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We discuss a general formula which allows to automatically reproduce experimental data for Majorana
neutrino mass models, while keeping the complete set of the remaining model parameters free for general
scans, as necessary in order to provide reliable predictions for observables outside the neutrino sector. We
provide a proof of this master parametrization and show how to apply it for several well-known neutrino
mass models from the literature. We also discuss a list of special cases, in which the Yukawa couplings have
to fulfill some particular additional conditions.
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I. INTRODUCTION

Most of the classical Majorana neutrino mass models,
such as the three tree-level seesaws (type-I [1–5], type-II
[5,6], and type-III [7]) or the one-loop Zee model [8] and
the two-loop Babu-Zee model [9–11] have all been dis-
cussed already in the 1980s. However, ever since the
discovery of neutrino oscillations [12,13], a myriad more
of other neutrino mass models have been proposed in the
literature.
To name a few papers and reviews post-1998, we

mention [14], which showed that there are only three types
of seesaws at tree level. For a systematic analysis of all
possible one-loop diagrams, see [15]. At two-loop level, we
mention two different colored versions of the Babu-Zee
topology [16,17]. A general decomposition for all two-loop
models was presented in [18]. At three-loop order, there are
the Krauss-Nasri-Trodden (KNT) [19], Aoki-Kanemura-
Seto [20], and cocktail models [21]. And, recently, for three
loops a systematic analysis was given in [22]. One can find
even some examples of four-loop models in the literature
[23,24]. For a recent review on radiative neutrino mass
models, we refer to [25].
One of the basic problems faced by model builders is

to first reproduce correctly the measured neutrino masses
and angles and to then scan over all remaining free
parameters of the model in a systematic way, in order to

explore possible predictions the model may make for other
observables, such as μ → eγ or neutrinoless double beta
decay. It is often not difficult to identify some singular point
in the parameter space of a given model, which explains
oscillation data. However, exploring the parameter space in
a complete and unbiased way seems not to be straightfor-
ward in many cases. Here, we discuss in detail the master
formula for neutrino mass models, introduced first in [26].
All Majorana neutrino mass models can be brought to this
form. We then discuss the master parametrization, a
specific set of equations which allow to solve the above
problem in a systematic way.
This paper is organized as follows. In Sec. II, we discuss

the master parametrization. We define all necessary matrices
for the different possible cases and show by explicit
parameter counting that the complete parameter space of
any given model can be covered in this way. We then turn to
a discussion of how to apply our general master para-
metrization for some specific example models. We start with
the simplest type-I seesawmodel [1–5] and demonstrate how
our general parametrization can be reduced to the well-
known Casas-Ibarra parametrization [27] for this case. In
increasing order of complexity, we then discuss the inverse
seesaw [28], the scotogenic model [29] (as an example of a
radiative model), and finally the linear seesaw [30,31].
We then turn to discuss a list of special cases. These are

models in which some Yukawa matrices are not completely
free parameters, but for theoretical reasons have to fulfill
some particular conditions, such as y≡ yT , as happens, for
example, in left-right symmetric models. Constraints on
Yukawa matrices appear in many more models, in particu-
lar models with family symmetries are of this type. For a
review on neutrino mass models with discrete symmetries,
see, for example, [32]. We demonstrate how our general
formalism can be adapted to such additional conditions for
several cases and we also discuss the limitations of our
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approach: while our master parametrization is valid for all
cases, solving the equations may become impractically
complicated, if there are too many additional conditions.
We then close with a short summary. A number of more

technical aspects of our work is discussed in Appendices.
Appendix A gives the proof of our master parametrization.
Appendix B provides specific parametrizations for some
of the matrices involved in the master parametrization.
Appendices C and D discuss the master parametrization in
the special cases with one or two antisymmetric Yukawa
matrices. Appendix E demonstrates in one concrete exam-
ple model how to account for higher-order corrections in
particular corners of parameter space, where the parameters
in the leading order contribution are particularly fine-tuned.
Finally, in Appendix F, we discuss how to apply our general
equation to scenarios with several contributions to the
neutrino mass matrix.

II. THE MASTER FORMULA AND
PARAMETRIZATION

A. General neutrino mass matrix

The contributions from any Majorana neutrino mass
model can be brought into the form

m ¼ fðyT1My2 þ yT2M
Ty1Þ: ð1Þ

m is a complex symmetric matrix. Since there are three
generations of light, active neutrinos we assume it has
dimensions 3 × 3, but it is straightforward to generalize all
equations below to more generations. m can be brought to
diagonal form using a Takagi decomposition as

Dm ¼ diagðm1; m2; m3Þ ¼ UTmU; ð2Þ
where U is a 3 × 3 unitary matrix (U†U ¼ UU† ¼ I3).

1

The matrices y1 and y2 in Eq. (1) are dimensionless
n1 × 3 and n2 × 3 complex matrices, in general without
any symmetry restrictions. M is a n1 × n2 complex matrix,
with dimension of mass. In the following, we assume
without loss of generality n1 ≥ n2. Neutrino oscillation data
require that m must contain at least two nonvanishing
eigenvalues. Therefore, we concentrate on the cases rm ¼
rankðmÞ ¼ 2 or 3. We treat both neutrino mass orderings:
normal hierarchy (NH) and inverted hierarchy (IH).

B. Master parametrization

We call Eq. (1) the master formula, since it is valid for
all Majorana neutrino mass models. We now proceed to
discuss a parametrization for the y1 and y2 Yukawa
matrices with three specific properties:

(i) General: valid for all models.
(ii) Complete: containing all the degrees of freedom in

the model.
(iii) Programmable: easy to use in phenomenological

analyses.
This parametrization of the Yukawamatrices will be called

the master parametrization. As shown in Appendix A, the
Yukawa matrices y1 and y2 can be parametrized in general as

y1 ¼
1ffiffiffiffiffiffi
2f

p V†
1

0
B@

Σ−1=2WA

X1

X2

1
CAD̄ ffiffiffi

m
p U†; ð3Þ

y2 ¼
1ffiffiffiffiffiffi
2f

p V†
2

�
Σ−1=2Ŵ�B̂

X3

�
D̄ ffiffiffi

m
p U†: ð4Þ

Here, � denotes complex conjugation and † Hermitian
conjugation as usual. The matrix D̄ ffiffiffi

m
p is defined as

D̄ ffiffiffi
m

p ¼
� diagð ffiffiffiffiffiffi

m1

p
;
ffiffiffiffiffiffi
m2

p
;
ffiffiffiffiffiffi
m3

p Þ if rm ¼ 3;

P · diagð ffiffiffi
v

p
;
ffiffiffiffiffiffi
m2

p
;
ffiffiffiffiffiffi
m3

p Þ · P if rm ¼ 2;
ð5Þ

with

P ¼
�
I3 for NH;

P13 for IH
ð6Þ

and

P13 ¼

0
B@

0 0 1

0 1 0

1 0 0

1
CA; ð7Þ

a permutation matrix. We note that our definition of D̄ ffiffiffi
m

p in
case of rm ¼ 2 adopts the standard form in case of NH by
choosing P ¼ I3. The form diagð ffiffiffiffiffiffi

m1

p
;
ffiffiffiffiffiffi
m2

p
;
ffiffiffi
v

p Þ, more
commonly used in case of IH, is obtained by choosing
P ¼ P13 and then renaming m3 → m1. The scale v can be
replaced in this definitionbyanynonvanishing referencemass
scale.2 We applied a singular-value decomposition to the
matrix M,

1The matrices Dm and U are strongly connected to neutrino
oscillation experiments, as explained in Appendix B. We will
assume U to be a unitary matrix, thus neglecting possible
nonunitarity effects, which are nevertheless experimentally con-
strained to be small.

2It may naively seem that the
ffiffiffi
v

p
entry in the definition of D̄ ffiffiffi

m
p

in Eq. (5) is a free parameter. However, this is not the case. Even
though this entry will appear explicitly in the analytical ex-
pressions of y1 and y2 when rm ¼ 2, it is easy to see that a change
in this parameter can be absorbed by rescaling the first (third)
column of T and the first (third) row of K, two matrices to be
defined below, in case of NH (IH). Therefore, the freedom in this
entry is already covered by the T and K matrices, when their
elements are considered in their complete domains. In summary,
this entry does not add any free parameter to the master para-
metrization and one can fix it to a specific value. We chose

ffiffiffi
v

p
,

with v the usual electroweak vacuum expectation value, for
simplicity. Finally, we note that this scale, although arbitrary,
cannot vanish. This would imply T and K matrices out of their
ranges of validity, a fact that is reflected in the proof given in
Appendix A, where the existence of D̄−1ffiffiffi

m
p is required.
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M ¼ VT
1 Σ̂V2; ð8Þ

where Σ̂ is a n1 × n2 matrix defined as

Σ̂ ¼

0
BB@

Σ 0

0 0n2−n

0n1−n2

1
CCA; ð9Þ

and Σ ¼ diagðσ1; σ2;…; σnÞ is a diagonal n × n matrix
containing the positive and real singular values of M
(σi > 0). M can have vanishing singular values which we
encode in the zero square ðn2 − nÞ × ðn2 − nÞ matrix 0n2−n.
V1 and V2 are n1 × n1 and n2 × n2 unitary matrices, which
can be found by diagonalizing the square matricesMM† and
M†M, respectively. X1, X2, and X3 are, respectively,
ðn2 − nÞ × 3, ðn1 − n2Þ × 3, and ðn2 − nÞ × 3 arbitrary com-
plex matrices with dimensions of mass−1=2. Ŵ is an n × n
matrix defined as

Ŵ ¼ ðW W̄ Þ; ð10Þ

whereW is ann × r complexmatrix,with r ¼ rankðWÞ, such
thatW†W ¼ WTW� ¼ Ir,whileW̄ is ann × ðn − rÞ complex
matrix, that is built with vectors that complete those in W to
formanorthonormalbasisofCn.Thus,Ŵ is acomplexunitary
n × n matrix. A specific form for this matrix can be found in
AppendixB.A is given as a r × 3matrix,which can in general
be written as

A ¼ TC1; ð11Þ

where T is an upper-triangular r × r invertible square matrix
with positive real values in the diagonal, and C1 is an r × 3

matrix. Finally, B̂ is defined as a n × 3 complex matrix
given by

B̂ ¼
�
B

B̄

�
; ð12Þ

with B̄ anarbitrary ðn − rÞ × 3 complexmatrixandB an r × 3
complex matrix written as

B≡ BðT;K; C1; C2Þ ¼ ðTTÞ−1½C1C2 þ KC1�; ð13Þ

where we have introduced the antisymmetric r × r square
matrixK and the 3 × 3matrixC2.

