both
boundaries (those with and without localized Yukawa
coupling) of the interval. Then, the geometrical interval
definition (interval boundaries and vanishing 5D fermion
currents at these boundaries) would be completely con-
tained in the action expression. Now, in case the UV
completion would not induce bilinear brane terms on both
boundaries, such essential boundary conditions should be
imposed at the brane(s) without bilinear terms in order to
define well the geometrical configuration and to have
acceptable physical solutions. We can thus conclude that,
whether the geometrical setup is defined exclusively
through the action expression (leading to the natural
boundary conditions) or (also) via additional essential

boundary conditions depends on the origin of the model
at high energies.
In case the UV completion produces bilinear brane terms

for the fermions on both boundaries, at low energies, the
chiral nature of the SM as well as its field chirality
distribution [left-handed SUð2ÞL doublets and right-handed
singlets] are entirely induced by the signs in front of these
bilinear brane terms. This new relation shows how the
particular chiral properties of the SM could be explained by
an underlying theory, through the bilinear brane term signs.
We complete the analysis by a discussion, in this context,
on the appropriate treatment of the cutoff in energy due to
the framework of higher-dimensional models in a non-
renormalizable theory.
The paper is organized as follows. First, we describe the

minimal model in Sec. II, before presenting the free case
and the 4D treatment of the coupled fermions in Sec. III.
The 5D approaches are exposed as well, with (Sec. IV) and
without (Sec. V) regularization. Finally, an overview is
provided in Sec. VI, together with a description of the
phenomenological impacts. We summarize and conclude in
the last section.

II. MINIMAL CONSISTENT MODEL

A. Space-time structure

We consider a 5D toy model with a space-time
E5 ¼ M4 × C1:

(i) M4 is the usual 4D Minkowski space-time. An
event in M4 is characterized by its 4-vector coor-
dinates xμ where μ ¼ 0, 1, 2, 3 is the Lorentz index.
The metric and conventions used are given in
Appendix A.

(ii) C1 is a finite one-dimensional flat compactified extra
space. For our purpose, we consider the following
simple case: the interval C1 ≡ ½0; L�, with a length
L ∈ R⋆þ, parametrized by the continuous extra
coordinate y and bounded by two flat 3-branes at
y ¼ 0 and y ¼ L.

(iii) A point of the whole 5D space-time E5 is labeled by
its coordinates zM with an indexM ∈ ⟦0; 4⟧. zM can
be split into ðxμ; yÞ.

B. Bulk fermions

We consider the minimal spin-1=2 fermion field content,
allowing us to write down the 4D effective renormalizable
SM Yukawa-like coupling between zero-mode fermions (of
different chiralities) and a scalar field (see Sec. II E): a pair
of fermions Q and D. Both are propagating along the extra
dimension, as we have in mind a model extension to a
realistic scenario with bulk matter (cf. Sec. II F) where Q
and D will be, respectively, the SUð2ÞL doublet down-
component and singlet quark fields. The 5D fields Qðxμ; yÞ
andDðxμ; yÞ thus have the kinetic terms in the covariant 5D
action

3The potential 4D effective mass involves a dimensionful
product of two profile boundary values.
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SΨ ¼
Z

d4xdy
i
2
ðQ̄ΓM∂MQ − ∂MQ̄ΓMQ

þ fQ ↔ DgÞ; ð2:1Þ

where the last term indicates a field replacement and ΓM

denotes the 5D Dirac matrices (see Appendix A). In our
notations, the 5D Dirac spinor, being the irreducible
representation of the Lorentz group, reads as

Q ¼
�
QL

QR

�
and D ¼

�
DL

DR

�
; ð2:2Þ

in terms of the two two-component Weyl spinors, for the
fields Q and D, respectively. L=R stands for the left/right-
handed chirality.
Let us rewrite the bulk action of Eq. (2.1) in a convenient

form. Using the definition ∂M

↔
¼̂ ∂⃗M −∂⃖M and applying

integrations by part along the usual 4-coordinates, it can be
recast into SΨ ¼ R

d4xdyLΨ with

LΨ ¼
X

F¼Q;D

�
iF†

Rσ
μ∂μFR þ iF†

Lσ̄
μ∂μFL

þ 1

2
ðF†

R∂4

↔
FL − F†

L∂4

↔
FRÞ

�
; ð2:3Þ

omitting the global 4-divergence, which must vanish in the
action integration due to vanishing fields at (infinite)
boundaries. Indeed, when minimizing the action, we see
that the varied terms must vanish separately at (infinite)
boundaries, since the generic nonvanishing field variations
at boundaries are independent from each other and from
bulk ones. This is realized by the standard configuration of
vanishing fields themselves at boundaries, which is com-
patible with the wave function normalization conditions.

C. Bilinear brane terms

Interestingly, in the absence of the vanishing fermion
current condition at a boundary of the considered interval
½0; L�, the presence at this 3-brane of some bilinear terms,
for bulk fermions being either free or coupled to a scalar
field on this brane, turns out to be necessary. Indeed, these
bilinear terms insure the existence of physical solutions
(see Sec. III for the 4D approach and Sec. V for the 5D one)
deduced from the least action principle. The theoretical
reason for the presence of the bilinear brane terms (BBTs)
at the boundaries of the interval is the correct geometrical
configuration definition for models in which fermions
cannot propagate beyond the two boundaries, as will also
be described in Secs. III and V. These sections will also
point out the 4D/5D matching of the mass spectrum exact
result, which constitutes in particular a confirmation for the
necessary presence and exact form (including coefficients)
of the BBTs.

Necessary BBTs read as4

SB ¼
Z

L

0

d4xdy½fδðy − LÞ − δðyÞgLB�; with

LB ¼ 1

2
ðQ̄Q − D̄DÞ; ð2:4Þ

where δðy − LÞ denotes the Dirac peak at y ¼ L. Indeed,
those BBTs will lead to the set of boundary conditions in
Eq. (3.21) for the wave functions qnðyÞ and dnðyÞ of the 5D
fields Q and D, which then possess a nonvanishing
normalizable zero mode (m½n¼0� ¼ 0) for only one chirality
[L or R as sinðm½n¼0�yÞ ¼ 0]; hence, at low energies (below
the first KK mass eigenvalue m1), only one chirality of a
given 4D field arises in the KK decomposition (3.5) so that
one recovers the chiral nature of the SM. Furthermore,
within an extended realistic model (as described in Sec. II F)
in which theQðDÞ field would be the down-component of an
SM SUð2ÞL gauge doublet, the unique chiralities of the

zero-mode 4D fields QðDÞ0
L ðxμÞ and D0

RðxμÞ predicted by
Eq. (3.21) via Eq. (3.5) would correspond well to the SM
chirality configuration.5 Notice that Eq. (3.5) (involving KK
modes rather than mass eigenstates) and Eq. (3.21) are valid
within the relevant 4D treatment of the localized Yukawa
interaction where it is explicit that the SM particles (whose
mass mainly originates from the EW symmetry breaking)
are indeed mainly composed by the zero modes (small
mixings with the massive KK states), as imposed by the
small experimental deviations generally observed with
respect to the theoretical SM predictions.
Therefore, it is remarkable that the BBTs allow us to

make a step toward the UV explanation of the well-known
SM chiral properties (chiral nature and chirality configu-
ration) by directly linking these chiral aspects to explicit
signs in front of Lagrangian terms (BBT signs), as
described right above. Then, the last step would be to
build a UV completion of the model to generate these BBT
signs. In other words, the entire control of the chiral
structure by the BBT signs is a new feature that shows
how an underlying theory could produce the SM chiral
structure.
For completeness, we mention that the two other BBT

sign configurations,

4Similar terms, leading in particular to LB ¼ 1
2
ðQ̄DQD − D̄DÞ,

would hold in a model version extended to the EW symmetry
of the SM, with the Q field promoted to an SUð2ÞL
doublet. In contrast, terms of the kind Q̄UD (or Q̄D), Q̄UQD,
or ŪD would obviously not belong to a gauge-invariant form.

5Taking the opposite sign for each of the four terms in Eq. (2.4)
would lead to exchanged boundary conditions between qnðyÞ and
dnðyÞ relatively to Eq. (3.21) and in turn to another chirality
configuration.
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S0B ¼
Z

L

0

d4xdy½fδðy − LÞ þ δðyÞgL0
B�; with

L0
B ¼ σ

1

2
F̄F; ð2:5Þ

and σ ¼ �1, for 5D fields of the form (3.5) lead to the two
sets (3.22) of boundary conditions and in turn to a
vectorlike field content, as for the so-called custodian
fermions in custodially protected warped models [39].
Indeed, Eq. (3.22) leads to the absence of zero modes
(m½n¼0� ≠ 0) and hence any KK state has both left and right
chiralities. Notice here that Eqs. (3.5) and (3.22) are valid
for the free case. Once again, the control of the vectorial
structure by the BBT signs is a novel characteristic that
shows how a UV completion could produce a vectorlike
field content.
What is the direct effect of the BBTs (2.4) on the final

fermion mass eigenvalues? In the 4D approach and in the
case without Yukawa interaction (see Sec. III), these BBTs
have no effect on the 4D fermion mass matrix [Eq. (3.35)];
after injecting the profile solutions, those BBTs vanish due
to the induced boundary conditions of Eq. (3.21), which
impose that one of the two wave functions (L or R)6

entering the BBT 5D fields [cf. Eq. (3.5)] is equal to zero,
at y ¼ 0 [sinðmn 0Þ ¼ 0] and y ¼ L [sinðmn LÞ ¼ 0],
systematically for each one of the two Lagrangian BBTs
(2.4). In contrast, in the 5D approach, the BBTs (2.4) play a
numerical and direct role in the fermion mass spectrum,
through the boundary conditions coming from the action
variations (see Sec. V).
Formerly, this kind of bilinear fermion brane terms

(2.4)–(2.5) was first introduced by hand to derive the more
specific AdS=CFT correspondence in the calculation of
correlation functions for spinors [40,41]—the exact
AdS=CFT duality being possibly realized in the UV
completion of warped models (from which the present
simplified scenario is inspired). Then, within this
AdS=CFT paradigm, similar boundary terms have been
added at the UV-brane only (y ¼ 0) to guarantee the
minimization of the action in the holographic version of
the warped model with bulk fermions [42]. The least action
principle was also invoked in Ref. [43] to justify such
bilinear fermion brane terms in the AdS=CFT context and
through the path integral formalism. Equivalently, still in
the AdS=CFT framework, these terms have been motivated
in the Lagrangian density from an action form involving
explicitly the Hamiltonian (to obtain a consistent
Hamiltonian formulation when performing the Legendre
transformation) [44]. Other boundary-localized terms were
also introduced in a field theory defined on a manifold with
boundaries within the context of gravity: the Gibbons-
Hawking boundary terms [45–48]. Those terms are needed

to cancel the variation of the Ricci tensor at the boundaries
of the manifold.
The finite geometry setup is defined via either the BBT

inclusion or the vanishing fermion current condition,
depending on the considered UV completion of the model.
From the point of view of the effective field theory, it means
that it can happen that the underlying theory does not forbid
(through a short-distance mechanism or a residual sym-
metry) any possible nonrenormalizable Lorentz-invariant
operator involving the 5D fields Q and D (including
covariant derivatives) up to dimension 5—this dimension
choice being motivated in Sec. II E—in the low-energy
effective model described in this section. Then, the present
fermionic operators would be those included in the con-
sidered actions (2.3) (dimension-5 operators) and (2.4)
(dimension-4 operators): the BBT part.
Notice that bulk mass terms, usually modifying the bulk

fermion profiles, bring useless complications, so we will
not consider them in our present calculations, as the paper
conclusions on fermion couplings to a brane field can be
easily extended [49].

D. Brane-localized scalar field

The subtle aspects arise when the fermions couple to a
single 4D scalar field, H, confined on a boundary taken
here to be at y ¼ L (as inspired from warped scenarios
addressing the gauge hierarchy problem). The action of this
scalar field has the generic form

SH ¼
Z

d4xdyδðy − LÞLH; with

LH ¼ ð∂μHÞ⋆ð∂μHÞ − VðHÞ; ð2:6Þ

where the potential V possesses a minimum which gen-
erates a nonvanishing vacuum expectation value (VEV) for
the field developed as

H ¼ vþ hðxμÞffiffiffi
2

p

in analogy with the SM Higgs boson.
Note that one could think of replacing (up to a constant)

the δðy − LÞ peak in Eq. (2.6) by a Heaviside step7 function
ΘðL − yÞ that could play a similar role of localizing
the scalar field Lagrangian at the boundary y ¼ L.
Nevertheless, the integration in Eq. (2.6) over the interval
½0; L� would then be strictly equivalent to the integration
over ½0; L� and in turn equal to zero given the vanishing
Heaviside function value there. Such a situation would in
fact correspond to the total absence of the H scalar field,
which conflicts with the considered field content
hypothesis.

6For instance, D̄D ¼ D†
LDR þD†

RDL.
7ΘðrÞ ¼ 0 for r > 0, and ΘðrÞ¼̂ 1 for r ¼ 0.
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E. Yukawa-like interactions

We focus on the following basic interaction in order to
study the subtleties induced by the brane-scalar field
coupling to bulk fermions:

SY ¼ −
Z

d4xdyδðy − LÞLY; with

LY ¼ Y5Q
†
LHDR þ Y 0

5Q
†
RHDL þ H:c: ð2:7Þ

Considering operators, involving H, Q, and D, up to
dimension 5 allows us to include this Yukawa coupling
of interest.8 The coupling constants Y5 and Y 0

5 of Yukawa
type, entering these two distinct terms, are independent
(i.e., parameters with possibly different values) as a well-
defined 4D chirality holds for the fermion fields on the
3-brane strictly at y ¼ L (see, for instance, Ref. [28]).
To avoid the introduction of a new energy scale, one

could define the 5D Yukawa coupling constants by giving
their explicit dependence in L: Y5 ¼ Y4L and Y 0

5 ¼ Y 0
4L,

where Y4; Y 0
4 are dimensionless coupling constants of

Oð1Þ. Then, Y4 can be identified with the SM Yukawa
coupling constant, as shown when applying the decoupling
limit (infinitely heavy KK masses and any new physics
energy scale).9

From now on, we restrict our considerations to the VEV
of H as the aim is to calculate the KK fermion mass
spectrum which is unaffected by the interactions of the
hðxμÞ fluctuation field with fermions. Hence, we concen-
trate on the action issued from Eq. (2.7),

SX ¼ −
Z

d4xdyδðy − LÞLX; with

LX ¼ XQ†
LDR þ X0Q†

RDL þ H:c:; ð2:8Þ

with the compact notations X ¼ vY5ffiffi
2

p and X0 ¼ vY0
5ffiffi
2

p .

F. Model extension

The toy model considered is thus characterized by the
Lagrangian

S5D ¼ SΨ þ SB þ SH þ SX: ð2:9Þ

Nevertheless, the conclusions of the present paper can be
directly generalized to realistic warped models with bulk
SM matter solving the fermion mass and gauge hierarchies.
Indeed, working with a warp extra dimension instead of a

flat one would not affect the conceptual subtleties about
coupling bulk fermions to a brane-scalar field [49]. The
boundaries at y ¼ 0 and y ¼ L could then become,
respectively, the Planck and TeV branes. Similarly, the
scalar potential, VðHÞ, can be extended to any potential
(like the SM Higgs potential breaking the EW symmetry)
as long as it still generates a VEV for the scalar field as
here. In this context, the H singlet can be promoted to the
Higgs doublet under the SM SUð2ÞL gauge group, simply
by inserting doublets in the kinetic term of Eq. (2.6). The
whole structure of the coupling of Eq. (2.8) between bulk
fermions and the localized VEV would as well remain
identical in case of fermions promoted to SM SUð2ÞL
doublets: after group contraction of the doublet ðQU;QDÞt
with down-/up-quark singlets D, U, one would obtain two
replicas of the structure (2.8) with the forms QD†

C DC0 and
QU†

C UC0 , where Cð0Þ ≡ L, R denotes the chirality. Hence,
the procedure described in this paper should just be applied
to both terms separately.10 The same comment holds for the
SM color triplet contraction and the field content extension
to the three flavors of quarks and leptons of the SM. Notice
that the flavor mixings would be combined with the
mixings among fermion modes of the KK towers, without
any impact on the present considerations about brane-
localized couplings.