3 In the following, i ¼ ffiffiffiffiffiffi
−1

p

is the imaginaryunit, asusual.The formof thematricesC1 and
C2 is case dependent. For different values of rm and r, they are
given as follows4:

(i) Case (3,3): rm ¼ 3 and r ¼ 3,

C1 ¼ C2 ¼ I3: ð14Þ

(ii) Case (3,2): rm ¼ 3 and r ¼ 2.
In this case, we find two subcases: case ð3; 2Þa, when the

second and third columns of the product matrix WA are
linearly independent, and ð3; 2Þb, when they are linearly
dependent. The matrices C1 and C2 take the following
expressions:

(i) Case ð3; 2Þa,

C1 ¼
�
z1 1 0

z2 0 1

�
; with 1þ z21 þ z22 ¼ 0;

C2 ¼

0
B@

−1 0 0

0 1 0

0 0 1

1
CA: ð15Þ

Here, z1 and z2 are complex numbers.
(ii) Case ð3; 2Þb,

C1 ¼ C1� ¼
�
0 �i 1

1 0 0

�
; C2 ¼

0
B@

1 0 0

0 −1 0

0 0 1

1
CA:

ð16Þ

(iii) Case (2,3): rm ¼ 2 and r ¼ 3,

C1 ¼ P; C2 ¼ P

0
B@

0 0 0

0 1 0

0 0 1

1
CAP: ð17Þ

(iv) Case (2,2): rm ¼ 2 and r ¼ 2,
In this case, we again subdivide into two subcases: case

ð2; 2Þa, when the second and third columns of the matrix
WA are linearly independent, and ð2; 2Þb, when they are
linearly dependent. The matrices C1 and C2 take the
following expressions:

(i) Case ð2; 2Þa,

C1 ¼
�
z1 1 0

z2 0 1

�
P; with z21 þ z22 ¼ 0;

C2 ¼ P

0
B@

−1 0 0

0 1 0

0 0 1

1
CAP: ð18Þ3Equation (1) shows that it is possible to scale up one of the

two Yukawa matrices by a global factor F and compensate it by
inverse scaling of the other Yukawa by 1=F. This freedom is of
course taken into account in the master parametrization of Eqs. (3)
and (4). Multiplying y1 by adding a factor in the matrix T, which
enters y1 via A, this factor will be exactly canceled out by that
coming from ðTTÞ−1 in B; see Eq. (13).

4The expression for C2 in the (3,3) case has been simplified
with respect to [26].
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(ii) Case ð2; 2Þb,

C1 ¼ C1� ¼
�
0 �i 1

1 0 0

�
P;

C2 ¼ P

0
B@

0 0 0

0 −1 0

0 0 1

1
CAP: ð19Þ

(iii) Case (2,1): rm ¼ 2 and r ¼ 1.
We would like to point out that one can have two

nonvanishing eigenvalues in m even for r ¼ 1 due to the
fact that Eq. (1) has two terms contributing. In this case, we
note that K ¼ 01×1. The matrices C1 and C2 take the
following expressions:

C1 ¼ C1� ¼ ð 0 �i 1 ÞP; C2 ¼ P

0
B@

0 0 0

0 −1 0

0 0 1

1
CAP:

ð20Þ
It can be shown that ðrm; rÞ cases not considered here

cannot be made compatible with neutrino oscillation data
and the master Majorana mass matrix in Eq. (1). We give a
summary of the matrices that appear in the master para-
metrization and count their free parameters in Table I. A
rigorous mathematical proof of the master parametrization
is given in Appendix A. Finally, a Mathematica notebook
that implements the master parametrization can be found
in [33].

C. Parameter counting

Without loss of generality, we can write

#free ¼ #y1 þ #y2 − #eqs − #extra ¼ 6ðn1 þ n2Þ − #eqs − #extra:

ð21Þ
Here #y1 ¼ 2 · 3 · n1 and #y2 ¼ 2 · 3 · n2 are the number of
real degrees of freedom in y1 and y2. #eqs is the number of
real independent equations contained in Eq. (1). Because
this matrix equation is symmetric, the naive expectation is

to have 6 complex equations. This would then correspond
to 12 real restrictions on the elements of y1 and y2.
However, by direct computation, one can show that for r ¼
1 one of the complex equations is redundant and can be
derived from the other five. Thus,

#eqs ¼
�
12 for r ¼ 3 or 2;

10 for r ¼ 1:
ð22Þ

The case r ¼ 1 is actually allowed only because (1)
contains two terms. Each of these, in principle, can be
of rank 1, as long as the rank of the sum of both terms is 2.
Finally, #extra counts the number of extra (real) restrictions
imposed on y1 and y2. Often, such as in the case of the
minimal type-I seesaw, one has #extra ¼ 0. However, there
are also many scenarios with additional restrictions and
#extra ≠ 0. Since the number of free parameters #free must
equal the sum of the number of free parameters in each of
the matrices, contained in the master parametrization of
Eqs. (3) and (4), we find

#free ¼ #X1
þ #X2

þ #X3
þ #A þ #W þ #B þ #B̄ þ #C1

¼ #X1
þ #X2

þ #X3
þ #T þ #W þ #K þ #B̄ þ #C1

:

ð23Þ
In these expressions, we assigned all the free parameters in
the product W̄ B̄ to B̄, corresponding to #W̄ ¼ 0. We can
always choose this, since these two matrices appear every-
where in the combination W̄ B̄. Considering that all the
parameters contained in B̄ are free, #W̄ B̄ ≡ #B̄. Next, one
can easily count the parameters in each of the matrices in
Eq. (23) and find

#X1
¼ 6ðn2 − nÞ;

#X2
¼ 6ðn1 − n2Þ;

#X3
¼ 6ðn2 − nÞ;

#T ¼ r2;

#K ¼ rðr − 1Þ;
#B̄ ¼ 6ðn − rÞ: ð24Þ

TABLE I. Matrices containing free parameters in the master parametrization. Even though the matrix C2 does not
contain any free parameter, we include it in this list since its form depends on the values of rm and r.

Matrix Dimensions Property Real parameters

X1 ðn2 − nÞ × 3 Absent if n ¼ n2 6ðn2 − nÞ
X2 ðn1 − n2Þ × 3 Absent if n1 ¼ n2 6ðn1 − n2Þ
X3 ðn2 − nÞ × 3 Absent if n ¼ n2 6ðn2 − nÞ
W n × r rð2n − rÞ
T r × r Upper triangular with ðTÞii > 0 r2

K r × r Antisymmetric rðr − 1Þ
B̄ ðn − rÞ × 3 Absent if n ¼ r 6ðn − rÞ
C1 r × 3 Case dependent 0 or 2
C2 3 × 3 Case dependent
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The counting of the free parameters inW is more involved,
but it can be found by constructing a set of r orthonormal
vectors of n components, and counting the number of
conditions that orthonormality imposes on them. One finds

#W ¼ rð2n − rÞ: ð25Þ

Finally, we note that #C1
¼ 0 in most cases, except for cases

ð3; 2Þa and ð2; 2Þa, for which #C1
¼ 2. The parameter

counting for the matrices in the master parametrization
is shown in Table I. For pedagogical and practical purposes,
we also provide Table II, where we detail the number of free
parameters for several selected scenarios and how they
distribute among the different matrices.
It may be convenient to discuss the following particular

example in order to understand the general parameter
counting procedure. Let us choose n1 ¼ n2 ¼ n ¼ 3 and
consider on a scenario with ðrm; rÞ ¼ ð3; 3Þ. Then, Σ̂≡ Σ,
#eqs ¼ 12 and #extra ¼ 0. From Eq. (21), one calculates

#ð3;3Þfree ¼ 24. Applying now Eq. (23), one finds

#ð3;3Þfree ¼ 24 ¼ #ð3;3ÞW þ #ð3;3ÞA þ #ð3;3ÞB þ #ð3;3ÞC1
¼ 15þ #ð3;3ÞW ;

ð26Þ

where #ð3;3ÞW ¼ 9 corresponds to the number of real free
parameters in the matrix W in the (3,3) case. We note that

#ð3;3ÞW ¼ 9 also follows from the fact that W is a unitary
3 × 3 matrix. This provides a consistency check of the
parameter counting we just demonstrated. In addition, note

also #ð3;3ÞA ¼ 9 and #ð3;3ÞB ¼ 6.

III. EXAMPLE APPLICATIONS

The practical use of the master parametrization is
straightforward. It can be easily applied to any Majorana
neutrino mass model and completely automatized in order
to run detailed numerical analyses. First, one must use the
information from neutrino oscillation experiments, typi-
cally from a global fit, and fix the light neutrino masses and
leptonic mixing angles appearing in D̄ ffiffiffi

m
p and U, respec-

tively. In a second step, one must compare the expression

for the mass matrix of the light neutrinos in the model under
consideration with the general master formula in Eq. (1).
This way one can easily identify the global factor f, the
Yukawa matrices y1 and y2 as well as the matrix M. The
latter can be singular value decomposed to determine Σ, V1,
and V2, while the Yukawa matrices y1 and y2 can be
expressed in terms of a set of matrices (Ŵ, X1;2;3, B̄, T, K,
and C1;2) by means of the master parametrization in
Eqs. (3) and (4). Finally, in a numerical analysis, one
can simply randomly scan over the free parameters con-
tained in these matrices to completely explore the param-
eter space of a given model.
We will now illustrate the use of the master parame-

trization with several example models. In the following,
H will denote the SM Higgs doublet, transforming as
ð1; 2; 1=2Þ under the SM gauge symmetry, whereas L
will denote the SM lepton doublets, transforming as
ð1; 2;−1=2Þ, and eR the SM lepton singlets, transforming
as ð1; 1;−1Þ. As already mentioned in Sec. II, we will work
in the basis, where the charged lepton mass matrix has
already been diagonalized.

A. The type-I seesaw

We begin with the type-I seesaw, arguably the simplest
neutrino mass model. In this model, the SM particle content
is extended with the addition of nN generations of right-
handed neutrinos N, singlets under the SM gauge group, as
shown in Table III. We will consider below the most
common scenarios, with nN ¼ 3 and nN ¼ 2. The model
includes two new Lagrangian terms

−LtypeI ¼ yHN̄Lþ 1

2
MNNcN þ H:c:; ð27Þ

where we omit flavor indices to simplify the notation. y is a
general 3 × nN Yukawa matrix while MN is a nN × nN
symmetric mass matrix. The scalar potential of the model

TABLE II. Parameter counting table. Here we detail the number of free parameters for some selected scenarios and how they distribute
among the different matrices appearing in the master parametrization.

Scenario n1 n2 n Case #eqs #extra #free #X1
#X2

#X3
#T #W #K #B̄ #C1

1 3 3 3 (3,3) 12 0 24 9 9 6 � � �
2 4 3 2 (3,3) 12 0 42 6 6 6 9 9 6 � � �
3 3 3 3 ð3; 2Þa 12 2 22 4 8 2 6 2
4 2 2 2 ð3; 2Þa 12 0 12 4 4 2 2
5 3 3 3 ð3; 2Þb 12 4 20 4 8 2 6 � � �
6 2 2 2 ð2; 2Þa 12 0 12 4 4 2 2
7 2 2 2 ð2; 2Þb 12 2 10 4 4 2 � � �
8 2 2 2 (2,1) 10 4 10 1 3 6 � � �

TABLE III. New particles in the type-I seesaw.

Spin Generations SUð3Þc SUð2ÞL Uð1ÞY
N 1=2 3 1 1 0
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is exactly the same as in the SM. Therefore, symmetry
breaking takes place as in the SM, with the Higgs doublet
developing a VEV,

hH0i ¼ vffiffiffi
2

p : ð28Þ

After symmetry breaking, the left-handed neutrinos νL,
the neutral components of the L lepton doublet, mix with
the right-handed neutrinos N. In the basis ðνL; NcÞ, the
resulting ð3þ nNÞ × ð3þ nNÞ neutral fermion mass matrix
is given by

Mtype-I ¼
�

0 mT
D

mD MN

�
; ð29Þ

where we have defined mD ¼ 1ffiffi
2

p yv. Under the assumption

∀ ξij ≪ 1, where ξ ¼ mT
DM

−1
N , the mass matrixMtype-I can

be block diagonalized to give an effective mass matrix for
the three light neutrinos,5

mtype-I ¼ −mT
DMN

−1mD ¼ −
v2

2
yTMN

−1y: ð30Þ

Equation (30) is shown diagrammatically in Fig. 1. We now
compare the type-I seesaw neutrino mass matrix in Eq. (30)
to the general master formula in Eq. (1) to establish the
following dictionary:

f ¼ −1

n1 ¼ n2 ¼ nN

y1 ¼ y2 ¼
yffiffiffi
2

p

M ¼ v2

2
M−1

N : ð31Þ

Furthermore, a symmetric matrixM can be diagonalized by
a single matrix, V1 ¼ V2, which can be taken to be the
identity in this model, since the right-handed neutrinos can
be rotated to their mass basis without loss of generality. For
n1 ¼ n2 ¼ n ¼ r, the matrices X1;2;3, W̄, and B̄ drop from
all the expressions. We now consider the cases nN ¼ 3 and
nN ¼ 2 separately.

1. Three right-handed neutrinos

We can now adopt the common choice r ¼ rm ¼ 3,
which implies C1 ¼ C2 ¼ I3. In this case, imposing
y1 ¼ y2 is equivalent to WTWA ¼ B. Solving this matrix
equation leads to B ¼ ðATÞ−1 and allows one to define
R ¼ WT ¼ WA, with R a general 3 × 3 orthogonal matrix.
Replacing all these ingredients into Eqs. (3) and (4), one
finds

y ¼
ffiffiffi
2

p
y1 ¼

ffiffiffi
2

p
y2 ¼ iΣ−1=2RD ffiffiffi

m
p U†; ð32Þ

which is nothing but the Casas-Ibarra parametrization for
the type-I seesaw Yukawa matrices. We note that R can
be identified with the usual Casas-Ibarra matrix [27].
We conclude that the Casas-Ibarra parametrization can
be regarded as a particular case of the general master
parametrization.
As a final comment, we note that in the type-I seesaw

with three generations of right-handed neutrinos, the
condition y1 ¼ y2 implies 18ð¼ 9 · 2Þ real constraints, this
is, #extra ¼ 18. Therefore, direct application of the general
counting formula in Eq. (21) leads to #free ¼ 6. These are
the free real parameters contained in the Casas-Ibarra R
matrix, which can be parametrized by means of three
complex angles; see Appendix B.

2. Two right-handed neutrinos

In the type-I seesaw with two generations of right-
handed neutrinos, one also obtains the neutrino mass matrix
in Eq. (30), but with n1 ¼ n2 ¼ n ¼ r ¼ 2. Moreover, it is
well known that in this case one induces only two non-
vanishing neutrino mass eigenvalues, and hence rm ¼ 2
and the model belongs either to the ð2; 2Þa case or to the
ð2; 2Þb case. One can now follow a similar approach as
for the three generation model. In the two generation
version, imposing y1 ¼ y2 is equivalent to WTWA ¼ B ↔
TTWTWTC1 ¼ C1C2 þ KC1. Replacing the expressions
for C1 and C2 in the ð2; 2Þb case, one can easily find that
this matrix equation leads to a contradiction. In case of
neutrino NH, this is found by comparing the elements (1,2)
and (1,3), whereas in case of IH by comparing the elements
(1,1) and (1,2). Therefore, we discard this scenario. Solving
the matrix equation (decomposing it by elements) in the
ð2; 2Þa case leads to z1 ¼ z2 ¼ 0, K ¼ 0, and R ¼ WT,
with R a general 2 × 2 orthogonal matrix that can be
parametrized by one complex angle. In summary, replacing

FIG. 1. Neutrino mass generation in the type-I seesaw.

5In models with extra singlet fermions, such as the seesaw,
there will be nonzero mixing between the active and sterile
neutrino sectors. This mixing necessarily shows up as nonun-
itarity in the lepton mixing matrix U. From the viewpoint of the
master formula, this corresponds to higher-order terms in
the seesaw expansion ξ, which we do not take into account.
Since current constraints on nonunitarity are of the order of
(1–5) percent [34–36], we do not consider this effect numerically
very relevant. See [37] for a recent work where these effects are
addressed.
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all these ingredients into Eqs. (3) and (4), one finds

y ¼
ffiffiffi
2

p
y1 ¼

ffiffiffi
2

p
y2 ¼ iΣ−1=2R

�
0

ffiffiffiffiffiffi
m2

p
0

0 0
ffiffiffiffiffiffi
m3

p
�
PU†;

ð33Þ
where P ¼ I3 in case of NH and P ¼ P13 and in case of IH;
see Eqs. (6) and (7). In case of IH, one should also rename
m3 → m1. The result in Eq. (33) agrees perfectly with [38].

B. The inverse seesaw

We now consider the inverse seesaw [28], an example
model in which the matrix M is actually the product of
several matrices. In the inverse seesaw, the SM particle
content is extended with the addition of three generations of
right-handed neutrinos N and three generations of singlet
fermions S, both with lepton numberþ1, as summarized in
Table IV.6 The Lagrangian is assumed to contain the
following terms involving these fields:

−LISS ¼ yHN̄LþMRN̄Sþ 1

2
μScSþ H:c:; ð34Þ

where we omit flavor indices to simplify the notation. y is a
general 3 × 3 Yukawa matrix, MR is an arbitrary complex
3 × 3 mass matrix, while μ is a 3 × 3 complex symmetric
mass matrix. Again, the scalar potential and symmetry
breaking pattern of the model is the same as in the SM.
After symmetry breaking, the left-handed neutrinos νL mix
with the N and S singlet fermions. In the basis ðνL; Nc; SÞ,
the resulting 9 × 9 neutral fermion mass matrix is given by

MISS ¼

0
B@

0 mT
D 0

mD 0 MR

0 MT
R μ

1
CA: ð35Þ

We note that in the absence of the μ term, the matrix in
Eq. (35) would have a Dirac structure and lead to three
massless states. In fact, μ violates lepton number by two
units and can be taken naturally small, in the sense of ’t
Hooft [42], since the limit μ → 0 restores lepton number
and increases the symmetry of the model. Under the
assumption μ ≪ mD ≪ MR, the mass matrix MISS can
be block diagonalized to give an effective mass matrix for
the three light neutrinos [43],

mISS ¼ mT
DM

T
R
−1μM−1

R mD ¼ v2

2
yTMT

R
−1μM−1

R y: ð36Þ

Equation (36) is shown diagrammatically in Fig. 2. Again,
we can compare the inverse seesaw neutrino mass matrix in
Eq. (36) to the general master formula in Eq. (1) and
establish a dictionary,7

f ¼ 1

n1 ¼ n2 ¼ 3

y1 ¼ y2 ¼
yffiffiffi
2

p

M ¼ v2

2
MT

R
−1μM−1

R : ð37Þ

This identification clearly shows that one can make use of
an adapted Casas-Ibarra parametrization for the inverse
seesaw [44].
However, compared to the simpler type-I seesaw, dis-

cussed above, here M cannot be taken to be diagonal
automatically and V1 ¼ V2 become physical. (Note that the
two rotation matrices are still equal, since M is a complex
symmetric matrix in the inverse seesaw.) The reason for this
is straightforward: M contains the two matrices MR and μ.
If y is taken arbitrary, we can still use field redefinitions for
N and S to choose either MR or μ diagonal, but not both at
the same time.

C. The scotogenic model

This example illustrates the use of the master para-
metrization in a model with loop induced neutrino
masses. As we will show below, the radiative origin of
neutrino masses does not alter the application of the master
parametrization.
The scotogenic model [29] extends the SM particle

content with three generations of the singlet fermions N
and the SUð2ÞL doublet scalar η. In addition, a Z2

symmetry is imposed, under which the new particles are
odd while the SM ones are assumed to be even. The
quantum numbers of the new particles in the scotogenic
model are given in Table V.

TABLE IV. New particles in the inverse seesaw.

Spin Generations SUð3Þc SUð2ÞL Uð1ÞY
N 1=2 3 1 1 0
S 1=2 3 1 1 0

FIG. 2. Neutrino mass generation in the inverse seesaw.

6See [39–41] for more minimal realizations of the inverse
seesaw.

7We point out that this is just one possible dictionary. For
instance, one could include the v2

2
factor in the definition of f and

modify M accordingly.
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In addition to the canonical kinetic term, the Lagrangian
contains the following terms involving the singlet fermions:

−LSC ¼ yηN̄LþMN

2
NcN þ H:c:; ð38Þ

where we omit flavor indices for the sake of clarity. Here
MN is a 3 × 3 symmetric matrix with dimensions of mass
which can be taken to be diagonal without loss of general-
ity. The matrix of Yukawa couplings, y, is an arbitrary
3 × 3 complex matrix. The scalar potential of the model is
given by

VSC ¼ m2
HH

†H þm2
ηη

†η

þ λ1
2
ðH†HÞ2 þ λ2

2
ðη†ηÞ2 þ λ3ðH†HÞðη†ηÞ

þ λ4ðH†ηÞðη†HÞ þ
�
λ5
2
ðH†ηÞ2 þ λ�5

2
ðη†HÞ2

�
: ð39Þ

All parameters in the scalar potential are real, with the
exception of the λ5 quartic parameter, which can be
complex. In the scotogenic model, the Z2 parity is assumed
to be preserved after symmetry breaking. This is guaranteed
by choosing a set of parameters that leads to a vacuum with

hH0i ¼ vffiffiffi
2

p ; hη0i ¼ 0: ð40Þ

After electroweak symmetry breaking, the masses
of the charged component ηþ and neutral component η0 ¼
ðηR þ iηIÞ=

ffiffiffi
2

p
are split to

m2
ηþ ¼ m2

η þ λ3hH0i2; ð41Þ

m2
R ¼ m2

η þ ðλ3 þ λ4 þ λ5ÞhH0i2; ð42Þ

m2
I ¼ m2

η þ ðλ3 þ λ4 − λ5ÞhH0i2: ð43Þ

We note that the mass difference between ηR and ηI (the
CP-even and CP-odd components of the neutral η0,
respectively) is controlled by the λ5 coupling since
m2

R −m2
I ¼ 2λ5hH0i2. This will be relevant for the gen-

eration of nonvanishing neutrino masses in this model.
One of the most attractive features of the scotogenic

model is the presence of a dark matter candidate. Indeed,
the conservation of the Z2 symmetry implies that the
lightest state charged under this parity is completely stable
and, in principle, can serve as a good dark matter candidate.