III. 4D PERTURBATIVE APPROACH

A. 5D aspects for (formally) free fermions

In this part, we calculate the fermionic mass spectrum in
the basic case in which Y5 ¼ Y 0

5 ¼ 0 in Eq. (2.7) (studied in
various references [27,35,42,50–57]), pointing out the
correct treatment. Let us also remark that in this case there
is no 4D/5D matching condition to look at (pure 5D
calculation of the masses). The main interest of this section
is to develop the rigorous procedure for applying the
boundary conditions.

1. Absence of Yukawa couplings

Natural boundary conditions.—To extract from the relevant
Lagrangian (2.3) the equations of motion (EOM) and
the boundary conditions (BCs) for the bulk fermions, we
apply the least action principle—or Hamilton’s variational
principle—for each of them (F ¼ Q, D11). Assuming, at a
first level, the boundary fields Fðxμ; y ¼ f0; LgÞ¼̂ Fj0;L
to be initially unknown (unfixed), they should be
deduced from the action minimization with respect to
them, considering thus nonvanishing generic12 variations

8Notice that, for instance, a dimension-6 operator of type
1
M2 δðy − LÞQ†

L=RH
2DR=L,M being a mass scale, would be treated

in a similar way as the couplings in Eq. (2.7) [and can contribute
to the Yukawa couplings (2.7) through the scalar field VEV].

9Note that in the decoupling limit where in particular L → 0,
generally Y5 → 0 due to the dimension of the 5D Yukawa
coupling constants.

10The fermion actions in Eqs. (2.3) and (2.4) would be trivially
generalized as well to a scenario with a gauge symmetry.

11EOM and BCs for the fields and their conjugates are trivially
related through Hermitian conjugation.

12A field variation reads as δFðzMÞ ¼ ϵηðzMÞ with a generic
function ηðzMÞ and an infinitesimal parameter ϵ → 0.
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δFj0;L ≠ 0.13 In other words, Fj0;L should be then obtained
from the so-called natural boundary conditions (NBCs).
The stationary action condition can be split, without loss of
generality (the functional variations are generic so that δQ̄
and δD̄ are independent), into action variations with respect
to each field Q̄ and D̄,

0 ¼ δF̄SΨ

¼
Z

d4x
Z

L

0

dy

�
δF̄iΓM∂MF þ 1

2
∂4ðδF̄γ5FÞ

�
; ð3:1Þ

as written after we have expressed Eq. (2.3) in terms of the
four-component spinors, based on the Dirac matrices of
Appendix A, and integrated by part its last two terms. Note
that δð∂MF̄αÞ∂LΨ=∂ð∂MF̄αÞ ¼ 0 (α being the implicitly
summed spinor index) was used to obtain Eq. (3.1).
Besides, the variations δF̄j0;L ≠ 0 appear in the second
term of this equation (pure boundary terms after integration
over y of the global ∂4 derivative) generated by the action
minimization with respect to F̄ at the boundaries.
Following the theory of variational calculus [58,59], the

distinct terms of Eq. (3.1) vanish separately (respectively,
the volume and the surface terms) to insure that δF̄SΨ ¼ 0
still for generic and in turn independent field variations,

δF̄SΨ¼ 0⇒

�
0¼ δF̄iΓM∂MF; ∀ xμ; ∀ y∈ ½0;L�
0¼ δF̄γ5Fj0¼ δF̄γ5FjL; ∀ xμ;

ð3:2Þ

where the first (second) line constitutes the bulk EOM
(NBCs).14 Notice that the NBCs originate from the last term
of Eq. (3.1) obtained after an integration by parts of the
initial action. Using once more the fact that for the searched
bulk fields the δF̄αðzMÞ for any δF̄α ½α ¼ 0; 1;…; 4� are
independent from each other and nonvanishing, it is useful
for the following to recast Eq. (3.2) into these two-
component spinor relations (still using Appendix A),

iΓM∂MF ¼ 0 ⇔

�
iσμ∂μFR ¼ −∂4FL

iσ̄μ∂μFL ¼ ∂4FR

�
ð3:3Þ

and

γ5Fj0¼γ5FjL¼0⇔FLj0¼FRj0¼FLjL¼FRjL¼0: ð3:4Þ

Let us now deduce, from those equations involving the
5D fields, the relations on their profiles along the extra
dimension.

Naive approach.—To develop a 4D effective picture,
let us replace the 5D fields, in the relations obtained just
above, by their standard solution in the form of a KK
decomposition,

FL=Rðxμ; yÞ ¼
1ffiffiffiffi
L

p
Xþ∞

n¼0

fnL=RðyÞFn
L=RðxμÞ; ð3:5Þ

where fnL=R ¼ qnL=R or dnL=R are the dimensionless wave
functions along the extra dimension associated, respec-
tively, to the 4D fields Fn

L=R ¼ Qn
L=R or Dn

L=R of the KK
excitations. The integer n is defined throughout the whole
paper as being the level index of the heavy fermion mode
(here the KK state15) tower and is chosen to be positive; the
meaningful feature about the general KK decomposition
(3.5) is rather the infinite summation (possibly also from
−∞ to þ∞) dictated by field expressions as Fourier series
on a finite interval.
Inserting Eq. (3.5) into the 5D field relations (3.3) and

using the following two-component Weyl equations for the
4D fermions (issued from the four-component Dirac
equation),16

�
iσ̄μ∂μFn

LðxμÞ ¼ mnFn
RðxμÞ

iσμ∂μFn
RðxμÞ ¼ mnFn

LðxμÞ
; ð3:6Þ

where mn are the KK masses17 for the fermions,18 one can
directly extract these differential free equations for the
profiles:

∀ n ≥ 0;

8>>><
>>>:

∂4qnRðyÞ ¼ mnqnLðyÞ
∂4qnLðyÞ ¼ −mnqnRðyÞ
∂4dnRðyÞ ¼ mndnLðyÞ
∂4dnLðyÞ ¼ −mndnRðyÞ

: ð3:7Þ

These four equations have been obtained by writing the
equality, per KK level, between each term of the KK state
sums on the left-hand side and right-hand side of Eq. (3.3)
(and by simplifying thanks to identical 4D fields on each
side), instead of considering compensations between

13Then, in the final step, once, for instance, the field FjL is
found and fixed by the solution (not initially fixed as an
hypothesis in this considered case), its resulting determined form
does not imply δFjL ¼ 0, which would be incompatible with the
starting nonvanishing field variation; there is sometimes con-
fusion in articles about these chronological aspects of the
variational calculus.

14We find the Hermitian conjugate EOM and NBCs by
integrating by parts the bulk piece of the relation δFSΨ ¼ 0
(nonvanishing boundary terms from integration over the extra
dimension then contribute) in order to get rid of the field factors
∂MδF.

15Not yet the mass eigenstate in case of Yukawa interactions.
16Within the natural unit system.
17Also mass eigenvalues in the absence of Yukawa

interactions.
18The same masses mn enter the Weyl equations for the

Qn
L=RðxμÞ and Dn

L=RðxμÞ fields, which are described by separate
and identical terms in the considered Lagrangian.
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different terms in Eq. (3.3), which would mean having
physical 4D fields Fn

L=RðxμÞ [solutions of Eq. (3.6)]
expressed as linear combinations of other mass eigenstates
Fn0
L=RðxμÞ; such reexpressions would induce, in the

Lagrangian, KK mass mixing terms for the mass eigen-
states, which is not consistent.
Deriving and combining the first-order differential equa-

tions (3.7), one can decouple them into the second-order
differential equations

∀ n ≥ 0; ∂2
4f

n
L=RðyÞ ¼ −m2

nfnL=RðyÞ ð3:8Þ

being the equations of independent harmonic oscillators,
whose solutions possess the general form

∀n≥0; fnL=RðyÞ¼An
L=RcosðmnyÞþBn

L=R sinðmnyÞ; ð3:9Þ

where An
L=R and Bn

L=R are constant parameters.
Now, inserting Eq. (3.5) into the 5D field conditions of

Eq. (3.4), we obtain the vanishing conditions19 for any
profile,

∀ n ≥ 0; fnL=Rð0Þ ¼ fnL=RðLÞ ¼ 0; ð3:10Þ

avoiding inconsistent relations among mass eigenstate 4D
fields, as explained below Eq. (3.7).
Those conditions, combined with Eqs. (3.7) and (3.9),

give rise to the vanishing profiles fnL=RðyÞ ¼ 0 (∀ n ≥ 0),20

which are not compatible with the two orthonormalization
conditions for fnLðyÞ and fnRðyÞ,
1

L

Z
L

0

dyfn⋆L=RðyÞfmL=RðyÞ¼δnm; ∀ n≥0; ∀m≥0; ð3:11Þ

coming out from the imposition of canonical and diagonal
normalized kinetic terms for the 4D fields after inserting the
KK decomposition (3.5) into the 5D field kinetic terms (2.1).
The theoretical inconsistency obtained here for the con-

sidered free model reveals a problem in the treatment of a
simple boundary without localized couplings to bulk matter
(which is the case of both boundaries here). The correct
treatments, based on either fermion current conditions at the
boundaries or boundary-localized terms (the BBTs), are
exposed respectively in the two following subsections.

2. Introducing the fermion current condition

Current from action variations.—In fact, the free version
[Y5 ¼ Y 0

5 ¼ 0] of the model defined in Sec. II (and finite

extra dimension scenarios in general) does impose con-
ditions on the bulk fermions at the extra dimension
boundaries, which were not included in the above naive
analysis. These conditions contribute to defining the
geometrical field configuration of the considered model.
They will constitute the so-called essential boundary
conditions (EBCs), as imposed by the model definition,
which are complementary to the NBC already defined in
Eq. (3.2). Indeed, the NBCs come from an integration by
parts of the initial action with respect to the fifth dimension
over the interval ½0; L� and thus take into account the space-
time structure itself.
Regarding the geometrical field configuration within the

present free model, each fermion field is defined only along
the interval ½0; L�. This model building hypothesis, that
fermions neither propagate toward nor come from the
outside of a finite range, translates into the condition of
vanishing probability current at both boundaries for each
independent fermion species separately (without possible
compensations).
Formally speaking, after having varied the Lagrangian

(2.1) [see Eq. (3.1)] and in turn derived the bulk EOM (3.3)
[from the first relation of Eq. (3.2)] as well as the NBCs
[second relation of Eq. (3.2)], the application of the
Noether theorem demonstrated in Appendix B (by using
the EOM)21 gives rise to the two probability currents (B4)
defined independently for the two bulk fermions22 repre-
sented by the 5D fields F ¼ Q, D,

jMQ ¼ −αQ̄ΓMQ; jMD ¼ −α0D̄ΓMD; ð3:12Þ

associated to the two global Uð1ÞF symmetries of the free
action (2.1) corresponding, respectively, to the distinct
transformations,

Q ↦ eiαQ; D ↦ eiα
0
D: ð3:13Þ

α; α0 (∈ R) are continuous parameters entering, for in-
stance, the infinitesimal field variations:23

δQ ¼ iαQ; δ Q̄ ¼ −iαQ̄: ð3:14Þ
Now, the four conditions of vanishing probability cur-

rents are thus

j4Fj0;L ¼ −αð0ÞF̄Γ4Fj0;L ¼ iαð0ÞðF†
RFL − F†

LFRÞj0;L
¼ 0; ∀ xμ; ð3:15Þ

where we have used Eq. (2.2). For a nontrivial trans-
formation (3.13) [αð0Þ ≠ 0], the condition (3.15) on the 4D

19Throughout this paper, the notation “∀ n ≥ 0” applies on
the natural integer n defined in Eq. (3.5): n ¼ 0; 1; 2; 3;….

20fnLð0Þ ¼ 0, ∀ n, and Eq. (3.9) leads to An
L ¼ 0 so that

fnLðyÞ ¼ Bn
L sinðmnyÞ. Then, Eq. (3.7) induces fnRðyÞ ¼

An
R cosðmnyÞ and in turn fnRðyÞ ¼ 0 from fnRð0Þ ¼ 0. Hence,

Eq. (3.7) imposes Bn
L ¼ 0 ¼ fnLðyÞ.

21Valid trivially in the absence of BBTs as well.
22See Ref. [50] for scalar field currents.
23We use different notations for the infinitesimal field varia-

tions under specific transformations, δF, and generic field
variations in the variation calculus, δF.
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fields Fn
L=RðxμÞ [cf. Eq. (3.5)] entirely fixed by Eq. (3.6)

leads to an equation on the 4D space-time coordinates and
momenta, whereas the fields of the considered model must
be defined in the whole 4D space-time and for any 4D
momentum. The most general way out is to make of
Eq. (3.15) a trivial equality by having

FLj0 ¼ 0 or FRj0 ¼ 0; and;

FLjL ¼ 0 or FRjL ¼ 0 ð3:16Þ

corresponding to a vanishing coefficient in each term of the
condition (3.15),

fnLð0Þ ¼ 0 or fnRð0Þ ¼ 0 and

fnLðLÞ ¼ 0 or fnRðLÞ ¼ 0; ∀ n ≥ 0; ð3:17Þ

which avoids inconsistent relations among mass eigenstate
4D fields, as discussed below Eq. (3.7).
These necessary conditions (3.16) of vanishing fields at

boundaries are the EBCs and correspond to some fields
initially fixed at boundaries. Having such known fields at
boundaries imposes [58] having vanishing functional
variations,

δFLj0 ¼ 0 or δFRj0 ¼ 0; and;

δFLjL ¼ 0 or δFRjL ¼ 0: ð3:18Þ

There is an overall consistency since no actionminimization
with respect to a field FL=Rj0;L (relying on δFL=Rj0;L ≠ 0) is
needed for such a known fermion field at a boundary, in
contrast with the first treatment (above) where the boundary
fields Fj0;L were assumed to be initially unknown and then
found out (NBCs) through the least action principle.
The newEBCs (3.16)must be combinedwith the obtained

NBCs [second relation of Eq. (3.2)], which read as

ðδF†
LFRÞj0 − ðδF†

RFLÞj0 ¼ ðδF†
LFRÞjL − ðδF†

RFLÞjL ¼ 0:

ð3:19Þ

In fact, each of the four sets of EBCs in Eqs. (3.16)–(3.18)
imply the NBCs (3.19) so that it is sufficient to consider
these EBCs.
In other words, when deriving the NBCs, before know-

ing the EBCs (as described above), one would sum
generically in the action variations (3.1) the terms with
all nonvanishing field variations at boundaries. Once the
EBCs (3.16) would be determined and selected [fixing
some fields at boundaries accordingly to Eq. (3.18)], one
would keep only the known nonvanishing variations (i.e.,
omit to vary the action with respect to known fields) and in
turn one would do the same in the NBC [so that some terms
of Eq. (3.19) would be omitted].