This role can be played by the lightest singlet fermion (N1)
or by the neutral component of the inert η doublet (ηR
or ηI).
We nowmove to the discussion of neutrino masses. First,

we note that the singlet fermions do not couple to the SM
Higgs doublet due to the Z2 discrete symmetry while
hη0i ¼ 0 prevents the ηN̄L Yukawa term from inducing a
Dirac mass term for the neutrinos. Therefore, neutrino
masses vanish at tree level but get induced at the one-loop
level, as shown in Fig. 3. The resulting 3 × 3 Majorana
neutrino mass matrix is given by

ðmSCÞαβ ¼
X3
i¼1

yiαyiβ
2ð4πÞ2MNi

�
m2

R

m2
R −M2

Ni

log

�
m2

R

M2
Ni

�

−
m2

I

m2
I −M2

Ni

log

�
m2

I

M2
Ni

��
; ð44Þ

≡ 1

32π2
ðyTM̂yÞαβ; ð45Þ

with the diagonal matrix M̂ with entries

M̂ii ¼MNi

�
m2

R

m2
R−M2

Ni

log

�
m2

R

M2
Ni

�
−

m2
I

m2
I −M2

Ni

log

�
m2

I

M2
Ni

��
:

ð46Þ

A simplified expression can be obtained when m2
R ≈

m2
I ≡m2

0 (or, equivalently, λ5 ≪ 1). In this case,
Eq. (44) reduces to8

TABLE V. New particles in the scotogenic model.

Spin Generations SUð3Þc SUð2ÞL Uð1ÞY Z2

η 0 1 1 2 1=2 −
N 1=2 3 1 1 0 −

FIG. 3. Neutrino mass generation in the scotogenic model.

8We note that λ5 ≪ 1 is a natural choice in the sense of ’t Hooft
[42], since the limit λ5 → 0 increases the symmetry of the model
by restoring lepton number.
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ðmSCÞαβ ≃
X3
i¼1

λ5yiαyiβhH0i2
ð4πÞ2MNi

×

�
M2

Ni

m2
0 −M2

Ni

þ M4
Ni

ðm2
0 −M2

Ni
Þ2 log

�
M2

Ni

m2
0

��

≡ λ5
16π2

ðyTΛyÞαβ; ð47Þ

where we have defined Λ ¼ diagðΛ1;Λ2;Λ3Þ, with

Λi ¼
hH0i2
MNi

�
M2

Ni

m2
0 −M2

Ni

þ M4
Ni

ðm2
0 −M2

Ni
Þ2 log

�
M2

Ni

m2
0

��
:

ð48Þ

Equation (45) and the last equality of Eq. (47) clearly
shows that the Yukawa matrix y can be written using an
adapted Casas-Ibarra parametrization [45]. In fact, direct
comparison to the master formula in Eq. (1) allows one to
identify

f ¼ λ5
16π2

n1 ¼ n2 ¼ 3

y1 ¼ y2 ¼
yffiffiffi
2

p

M ¼ Λ ð49Þ

in the scotogenic model.

D. The linear seesaw

The full power of the master parametrization is better
illustrated with an application to the linear seesaw [30,31],
which provides a well-known example of a neutrino mass
formula with y1 ≠ y2.
Originally introduced in the context of left-right sym-

metric models [30,31], this mechanism has also been
shown to arise naturally in SO(10) unified theories
[46,47]. The particle content of the model is the same as
in the inverse seesaw, as shown in Table VI. The
Lagrangian is assumed to contain the following terms:

−LLSS ¼ yHN̄LþMRN̄Sþ yLHLcSþ H:c:; ð50Þ

where again we omit flavor indices to simplify the notation.
As in the inverse seesaw, y is a general 3 × 3 Yukawa
matrix andMR is a 3 × 3 complex mass matrix. In addition,

yL is a general 3 × 3 Yukawa matrix, with yL ≠ y
in general. Therefore, the linear seesaw model features
y1 ≠ y2. The scalar potential and symmetry breaking
pattern of the model are the same as in the SM. In the
basis ðνL; Nc; SÞ, the resulting 9 × 9 neutral fermion mass
matrix obtained after electroweak symmetry breaking takes
the form

MLSS ¼

0
B@

0 mT
D ML

mD 0 MR

MT
L MT

R 0

1
CA; ð51Þ

where ML ¼ 1ffiffi
2

p yLv. We note that in the presence

of ML, lepton number is broken in two units. Assuming
mD;ML ≪ MR, the mass matrix for the three light neu-
trinos is given by

mLSS ¼ MLM−1
R mD þmT

DM
T
R
−1MT

L

¼ v2

2
ðyLM−1

R yþ yTMT
R
−1yTLÞ: ð52Þ

Equation (52) is shown diagrammatically in Fig. 4 (without
the transposed second term). We see that the resulting
expression for the light neutrino mass matrix is linear in y
(or, equivalently, in mD), hence the origin of the name
linear seesaw. As usual, we now compare the linear seesaw
neutrino mass matrix in Eq. (52) to the general master
formula in Eq. (1). By doing so, one finds the following
dictionary:

f ¼ 1

n1 ¼ n2 ¼ 3

y1 ¼ yTL

y2 ¼ y

M ¼ v2

2
M−1

R : ð53Þ

We emphasize again that one cannot make use of the
standard Casas-Ibarra parametrization in the linear seesaw

FIG. 4. Neutrino mass generation in the linear seesaw.

TABLE VI. New particles in the linear seesaw.

Spin Generations SUð3Þc SUð2ÞL Uð1ÞY
N 1=2 3 1 1 0
S 1=2 3 1 1 0
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model due to y ≠ yTL (a particular example of the general
case y1 ≠ y2). In this case, one must necessarily make use
of the full master parametrization.

IV. MODELS WITH EXTRA SYMMETRIES
AND RESTRICTIONS

We now discuss Majorana neutrino mass models
which follow the structure of Eq. (1), but the master
parametrization may become either not direct, imprac-
tical, or useless. These “exceptional” cases are simply
those for which y1 and y2 are not completely free
parameters. Based on the type of restrictions, the y1 and
y2 Yukawa matrices must follow, one can identify the
following four categories:

(i) Identity models: y1 ¼ y2 ¼ I. This is the case of the
seesaw type-II and similar models.

(ii) Symmetric models: y1 ¼ yT1 and/or y2 ¼ yT2 . This is
the case in many models with an underlying left-
right symmetry.

(iii) Antisymmetric models: y1 ¼ −yT1 and/or y2 ¼ −yT2 .
This scenario takes place in models including the
charged scalar s, which transforms as ð1; 1; 1Þ under
the SM gauge symmetry, due to the presence of the
antisymmetric SUð2ÞL contraction in the sLcL
Yukawa term. Two well-known examples of such
scenario are the Zee (y1 ¼ −yT1 ) and Zee-Babu
(
ffiffiffi
2

p
y1 ¼

ffiffiffi
2

p
y2 ¼ y, with y ¼ −yT) models.

(iv) Flavored models: specific textures in y1 and y2. This
would be the case of models with flavor symmetries.
Models with conditions on the y1 and y2 Yukawa
matrices not included in the previous cases can be
generically included here.

As discussed next, case (i) is trivial, whereas case
(ii) needs only a slight modification of our procedure.
Only cases (iii) and (iv) are not so easily solved and
require an in-depth discussion.
Identity models, those with y1 ¼ y2 ¼ I, are trivially

addressed. For instance, let us consider the type-II
seesaw [5,6]. This model extends the SM particle
content with the SUð2ÞL triplet scalar Δ with hyper-
charge YΔ ¼ 1. The inclusion of this field allows us to
write the Yukawa term YΔLcΔL which, after the neutral
component of Δ acquires a VEV, vΔ, induces Majorana
masses for the neutrinos, with their mass matrix given
by m ¼ YΔvΔ. It is clear that this model can also be
described by means of the master formula, with the
dictionary simply given by

f ¼ 1

n1 ¼ n2 ¼ 3

y1 ¼ y2 ¼ I3

M ¼ YΔvΔ: ð54Þ

Even though the master formula also includes models in
this category, they do not require a parametrization for
the Yukawa matrices. Note that the neutrino mixing
matrix is simply given by the diagonalization matrix
of YΔ.
In what concerns symmetric models, a simple yet elegant

solution when y1 ¼ y2 was given in [48]. We proceed
to reproduce it here. Let us consider a fully symmetric
type-I seesaw neutrino mass matrix with

ffiffiffi
2

p
y1 ¼

ffiffiffi
2

p
y2 ¼

y ¼ yT . The master formula reduces to m ¼ yTMy≡ yMy
and the master parametrization to a Casas-Ibarra para-
metrization; see Eq. (32).M must be a symmetric matrix in
this case, and then it can be brought to a diagonal form with
just a single matrix V,

M ¼ VTΣ̂V; ð55Þ

and the Casas-Ibarra parametrization reads

y ¼ iV†Σ−1=2RD ffiffiffi
m

p U†; ð56Þ

with R a complex orthogonal 3 × 3 matrix. This equation
can be trivially rewritten as

Y ¼ Vy ¼ iΣ−1=2RD ffiffiffi
m

p U†: ð57Þ

This shows that the matrix Y can be obtained by applying a
standard Casas-Ibarra parametrization. The key now is to
be able to decompose it as the product of the unitary matrix
V and the symmetric matrix y. In order to do that, we first
apply a singular-value decomposition,

Y ¼ WT
1 ŶW2; ð58Þ

where W1 and W2 are two unitary matrices and Ŷ is a
diagonal matrix containing the (real and non-negative)
singular values of Y. We can now insert W�

2W
T
2 ¼ I3 to

obtain

Y ¼ WT
1 ŶW2 ¼ ðWT

1W
�
2ÞðWT

2 ŶW2Þ≡ Ṽ ỹ; ð59Þ

where we have identified the unitary matrix Ṽ ¼ WT
1W

�
2

and the symmetric matrix ỹ ¼ WT
2 ŶW2. As explained

in [48], Ṽ and ỹ are not unique, simply because the
singular-value decomposition is not unique. One can
always define