Now, the general solutions (3.9) of the decoupled
equations derived from the EOM (3.3), once reinjected
into the initial equations (3.7) on the profiles, become

fnLðyÞ ¼ Bn
R cosðmnyÞ − Bn

L sinðmnyÞ;
fnRðyÞ ¼ Bn

L cosðmnyÞ þ Bn
R sinðmnyÞ: ð3:20Þ

These solutions are taken continuous at the boundaries in
order to possibly have well-defined derivatives appearing
in the consistent action (2.1), as also described in details in
Sec. IV B 1. Applying the four sets of EBCs from
Eqs. (3.16) and (3.17) to the solution forms (3.20), it
appears that certain constant parameters must be equal to
zero, and thus we obtain the following four possible sets of
profiles and KK mass spectrum equation (∀ n ≥ 0),

1Þ ð−−Þ∶ dnLðyÞ ¼ −Bn
L sinðmnyÞ;

ðþþÞ∶ dnRðyÞ ¼ Bn
L cosðmnyÞ; sinðmnLÞ ¼ 0;

2Þ ðþþÞ∶ qnLðyÞ ¼ Bn
R cosðmnyÞ;

ð−−Þ∶ qnRðyÞ ¼ Bn
R sinðmnyÞ; sinðmnLÞ ¼ 0; ð3:21Þ

and

3Þ ð−þÞ∶ fnLðyÞ ¼ −Bn
L sinðmnyÞ;

ðþ−Þ∶ fnRðyÞ ¼ Bn
L cosðmnyÞ; cosðmnLÞ ¼ 0;

4Þ ðþ−Þ∶ fnLðyÞ ¼ Bn
R cosðmnyÞ;

ð−þÞ∶ fnRðyÞ ¼ Bn
R sinðmnyÞ; cosðmnLÞ ¼ 0: ð3:22Þ

Here, we have used the standard BC notations; i.e., − or þ,
for example, at y ¼ 0 stands, respectively, for the
Dirichlet or Neumann wave function BC: fnL=Rð0Þ ¼ 0

or ∂yfnL=Rð0Þ ¼ 0. For instance, the symbolic notation
(−þ) denotes the Dirichlet (Neumann) BC at y ¼ 0
(y ¼ L). The solutions (3.21) assigned to the (singlet/
doublet component) quark fields give rise to the chiral
nature of the SM and to its correct chirality configuration,
as described in Sec. II C for Eq. (3.21). The other solutions
(3.22) lead to KK towers without zero modes like custodian
states [see also the discussion on Eq. (3.22) in Sec. II C].
Notice that the used BCs (3.17) must be injected into the

Eqs. (3.7) issued from the EOM as those are valid for any
point of the extra dimension including the boundaries [see
the original Eq. (3.2)]. This leads to a new set of BCs that
we call the complete BCs. These complete BCs are well
satisfied by the final solutions (3.21) and (3.22).
The constants Bn

L ¼ ffiffiffi
2

p
eiα

n
L and Bn

R ¼ ffiffiffi
2

p
eiα

n
R

(∀ n > 0),24 where αnL=R are real angles, are fixed
by the orthonormalization condition (3.11). The relation

24For solution 1, we find B0
L ¼ eiα

0
L , while B0

R ¼ eiα
0
R for

solution 2 [cf. Eq. (3.21)].

BEYOND BRANE-HIGGS REGULARIZATION: CLARIFYING THE … PHYS. REV. D 101, 075048 (2020)

075048-9



sinðmnLÞ ¼ 0 has the following chosen solutions for the
KK mass spectrum:

mn ¼ þ nπ
L

ð∀ n ≥ 0Þ: ð3:23Þ

The spectrum mn ¼ − nπ
L [∀ n ≥ 0] is also possible.

Similarly, the relation cosðmnLÞ ¼ 0 has the possible
solutions mn ¼ �ð π

2L þ nπ
L Þ [∀ n ≥ 0].

Current from equations of motion.—Alternatively, as the
starting point, one can apply the vanishing conditions
(3.15) (EBCs) on the same probability currents (3.12)
(up to the definition constant −αð0Þ) satisfying the con-
servation relations, ∂MjMF ¼ 0, as derived directly (without
applying the Noether theorem) from a rewriting25 of each
free 5D Dirac equation (3.3) in the bulk:

iΓM∂MQ ¼ 0; iΓM∂MD ¼ 0: ð3:24Þ

To derive possible NBCs, one now has to consider the
action. The free bulk fermion action can be rewritten, after
an integration by parts in the last two terms of Eq. (2.3), as

SΨ ¼
Z

d4xdy
X

F¼Q;D

�
iF†

Rσ
μ∂μFR þ iF†

Lσ̄
μ∂μFL

þ F†
R∂4FL − F†

L∂4FR

þ 1

2
½δðy − LÞ − δðyÞ�ðF†

LFR − F†
RFLÞ

�
: ð3:25Þ

Injecting directly the EBCs (3.15) into the Lagrangian
would cancel out the boundary terms of Eq. (3.25) and in
turn spoil the necessary Hermiticity of the action [being
explicit through Eqs. (2.1)–(2.3)]. This feature reflects the
fact that the action and the current condition (3.15) are
distinct ingredients defining the model. The proper method
goes as follows: the current condition (3.15) constitutes the
EBCs which will have to be combined with the action
minimization relations.
So, let us apply the least action principle to the action

(3.25). From the known EBCs (3.15), leading to the
conditions (3.16), we deduce that the field FLj0 or FRj0
is fixed to zero, as is the field FLjL or FRjL, so that their
functional variation vanishes [as in Eq. (3.18)] and in turn
the global variation of the action part in the second line of
Eq. (3.25) cancels out. Another way to find out this
cancellation is to combine the functional variation of the
relation (3.15) with the variation of the terms in the second
line of Eq. (3.25). Therefore, the action minimization only

leads to the same bulk EOM as in Eq. (3.3). These bulk
equations induce the profile equations (3.7) whose sol-
utions have the forms given by Eq. (3.20), which are taken
once more continuous at the boundaries. As above, the
EBCs (3.15)–(3.17) applied to these solutions give rise to
the final profiles (3.21) and (3.22) and in turn to the mass
spectrum discussed via Eq. (3.23).

3. Introducing the bilinear brane terms (NBCs)

As announced at the end of Sec. III A 1, an alternative
method26 with respect to previous subsection for finding
out the same consistent physical solutions, for the mass
spectrum and the profiles, is to add the BBTs (2.4) to the
kinetic terms (2.3) so that the initial free fermionic action
becomes

Sfree5D ¼ SΨ þ SB: ð3:26Þ

Let us apply the least action principle using this action as
the starting point. The action based on Eq. (2.3), rewritten
as the action (3.25) and added to the BBT piece (2.4), reads
as, after combining the boundary terms,

Sfree5D ¼
Z

d4xdy
X

F¼Q;D

fiF†
Rσ

μ∂μFR þ iF†
Lσ̄

μ∂μFL

þ F†
R∂4FL − F†

L∂4FRg

þ
Z

d4xdy½δðy − LÞ − δðyÞ�ðQ†
LQR −D†

RDLÞ:

Without loss of generality, the stationary action condition
can be split into these two conditions with respect to the
two field variations, respectively,

0¼δF†
L
Sfree5D ¼

Z
d4x

Z
L

0

dy½δF†
Liσ̄

μ∂μFL−δF†
L∂4FR�

þ
Z

d4xCL
F½ðδF†

LFRÞjL−ðδF†
LFRÞj0�; ð3:27Þ

0 ¼ δF†
R
Sfree5D ¼

Z
d4x

Z
L

0

dy½δF†
Riσ

μ∂μFR þ δF†
R∂4FL�

þ
Z

d4xCR
F½−ðδF†

RFLÞjL þ ðδF†
RFLÞj0�;

ð3:28Þ

where CL
D ¼ 0, CR

D ¼ 1, CL
Q ¼ 1, CR

Q ¼ 0, for each field D
andQ. For generic field variations δF†

L=R and δF†
L=Rj0;L, the

sum of the first two terms, both in Eqs. (3.27) and (3.28),
must vanish separately, leading to the same equations as the

25Subtracting the Dirac equation to its Hermitian conjugate
form, with the relevant 5D field and γ0 factors, and using the 5D
Dirac matrix rules.

26One could simultaneously impose the EBC (3.15) above and
add the BBT to the action, but this method would contain some
redundancy.
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EOM (3.3)27 and in turn via Eq. (3.6) to the profile
equations (3.7) with solutions (3.9). The general solutions
(3.9), once injected into the initial equations (3.7), take the
specific forms (3.20). We are thus left with the NBCs:

CL
FðδF†

LFRÞjL ¼ 0; CL
FðδF†

LFRÞj0 ¼ 0;

CR
FðδF†

RFLÞjL ¼ 0 and CR
FðδF†

RFLÞj0 ¼ 0: ð3:29Þ

Then, using the appropriate constants CL;R
Q and CL;R

D above

for each field and generic variations δFð†Þ
L;Rj0;L ≠ 0, it appears

clearly that those BCs belong to the set of BCs (3.16) and
(3.17) whose application on the solution forms (3.20) leads
to the two respective sets of profiles and KK mass spectrum
(3.21), as already derived. The structure of the profile
solutions (3.21) corresponds to the chiral nature and
configuration of the SM as already explained in Sec. II C.
For completeness, starting instead from the BBT (2.5) in

the action for a given field F,

S0free5D ¼ SΨðFÞ þ S0B; ð3:30Þ

the combination of the boundary terms leads to

S0free5D ¼
Z

d4xdy
�
iF†

Rσ
μ∂μFR þ iF†

Lσ̄
μ∂μFL

þ F†
R∂4FL − F†

L∂4FR

þ
�
δðy − LÞ σ þ 1

2
þ δðyÞ σ − 1

2

�
F†
LFR

þ
�
δðy − LÞ σ − 1

2
þ δðyÞ σ þ 1

2

�
F†
RFL

�
:

The stationary action condition can be split into the two
following conditions:

0¼δF†
L
S0free5D ¼

Z
d4x

Z
L

0

dy½δF†
Liσ̄

μ∂μFL−δF†
L∂4FR�

þ
Z

d4x

�
σþ1

2
ðδF†

LFRÞ
				
L
þσ−1

2
ðδF†

LFRÞ
				
0

�
;

ð3:31Þ

0¼δF†
R
S0free5D ¼

Z
d4x

Z
L

0

dy½δF†
Riσ

μ∂μFRþδF†
R∂4FL�

þ
Z

d4x

�
σ−1

2
ðδF†

RFLÞ
				
L
þσþ1

2
ðδF†

RFLÞ
				
0

�
:

ð3:32Þ

Once more, the sum of the first two terms in Eqs. (3.31) and
(3.32), respectively, must vanish, leading to the same
profile equations as the ones deduced from Eqs. (3.27)
and (3.28) and hence to the identical bulk solution forms
(3.20). Nevertheless, we are now left with the new NBCs:

σ þ 1

2
ðδF†

LFRÞ
				
L
¼ σ − 1

2
ðδF†

LFRÞ
				
0

¼ σ − 1

2
ðδF†

RFLÞ
				
L

¼ σ þ 1

2
ðδF†

RFLÞ
				
0

¼ 0: ð3:33Þ

Then, for generic variations δFð†Þ
L;Rj0;L ≠ 0, it is clear that

those BCs belong to the set of BCs (3.16) and (3.17) whose
application on the solution forms (3.20) leads, for σ ¼ þ1,
to set 3 of profiles and KKmass spectrum in Eq. (3.22) and,
for σ ¼ −1, to set 4 of solutions in Eq. (3.22), as already
derived. The control of the BBT sign factor σ, in Eq. (2.5),
on the final solution structure appears here clearly. The
profile solutions (3.22) have a custodian chiral structure as
already described in Sec. II C.

Current from action variations.—In the presence of the
BBTs (2.4) or (2.5) [invariant under the transformations
(3.13)], as demonstrated in the beginning of Appendix B,
the application of the Noether theorem based on the bulk
EOM (3.3)—derived from the variation of the action (2.1)–
(2.3) invariant under the global Uð1ÞF transformations
(3.13)—leads to the same probability currents (B4) defined
separately for the bulk fermions represented by the 5D
fields F ¼ Q, D, as in Eq. (3.12). Now, the NBCs (3.29) or
(3.33) induced by the BBTs, as both satisfying the BCs
(3.16), lead to four conditions of vanishing probability
currents of the exact form (3.15). In other words, the
presence of the BBTs guarantees (without imposing any
condition) the vanishing of the currents at both boundaries
for each independent fermion species. These BBT-induced
conditions contribute to the consistent and complete
definition of the geometrical field configuration for the
considered model with a finite extra spatial interval in
which fermionic matter is stuck.

Current from equations of motion.—Alternatively, we can
derive directly (without the Noether theorem) the conser-
vation relations, ∂MjMF ¼ 0, for the probability currents
(3.12) from a rewriting28 of each free 5D Dirac equa-
tion (3.3) in the bulk as in Eq. (3.24). The BBTs (2.4) or
(2.5) affect only the NBCs derived from variation of the
action (2.1)–(2.3). The NBCs (3.29) or (3.33), induced by
the BBTs, both respect the BCs (3.16) and hence lead to the
four conditions of vanishing currents (3.15). Therefore, as
above, the BBTs guarantee the vanishing of the currents at

27We obtain the Hermitian conjugate EOM and NBCs by
integrating by parts the bulk piece of the relation δFL;R

Sfree5D ¼ 0
(nonvanishing boundary terms appear due to the integration over
the extra dimension) in order to get rid of the field factors
∂MδFL;R.

28Subtracting the Dirac equation to its Hermitian conjugate
form.
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both boundaries for each fermion species. Those conditions
allow a consistent and complete definition of the
geometrical field setup for the model with matter on an
interval.
Let us close this part by remarking that one could as

well combine the two approaches to define the model:
add a BBTonly on an interval boundary for a given 5D field
(as in this subsection) and apply the vanishing current
condition only on the other boundary (as in Sec. III A 2).

4. Presence of Yukawa couplings

In this section, we only describe the two steps of a first
method [29,35,60–67], that will turn out to be the correct
method, for including the effects of the Yukawa terms (2.8)
on the final fermion spectrum. First, the free profiles and free
spectrum are calculated within a strict 5D approach whose
correct treatment was exposed in details in Secs. III A 2 and
III A 3. Second, one can write a mass matrix for the 4D
fermion fields involving the pure KK masses (the free
spectrum of the first step) as well as the masses induced
by the Higgs VEV in the Yukawa terms (2.8) (with free
profiles of the first step), which mix together the KKmodes.
The bidiagonalization of this matrix gives rise to an infinite
set of eigenvalues constituting the physical masses, aswill be
presented in Sec. III B.

B. 4D fermion mass matrix

We focus on the fermion terms of the 5D action (2.9) in
order to work out the mass spectrum: in particular
on SΨ, SX and possibly SB [without direct effect on the
mass matrix (3.35) as explained in Sec. II C] if no
EBCs are applied. Those terms lead—after insertion of
the KK decomposition (3.5), use of free Eq. (3.7), ortho-
normalization condition (3.11), and integration over the
fifth dimension—to the canonical kinetic terms for the 4D
fermion fields as well as to the following fermionic 4D
effective mass terms in the Lagrangian density (and to
independent 4D effective Higgs-fermion couplings not
discussed here),

−χ†LMχR þ H:c:;

in the combined basis for the left- and right-handed
(transposed) 4D fields:

�
χtL ¼ ðQ0t

L ; Q
1t
L ; D

1t
L ; Q

2t
L ; D

2t
L ; � � �Þ

χtR¼ ðD0t
R ; Q

1t
R ; D

1t
R ; Q

2t
R ; D

2t
R ; � � �Þ

: ð3:34Þ

Notice that there exists only one chirality for the zero
modes as explained below Eq. (2.4). The infinite mass
matrix reads as

M ¼

0
BBBBBBBBB@

α00 0 α01 0 α02 � � �
α10 m1 α11 0 α12 � � �
0 β11 m1 β12 0 � � �
α20 0 α21 m2 α22 � � �
0 β21 0 β22 m2 � � �
..
. ..