W0
1 ¼ DϕW1; ð60Þ

W0
2 ¼ D−1

ϕ W2; ð61Þ

with

Dϕ ¼ diagðeiϕ1 ; eiϕ2 ; eiϕ3Þ ð62Þ
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a diagonal phase matrix, such that Y ¼ W0T
1 ŶW

0
2 as well.9

These three phases must be taken into account in the
factorization of Y as the product of a unitary matrix and a
symmetric matrix. We then make the identification

V ¼ WT
1D

−1
ϕ W�

2; ð63Þ

y ¼ WT
2DϕŶW2; ð64Þ

which preserves Y ¼ Vy and the symmetric nature of y. In
summary, when both Yukawa matrices are equal and
symmetric, one can use the standard Casas-Ibarra para-
metrization for Y and finally find y by means of the
decomposition in Eq. (64).
Finally, we come to case (iii), models with antisymmetric

Yukawa matrices. We first consider the scenario with one
antisymmetric Yukawa coupling, y1 ¼ −yT1 , with general
y2. The most popular model of this class is the Zee model
[8], discussed in Sec. IVA. As in the general case, both
Yukawa matrices, y1 and y2, can be written using the master
parametrization in Eqs. (3) and (4). However, the anti-
symmetry of y1 implies some nontrivial conditions on the
matrices W and T, as well as on m and M. Therefore, the
input matrices m and M can no longer be arbitrary, but are
indeed forced to follow some relations if the master formula
in Eq. (1) is to be satisfied. More details about this scenario
with one antisymmetric Yukawa coupling can be found in
Appendix C. Now, we turn to the special case of equal and
antisymmetric Yukawa matrices,

ffiffiffi
2

p
y1¼

ffiffiffi
2

p
y2¼y¼−yT .

The Zee-Babu model [9–11], presented in detail in
Sec. IV B, is the most popular model of this class. In this
scenario, one necessarily has n1 ¼ n2 ¼ 3, V1 ¼ V2 ≡ V,
and r ¼ rm ¼ 2. The master formula reduces to m ¼
yTMy ¼ −yMy and the master parametrization to a modi-
fied Casas-Ibarra parametrization. In case of n ¼ 3, one
finds

y ¼
ffiffiffi
2

p
y1 ¼

ffiffiffi
2

p
y2 ¼ iV†Σ−1=2RC1D̄ ffiffiffi

m
p U†; ð65Þ

with C1 given in Eq. (18), in this case fixing z1 ¼ z2 ¼ 0,
and R a 3 × 2 Casas-Ibarra matrix such that RTR ¼ I2.
However, the parametrization for the y matrix in Eq. (65) is
not sufficient to guarantee the antisymmetry of the y
Yukawa matrix. Many additional restrictions must be taken
into account. In fact, the equality

ffiffiffi
2

p
y1 ¼

ffiffiffi
2

p
y2 ¼ y ¼

−yT implies 12 (real) conditions. Since the number of real

free parameters in this scenario is 6, the system is over-
constrained. This has two implications. First, in contrast to
the general case, R must take a very specific form. And
second, the parameters in m and M are not free anymore,
but they are indeed forced to follow six real conditions: one
vanishing neutrino mass eigenvalue, one vanishing
Majorana phase, and two (complex) nontrivial conditions.
For the proof and more details about this special case, we
refer to Appendix D.
Let us also comment on alternative approaches in case of

antisymmetric Yukawa couplings. First, in models in which
M is a product of more than one matrix, it may be more
practical to solve for (one of) the inner Yukawa couplings,
instead of y1 or y2. And second, we are discussing a master
parametrization which we later particularize to specific
models. This approach is completely general and can be
used for any Majorana neutrino mass model. However, in
some particular cases, there might be a simpler and more
direct approach. For instance, a parametrization for the
antisymmetric scenario with

ffiffiffi
2

p
y1 ¼

ffiffiffi
2

p
y2 ¼ y ¼ −yT

was presented in [49]. The antisymmetry of the y matrix
implies that

v0 ¼

0
B@

y23
−y13
y12

1
CA ð66Þ

is an eigenvector of y with null eigenvalue. Since
m ¼ −yMy, v0 is also eigenvector of m and we can write

mv0 ¼ 0 ⇔ U�DmU†v0 ¼ 0 ⇔ DmU†v0 ¼ 0: ð67Þ

This equation can be solved analytically to determine two
of the components of v0 in terms of the third and the
neutrino masses and mixing angles contained inDm and U.
Furthermore, as explained above, the matrixM is not free in
this special case. The conditions on its entries can be
derived by replacing the form for y obtained with Eq. (67)
intom ¼ U�DmU† ¼ −yMy. Out of the six equations, only
three are independent. Therefore, one can obtain three M
entries in terms of the remaining parameters. For instance,
one can choose to solve the equations for M22, M23, and
M33. This solution has been found to be very convenient for
phenomenological studies [50]. Nevertheless, we empha-
size again that our focus is on the generality of our
approach, while this type of solutions can only be applied
to very specific scenarios.
Finally, the number of possible restrictions in flavored

models is enormous and a systematic exploration is not
feasible. For this reason, we will not discuss them here,
although we note that the master parametrization might
provide a powerful analytical tool for the treatment of these
special cases. We also point out that in some models the
charged lepton mass matrix is not diagonal in the flavor
basis. Instead, the mass and flavor bases are related by

9In general, the singular-value decomposition is unique up to
arbitrary unitary transformations applied uniformly to the column
vectors of both W1 and W2 spanning the subspaces of each
singular value, and up to arbitrary unitary transformations on
vectors of W1 and W2 spanning the kernel and cokernel,
respectively, of Y. This well-known fact is reflected, for example,
in the freedom in the determination of eigenvectors for a set of
degenerate eigenvalues.
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m̂e ¼ U†
emeVe; ð68Þ

where me and m̂e are the charged lepton mass matrix in the
flavor and mass bases, respectively, and Ue and Ve are two
3 × 3 unitary matrices. This would introduce an additional
unitary matrix in the master parametrization, replacing U†

in Eqs. (3) and (4) by U†U†
e.

We now present two models of type (iii), the Zee and
Zee-Babu models. They constitute well-known examples of
models with antisymmetric Yukawa couplings.

A. The Zee model

The Zee model [8] constitutes a very simple scenario
beyond the SM leading to radiative neutrino masses. The
particle content of the SM is extended to include a second
Higgs doublet, ϕ, and the SUð2ÞL singlet scalars s, with
hypercharge þ1. Therefore, the Zee model can be regarded
as an extension of the general two Higgs doublet model
(THDM) by a charged scalar. As we will see below, the
presence of this singly charged scalar has a strong impact
on the structure of the Yukawa matrix relevant for the
generation of neutrino masses. The new states in the Zee
model are summarized in Table VII. With them, the
Yukawa Lagrangian of the model includes

−LY
Z ¼ L̄ðyeH þ ΓeϕÞeR þ yssLcLþ H:c:; ð69Þ

where flavor indices have been omitted. The 3 × 3 Yukawa
matrix ys is antisymmetric in flavor space, while ye and Γe
are two general 3 × 3 complex matrices. In the general
THDM, both Higgs doublets could acquire nonzero VEVs.
However, with no quantum number distinguishing H and
ϕ, one can choose to go to the so-called Higgs basis,
in which only one of the two fields acquires a VEV.
We choose that the electroweak VEV v is obtained as
v2 ¼ v2H. In this basis, the expressions for the mass
matrices become especially simple. In case of the charged
leptons, this reads

Me ¼
vffiffiffi
2

p ye: ð70Þ

In the following, and without loss of generality, we will
work in the basis in which Me is diagonal. The scalar
potential of the Zee model includes the trilinear term

VZ ⊃ μZHϕs� þ H:c:; ð71Þ

where μZ is a parameter with dimensions of mass. After
electroweak symmetry breaking, this trilinear coupling
leads to mixing between the usual charged Higgs of the
THDM and s≡ sþ. The mixing angle, denoted as φ, is
given by

s2φ ¼ sin 2φ ¼
ffiffiffi
2

p
vμZ

m2
hþ
2

−m2
hþ
1

; ð72Þ

where m2
hþ
1

and m2
hþ
2

are the squared masses of the two

physical charged scalars in the spectrum, hþ1 and hþ2 ,
respectively. The relevance of the trilinear μZ goes beyond
this mixing in the charged scalar sector. It is straightforward
to show that a conserved lepton number cannot be defined
in the presence of the Lagrangian terms in Eqs. (69) and
(71). In fact, lepton number is explicitly violated in two
units, leading to the generation of Majorana neutrino
masses at the one-loop level, as shown in Fig. 5. The
neutrino mass matrix is calculable and given by

mZ ¼ −
s2φ
16π2

ðysMeΓe þ ΓT
eMeyTs Þ log

 
m2

hþ
2

m2
hþ
1

!
: ð73Þ

Direct comparison with the master formula in Eq. (1)
indicates that in the Zee model one has y1 ≠ y2. In fact, the
Zee model constitutes a well-known example of a model in
which one of the Yukawa matrices is antisymmetric while
the other is a general complex matrix.

B. The Zee-Babu model

The Zee-Babu model [9–11] is a simple extension of
the scalar content of the SM. In addition to the usual
Higgs doublet, two SUð2ÞL singlet scalars are introduced:
the singly charged s≡ sþ and the doubly charged k≡ kþþ.

FIG. 5. Neutrino mass generation in the Zee model.

TABLE VII. New particles in the Zee model.

Spin Generations SUð3Þc SUð2ÞL Uð1ÞY
ϕ 0 1 1 2 1=2
s 0 1 1 1 1
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This is explicitly summarized in Table VIII. With these
fields, the Lagrangian includes two new Yukawa terms,

−LY
ZB ¼ yssLcLþ gkecReR þ H:c:; ð74Þ

where flavor indices have been omitted. Here ys is an
antisymmetric 3 × 3Yukawa matrix, while g is a symmetric
3 × 3 matrix. In addition, the scalar potential of the model
includes the trilinear term

VZB ⊃ μZBssk� þ H:c:; ð75Þ

where μZB is a parameter with dimensions of mass. The
simultaneous presence of the Lagrangian terms in Eqs. (74)
and (75) implies the breaking of lepton number in two
units. This leads to the generation of Majorana neutrino
masses at the two-loop level, as shown in Fig. 6. In this
graph, ye is the SM lepton Yukawa term, defined as
yeHL̄eR. The resulting expression for the neutrino mass
matrix takes the form

mZB ¼ v2μZB
ð16π2Þ2m2

s
ysyegyTe yTs FZB

�
m2

k

m2
s

�
; ð76Þ

where ms and mk are the s and k squared masses,
respectively, and FZB is a dimensionless loop function.
Therefore, we see that in the Zee-Babu model one hasffiffiffi
2

p
y1 ¼

ffiffiffi
2

p
y2 ¼ ys, with ys ¼ −yTs . This indeed implies a

prediction: since DetðysÞ ¼ 0, one of the neutrinos remains
massless.