. ..
. ..

. ..
. . .

.

1
CCCCCCCCCA
; ð3:35Þ

where mn is the free spectrum (3.23). In this equation, the
free wave function overlaps with the Higgs-brane are
defined by (for real wave functions)

� ∀ ði; jÞ ∈ N2; αij ¼ X
L q

i
LðLÞdjRðLÞ

∀ ði; jÞ ∈ N⋆2; βij ¼ X0
L diLðLÞqjRðLÞ

: ð3:36Þ

As the profiles are the free ones [profiles and KK mass
spectrum solutions (3.21) with SM chiral structure], only
the αij coefficients do not vanish.
The physical fermion mass spectrum is obtained by

bidiagonalizing the mass matrix (3.35). This method is
called the perturbation method in the sense that truncating
the mass matrix at a given KK level corresponds to keeping
only the dominant contributions to the lightest mass
eigenvalue being the measured fermion mass (higher KK
modes tend to mix less to the zero mode due to larger mass
differences).
Extracting the mass spectrum equation from the char-

acteristic equation for the Hermitian-squared mass matrix
(3.35), in the case of infinite KK towers, is not trivial. This
useful exercise was addressed analytically in Ref. [35] for
the present toy model but with a 5D Yukawa coupling
constant (and in turn a X quantity) taken real. The resulting
exact equation—without any approximation—was found
to be

tan2

 ffiffiffiffiffiffiffiffiffiffiffi

jMnj2
q

L
�
¼X2⇔ tan


 ffiffiffiffiffiffiffiffiffiffiffi
jMnj2

q
L
�
¼�X ð∀ n≥0Þ:

ð3:37Þ

Let us present here the absolute values of the solutions
(physical masses) of this equation,

jMnj ¼
				 arctanð�XÞ þ ð−1ÞnñðnÞπ

L

				 ð∀ n ≥ 0Þ; ð3:38Þ

where the function ñðnÞ is defined by

� ñðnÞ ¼ n
2
for n even

ñðnÞ ¼ nþ1
2

for n odd
ð3:39Þ

so that the positive integer n labeling the mass eigenvalues
remains as well the label of the associated [as in the free
case (3.6)] 4D mass eigenstates ψnðxμÞ [like in Eq. (3.5)].
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Besides, globally speaking, for the whole set of n levels, the
absolute value of the fermion mass has a common generic
expression for the two different classes (�X)29 of solutions:

tan

 ffiffiffiffiffiffiffiffiffiffiffi

jMnj2
q

L
�
¼ þX

⇒ jMnj ¼
				 arctanðXÞ þ ð−1ÞnñðnÞπ

L

				 ; ð3:40Þ

or; tan

 ffiffiffiffiffiffiffiffiffiffiffi

jMnj2
q

L
�
¼ −X

⇒ jMnj ¼
1

L
j − arctanðXÞ þ ð−1ÞnñðnÞπj

¼ 1

L
j arctanðXÞ þ ð−1Þnþ1ñðnÞπj

≡
				 arctanðXÞ þ ð−1ÞnñðnÞπ

L

				 : ð3:41Þ

The last equality is justified for the whole spectrum by the
fact that, for two consecutive n values (for one odd n and
the following even n, with n > 0

30), ð−1Þn and ð−1Þnþ1

span the same two values �1 while ñðnÞ keeps the same
value. Hence, the two classes of solutions in Eqs. (3.40) and
(3.41) may only differ by some different mass signs
(remaining unfixed in the solutions for absolute values).
To check that the counting of states is correct, we

observe that, in the realistic case jXj ≪ 1 (typically small
SM masses compared to the KK scale), two consecutive
absolute masses jMnj (for one odd n and the following even
n, with n > 0) of Eq. (3.38) are equal at leading order to the
corresponding (unique ñ value) absolute mass j � ñπ=Lj as
in the free spectrum (3.23). Hence, in the vanishing mixing
limit [see matrix (3.35)], the two associated consecutive
mass eigenstates ψnðxμÞ tend well to the two free 4D field
components QñðxμÞ and DñðxμÞ [of Eq. (3.6)].

IV. 5D TREATMENT: THE
REGULARIZATION DOOM

In this part, we work out the fermion mass spectrum in the
defined model with the 5D action (2.9) using the alternative
5D approach based on the brane-Higgs regularization
[5,27,28,30,35,51,53], andwepoint out nonrigorous patterns
of this method.

A. Mixed Kaluza-Klein decomposition

As we have just seen in Eqs. (3.34) and (3.35), after EW
symmetry breaking, the infinite Qn

L and Dn
L field towers

mix together (as do the Qn
R and Dn

R) to form 4D fields ψn
L

(and ψn
R) representing mass eigenstates. To take into

account this mixing within the 5D approach, these common
4D fields ψn

L are defined instead of the Qn
L and Dn

L fields
(and similarly for the right-handed fields) in the whole KK
decomposition, then called a mixed KK decomposition
[instead of the free one in Eq. (3.5)] [28], as follows:

8>>>>><
>>>>>:

QLðxμ; yÞ ¼ 1ffiffiffi
L

p
Pþ∞

n¼0 q
n
LðyÞψn

LðxμÞ
QRðxμ; yÞ ¼ 1ffiffiffi

L
p

Pþ∞
n¼0 q

n
RðyÞψn

RðxμÞ
DLðxμ; yÞ ¼ 1ffiffiffi

L
p

Pþ∞
n¼0 d

n
LðyÞψn

LðxμÞ
DRðxμ; yÞ ¼ 1ffiffiffi

L
p

Pþ∞
n¼0 d

n
RðyÞψn

RðxμÞ

: ð4:1Þ

The 4D fields ψn
L=R (∀ n) must satisfy the Weyl equations

�
iσ̄μ∂μψ

n
LðxμÞ ¼ Mnψ

n
RðxμÞ

iσμ∂μψ
n
RðxμÞ ¼ Mnψ

n
LðxμÞ

; ð4:2Þ

where the spectrum Mn includes the mass contribution
whose origin is the Yukawa couplings (2.8). Note that, in
contrast with the free case, there is a unique mass spectrum
Mn for a unique 4D field tower ψn

L=RðxμÞ. To guarantee the
existence of diagonal and canonical kinetic terms for those
4D fields ψn

L=R, the associated new profiles must now obey
the two following orthonormalization conditions,

1

L

Z
L

0

dy½qn⋆C ðyÞqmC ðyÞþdn⋆C ðyÞdmC ðyÞ� ¼ δnm; ∀n; ∀m;

ð4:3Þ

for a chirality index C≡ L or R. These two conditions are
different from the four ones of Eq. (3.11) due to the new
mixed KK decomposition.

B. Inconsistencies of the Higgs shift procedure

Here, we highlight the formal problems of the 5D process
of shifting the brane-Higgs field [27,30,35] to get the
fermion mass tower. Once more, the considered fermion
terms of the 5D action (2.9) are SΨ and SX (without SB,
whichwasmissed in the relevant literature andwhichwill be
taken into account in Sec. V). The variations of the studied
action lead to the same freeBCs [second line of Eq. (3.2)] but
to the following bulk EOM including the Yukawa coupling
constants [instead of the free ones in Eq. (3.3)]:31

29The other solution, consisting alternatively of Eq. (3.40) for
some n levels and Eq. (3.41) for other n levels, has to be ruled
out since the complete and consistent infinite mass spectrum
solution is fixed in a unique model hypothesis selected among the
two given mathematical solutions (3.40) or (3.41), as Eq. (3.37)
determines the quantity

ffiffiffiffiffiffiffiffiffiffiffi
jMnj2

p
L modulo π.

30The justification is obvious (no sign effect) for the special
n-even case ñð0Þ ¼ 0.

31In the subsections on Higgs regularizations, we use the same
Lagrangians as in the present paper but the results and con-
ventions from Ref. [35].
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8>>><
>>>:

iσ̄μ∂μQL þ ∂4QR þ δðy − LÞXDR ¼ 0;

iσμ∂μQR − ∂4QL þ δðy − LÞX0DL ¼ 0;

iσ̄μ∂μDL þ ∂4DR þ δðy − LÞX0QR ¼ 0;

iσμ∂μDR − ∂4DL þ δðy − LÞXQL ¼ 0:

ð4:4Þ

Indeed, in view of regularizing the brane-Higgs field,
the Yukawa interactions must be included in the bulk
EOM [35]—as done in the literature. Inserting the mixed
KK decomposition (4.1) in these 5D field EOM (4.4) allows
us to factorize out the 4D fields, obeying the 4D Dirac
equations (4.2), and obtain the profile equations for each
excited mode [instead of the free ones in Eq. (3.7)]:

∀n;

8>>><
>>>:

∂4qnRðyÞþMnqnLðyÞ¼−δðy−LÞXdnRðyÞ;
∂4qnLðyÞ−MnqnRðyÞ¼ δðy−LÞX0dnLðyÞ;
∂4dnRðyÞþMndnLðyÞ¼−δðy−LÞX0qnRðyÞ;
∂4dnLðyÞ−MndnRðyÞ¼ δðy−LÞXqnLðyÞ:

ð4:5Þ

Here, we underline a first mathematical issue of this usual
approach: introducing δðy − LÞ Dirac peaks32 in these
profile equations leads to relations between distributions33

and functions which are thus not mathematically consis-
tent [37,38].
The apparent “ambiguity” noticed in the literature

(context of a warped extra dimension) was that the
Yukawa terms in Eq. (4.5) are present only at the y ¼ L
boundary and might thus affect the fermion BCs. To avoid
this question of a potential problem (like a field vagueness),
a regularization of the brane-Higgs coupling was sug-
gested. This regularization forces to keep the free fermion
BCs in the presence of Yukawa interactions.

1. Regularization I drawbacks

In the first type of regularization applied in the literature
[5,27,35], called regularization I, the BCs are considered at
the first level of the procedure to be injected in Eq. (4.5)
[35]. The free BCs impose dnLðLÞ ¼ qnRðLÞ ¼ 0 [see,
respectively, the first and fourth solutions in Eq. (3.21)]
so that Eq. (4.5) is supposed to become

∀n;

8>>><
>>>:

∂4qnRðyÞþMnqnLðyÞ¼−δðy−LÞXdnRðyÞ;
∂4qnLðyÞ−MnqnRðyÞ¼ 0;

∂4dnRðyÞþMndnLðyÞ¼ 0;

∂4dnLðyÞ−MndnRðyÞ¼ δðy−LÞXqnLðyÞ:

ð4:6Þ

At this level, we point out a second lack of strictness in the
standard treatment; the two vanishing right-hand sides of
Eq. (4.6) originate from the assumption that 0 × δð0Þ ¼ 0,

whereas the quantity 0 × δð0Þ is rigorously undefined,34

which should forbid continuing this standard method.35 In
the next step of this method, the usual mathematical trick is
to shift the brane-Higgs coupling from the brane at y ¼ L
(TeV brane in a warped framework) by an amount ϵ:

∀n;

8>>><
>>>:

∂4qnRðyÞþMnqnLðyÞ¼−δðy− ½L−ϵ�ÞXdnRðyÞ;
∂4qnLðyÞ−MnqnRðyÞ¼0;

∂4dnRðyÞþMndnLðyÞ¼0;

∂4dnLðyÞ−MndnRðyÞ¼δðy− ½L−ϵ�ÞXqnLðyÞ:

ð4:7Þ

Then, the integration of the four relations of Eq. (4.7) over
an infinitesimal range, tending to zero and centered at
y ¼ L − ϵ, leads to36

∀n;

8>>><
>>>:

qnRð½L−ϵ�þÞ−qnRð½L−ϵ�−Þ¼−XdnRðL−ϵÞ;
qnLð½L−ϵ�þÞ−qnLð½L−ϵ�−Þ¼0;

dnRð½L−ϵ�þÞ−dnRð½L−ϵ�−Þ¼0;

dnLð½L−ϵ�þÞ−dnLð½L−ϵ�−Þ¼XqnLðL−ϵÞ:

ð4:8Þ

Another inconsistency arising here in the regularization
process is the following one. The first and fourth relations
in Eq. (4.8) show that the wave functions qnRðyÞ and dnLðyÞ
possess a discontinuity at y ¼ L − ϵ. Hence, the functions
∂4qnRðyÞ and ∂4dnLðyÞ are not defined at y ¼ L − ϵ. Two of
the integrations performed on Eq. (4.7) to get Eq. (4.8) are
thus not well defined. The fundamental theorem of analy-
sis37 [70] cannot be applied for functions undefined on the
whole interval of integration. Let us express this problem in
other terms; the functions ∂4qnRðyÞ and ∂4dnLðyÞ being not
defined at y ¼ L (in the limit ϵ → 0), the last two terms of
the starting 5D action (2.3)—defined along the interval
C1 ≡ ½0; L�—are not well defined.38 Another definition
problem appears in this regularization; the action (2.8) is

32Strictly speaking, a Dirac peak is a distribution although its
historical name is “Dirac delta function.”

33Also called “generalized functions” in mathematical analysis.

34This quantity corresponds also to an undefined product,
namely, 0 ×∞, within the original simplified description [68]
still used in physics textbooks (together with normalization
conditions): δðy − LÞ≡ f 0

∞
if y≠L
if y¼L.

35Such δð0Þ divergences are automatically regulated—by the
exchange of infinite towers of KK scalar modes—for a brane-
Higgs coupled to bulk scalar fields within a minimal super-
symmetric scenario [69].

36The integration of Eq. (4.7) could also be performed over the
interval [L − ϵ, L]; this variant of the calculation, suggested in an
Appendix of Ref. [27], represents in fact an equivalent regulari-
zation process leading to the same physical results and with
identical mathematical inconsistencies.

37Let ða; bÞ ∈ R2 and g be a continuous function on ½a; b�;
then, g admits continuous primitives on ½a; b�. Let G be one of
them; then, one has

R
b
a dygðyÞ ¼ GðbÞ −GðaÞ.

38From the current point of view, the conservation condition
(B9)—involving in particular the 5D probability current compo-
nent (5.16)—cannot be properly written at any point along the
fifth dimension since qnRðyÞ and dnLðyÞ have discontinuities at
y ¼ L so that derivatives in ∂4j4 are not well defined there.
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ill defined [37,38] since the Dirac peak δðy − LÞ enters in
particular as a factor of the profiles qnRðyÞ and dnLðyÞ being
not continuous at y ¼ L, as deduced from Eq. (4.8)—in the
limit ϵ → 0—combined with the free BCs imposing
dnRðLÞ ≠ 0, qnLðLÞ ≠ 0 [see, respectively, the first and
fourth solutions in Eq. (3.21)].39 Finally, the qnRðyÞ and
dnLðyÞ jumps at y ¼ L, obtained when regularizing the
brane-Higgs coupling, conflict with the field continuity
axiom of the invoked theory of variation calculus and hence
with Hamilton’s variational principle [36].
In the following steps of this regularization I, one solves

Eq. (4.7) first in the interval ½0; L − ϵ� (bulk EOM without
Yukawa couplings) and applies the free BCs at y ¼ 0 on the
obtained profiles. Then, one solves similarly Eq. (4.7) on
[L − ϵ, L] before applying the jump and continuity con-
ditions (4.8) at y ¼ L − ϵ on the resulting profiles. The last
step is to apply the free BCs at y ¼ L on these profiles and
take the limit ϵ → 0 (to recover the studied brane-Higgs
model) on the written BCs. The obtained BCs give rise to
the equation whose solutions constitute the fermion mass
spectrum:

tanðMnLÞ ¼ X ð∀ nÞ: ð4:9Þ

The absolute value of the mass spectrum induced by this
equation is exactly the same as the 4D approach result of
Eqs. (3.40) and (3.41).

2. Regularization II drawbacks

Within regularization II [27,28,30,35], the Higgs cou-
pling is first shifted in the bulk equations (4.5), which
become

∀ n;

8>>><
>>>:

∂4qnRðyÞ þMnqnLðyÞ ¼ −δðy − ½L − ϵ�ÞXdnRðyÞ;
∂4qnLðyÞ −MnqnRðyÞ ¼ δðy − ½L − ϵ�ÞX0dnLðyÞ;
∂4dnRðyÞ þMndnLðyÞ ¼ −δðy − ½L − ϵ�ÞX0qnRðyÞ;
∂4dnLðyÞ −MndnRðyÞ ¼ δðy − ½L − ϵ�ÞXqnLðyÞ:

ð4:10Þ

Integrating these four relations over an infinitesimal range
centered at y ¼ L − ϵ gives

∀ n;

8>>><
>>>:

qnRð½L − ϵ�þÞ − qnRð½L − ϵ�−Þ ¼ −XdnRðL − ϵÞ;
qnLð½L − ϵ�þÞ − qnLð½L − ϵ�−Þ ¼ X0dnLðL − ϵÞ;
dnRð½L − ϵ�þÞ − dnRð½L − ϵ�−Þ ¼ −X0qnRðL − ϵÞ;
dnLð½L − ϵ�þÞ − dnLð½L − ϵ�−Þ ¼ XqnLðL − ϵÞ:

ð4:11Þ

This set of conditions shows that the four wave functions
undergo a jump at y ¼ L − ϵ so that their derivatives with
respect to y are not defined at this point. Hence, the four
integrations performed on Eq. (4.10) to obtain Eq. (4.11)
are not well defined in this regularization. In other terms,
the continuity conditions (4.11) rely on the right-hand sides
of the equations so that one must choose a value for each
profile exactly at y ¼ L − ϵ. Taking a standard mean value
weighted thanks to a real number, c, Eq. (4.11) takes the
form

∀n;

8>>>>>><
>>>>>>:

qnRð½L−ϵ�þÞ−qnRð½L−ϵ�−Þ¼−XdnRð½L−ϵ�−ÞþcdnRð½L−ϵ�þÞ
1þc ;

qnLð½L−ϵ�þÞ−qnLð½L−ϵ�−Þ¼X0dnLð½L−ϵ�−ÞþcdnLð½L−ϵ�þÞ
1þc ;

dnRð½L−ϵ�þÞ−dnRð½L−ϵ�−Þ¼−X0qnRð½L−ϵ�−ÞþcqnRð½L−ϵ�þÞ
1þc ;

dnLð½L−ϵ�þÞ−dnLð½L−ϵ�−Þ¼XqnLð½L−ϵ�−ÞþcqnLð½L−ϵ�þÞ
1þc :

ð4:12Þ

Scrutinizing the left-hand sides of those four equations, one
observes that jumps may arise at y ¼ L (under the limit
ϵ → 0) for the four profiles (for each excited nth mode).
Determining which profiles are discontinuous requires one
to consider the free BCs at y ¼ L (before applying the limit
ϵ → 0), the various c values (including infinity), and the
four profiles simultaneously [as they are related through
Eq. (4.12)]. The hypothesis that all of the four profiles are
continuous at y ¼ L − ϵ (in the limit ϵ → 0) corresponds to
the same field configuration as in the absence of Yukawa
interactions40 and leads thus to a free fermion mass
spectrum. This kind of solution was not considered in
the literature since it does not reproduce the SM at low
energies and is thus not realistic. Therefore, there exists at
least one profile discontinuous at y ¼ L, which in turn
cannot be derived at this point and leads to an undefined
kinetic term [in the last two terms of 5D action (2.3)].
Furthermore, the obtained discontinuous [at y ¼ L] profile
comes in the factor of δðy − LÞ in Eq. (2.8), spoiling the
mathematical validity of this action. Besides, once more,
this jump obtained at y ¼ L within the regularization
process is not compatible with the field continuity axiom
implicitly used when applying the Hamilton’s variational
principle.
In the next steps of regularization II, Eq. (4.10) is first

solved over the domain ½0; L − ϵ� (free bulk EOM) and the
free BC at y ¼ 0 are applied on the resulting wave
functions. Equation (4.10) is then solved over [L − ϵ, L]
before the jump/continuity conditions (4.12) at y ¼ L − ϵ
are applied on the obtained profiles. Finally, the free BCs at
y ¼ L are implemented on those profiles, and one applies

39The profiles qnLðyÞ and dnRðyÞ are usually assumed to be
continuous at y ¼ L − ϵ, while qnRðyÞ and dnLðyÞ remain unknown
exactly at this point.

40Free BCs for continuous profiles and free version of the bulk
equations (4.10) without the jump conditions (4.12) at y ¼ L − ϵ
involving effectively the Yukawa couplings.
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the limit ϵ → 0 on the expressed BCs. These BCs make the
following fermion mass spectrum equation for c ¼ 1
appear:

tanðMnLÞ ¼
4X

4þ XX0 ½∀ n�: ð4:13Þ

C. Inconsistencies of the softened
brane-Higgs coupling

Another type of regularization used in the literature (on
warped models) [27,28,30–33,35] consists in replacing
the Dirac peak δðy − LÞ of Eq. (2.8) by a normalized
square function which has a vanishing width (ϵ) and an
infinite value (1=ϵ) in the limit ϵ → 0 where one expects to
recover the considered model with a brane-Higgs coupling.
Nevertheless, we point out here that the Dirac peak
δðy − LÞ at the Higgs brane, and in turn the original
model, is not rigorously recovered via a limit, δðy − LÞ ¼
limϵ→0 ηϵðy − LÞ, of a so-called nascent delta function
(or delta sequence) ηϵ—here the mentioned square
function—since such an equality is only symbolic; a
distribution cannot be defined as the simple direct limit
of a basic function.41 Hence, this would-be regularization is
not satisfactory in the sense that it does not strictly
reproduce the studied brane-Higgs scenario. By the way,
notice that no profile jump is needed to be imposed in this
regularization.
In addition, the two schemes of regularizations I and II

still hold in this framework of a softened coupling, and in
case of regularization I, a problem arises again: some
terms of the profile EOM are taken at zero based on
the assumption that 0 × δð0Þ ¼ 0, whereas the quantity
0 × δð0Þ is undefined.

D. Two noncommutativities of calculation steps

The analytical differences of the mass spectra found in
regularizations I and II, as well as via the softened and
shifted brane-Higgs peaks, could be compensated by the
different input values of the Yukawa coupling constant
parameters (Y5 and Y 0

5) to get identical physical mass
values. Nevertheless, regularizations I and II are in fact
physically different. This difference is induced by the
existence of measurable flavor violating effective 4D
Yukawa couplings at leading order in v2=m2

1, which are
generated by the Y 0

5 couplings [28] being present exclu-
sively within regularization II (as appears clearly in the 4D
approach). This physical difference between the two

schemes of regularization raises the paradoxical question
of which one is the sole correct analytical scheme to use
and represents thus a confirmation of the inconsistency of
regularizing the Higgs peak. These two schemes of
regularization are obtained [35] by commuting in the 4D
calculation (of masses and couplings) the ordering of
implementation of the two limits ϵ → 0 [the regularizing
parameter ϵ defined in Eq. (4.7)] and N → ∞ [the upper
value N of the KK level n in Eq. (3.5)]. Therefore, this
physical noncommutativity of calculation steps reflects the
inconsistency of the Higgs peak regularization. Another
paradoxal noncommutativity of calculation steps arising in
the context of regularization of a brane-Higgs coupled to
bulk fermions was discussed in Refs. [31,32]: different
results of Higgs production/decay rates when taking ϵ → 0
and then NKK → ∞42 [30] or the inverse order [34] in their
calculation. We can thus interpret now this second non-
commutativity of calculation steps as being another effect,
and in turn another confirmation, of the problematic Higgs
regularization (also expected with a warped extra dimen-
sion). Hence, the theoretical debate in the literature about
the origins of those two noncommutativities (involving ϵ)
finds its solution in the mathematically ill-defined (see
above) and unnecessary (see below) Higgs regularization
(introducing ϵ).

V. 5D TREATMENT: THE
CORRECT APPROACH

In this part, we consider the presence of the Yukawa
couplings (2.8) and present the rigorous 5D method to
calculate the fermionic mass spectrum—which does not
require any kind of regularization. We follow the main
lines of the methodology developed for the free case in
Sec. III A.

A. Naive approach

For the fermion masses, the relevant part of the consid-
ered action (2.9) to start with is

Sm5D ¼ SΨ þ SX −
Z

d4xdyδðyÞLB; ð5:1Þ

where the first term based on Eq. (2.3) can be recast into
action (3.25) and LB includes the BBTs of Eq. (2.4).
Regarding the free brane at y ¼ 0, we could equivalently
apply the EBCs (3.15) instead of including these BBTs, as
we have exposed in details in Secs. III A 2 and III A 3.
Now, without loss of generality, the least action principle
leads to the four following conditions:

41Strictly speaking, it is the effect of the Dirac peak in the
integration of a function fðyÞ over an interval covering the point
y ¼ L,

R
δðy − LÞfðyÞdy ¼ fðLÞ, which can be reproduced via

an integration of the type, limϵ→0

R
ηϵðy − LÞfðyÞdy ¼ fðLÞ, not

performed in the present regularization.

42Here, NKK stands for the number of excited fermion
eigenstates exchanged at the loop level.
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0¼ δQ†
L
Sm5D ¼

Z
d4xdyδQ†

L½iσ̄μ∂μQL − ∂4QR� þ
Z

d4x

�
δQ†

L

�
1

2
QR −XDR

��				
L
−
Z

d4xðδQ†
LQRÞ

				
0

;

0¼ δQ†
R
Sm5D ¼

Z
d4xdyδQ†

R½iσμ∂μQR þ ∂4QL� þ
Z

d4x

�
−δQ†

R

�
1

2
QL þX0DL

��				
L
;

0¼ δD†
L
Sm5D ¼

Z
d4xdyδD†

L½iσ̄μ∂μDL − ∂4DR� þ
Z

d4x½δD†
L

�
1

2
DR −X0⋆QR

��				
L
;

0¼ δD†
R
Sm5D ¼

Z
d4xdyδD†

R½iσμ∂μDR þ ∂4DL� þ
Z

d4x

�
−δD†

R

�
1

2
DL þX⋆QL

��				
L
þ
Z

d4xðδD†
RDLÞ

				
0

: ð5:2Þ

Like in the studied free case, as the nonvanishing field
variations δF†

L=R, δF
†
L=Rj0;L are generic, the sum of the first

two terms (first line), in each of those four relations, must
vanish separately, which brings in the same equations as the
5D EOM (3.3) and hence—via the mixed KK decom-
position (4.1) and 4D Dirac-Weyl equations (4.2)—the
profile equations

∀ n ≥ 0;

8>>><
>>>:

∂4qnRðyÞ −MnqnLðyÞ ¼ 0

∂4qnLðyÞ þMnqnRðyÞ ¼ 0

∂4dnRðyÞ −MndnLðyÞ ¼ 0

∂4dnLðyÞ þMndnRðyÞ ¼ 0

ð5:3Þ

whose solutions are found to be [with distinct constants
for fnL=RðyÞ ¼ qnL=RðyÞ or fnL=RðyÞ ¼ dnL=RðyÞ], as in
Eq. (3.20),

fnLðyÞ ¼ Bn
R cosðMnyÞ − Bn

L sinðMnyÞ;
fnRðyÞ ¼ Bn

L cosðMnyÞ þ Bn
R sinðMnyÞ: ð5:4Þ

The NBCs resulting from Eq. (5.2) read as

�ðQR−2XDRÞjL ¼ 0; ðDR−2X0⋆QRÞjL ¼ 0; QRj0 ¼ 0;

ðQLþ2X0DLÞjL ¼ 0; ðDLþ2X⋆QLÞjL ¼ 0; DLj0 ¼ 0:

ð5:5Þ

Combining these NBCs leads to the consistency conditions
on the Lagrangian parameters,

4XX0⋆ ¼ 4X⋆X0 ¼ 1; ð5:6Þ

and in turn to 4jXX0j ¼ 1 and αY 0 ¼ αY þ 2kπ, where k is
an integer and X ¼ jXjeiαY and X0 ¼ jX0jeiαY0 are the real
numbers αY and αY 0 representing the complex phases. The
BCs (5.5), combined with the bulk profile EOM (5.3) [with
solutions (5.4)] taken at y ¼ L, constitute the complete
BCs. Referring to the dependence on the quantity Xð0Þ, we
denote (×) this new class of complete BC at the brane with
a Yukawa coupling (here at y ¼ L) to distinguish them
from the Dirichlet BCs usually noted (−) or the Neumann
BCs noted (þ). The BCs (5.5) on the 5D fields give rise to
the conditions on the profiles, through the KK decom-
position (4.1),

∀ n ≥ 0;

�
qnRðLÞ − 2XdnRðLÞ ¼ 0; dnRðLÞ − 2X0⋆qnRðLÞ ¼ 0; qnRð0Þ ¼ 0;

qnLðLÞ þ 2X0dnLðLÞ ¼ 0; dnLðLÞ þ 2X⋆qnLðLÞ ¼ 0; dnLð0Þ ¼ 0;
ð5:7Þ

since the 4D fermion fields for the mass eigenstates cannot
be linearly related—as discussed below Eq. (3.7). Those
profile conditions, once applied on the solutions (5.4), lead
to the form

∀n≥0;
�
qnLðyÞ¼Cn

RcosðMnyÞ; qnRðyÞ¼Cn
RsinðMnyÞ;

dnLðyÞ¼−Dn
LsinðMnyÞ; dnRðyÞ¼Dn

LcosðMnyÞ;
ð5:8Þ

together with the relations

tanðMnLÞ ¼ 2X
Dn

L

Cn
R
¼ 2X⋆ Cn

R

Dn
L
⇒ tan2ðMnLÞ ¼ 4jXj2;

cotðMnLÞ ¼ 2X0 D
n
L

Cn
R
¼ 2X0⋆ Cn

R

Dn
L
⇒ cot2ðMnLÞ ¼ 4jX0j2:

ð5:9Þ

These last two mass spectrum relations induced are strictly
equivalent thanks to Eq. (5.6). The obtained mass spectrum
allows us to determine, for instance, the BCs (−×) of the
profile dnLðyÞ: dnLð0Þ ¼ 0 and dnLðLÞ ¼ −Dn

L sinðMnLÞ.
Let us check the validity of the obtained solutions. In the

decoupling limit of high KK masses (compared to the

BEYOND BRANE-HIGGS REGULARIZATION: CLARIFYING THE … PHYS. REV. D 101, 075048 (2020)