V. SUMMARY

We have presented a general parametrization for the
Yukawa couplings in Majorana neutrino mass models. We
call this the master parametrization. A proof for the master
parametrization has also been presented; see Appendix A.
In order to help the reader in practical applications, we have
also provided a Mathematica notebook that implements
the master parametrization in [33]. The aim of this master
parametrization is to generalize the well-known Casas-
Ibarra parametrization, which in its strict original form
is valid only for the type-I seesaw. Although different
adaptations of the Casas-Ibarra parametrization have been
discussed in the context of concrete models in the literature,
the aim of our master parametrization is to be as completely
general as possible.
We stress that our master parametrization is valid for any

Majorana neutrino mass model. We have shown its appli-
cation to various well-known example models. We have
also discussed some particular cases, where the Yukawa
couplings are no longer completely free parameters but,
typically for symmetry reasons, have to obey some restric-
tions. In such cases, the application of the master para-
metrization may become either trivial or impractically
complicated, depending on the complexity of the extra
conditions, as we discussed with some examples.
Let us briefly mention that from the list of examples that

we have discussed in Section III, one should not derive the
incorrect conclusion that only very few neutrino mass
models require the full power of the master parametriza-
tion. This bias in our example list is mainly due to the fact
that in our discussion we have focused on the best-known
neutrino mass models that exist in the literature.
In fact, once one goes beyond the minimal d ¼ 5 tree-

level realizations of the Weinberg operator, the majority of
models have y1 ≠ y2 and the Casas-Ibarra parametrization
cannot cover these models, as we have stressed several
times. At tree level, at d ¼ 7we find the BNT model [51] at
d ¼ 9 one of the two genuine models (model II) in [52] is
also of this type. Actually, for radiative neutrino mass
models, the majority of models are of this type. This can be
easily understood as follows. Consider, for example, the
neutrino mass model shown in Fig. 7. The diagram is the
same as in the scotogenic model. Here, the vectorlike
fermion ψ transforming as (1; 3; 1) (with its vector partner
ψ̄) replaces the singlet fermions of the original model. In
addition to η, a second doublet ρ with quantum numbers
ð1; 2; 3=2Þ is introduced. This model obviously has two
independent Yukawa couplings and thus, the full master
parametrization is needed to describe its parameter space.
Another example of a modified Scotogenic model with
y1 ≠ y2 can be found in [53,54]. Unsurprisingly, at loop
level there are actually more variations with this type of
“asymmetric” diagrams, i.e., y1 ≠ y2, than variations with
“symmetric” diagrams (where the field coupling to the two
neutrinos is necessarily the same) as can be seen, forFIG. 6. Neutrino mass generation in the Zee-Babu model.

TABLE VIII. New particles in the Zee-Babu model.

Spin Generations SUð3Þc SUð2ÞL Uð1ÞY
s 0 1 1 1 1
k 0 1 1 1 2
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example, in the tables of [15,18] or the list of diagrams at
d ¼ 7 one loop in [55].
We close by mentioning again that we have concentrated

our discussion on the particular case of three light active
neutrinos. It is possible to extend our approach to four or
more neutrinos, if ever this becomes necessary. Technically,
the form of our master parametrization would remain the
same, but the dimensions of the defining matrices will
change, and the explicit forms of the matrices C1 and C2,
defined in Sec. II, would need to be calculated.
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APPENDIX A: PROOF

In the following, we provide a constructive proof of the
master parametrization. We begin by replacing the Takagi
decomposition of m in Eq. (2) and the singular-value
decomposition of M in Eq. (8) into the master formula

in Eq. (1). Moreover, we take f ¼ 1 to simplify the
expressions in the proof and take this global factor into
account by rescaling the final expressions for the y1 and y2
Yukawa matrices. This leads to

ðU†ÞTDmU† ¼ yT1V
T
1 Σ̂V2y2 þ yT2V

T
2 Σ̂

TV1y1: ðA1Þ

Multiplying the previous expression on the left by
ðD̄ ffiffiffi

m
p Þ−1UT and on the right by UðD̄ ffiffiffi

m
p Þ−1, with D̄ ffiffiffi

m
p

introduced in Eq. (5), one obtains

ðD̄ ffiffiffi
m

p Þ−1D ffiffiffi
m

p D ffiffiffi
m

p ðD̄ ffiffiffi
m

p Þ−1
¼ ðD̄ ffiffiffi

m
p Þ−1UTyT1V

T
1 Σ̂V2y2UðD̄ ffiffiffi

m
p Þ−1

þ ðD̄ ffiffiffi
m

p Þ−1UTyT2V
T
2 Σ̂

TV1y1UðD̄ ffiffiffi
m

p Þ−1: ðA2Þ

This expression clearly suggests to introduce

ȳ1 ¼ V1y1UðD̄ ffiffiffi
m

p Þ−1; ðA3Þ

ȳ2 ¼ V2y2UðD̄ ffiffiffi
m

p Þ−1: ðA4Þ

We note that y1 and y2 can be univocally determined from
ȳ1 and ȳ2, since all the other matrices participating in
Eqs. (A3) and (A4) are invertible. With these definitions,
Eq. (A2) is equivalent to

ȳT1 Σ̂ȳ2 þ ȳT2 Σ̂
Tȳ1 ¼

8>>><
>>>:

I3 if rm ¼ 3;

P

0
B@

0 0 0

0 1 0

0 0 1

1
CAP if rm ¼ 2.

ðA5Þ

In the next step, we write the matrices ȳ1, ȳ2, and Σ̂ in
blocks. As we will see below, this will allow us to identify
some arbitrary blocks and focus the discussion on the
nontrivial ones. Using the general expression for Σ̂ given in
Eq. (9), the combination ȳT1 Σ̂ȳ2 þ ȳT2 Σ̂

Tȳ1 in Eq. (A5) can
be written as

ȳT1 Σ̂ȳ2 þ ȳT2 Σ̂
Tȳ1 ¼ ððȳ1ÞTnðȳ1ÞTn2−nðȳ1ÞTn1−n2

0
B@ Σ 0

0 0n2−n

0n1−n2

1
CA� ðȳ2Þn

ðȳ2Þn2−n

�

þ ððȳ2ÞTnðȳ2ÞTn2−nÞ
�

Σ 0

0 0Tn2−n

���� 0Tn1−n2
�0B@ ðȳ1Þn

ðȳ1Þn2−nðȳ1Þn1−n2

1
CA

¼ ðȳ1ÞTnΣðȳ2Þn þ ðȳ2ÞTnΣðȳ1Þn: ðA6Þ
We clearly see that there are some blocks which can have arbitrary values since they multiply null matrices and drop in the
final expression. These are

FIG. 7. Neutrino mass generation in a modified scotogenic
model; for definitions, see text. This simple variation necessarily
has two independent Yukawa couplings.
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X1 ¼
ffiffiffi
2

p
ðȳ1Þn2−n ∈ Cðn2−nÞ×3;

X2 ¼
ffiffiffi
2

p
ðȳ1Þn1−n2 ∈ Cðn1−n2Þ×3;

X3 ¼
ffiffiffi
2

p
ðȳ2Þn2−n ∈ Cðn2−nÞ×3; ðA7Þ

where the
ffiffiffi
2

p
factors have been introduced for conven-

ience. X1, X2, and X3 have 6ðn2 − nÞ, 6ðn1 − n2Þ, and
6ðn2 − nÞ free real parameters, respectively. We define now

¯̄y1 ¼
ffiffiffi
2

p
Σ1=2ðȳ1Þn; ðA8Þ

¯̄y2 ¼
ffiffiffi
2

p
Σ1=2ðȳ2Þn: ðA9Þ

Again, ȳ1 and ȳ2, and hence the original Yukawa matrices
y1 and y2, can be univocally obtained from ¯̄y1 and ¯̄y2 since
the matrix Σ1=2 is invertible. With these redefinitions,
Eq. (A5) is equivalent to

¯̄yT1 ¯̄y2 þ ¯̄yT2 ¯̄y1 ¼

8>>><
>>>:

2I3 if rm ¼ 3;

2P

0
B@

0 0 0

0 1 0

0 0 1

1
CAP if rm ¼ 2.

ðA10Þ

At this point, the roles of ¯̄y1 and ¯̄y2 are completely
interchangeable. Therefore, without loss of generality,
we will first determine the form of ¯̄y1 and then derive
¯̄y2. We define r ¼ rankð ¯̄y1Þ. Equivalently, the matrix ¯̄y1
contains r linearly independent columns. It follows

1 ≤ r ≤ minðn; 3Þ ≤ 3; ðA11Þ

simply because ¯̄y1 is a non-null n × 3matrix. ¯̄y1 can now be
written as the product of an n × r matrix, with r orthogonal
columns, and a matrix with vanishing entries below the
main diagonal. That is, there exists a matrix W ∈ Cn×r,
with rankðWÞ ¼ r and W†W ¼ WTW� ¼ Ir, and a matrix
A ∈ Cr×3, such that

¯̄y1 ¼ WA: ðA12Þ

For the particular case r ¼ 3, A is a square upper triangular
matrix, but in general A is a rectangular matrix with
vanishing entries below the main diagonal. The factoriza-
tion in Eq. (A12) is unique provided some conditions on A
are satisfied. These conditions depend on the values of r
and rm and will be discussed below for each case. The
matrix W, whose r columns are orthogonal, can be
completed to form an orthonormal basis of Cn×n, resulting
in the n × n unitary matrix Ŵ, given by

Ŵ ¼ ð W̄ W Þ: ðA13Þ

Although the completion of the basis (and thus the matrix
W̄ ∈ Cn×ðn−rÞ) is not uniquely defined, the vector subspace

that it spans is, and this suffices for the rest of this proof. We
now derive the implications for the matrix ¯̄y2 given this
form for ¯̄y1. The matrix ¯̄y2 can be written in terms of the
basis Ŵ� as

¯̄y2 ¼ Ŵ�B̂ ¼ ðW�W̄�Þ
�
B

B̄

�
; ðA14Þ

with B̄ ∈ Cðn−rÞ×3 an arbitrary matrix containing 6ðn − rÞ
real free parameters. We note that this matrix is indeed
completely arbitrary due to the fact that it drops in the
products ¯̄yT1 ¯̄y2 and ¯̄yT2 ¯̄y1 since W̄†W ¼ 0. With this defi-
nition, Eq. (A10) becomes

ATBþ BTA ¼

8>>><
>>>:

2I3 if rm ¼ 3;

2P

0
B@

0 0 0

0 1 0

0 0 1

1
CAP if rm ¼ 2.

ðA15Þ

This constraint on the r × 3 matrices A and B is completely
equivalent to the master formula in Eq. (1). Therefore, we
just need to determine A and B and the master para-
metrization will be finally obtained. In the following, the
proof for the case rm ¼ 2will assume NH, and thus P ¼ I3.
The IH case, with P ¼ P13, will be recovered a posteriori
with the substitutions A → AP13 and B → BP13. In order to
find A and B, it proves convenient to express them in terms
of some auxiliary matrices, to be determined by imposing
Eq. (A15). First, A can be written as

A ¼ TC1; ðA16Þ

where T ∈ Cr×r is a general upper-triangular invertible
square matrix with positive real diagonal entries and C1 ∈
Cr×3 is a matrix that must be determined.10 This factori-
zation of the matrix A is always possible and singles out the
upper triangular square matrix T. Regarding B, it can be
expressed as

B≡ BðT;K; C1; C2Þ ¼ ðTTÞ−1½C1C2 þ KC1�; ðA17Þ

where K ∈ Cr×r is an antisymmetric r × r matrix and C2 ∈
C3×3 must be determined.11 This form for the matrix B can
be justified by direct computation. One always finds that
the resulting B matrix can be written in this way, with the
specific forms for the C1 and C2 matrices depending on r
and rm. In fact, the rest of the proof consists in obtaining
specific expressions for C1 and C2 compatible with

10We can recover the IH scenario, with P ¼ P13, by replacing
A → AP13 and B → BP13 or, equivalently, C1 → C1P13.

11Again, we point out that for rm ¼ 2 we focus on NH with
P ¼ I3. The IH scenario is obtained by making the replacements
A → AP13 and B → BP13, equivalent to C2 → P13C2P13.
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Eq. (A15). In order to cover all scenarios, we will consider
all possible r and rm values, and denote them with the pair
of numbers ðrm; rÞ. Let us now explore all the different
possibilities one by one.

r ¼ 3

In this case, ¯̄y1 contains three linearly independent
columns and A ∈ C3×3 is an upper triangular invertible
square matrix. One can simply write A as

A ¼

0
B@

α11 α12 α13

0 α22 α23

0 0 α33

1
CA; ðA18Þ

with α11, α22, and α33 real positive values. Since A is a
square matrix, one can identify A ¼ T. One can now
distinguish two subcases depending on the value of rm.

Case (3,3): rm ¼ 3
For rm ¼ 3, the identification A ¼ T allows one to

conclude that

C1 ¼ I3: ðA19Þ

In fact, in this case, Eq. (A12) is the QR decom-
position of the matrix ¯̄y1. One can now replace the
expressions for the A and B matrices, including the
identification C1 ¼ I3, into Eq. (A15). This direct
computation leads to

C2 ¼ I3: ðA20Þ

Case (2,3): rm ¼ 2
Alternatively, if rm ¼ 2, and taking into account the

possible values of the matrix P, it can be easily shown
that one gets

C1 ¼ P; C2 ¼ P

0
B@

0 0 0

0 1 0

0 0 1

1
CAP: ðA21Þ

In both subcases, the matrices W, T, and K have,
respectively, 6n − 9, 9, and 6 free real parameters.

r ¼ 2

In this case, we consider three scenarios. They differ in
the way the rank r gets reduced to 2.

(i) r ¼ 2, with linearly independent second and third
columns of ¯̄y1
As in case 2, ¯̄y1 contains 2 linearly independent

columns and A ∈ C2×3 is a rectangular matrix with
the form

A ¼
�
α11 α12 α13

α21 0 α23

�
; ðA22Þ

with α12 and α23 positive real values. We can write
A ¼ TC1 and distinguish again two subcases de-
pending on the value of rm.

Case ð3; 2Þa: rm ¼ 3
Again, we replace the general expressions for the A

and B matrices, adapted in this case to r ¼ 2 and
rm ¼ 3, into Eq. (A15). One obtains, simply by direct
computation, that the matrix C1 must have the form

C1 ¼
�
z1 1 0

z2 0 1

�
; ðA23Þ

with z1 and z2 two complex numbers such that
1þ z21 þ z22 ¼ 0, while C2 is given by

C2 ¼

0
B@

−1 0 0

0 1 0

0 0 1

1
CA: ðA24Þ

Case ð2; 2Þa: rm ¼ 2
If rm ¼ 2, one finds analogous expressions for the

matrices C1 and C2,

C1 ¼
�
z1 1 0

z2 0 1

�
P; C2 ¼ P

0
B@

−1 0 0

0 1 0

0 0 1

1
CAP:

ðA25Þ

However, in this subcase, it can be shown that z1 and
z2 must obey the relation z21 þ z22 ¼ 0.

In both subcases, the matrix W contains 4ðn − 1Þ real
free parameters. Moreover, the matrix T has 4, while K
has 2. One also finds two additional real parameters in C1

(z1 or z2).
(i) r ¼ 2, with a non-null third column of ¯̄y1, and

linearly dependent second and third columns of ¯̄y1
In this case, ¯̄y1 contains two linearly independent

columns and A ∈ C2×3 is a rectangular matrix with
the form

A ¼
�
α11 α12 α13

α21 0 0

�
; ðA26Þ

with α21 and α13 real positive values. Again, we can
write A ¼ TC1 and particularize the analysis de-
pending on rm.
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Case ð3; 2Þb: rm ¼ 3
If rm ¼ 3, one finds by direct computation

C1 ¼
�
0 �i 1

1 0 0

�
; C2 ¼

0
B@

1 0 0

0 −1 0

0 0 1

1
CA:

ðA27Þ

Case ð2; 2Þb: rm ¼ 2
One obtains analogous expressions as for rm ¼ 3,

C1 ¼
�
0 �i 1

1 0 0

�
P; C2 ¼ P

0
B@

0 0 0

0 −1 0

0 0 1

1
CAP:

ðA28Þ

In both subcases, the matrix W contains 4ðn − 1Þ free
real parameters, T 4 and K 2.

(i) r ¼ 2, with a third column of ¯̄y1 full of zeros.
In this case, ¯̄y1 contains two linearly independent

columns and A ∈ C2×3 is a rectangular matrix with
the form

A ¼
�
α11 α12 0

0 α22 0

�
; ðA29Þ

with α11 and α22 real positive values. In principle, we
could replace this form for A into Eq. (A15), find
that B can be written as in Eq. (A17), and determine
C1 and C2. However, it is easy to see that this case is
not compatible with Eq. (A15). If all the entries of
the third column of ¯̄y1 vanish, ðATBþ BTAÞ33 ¼ 0,
and this is clearly not compatible with Eq. (A15),
which requires that element to be 2 in case of
rm ¼ 3. One also reaches a contradiction in case
of rm ¼ 2. The NH case is completely equivalent,
whereas the IH case, obtained with the replacements
A → AP, B → BP, leads to ðATBþ BTAÞ11 ¼ 0,
again in contradiction with Eq. (A15).

r ¼ 1

In this case, ¯̄y1 contains only one linearly indepen-
dent column and A ∈ C1×3 is a 1 × 3 rectangular
matrix, or equivalently a row vector, with the form

A ¼ ð α11 α12 α13 Þ: ðA30Þ

We now particularize for rm.
Case (3,1): rm ¼ 3

For rm ¼ 3, one can first inspect the diagonal
elements of the equation ATBþ BTA ¼ 2I3 and get

2α1iβ1i ¼ 2; ðA31Þ

where the elements of the B matrix are denoted by βij.
Equation (A31) is equivalent to α1i ≠ 0 ≠ β1i and

β1i ¼
1

α1i
: ðA32Þ

However, one can now inspect the nondiagonal
elements of the equation ATBþ BTA ¼ 2I3. In this
case, one gets the relations

α212 ¼ −α211 ¼ α213 ¼ −α212; ðA33Þ

which imply α12 ¼ 0. Since this contradicts our
previous deduction, we conclude that there is no
possible solution in this subcase: rm ¼ 3 is not
compatible with r ¼ 1.

Case (2,1): rm ¼ 2
One can see that for rm ¼ 2 there is a redundant

equation (or two redundant real equations). One also
finds that Eq. (A15) leads to T ¼ α13 ≠ 0
(T ¼ α11 ≠ 0 in the IH case with P ¼ P13), that
can be considered a positive real value, A ¼ TC1, with

C1 ¼ ð 0 �i 1 ÞP; C2 ¼ P

0
B@

0 0 0

0 −1 0

0 0 1

1
CAP:

ðA34Þ

Moreover, since r ¼ 1, K ¼ 0 vanishes. Due to the
latter, the B matrix receives a simplified form,

B≡ BðT; C1; C2Þ ¼
1

T
C1C2: ðA35Þ

In this subcase,W contains 2n − 1 free real parameters
and T has 1.

This concludes the proof of the master parametrization.

APPENDIX B: PARAMETRIZATION OF THE
MATRICES IN THE MASTER

PARAMETRIZATION

Some of the matrices involved in the master paramet-
rization can be further parametrized in terms of certain real
parameters, in some cases with a clear physical meaning. In
this Appendix, we collect these parametrizations, which
may be useful in practical applications of the master
parametrization.
First, the unitary matrix U is generally parametrized in

terms of three mixing angles and three phases (in case of
Majorana neutrinos) as
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U ¼

0
B@

c12c13 s12c13 s13eiδ

−s12c23 − c12s23s13e−iδ c12c23 − s12s23s13e−iδ s23c13
s12s23 − c12c23s13e−iδ −c12s23 − s12c23s13e−iδ c23c13

1
CA
0
B@

1 0 0

0 eiη2 0

0 0 eiη3

1
CA: ðB1Þ

Here cij ≡ cos θij and sij ≡ sin θij. The parameter δ is
usually referred to as the Dirac phase, while η2 and η3 are
the Majorana phases, since they are only physical in case
of Majorana neutrinos. The angles θij can be taken in the
first quadrant, θij ∈ ½0; π=2�, while the phases δ and η2;3
can take any value in the range ½0; 2π�. Furthermore, the
three neutrino mass eigenvalues contained in the matrixDm
can be written in terms of lightest neutrino mass, m0, and
two squared mass differences. In case of neutrino NH, they
are given by

m1 ¼ m0; ðB2Þ

m2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

21 þm2
0

q
; ðB3Þ

m3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

31 þm2
0

q
; ðB4Þ

whereas in case of neutrino IH, they follow

m1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔm2

31j þm2
0

q
; ðB5Þ

m2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔm2

31j þ Δm2
21 þm2

0

q
; ðB6Þ

m3 ¼ m0: ðB7Þ

Neutrino oscillation experiments are sensitive to the three
leptonic mixing angles, the two squared mass differences,
and the Dirac phase. We refer to [56] for a state-of-the-art
global fit to these parameters.
The complex unitary n × n matrix Ŵ can also be

conveniently parametrized. Here we make use of [57],
which discusses the canonical form for a generic n × n
unitary matrix. In case of the common case of n ¼ 3, Ŵ can
be expressed as