075048-17



typical SM energy scale) applied to the present model, one
expects to recover approximately the SM setup at low
energies. This decoupling condition is necessary for the
theoretical consistency of the model, and it is generically
imposed by the experimental constraints. First, according to
Eq. (5.9), the lightest mode mass is

M0 ¼
1

L
arctanð�2jXjÞ ¼ 1

L
arctanð�

ffiffiffi
2

p
jY4LvjÞ

∼
m1≫jvj

�
ffiffiffi
2

p
jY4vj; ð5:10Þ

since m1 ¼ π=L [cf. Eq. (3.23)]. This 4D effective fermion
mass [cf. Eq. (4.2)] is well proportional to the Higgs VEV
as in the SM. Second, the effective Yukawa coupling
constant in the 4D action term involving the lightest modes,
−
R
d4xY00Hψ0†

L ψ0
R þ H:c:, is obtained by injecting the

KK decompositions (4.1) in Eq. (2.7) and then integrating
over y, by using the wave functions (5.8) to take into
account the mass mixings induced by the Yukawa cou-
plings (5D method),

Y00 ¼
Y5

L
q0⋆L ðLÞd0RðLÞþ

Y 0⋆
5

L
d0⋆L ðLÞq0RðLÞ

¼ Y5

L
C0⋆
R D0

Lcos
2ðM0LÞ−

Y 0⋆
5

L
D0⋆

L C0
Rsin

2ðM0LÞ

¼ Y5

L
C0⋆
R D0

Lcos
2ðM0LÞ− 4

Y 0⋆
5

L
D0⋆

L C0
RXX

⋆cos2ðM0LÞ

¼ Y5

L
C0⋆
R D0

Lcos
2ðM0LÞ− 4

Y 0⋆
5

L
ðC0⋆

R Þ2
D0⋆

L
C0
RX

2cos2ðM0LÞ

¼ Y5

L
C0⋆
R cos2ðM0LÞ

�
D0

L −
C0⋆
R

D0⋆
L
C0
R

�
¼

m1≫jvj
0; ð5:11Þ

where we have used subsequently the deduced equation
and the relation involving X⋆ in the first line of Eq. (5.9)
before invoking Eq. (5.6); as indicated right above, for high
KK mass values, C0

RC
0⋆
R ¼ D0

LD
0⋆
L , so that Y00 vanishes,

which differs from the SM framework. Indeed, applying the
orthonormalization condition (4.3), for n ¼ m ¼ 0, to the
solution profiles (5.8), we deduce that

Z
L

0

dy½q0⋆L ðyÞq0LðyÞ þ d0⋆L ðyÞd0LðyÞ�

¼
Z

L

0

dy½q0⋆R ðyÞq0RðyÞ þ d0⋆R ðyÞd0RðyÞ�

⇔ jC0
Rj2

sinð2M0LÞ
2M0L

¼ jD0
Lj2

sinð2M0LÞ
2M0L

; ð5:12Þ

which induces jC0
Rj2 ¼ jD0

Lj2 (and in turn jD0
Lj2 ≠ 0) in

the decoupling limit of Eq. (5.10) where j2M0Lj ∼
m1≫jvj

2
ffiffiffi
2

p jY4vLj ≪ 2
ffiffiffi
2

p jY4jπ ¼ OðπÞ and hence j2M0Lj < π
so that we can divide Eq. (5.12) by sinð2M0LÞ=2M0L

being nonvanishing.43 The decoupling condition is thus not
respected, which reveals a problem in the present treatment
of the studied model. The problematic vanishing of the
effective 4D Yukawa coupling constant Y00 results from
the invariance of the action (5.1) under the exchange
transformation, Q ↔ D together with Y⋆

5 ↔ Y 0
5 at y ¼ L

[symmetry also explicit in Eqs. (5.3) and (5.7)]; this
symmetry will be broken in the correct treatments pre-
sented below. A confirmation of the failure of the present
5D treatment is the nonmatching of the obtained spectrum
equation (5.9) with the 4D matrix method result (3.37).
Therefore, the treatment of the brane-Higgs coupling of this
subsection should be reconsidered; we present the other
methods in the next two subsections.

B. Introducing the fermion current condition (EBCs)

Like in the free case treated in Sec. III A 2, we now
try to define well the geometrical field configuration of the
considered scenario based on the action Sm5D of Eq. (5.1). In
this scenario, the two 5D fields Q and D propagate only
inside the interval C1 ≡ ½0; L�. This setup translates into a
condition of vanishing probability current at both bounda-
ries. The current is here the sum of the two individual
currents of type (3.12) for the two species Q and D since
those fermions are mixed together through the mass terms
(2.8). To find out this current form rigorously, we first vary
the action as in the beginning of Sec. VA and deduce the
5D EOM (3.3) whose profile solutions were given in
Eq. (5.4). Then, using the obtained EOM (3.3), we apply
in Appendix B the Noether theorem to work out the
probability current (B9),44 which reads as

jM ¼ −αðQ̄ΓMQþ D̄ΓMDÞ; ð5:13Þ

as dictated by the global Uð1Þ symmetry of the action (5.1)
relying on the transformations,

QL=R ↦ eiαQL=R; DL=R ↦ eiαDL=R: ð5:14Þ

α (∈ R) is a continuous parameter [now forced by the
invariant terms (2.8) to be common for the two fieldsQ,D]
involved, for example, in the infinitesimal field variations,

δQL ¼ iαQL; δQ†
L ¼ −iαQ†

L: ð5:15Þ

We thus find that the effect of the Yukawa interactions is
not to modify the currents but rather to force one to add
them up for having a probability conservation relation
(due to the induced mixing among the Q and D fields).

43We can also justify that sinð2M0LÞ=2M0L is not vanishing
from the deduced relation in the first line of Eq. (5.9) since one
needs jXj ≠ 0 to have M0 ≠ 0 [cf. Eq. (5.10)] when m1 ≫ jvj
(decoupling condition on the fermion mass).

44This result holds as well in the case without BBTs.
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Finally, the condition that the probability current vanishes
(at the boundary where is located the Yukawa coupling)
reads as45

j4jL¼−αðQ̄Γ4QþD̄Γ4DÞjL
¼ iαðQ†

RQL−Q†
LQRþD†

RDL−D†
LDRÞjL¼0: ð5:16Þ

For a nontrivial transformation with α ≠ 0, the field
variation of this relation is

ðδQ†
RQL þQ†

RδQL − δQ†
LQR −Q†

LδQR þ δD†
RDL

þD†
RδDL − δD†

LDR −D†
LδDRÞjL ¼ 0: ð5:17Þ

The variation calculus chronology here is quite simple as no
field is fixed by the EBCs (5.16): the fields (and their
respective variations) are instead related via Eq. (5.16) [and
Eq. (5.17)]. Now, the part of the variation of the action Sm5D,
from Eq. (5.1), containing the boundary terms is written in
Eq. (C1) of Appendix C. The complementary variation of
the bulk action vanishing separately was already used just
above to derive the 5D EOM (3.3). Notice that this variation
of the bulk action with respect to the nonconjugate 5D
fields in δFL;R

Sm5D requires an integration by parts to recover
the Hermitian conjugate form of the EOM (3.3) [visible in
Eq. (5.2)] and the boundary terms in δFL;R

Sm5D [visible in
Eq. (C1)]. One could think of obtaining NBCs and their
Hermitian conjugate form, respectively, from δFL;R

Sm5D and
δF†

L;R
Sm5D [as obtained in Eq. (5.5)], in Eq. (C1), but in fact,

all the field variations are connected via the relation (5.17)
so that one cannot get rid of those directly. There is no
consistent way of combining the NBCs (C1) (even by
splitting it into several vanishing expressions) with the
EBCs (5.17) in order to get some set of BCs and another set
made of the Hermitian conjugate BCs, except in the special
but excluded case (see right below) in which

QLjL ¼ DLjL ¼ QRjL ¼ DRjL ¼ 0: ð5:18Þ

One could impose the condition (C1) to be realized sepa-
rately, leading to the NBCs (5.5) (and their Hermitian
conjugate form) which induce46 the EBCs (5.16), but one
would then be back to the case of Sec. VA, which has been
ruled out due to the decoupling limit argue and the non-
matching of the 4D versus 5D results. The drastic BCs (5.18)
(or the Hermitian conjugate form) imply obviously both the
EBCs (5.16) and NBCs (C1) but lead to an inconsistency
which reveals a problematic solution. Indeed, theBCs (5.18),
once applied to the solutions (5.4), induce two equations that,

after being squared and summed together, give the identity
ðBn

RÞ2 ¼ ðBn
LÞ2 [∀ n ≥ 0] for both the Q and D fields:

considering any n level, the case Bn
R ¼ �Bn

L ¼ 0 (for Q
and D) conflicts with the normalization condition (4.3),
while forBn

R ¼ �Bn
L ≠ 0 (for at least one of the two fieldsQ

and D), the two mentioned equations result in the simulta-
neous equalities cosðMnLÞ ¼ sinðMnLÞ and cosðMnLÞ ¼
− sinðMnLÞ whose unique solution cosðMnLÞ ¼
sinðMnLÞ ¼ 0makes no sense. As a conclusion, the impos-
sibility to combine the EBCs and NBCs for getting some set
of BCs together with a complementary set made of their
Hermitian conjugate conflicts with the Feynman prescription
for particles and antiparticles—according to which the fields
and their Hermitian conjugate undergo identical physical
equations (up to complex conjugate coupling constants).
This conflict47 shows that the present approach of the
configuration with a Yukawa coupling located at a boundary,
based on the vanishing of the fermion current taken as an
EBC, is not yet the correct one. The origin of the problem is
that the current (5.13) does not contain an explicit term that
involves the Yukawa coupling constant.

C. Introducing the bilinear brane terms (NBCs)

As in the free case, we try here to apply the alternative
treatment, based on the introduction of the BBTs at y ¼ L,
in order to develop a consistent approach. We consider the
fermion part of the action (2.9),

S0m5D ¼ SΨ þ SB þ SX; ð5:19Þ

based on the kinetic part (3.25), the BBTs (2.4), and themass
terms (2.8). The boundary fields Fj0;L are initially unknown
so that their functional variationswill be taken nonvanishing:
δFj0;L ≠ 0. Without loss of generality, the stationary action
condition can be split into the two following conditions for
each field F ¼ Q, D [extending Eqs. (3.27) and (3.28) to
include the Yukawa terms] together with the two other
equations δFL

S0m5D ¼ δFR
S0m5D ¼ 0,

0 ¼ δF†
L
S0m5D ¼

Z
d4x

Z
L

0

dy½δF†
Liσ̄

μ∂μFL − δF†
L∂4FR�

þ
Z

d4xfCL
F½ðδF†

LFRÞjL − ðδF†
LFRÞj0�

−CL
FXðδF†

LDRÞjL − CR
FX

0⋆ðδF†
LQRÞjLg;

ð5:20Þ

45The current condition at the other boundary is taken into
account through the BBTs in the last term of Eq. (5.1).

46As can be seen by replacing Q†
L;RjL and DL;RjL in the

expression (5.16) thanks to the two relations in the first and
second columns of Eq. (5.5), respectively.

47As described in the free case [below Eq. (3.25)], the direct
injection of the EBC (5.16) in the action (5.1) would cancel out
the boundary terms at y ¼ L in Eq. (3.25), spoiling then the
needed Hermiticity of the whole action Sm5D and leading thus to a
related problem.
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0 ¼ δF†
R
S0m5D ¼

Z
d4x

Z
L

0

dy½δF†
Riσ

μ∂μFR þ δF†
R∂4FL�

þ
Z

d4xfCR
F½−ðδF†

RFLÞjL þ ðδF†
RFLÞj0�

− CR
FX

⋆ðδF†
RQLÞjL − CL

FX
0ðδF†

RDLÞjLg;
ð5:21Þ

using the same CL;R
Q;D definitions as in Eqs. (3.27) and

(3.28). Once more, the nonvanishing field variations
δF†

L=R, δF
†
L=Rj0;L being generic, the sum of the first two

terms (first line) in Eqs. (5.20) and (5.21), respectively, must
vanish separately, which brings in the 5D EOM (3.3) and in
turn—through the mixed KK decomposition (4.1) and 4D
Dirac-Weyl equations (4.2)—the wave function equa-
tions (5.3) with solutions as in Eq. (5.4),

qnLðyÞ ¼ Bn
R cosðMnyÞ − Bn

L sinðMnyÞ;
qnRðyÞ ¼ Bn

L cosðMnyÞ þ Bn
R sinðMnyÞ;

dnLðyÞ ¼ Dn
R cosðMnyÞ −Dn

L sinðMnyÞ;
dnRðyÞ ¼ Dn

L cosðMnyÞ þDn
R sinðMnyÞ; ð5:22Þ

using here new constant parametersBn
L=R,D

n
L=R. Note that, in

contrast, grouping directly the terms involving CL=R
F factors

with the first two terms in Eqs. (5.20) and (5.21)—simply
thanks to the introduction ofDirac peaks at y ¼ 0; L—would
lead to mathematically meaningless relations between 5D
functions and distributions. Finally, the NBCs resulting from
Eqs. (5.20) and (5.21) read as

ðQR − XDRÞjL ¼ 0; ðDL þ X⋆QLÞjL ¼ 0;

X0⋆QRjL ¼ 0; X0DLjL ¼ 0;

QRj0 ¼ 0; DLj0 ¼ 0: ð5:23Þ
Integrating by parts the bulk terms in the other relations
δFL

S0m5D ¼ δFR
S0m5D ¼ 0 allows us to recover the Hermitian

conjugate form of the EOM (3.3) as well as the Hermitian
conjugate form of the NBCs (5.23). The NBCs (5.23) can be
rewritten without loss of generality as

ðQR−XDRÞjL¼0; ðDLþX⋆QLÞjL¼0; X0 ¼0 or

fQRjL¼0 and DLjL¼0g; QRj0¼0; DLj0¼0;

and in turn as

BC 1∶ XDRjL ¼ 0; X⋆QLjL ¼ 0; QRjL ¼ 0;

DLjL ¼ 0; QRj0¼ 0; DLj0¼ 0;

or;

BC 2∶ ðQR−XDRÞjL ¼ 0; ðDLþX⋆QLÞjL ¼ 0;

X0 ¼ 0; QRj0¼ 0; DLj0 ¼ 0: ð5:24Þ

The lightest fermionic state possesses a mass equal to the α00
element of the 4Dmass matrix (3.35) in the decoupling limit
m1 → ∞ of the studied high-energy scenario, which allows
us to reproduce well the SM mass expression at the low-
energy scales. For this purpose, one must have in particular a
nonvanishing Yukawa coupling constant and X ≠ 0 so that
the BC 1 reads as

BC 1∶ DRjL ¼ 0; QLjL ¼ 0; QRjL ¼ 0;

DLjL ¼ 0; QRj0 ¼ 0; DLj0 ¼ 0;

where the BCs at y ¼ L are exactly similar to those in
Eq. (5.18), which have already been ruled out. Hence, we
exclude the BC 1. Let us move to the BC 2, which can be
expressed in terms of the profiles, thanks to the relevant
mixedKK decomposition (4.1), as follows (together with the
condition X0 ¼ 0):

BC 2∶ ∀ n≥ 0; qnRðLÞ−XdnRðLÞ ¼ 0;

dnLðLÞþX⋆qnLðLÞ ¼ 0; qnRð0Þ ¼ 0; dnLð0Þ ¼ 0:

So, these BC 2 at y ¼ 0 applied on the solutions (5.22)
produce the following profiles:

qnLðyÞ¼Bn
R cosðMnyÞ; qnRðyÞ¼Bn

R sinðMnyÞ;
dnLðyÞ¼−Dn

L sinðMnyÞ; dnRðyÞ¼Dn
L cosðMnyÞ: ð5:25Þ

One must be careful to avoid some of the mathematical
inconsistencies also encountered in the regularization pro-
cedures of Sec. IV: in particular, the existence of any profile
jump at the interval boundaries, which would induce an
undefined derivative term in the 5D action based on Eq. (2.3)
(last two terms), an ill-defined term in the action (2.8)—
where the Dirac peak δðy − LÞ would come in factor of a
profile discontinuous at y ¼ L—and finally would conflict
with the field continuity axiom of the invoked theory of
variation calculus. Therefore, we are taking all the profiles
continuous at both boundaries, which is the reason why we
have applied the BC 2 at y ¼ 0 on the bulk expressions
(5.22). The application of the BC 2 at y ¼ L on the resulting
bulk expressions (5.25) gives rise to the relations (using
Mn; Bn

R;D
n
L ≠ 0; ∀ n ≥ 0, to be checked a posteriori),

tanðMnLÞ ¼ X
Dn

L

Bn
R
¼ X⋆ Bn

R

Dn
L
;

which can be recast into (via XDn
L¼̂ jXjD0n

L , ∀ n ≥ 0)

tanðMnLÞ ¼ �jXj; D0n
L ¼ �Bn

R; ð5:26Þ

assuming that the generic phase αY of the 5D Yukawa
coupling constant, defined by X ¼ jXjeiαY as below
Eq. (5.6), is included into a new parameter D0n

L ¼̂ Dn
Le

iαY ¼
jDn

Ljeiðα0þαYÞ. At this level, it is important to highlight the fact
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that it is the same � sign entering the two equalities in
Eq. (5.26). We already remark the real mass spectrum
resulting from Eq. (5.26), even for a Yukawa coupling
constant with a nonvanishing imaginary part. Now, let us
first apply the orthogonality conditions of Eq. (4.3) on the
solutions (5.25):
Z

L

0

dy½Dn⋆
L Dm

L sinðMnyÞ sinðMmyÞ

þ Bn⋆
R Bm

R cosðMnyÞ cosðMmyÞ� ¼ 0; ∀ n ≠ mZ
L

0

dy½Bn⋆
R Bm

R sinðMnyÞ sinðMmyÞ

þDn⋆
L Dm

L cosðMnyÞ cosðMmyÞ� ¼ 0: ð5:27Þ
We insert trigonometric formulas48 in these equalities, in
order to perform the integration, and then make use of
another type of trigonometric relation49 to obtain the follow-
ing simplified form (∀ n;m with n ≠ m):

sinðMmLÞ cosðMnLÞ
M2

n −M2
m

½MmBn⋆
R Bm

R þMnDn⋆
L Dm

L �

¼ ½MnBn⋆
R Bm

R þMmDn⋆
L Dm

L �
sinðMnLÞ cosðMmLÞ

M2
n −M2

m
;

sinðMmLÞ cosðMnLÞ
M2

n −M2
m

½MmDn⋆
L Dm

L þMnBn⋆
R Bm

R �

¼ ½MnDn⋆
L Dm

L þMmBn⋆
R Bm

R �
sinðMnLÞ cosðMmLÞ

M2
n −M2

m
:

Wecan divide these equalities by cosðMnLÞ cosðMmLÞ since
cosðMnLÞ ≠ 0 [∀ n] [as the mass spectrum given by
Eq. (5.26) is not a free one]; we get (∀ n;m with n ≠ m)

tanðMmLÞ½MmBn⋆
R Bm

R þMnDn⋆
L Dm

L �
¼ tanðMnLÞ½MnBn⋆

R Bm
R þMmDn⋆

L Dm
L �;

tanðMmLÞ½MmDn⋆
L Dm

L þMnBn⋆
R Bm

R �
¼ tanðMnLÞ½MnDn⋆

L Dm
L þMmBn⋆

R Bm
R �:

Using the spectrum of Eq. (5.26), getting rid of the common
factor (Mn −Mm) in those two equations and dividing the
resulting equalities by the constant parameters allowing us to
separate then andm dependences, we find the unique relation

Dn⋆
L

Bn⋆
R

¼ Bm
R

Dm
L
; ∀ n;m with n ≠ m;

which is clearly true since we know from Eq. (5.26)
that Bn

R ¼ �D0n
L ¼ �Dn

Le
iαY (∀ n). Second, we apply the n

ormalization conditions of Eq. (4.3) on the profile
solutions (5.25) obeying the constraints (5.26) (implying
jBn

Rj2 ¼ jDn
Lj2)

Z
L

0

dyjBn
Rj2½sin2ðMnyÞ þ cos2ðMnyÞ� ¼ L; ∀ n:

Those conditions allow us to complete Eq. (5.26), which
becomes

∀n; tanðMnLÞ¼�jXj; D0n
L ¼�Bn

R; jBn
Rj ¼ jDn

Lj ¼ 1

ð5:28Þ

and exhibits then the three types of solutions

I : ∀ n;tanðMnLÞ¼þjXj; Bn
R¼eiðα0þαYÞ; Dn

L¼eiα0 ;

II : ∀ n;tanðMnLÞ¼−jXj; Bn
R¼eiðα0þαY�πÞ; Dn

L¼eiα0 ;

III : solution I for somen values and II for other n values;

α0 becoming the common phase (defined modulo 2π).
Following a similar discussion as the one below
Eqs. (3.40) and (3.41), we can claim that for the whole set
of n levels the absolute value of the fermion mass has the
following common expression for solutions I and II,

tanðMnLÞ ¼ þjXj

⇒ jMnj ¼
				 arctanðjXjÞ þ ð−1ÞnñðnÞπ

L

				 ;
or; tanðMnLÞ ¼ −jXj

⇒ jMnj≡
				 arctanðjXjÞ þ ð−1ÞnñðnÞπ

L

				 ; ð5:29Þ

using the ñðnÞ function already defined in Eq. (3.39). Once
again, solution III must be excluded as the complete and
consistent infinite mass spectrum solution is determined
within a unique model hypothesis selected among the two
given mathematical solutions, I or II, since Eq. (5.29) fixes
the quantity MnL modulo π.
Within the simplified case of a real 5DYukawa coupling

constant (jXj ¼ X), we thus find that the unique tower
(5.29) of absolute values of the physical fermion masses is
matching the one obtained in the 4D approach: Eqs. (3.40)
and (3.41). This exact 4D–5D matching confirms the
overall consistency of our calculations—without regulari-
zations—and is, of course, expected to be reached as well
for a complex 5D Yukawa coupling constant.
In particular, the insensitivity of the 4D fermion mass

matrix (3.35) to the Y 0
5 coupling constant [described below

Eq. (3.36)] matches interestingly the spectrum independ-
ence on Y 0

5 induced by the result Y 0
5 ¼ 0 obtained in the

BC 2 [see Eq. (5.24)] used for the 5D point of view.

48Of the kind, cosðMnyÞ cosðMmyÞ ¼ ½cosðMnyþMmyÞ þ
cosðMny −MmyÞ�=2.49sinðMnL − MmLÞ ¼ sinðMnLÞ cosðMmLÞ − cosðMnLÞ×
sinðMmLÞ.
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Let us give an intuitive interpretation of the absence of
the role for the Y 0

5 coupling (involved in X0) in the final
spectrum (5.29) which depends only on the X quantity.
Starting with the free action SΨ þ SB, the profiles dnLðyÞ
and qnRðyÞ [∀ n], defined by Eq. (3.5) and with solutions
(3.21), vanish in particular at the boundary y ¼ L. Hence,
the term with a X0 coefficient in the action piece SX of
Eq. (2.8), once added to SΨ þ SB, is expected to have a
vanishing factor coming from the integration over the
interval due to the Dirac peak. This argument is only
intuitive as it does not really include the possible “back-
reaction” effect of the X0 term on the profiles via modi-
fied BCs.
Finally, let us discuss the condition on the fermion

current for the boundary at y ¼ L. Inserting the four

expressions of Qð†Þ
R and Qð†Þ

L , provided by the first two
NBCs of Eq. (5.24) at y ¼ L, in the current condition (5.16)
leads to a trivially true equality (all the four terms involving

exclusively Dð†Þ
L;R fields cancel each other). This feature

means that the NBCs (5.24) imply the condition (5.16) so
that the geometrical field setup of the present model with
matter stuck on an interval is well defined.
As a conclusion, adding BBTs at the brane with the

Yukawa coupling to bulk fermions permits a consistent
treatment of the considered scenario and a correct calcu-
lation of the mass spectrum.

VI. OVERVIEW AND IMPLICATIONS

A. Action content

In Table I, we summarize the results for the obtained
fermion BCs at a single 3-brane. We conclude from this
table that for fermions on an interval and coupled or not to a
brane-localized Higgs field either BBTs should be gen-
erated in the action or conditions should arise on the
fermion current (forcing then the 4D treatment in case of a
brane Yukawa coupling) depending on the origin of the
model at high energies. In the same spirit, notice that the
UV completion will determine whether the selection of
fermion boundary conditions is imposed or deduced from

the action form. The UV completion should not bring
simultaneously EBCs (imposing vanishing currents) and
BBTs (guaranteeing current vanishing) because it would be
possible but redundant. It is interesting to observe anyway
that the necessary additional fermionic ingredient, with
respect to the kinetic terms, reveals that limiting the
integration domain of the action does not suffice to define
consistently and completely the basic field configuration
along the interval (or more generally over a compactified
space). Indeed, without having a vanishing fermion current
at a boundary, one could imagine a source of creation or a
mechanism of absorption for particles at the boundary.
Therefore, the present status, resulting from this analysis
and its synthesis, is that the action expression may not
contain all the information (e.g., current conditions) needed
to define a higher-dimensional model, regarding the geo-
metrical setup and field configurations.
Based on the above results, we describe now the generic

methodology to find out the mass spectrum and KK wave
functions (allowing us to calculate the 4D effective cou-
plings) along the extra spatial dimension(s) of a given
scenario. For this purpose, we present in Fig. 1 a schematic
description of the main principles. The figure must be
understood as follows. A given extra-dimensional model
must be first defined by its geometrical setup (space-time
structure and field location configuration), its field content,
and its internal symmetries (gauge groups,...) as well as
other types of symmetries (the Poincaré group here) of
symmetries. These three types of information determine
entirely the action form50 whose minimization gives rise to

TABLE I. Bulk fermion BCs (when a consistent determination
exists) at a 3-brane where is located the Higgs boson coupled to
bulk fermions, within the different cases of the three following
boundary treatments: presence of BBTs, vanishing of the proba-
bility current, or none of those two situations. The 4D line holds as
well for the 5D approach of the free brane. As usual, the Dirichlet
BCs are noted (−), the NeumannBCs are noted (þ), andwe denote
(×) the new BCs depending on the Yukawa coupling constant.

No boundary
characteristic

Vanishing
current condition

(EBC)

Bilinear
brane terms

(NBC)

4D approach (Impossible) BC (�) BC (�)
5D approach (Impossible) (Impossible) BC (×)

FIG. 1. Inverse pyramidal picture illustrating the general
principles for determining the wave functions and masses of
mixed KK modes within a given model based on extra dimension
(s). The same notations as in the main text are used.

50Within a well-understood scenario, all terms of the Lagran-
gian density should be deduced from the model definition
exclusively: the absence of couplings from symmetries, presence
of BBTs from the geometrical setup, etc.
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the 5D EOM and NBCs. Besides, the geometrical hypoth-
eses of the model, concerning for instance the space limits
for field propagation, may induce probability current
conditions translated into some EBCs,51 which must be
combined with the above NBCs. At this level, a choice of
the combined BCs obtained can be required (if not
determined automatically by the action structure itself).
Then, the KK decomposition (together with the EOM on
the 4D fields) allows us to derive the EOM and BCs on the
KK profiles along the extra dimension(s). The last step is
obviously to solve these profile EOM, coupled to the
complete BCs, in order to work out the mass spectra.

B. Implementation of the cutoff on energy

We have to discuss the cutoff treatment as the framework
of higher-dimensional models is nonrenormalizable theo-
ries, which are valid in a limited domain of energy, up to a
certain scale, set by perturbativity conditions on effective
dimensionless couplings. If the UV completion of such
models affects the KK excitation towers and thus the
fermion mass spectrum, in an unknown way, then its
calculation must include the KK state masses only up to
the cutoff value typically (the UV corrections at low
energies can be parametrized via higher-dimensional oper-
ators). In a case of the absence of UVeffects on the specific
mass spectrum sector, the whole KK towers should be
taken into account at the mass calculation level since even
the smallest mass eigenvalues can be affected by the mixing
effects of the infinite towers. Now, in both situations, only
the eigenstates with masses up to the cutoff scale should be
considered for the phenomenological observables (reaction
amplitudes, rates, etc.) due to the nonrenormalizable nature
of the theory. Technically, the implementation of an energy
cutoff in the bulk fermion mass calculation and tree-level
Lagrangian construction forces the use of the 4D approach.
Indeed, the mixed KK decomposition (4.1), used in the 5D
approach, includes the mixing of the whole tower; the fields
ψn
L;RðxμÞ are mass eigenstates.

C. Phenomenological impacts

In the appropriate treatment developed in the present
paper, without regularization, the obtained mass spectrum
and effective 4DYukawa coupling depend on Y5 but not on
the Y 0

5 coupling constant. For instance, in Eq. (5.11), one
should in fact apply the result Y 0

5 ¼ 0 as dictated by the
relevant BC 2 in Eq. (5.24). Applying an energy cutoff in
the process of mass calculation would not affect this
independence on Y 0

5 as is clear from the point of view
of the 4D approach.
The results for fermionmasses and profiles are also correct

when one invokes the Higgs peak regularization I, which

cancels out the Y 0
5 dependence. Hence, the phenomenologi-

cal analyses of the literature based on such results are still
valid; see, for instance, Refs. [5,7,8,29,67,71–74]. Those
studies apply on the geometrical background with warped
extra dimensions where the KK spectrum independence on
Y 0
5 is expected to occur as well.
Note that the results from regularization I and the correct

ones, in the approachwithout regularization at all, are exactly
identical only by accident. Indeed, in regularization I, con-
sidering first the 5D treatment, themass spectrum calculation
in presence of Yukawa couplings suffers from two errors,
which exactly cancel out each other; there are no BBTs,
which affects the resulting spectrumequation by a factor 2 [as
seen when comparing the spectra with BBTs in Eq. (5.29)
and without BBTs in Eq. (5.9)], and a regularization is
applied. Now, starting from the 4D treatment of regulariza-
tion I and addingBBTs (or current conditions)would have no
effect on the 4D mass matrix (as described in Sec. II C) like
avoiding the regularization process (as there is no analytical
effect of regularization I in which the limit ϵ → 0 is taken at
the first step [35]); the results of regularization I are thus the
same as in the correct approach.
In contrast, if the Higgs peak regularization II is used, the

obtained fermion masses and 4DYukawa couplings depend
on both Y5 and Y 0

5 so that the results differ effectively from
the correct ones. Hence, the phenomenological studies based
on these analytical results (for example, Refs. [28,30–33])
should be reconsidered.
For example, the effective 4D Yukawa couplings to

fermions and their KK excitations affect the main Higgs
production mechanism at the LHC: the gluon-gluon fusion
via triangular loops of (KK) fermions. Hence, the effect of
the realistic limit [35] of vanishing Y 0

5 on the constraints on
KK masses derived in the studies [30–33], within the
warped background and based on regularization II, should
be calculated precisely.
Besides, the rotation matrices diagonalizing the 4D

fermion mass matrix (3.35) do not diagonalize simulta-
neously the effective 4D Yukawa coupling matrix since the
last one does not contain matrix elements made of the pure
KK masses. The induced flavor violating 4D Yukawa
couplings are generated at leading order by Y 0

5 contribu-
tions as can be shown diagrammatically [28]. Hence, there
exist large flavor changing neutral current (FCNC) effects
in measured ΔF ¼ 2 processes such as K̄ − K, B̄ − B, and
D̄ −D mixings, mainly produced by tree-level exchanges
of the Higgs boson via Y 0

5 couplings, which lead to
considerable lower bounds on the KK boson mass scale
(in balance via opposite Yukawa coupling dependences
with the ones from the tree-level contribution of the KK
gluon exchange) found to be around 6–9 TeV in the
analysis [28] on warped extra dimensions using indeed
regularization II. Hence, these bounds should be signifi-
cantly suppressed in the realistic situation in which Y 0

5 → 0;
this limit should indeed be applied since the independence

51The EBC could also originate from the definition of the
symmetry of orbifold scenarios.
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found in the present paper upon Y 0
5 (extended via flavor

indices) remains true for the case of three flavors, as well as
for fermion bulk masses, as is clear in the 4D approach in
which the βij elements (3.36) of the mass matrix still
vanish. The predictions of Ref. [28], based on regulariza-
tion II, that FCNC reactions involving Yukawa couplings,
like the rare top quark decay t → ch and exotic Higgs
boson decay to charged leptons h → μτ, can be observable
at the LHC deserve reconsiderations as well when Y 0

5 ¼ 0.

VII. CONCLUSIONS

For bulk fermions coupled to a brane-Higgs boson, we
have shown that the proper calculation of the fermion
masses and effective 4D Yukawa couplings does not rely
on Higgs peak regularizations. The justifications are the
following ones:

(i) There are no fermion wave function jumps at the
Higgs boundary and so no motivation to introduce
an arbitrary regularization.

(ii) The regularizations suffer from several mathematical
discrepancies confirmed by two known noncommu-
tativities of calculation steps.

(iii) The right method without any regularization is
validated in particular by the converging results of
the 4D versus 5D treatments.

In the rigorous method developed for both free and
brane-coupled bulk fermions, we have also pointed out the
necessity to either include BBTs in the Lagrangian density
or alternatively impose vanishing conditions for probability
currents at the interval boundaries. Here, the arguments go
as follows:

(i) The presence of BBTs guarantees the vanishing
current conditions, which define the field geomet-
rical configuration of the model.

(ii) The BBT and current conditions allow us to find
physically consistent fermion masses, bulk profiles,
and effective 4D Yukawa couplings (solutions ful-
filling the normalization constraints, the Hermitian
conjugate BCs, and the decoupling limit condition).

(iii) The BBTs lead to the expected matching between
the 4D and 5D calculation results.

The BBTs represent a possible origin of the chiral nature
of the SM as well as of its chirality distribution among
quark/lepton SUð2ÞL doublets and singlets. Those terms
could thus provide new clues about the UV completion of
the SM.
Depending on the UV completion, the general method-

ology worked out reveals that the information regarding the
definition of an higher-dimensional model are not neces-
sarily fully contained in the action itself—through the
deduced EOM and NBCs—but might be partly included as
well in the EBCs.
We have finished the analysis by the descriptions of the

appropriate energy cutoff procedure in the present frame-
work and of the phenomenological impacts of the new

calculation method which predicts the independence of the
fermion masses and effective 4D Yukawa couplings on the
Y 0
5 parameter of the Lagrangian. This different coupling

feature, with respect to regularization II usually applied in
the literature, should, in particular, suppress significantly
the previously obtained severe bounds on KK masses
induced by FCNC processes generated via flavor violating
couplings of the Higgs boson.
An extension of the present study, to generic BBTs,

fermion bulk masses, warped extra dimensions, and orbi-
fold scenarios, is under progress [49].
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APPENDIX A: NOTATIONS
AND CONVENTIONS

Throughout the present paper, we use the conventions of
the Ref. [75]. The 5D Minkowski metric is

ηMN ¼ diagðþ1;−1;−1;−1;−1Þ: ðA1Þ

The 4D Dirac matrices are taken in the Weyl representation,

γμ ¼
�

0 σμ

σ̄μ 0

�
with

�
σμ ¼ ðI; σiÞ;
σ̄μ ¼ ðI;−σiÞ; ðA2Þ

where σi (i ¼ 1, 2, 3) are the three Pauli matrices:

σ1¼
�
0 1

1 0

�
; σ2¼

�
0 −i
i 0

�
; σ3¼

�
1 0

0 −1

�
: ðA3Þ

One has also the 4D chirality operator

γ5 ¼ i
Y3
μ¼0

γμ ¼
�−I 0

0 I

�
: ðA4Þ

With our conventions, the 5D Dirac matrices read as

ΓM ¼ ðγμ; iγ5Þ: ðA5Þ
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APPENDIX B: NOETHER THEOREM
INCLUDING BRANE-LOCALIZED TERMS

Here, we demonstrate the Noether theorem in the
presence of boundary-localized Yukawa couplings and
BBTs. We first consider the free action (2.1) together

with the BBTs (2.4) [or (2.5)] being invariant under
the transformations (3.13) affecting the fields but not
the coordinates zM. The infinitesimal action variation
under such a transformation on the field F reads
generically as

δðSΨ þ SBÞ ¼
Z

d4x

�
−δFα ∂LB

∂Fα

				
0

− δF̄α ∂LB

∂F̄α

				
0

þ δFα ∂LB

∂Fα

				
L
þ δF̄α ∂LB

∂F̄α

				
L

�

þ
Z

d4xdy

�
δFα ∂LΨ

∂Fα þ δF̄α ∂LΨ

∂F̄α þ δð∂MFαÞ ∂LΨ

∂ð∂MFαÞ þ δð∂MF̄αÞ ∂LΨ

∂ð∂MF̄αÞ
�
: ðB1Þ

Now, we invoke the generic version of the EOM, ∂LΨ∂Fα ¼ ∂M
∂LΨ∂ð∂MFαÞ, as found in Eq. (3.3),

52 not including the possible BBT
contributions rather involved in the separate NBCs, as found in Eqs. (3.4)–(3.19) (without BBTs) and (3.29)–(3.33) (with
BBTs). Using these EOM to rewrite the first two terms in the second line of Eq. (B1) and then grouping those with the last
two terms to make global derivatives appear, we find

δðSΨ þ SBÞ ¼
Z

d4x
�
−δFα ∂LB

∂Fα

				
0

− δF̄α ∂LB

∂F̄α

				
0

þ δFα ∂LB

∂Fα

				
L
þ δF̄α ∂LB

∂F̄α

				
L

�

þ
Z

d4xdy

�
∂M

�
δFα ∂LΨ

∂ð∂MFαÞ
�
þ ∂M

�
δF̄α ∂LΨ

∂ð∂MF̄αÞ
��

: ðB2Þ

The four terms in the first line (right-hand side) of this equation vanish since the infinitesimal field variations (3.14) lead, for
instance, to

−δQα ∂LB

∂Qα

				
0

− δQ̄α ∂LB

∂Q̄α

				
0

¼ 1

2
Q̄ðiαQÞ

				
0

þ 1

2
ð−iαQ̄ÞQ

				
0

¼ 0: ðB3Þ

A similar cancellation, due to the symmetry of the model,
arises for the last two terms at y ¼ L and the D field
contributions (relying on the α0 parameter).
The infinitesimal variation of the invariant Lagrangian

from Eqs. (2.1) and (2.4) vanishes when integrated over the
whole space [δðSψ þ SBÞ ¼ 0] and even over any 5D
domain Ω, as the transformation affects the fields only.
The first line (right-hand side) of Eq. (B2) vanishes as well
for any integration volume Ω due to relations of type (B3)
when Ω includes the boundaries y ¼ 0; L and due to the
absence of a Dirac peak in the integration domain in
the other case. Therefore, mathematically, Eq. (B2) implies
the vanishing of its second line for any integration region Ω
and in turn (the fields being fixed by the geometrical model
configuration over the whole interval) the local conserva-
tion relation for the 5D probability current of the field F,

∂MjMF ¼ 0; for any zM; with

jMF ¼ δFα ∂LΨ

∂ð∂MFαÞ þ δF̄α ∂LΨ

∂ð∂MF̄αÞ : ðB4Þ

Note that an alternative instructive reading, based on the
global derivatives of the second line in Eq. (B2) and an
integration over a generic 5D domain Ω, is that the second
line vanishing leads to a cancellation of the sum over the
differences of current components (each difference inte-
grated over the complementary dimensions). This cancel-
lation expresses the 5-current conservation over all
directions (equality of the global ingoing and outgoing
currents with respect to a given hypervolume Ω) and is
thus nothing else but a strictly equivalent, and less
convenient, form of the conservation relation (B4): global
versus local conservation of the full current jMF . For a
consistency check, let us wonder what happens when the
entire 5D domain is considered (i.e.,Ω represents the whole
5D bulk). Then, the differences jμFðþ∞; yÞ − jμFð−∞; yÞ
tend to zero—due to the vanishing of fields at infinite
coordinates imposed by the vanishing boundary terms
issued from the least action principle and independently
to the wave function normalization conditions—so that one
gets

R
d4x½j4Fðxμ; LÞ − j4Fðxμ; 0Þ� ¼ 0. This specific con-

servation property of the 5-current (or of the matter
presence probability) must be compatible with the geo-
metrical field configuration defining the model. The def-
inition of the interval, j4Fðxμ; LÞ ¼ j4Fðxμ; 0Þ ¼ 0 [∀ xμ] as

52Of course, similar EOM hold for the complex conjugate
fields.
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in Eq. (3.15) for the present scenario, satisfies well
this conservation property. It is obviously not the
only way to respect the property. For example, within
an orbifold scenario, the boundary point identifica-
tion establishing the space periodicity, y ¼ 0≡ L ⇒
j4Fðxμ; 0Þ ¼ j4Fðxμ; LÞ, realizes as well the mentioned con-
servation pattern.

Let us now extend the demonstration of the Noether
theorem to the presence of BBTs and boundary-localized
Yukawa couplings by considering the free action (2.1)
together with the BBTs (2.4) and the Yukawa terms (2.7).
This whole action SΨ þ SB þ SY is invariant under the
transformation (5.14). The infinitesimal action variation
under this transformation reads as

δðSΨ þ SB þ SYÞ ¼
X

F¼QL=R;DL=R

Z
d4x

�
−δFα ∂LY

∂Fα

				
L
− δF†α ∂LY

∂F†α

				
L

�

þ
X

F¼Q;D

Z
d4x

�
−δFα ∂LB

∂Fα

				
0

− δF̄α ∂LB

∂F̄α

				
0

þ δFα ∂LB

∂Fα

				
L
þ δF̄α ∂LB

∂F̄α

				
L

�

þ
X

F¼Q;D

Z
d4xdy

�
δFα ∂LΨ

∂Fα þ δF̄α ∂LΨ

∂F̄α þ δð∂MFαÞ ∂LΨ

∂ð∂MFαÞ þ δð∂MF̄αÞ ∂LΨ

∂ð∂MF̄αÞ
�
: ðB5Þ

Invoking once more the EOM, ∂LΨ∂Fα ¼ ∂M
∂LΨ∂ð∂MFαÞ, including neither the possible BBT contributions nor the Yukawa terms

(both rather entering the separate NBCs), we can rewrite the first two terms in the third line of Eq. (B5) and then group those
with the last two terms to make global derivatives arise:

δðSΨ þ SB þ SYÞ ¼
X

F¼QL=R;DL=R

Z
d4x

�
−δFα ∂LY

∂Fα

				
L
− δF†α ∂LY

∂F†α

				
L

�

þ
X

F¼Q;D

Z
d4x

�
−δFα ∂LB

∂Fα

				
0

− δF̄α ∂LB

∂F̄α

				
0

þ δFα ∂LB

∂Fα

				
L
þ δF̄α ∂LB

∂F̄α

				
L

�

þ
X

F¼Q;D

Z
d4xdy

�
∂M

�
δFα ∂LΨ

∂ð∂MFαÞ
�
þ ∂M

�
δF̄α ∂LΨ

∂ð∂MF̄αÞ
��

: ðB6Þ

Here, the four terms in the second line cancel each other since, for example, the infinitesimal field variations (5.15) lead to

−δQα ∂LB

∂Qα

				
0

− δQ̄α ∂LB

∂Q̄α

				
0

¼ 1

2
Q̄ðiαQÞ

				
0

þ 1

2
ð−iαQ̄ÞQ

				
0

¼ 0; ðB7Þ

and the first line (right-hand side) vanishes as, for instance, the infinitesimal field variations of type (5.15) lead to

X
F¼QL=R;DL=R

�
−δFα ∂ðY5Q

†
LHDRÞ

∂Fα

				
L
− δF†α ∂ðY5Q

†
LHDRÞ

∂F†α

				
L

�
¼ −Y5Q

†
LHðiαDRÞjL − Y5ð−iαQ†

LÞHDRjL ¼ 0: ðB8Þ

Therefore, considerations on the vanishing infinitesimal variation (B6) over a generic 5D domain Ω, similar as in the free
case, lead to the local conservation relation for the 5D probability current,

∂MjM ¼ 0; for any zM; with jM ¼
X

F¼Q;D

δFα ∂LΨ

∂ð∂MFαÞ þ δF̄α ∂LΨ

∂ð∂MF̄αÞ : ðB9Þ

APPENDIX C: BOUNDARY CONDITIONS

In this Appendix, we write down the global boundary condition derived from the initial variation of the action Sm5D in
Eq. (5.1):

δQ†
L
Sjb þ δQ†

R
Sjb þ δD†

L
Sjb þ δD†

R
Sjb þ δQL

Sjb þ δQR
Sjb þ δDL

Sjb þ δDR
Sjb ¼ 0; with;
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δQ†
L
Sm5D ∋ δQ†

L
Sjb ¼

Z
d4x

�
δQ†

L

�
1

2
QR − XDR

��				
L
−
Z

d4xðδQ†
LQRÞ

				
0

;

δQ†
R
Sm5D ∋ δQ†

R
Sjb ¼

Z
d4x

�
−δQ†

R

�
1

2
QL þ X0DL

��				
L
;

δD†
L
Sm5D ∋ δD†

L
Sjb ¼

Z
d4x

�
δD†

L

�
1

2
DR − X0⋆QR

��				
L
;

δD†
R
Sm5D ∋ δD†

R
Sjb ¼

Z
d4x

�
−δD†

R

�
1

2
DL þ X⋆QL

��				
L
þ
Z

d4xðδD†
RDLÞ

				
0

;

δQL
Sm5D ∋ δQL

Sjb ¼
Z

d4x

��
1

2
Q†

R − X⋆D†
R

�
δQL

�				
L
−
Z

d4xðQ†
RδQLÞ

				
0

;

δQR
Sm5D ∋ δQR

Sjb ¼
Z

d4x

�
−
�
1

2
Q†

L þ X0⋆D†
L

�
δQR

�				
L
;

δDL
Sm5D ∋ δDL

Sjb ¼
Z

d4x

��
1

2
D†

R − X0Q†
R

�
δDL

�				
L
;

δDR
Sm5D ∋ δDR

Sjb ¼
Z

d4x

�
−
�
1

2
D†

L þ XQ†
L

�
δDR

�				
L
þ
Z

d4xðD†
LδDRÞ

				
0

: ðC1Þ
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