Ŵ ¼

0
B@

1 0 0

0 a b

0 −b� a�

1
CA
0
B@

c 0 d

0 1 0

−d� 0 c�

1
CA
0
B@

e f 0

−f� e� 0

0 0 1

1
CA;

ðB8Þ

with jaj2 þ jbj2 ¼ 1, jcj2 þ jdj2 ¼ 1 and jej2 þ jfj2 ¼ 1.
One has six complex parameters, but they must satisfy three
real conditions. This makes nine real free parameters, as

expected for a 3 × 3 unitary matrix.12 Examples for other
values of n can be found in [57].
Finally, in the particular case of

ffiffiffi
2

p
y1 ¼

ffiffiffi
2

p
y2 ¼ y and

n1 ¼ n2 ¼ n ¼ rm ¼ r ¼ 3, the master formula reduces to
the usual type-I seesaw form m ¼ yTMy and the master
parametrization to the well-known Casas-Ibarra paramet-
rization. This allows to write the Yukawa matrix y in terms
of low-energy and model parameters and the so-called
Casas-Ibarra Rmatrix, an orthogonal 3 × 3matrix such that
RTR ¼ RRT ¼ I3. This matrix can be generally parame-
trized as

R ¼ SR3R2R1; ðB9Þ

with

R3 ¼

0
B@

cosðz3Þ − sinðz3Þ 0

sinðz3Þ cosðz3Þ 0

0 0 1

1
CA;

R2 ¼

0
B@

cosðz2Þ 0 − sinðz2Þ
sinðz2Þ 0 cosðz2Þ

0 1 0

1
CA;

R1 ¼

0
B@

1 0 0

0 cosðz1Þ − sinðz1Þ
0 sinðz1Þ cosðz1Þ

1
CA; ðB10Þ

where S is a diagonal matrix of signs and the zi angles are
complex, hence implying that the Rmatrix contains six real
parameters.

APPENDIX C: PROOF SPECIAL CASE:
ANTISYMMETRIC y1 YUKAWA MATRIX

We consider the special case of an antisymmetric
Yukawa matrix, y1 ¼ −yT1 , with a general y2 Yukawa. A
well-known model with this feature is the Zee model [8].
For simplicity, we focus on n1 ¼ n2 ¼ n ¼ 3. We define
the invertible matrix

H ¼ Σ1=2V1U�D̄ ffiffiffi
m

p ðC1Þ

and introduce H̄ ¼ H−1Ŵ, so thatH−1 ¼ H̄Ŵ†. With these
definitions, the condition yT1 þ y1 ¼ 0 is equivalent to

12A n × n unitary matrix contains n2 independent real
parameters.
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yT1 þ y1 ¼ 0 ⇔ ðH−1WTC1ÞT þH−1WTC1 ¼ 0

⇔ ðCT
1T

T 0 ÞH̄T þ H̄

�
TC1

0

�
¼ 0: ðC2Þ

Since r ¼ rankðWÞ ¼ rankðy1Þ, the antisymmetry of y1
implies that r ¼ 1 or r ¼ 2. We now consider the different
values that rm and r may take. For each case, we use the
form for C1 and T given in Sec. II B, impose the
antisymmetry condition on y1, and derive expressions
for T and C1 in terms of H̄. This leads to several conditions
on T and C1 as well as on H̄, which we now list.
Case ð3; 2Þa: In this case, H̄ must have the form

H̄ ¼

0
B@

h̄11 h̄12 h̄13
0 h̄22 h̄23
1 h̄32 h̄33

1
CA; ðC3Þ

with h̄11 ≠ 0 ≠ h̄32, h̄22 < 0 and ðh̄12 − h̄32h̄11Þ2 þ
h̄211h̄

2
22 þ h̄222 ¼ 0. One also finds

T ¼ t

�
−h̄22 −h̄32
0 1

�
; ðC4Þ

with t > 0, and C1, given in Eq. (15), with z1 ¼ ðh̄12 −
h̄32h̄11Þ=h̄22 and z2 ¼ h̄11. Moreover, these conditions
translate into restrictions on the parameters in m and M,
since HH̄ must be a unitary matrix.
Case ð2; 2Þa: The matrix H̄ can be written in this case as

H̄ ¼

0
B@

h̄11 h̄12 h̄13
0 h̄22 h̄23
h̄31 h̄32 h̄33

1
CA; ðC5Þ

with h̄31 ≠ 0 ≠ h̄22, h̄31=h̄22 < 0 and ð−h̄11h̄32 þ
h̄12h̄31Þ2 þ h̄211h̄

2
22 ¼ 0. T is given by

T ¼ t

�
−h̄22=h̄31 −h̄32=h̄31

0 1

�
; ðC6Þ

with t > 0, and C1 given in Eq. (18), particularized with
z1 ¼ ðh̄12h̄31 − h̄32h̄11Þ=ðh̄22h̄31Þ and z2 ¼ h̄11=h̄31. Again,
these conditions translate into restrictions onm andM since
HH̄ has to be unitary.
Cases ð3; 2Þb and ð2; 2Þb: In these two cases, the form of

C1 is common and it does not contain any parameter; see
Eqs. (16) and (19). Therefore, the resulting expression for
H̄ is also the same,

H̄ ¼

0
B@

h̄11 h̄12 h̄13
0 �ih̄32 h̄23
0 h̄32 h̄33

1
CA; ðC7Þ

with the conditions h̄11 ≠ 0 ≠ h̄22 and Imð∓h̄11=h̄22Þ < 0.
In addition, the matrix T is given by

T ¼ t

�
1 �ih̄12=h̄22
0 ∓ih̄11=h̄22

�
; ðC8Þ

with t > 0. Finally, the product HH̄ must be a unitary
matrix, and this again implies restrictions on the entries of
the matrices m and M.
Case ð2; 1Þ: Following the same procedure as in the

previous cases, one concludes in this case that H̄ is a non-
invertible matrix, hence finding a contradiction. Therefore,
we discard this possibility in this special case.

APPENDIX D: PROOF SPECIAL CASE:ffiffiffi
2

p
y1 =

ffiffiffi
2

p
y2 = y= − yT

We consider the special case of equal and antisymmetric
Yukawa matrices,

ffiffiffi
2

p
y1 ¼

ffiffiffi
2

p
y2 ¼ y ¼ −yT . This sce-

nario takes place in the Zee-Babu [9–11] and KNT [19]
models and the 331 model in [58], to mention a few
representative examples. This case necessarily requires
n1 ¼ n2 ¼ 3 and V1 ¼ V2 ≡ V. Furthermore, the antisym-
metry of the yYukawa matrix implies r ¼ rm ¼ 2, and then
one of the neutrinos remains massless. For simplicity, we
will restrict our analysis to n ¼ 3. The condition y1 ¼ y2 is
equivalent to

y1 ¼ y2 ⇔ WA ¼ Ŵ�B̂ ¼ W�Bþ W̄�B̄ ⇔

�
B̄ ¼ 0;

WTWA ¼ B:

ðD1Þ

We define the matrix R ¼ WT in the same way as in the
type-I seesaw; see Sec. III A. Then Eq. (D1) is equivalent to

y1 ¼ y2 ⇔

�
B̄ ¼ 0;

RTRC1 ¼ C1C2 þ KC1:
ðD2Þ

Since r ¼ rm ¼ 2, in principle one has two possible
scenarios: case ð2; 2Þa and case ð2; 2Þb. The latter is not
compatible with Eq. (D2), since the components (1,2) and
(2,2) of RTRC1 ¼ C1C2 þ KC1 leads to −1 ¼ 1. In con-
trast, case ð2; 2Þa is perfectly compatible with Eq. (D2).
Now RTRC1 ¼ C1C2 þ KC1 leads to K ¼ 0 and z1 ¼
z2 ¼ 0 in the expression of C1 given in Eq. (18). One
also finds that R is a 3 × 2 matrix such that RTR ¼ I2.
Therefore, we find a modified Casas-Ibarra parametriza-
tion, with

y ¼
ffiffiffi
2

p
y1 ¼

ffiffiffi
2

p
y2 ¼ iV†Σ−1=2RC1D̄ ffiffiffi

m
p U† ðD3Þ

and R a 3 × 2 Casas-Ibarra matrix. However, we still must
impose the antisymmetry condition on y. As we will see,
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this will imply nontrivial restrictions on the R and Σ
matrices, which can no longer be general. First, we define

F ¼ Σ−1=2V�UD̄−1ffiffiffi
m

p CT
1 ; ðD4Þ

F̄ ¼ Σ1=2VU�D̄ ffiffiffi
m

p CT
1 ; ðD5Þ

two 3 × 2 matrices of rank 2 which satisfy F̄TF ¼ I2. With
these definitions, one finds

yT þ y ¼ 0 ⇔ RF̄T þ F̄RT ¼ 0 ⇒ RTF þ FTR ¼ 0:

ðD6Þ

Next, we introduce the vector f3, such that fT3F ¼ 01×2 and
fT3f3 ¼ 1. Therefore, the columns of the matrix ðF f3 Þ
are a basis of C3 and f3 is defined up to a sign. Since

ð F̄ f3 ÞTðF f3 Þ ¼
�
I2 F̄Tf3
0 1

�
ðD7Þ

is an invertible matrix, ð F̄ f3 Þ also forms a basis of C3.
We also define the vector r3 such that R̂ ¼ ðR r3 Þ is an
orthogonal matrix, with RTr3 ¼ 02×1 and rT3 r3 ¼ 1. We
now write F in terms of the basis R̂, F ¼ R̂ Ĝ, with

Ĝ ¼
�

G

gT3

�
; ðD8Þ

a 3 × 2 matrix, G a 2 × 2 matrix, and g3 a two-component
vector. With these definitions, the antisymmetry of the y
Yukawa matrix translates into

yT þ y ¼ 0 ⇔ GT þ G ¼ 0; ðD9Þ

and G is an antisymmetric matrix. Since F ¼ R̂ Ĝ ¼ RGþ
r3gT3 has rank 2, and G is antisymmetric, G ≠ 0 and
therefore G is invertible. This allows us to write

G ¼
�

0 G12

−G12 0

�
ðD10Þ

and R ¼ ðF − r3gT3 ÞG−1. The condition RTr3 ¼ 0 is equiv-
alent to g3 ¼ FTr3, and then R has the form R ¼
ðF − r3rT3FÞG−1. We now write r3 in terms of the basis
ð F̄ f3 Þ. For this purpose, we define

r3 ¼ ð F̄ f3 Þ
�

α

α3

�
; ðD11Þ

with

α ¼
�
α1

α2

�
ðD12Þ

and αi ∈ C. We note that the freedom in the global sign
of f3 can be absorbed in α3. From the definition in
Eq. (D11), it follows that rT3F ¼ αT and the R matrix
can be rewritten as

R ¼ ðF − r3αTÞG−1: ðD13Þ

This form for the R matrix is a necessary but not sufficient
condition to guarantee the antisymmetry of y, which has
not been fully established yet. The following three con-
ditions must be satisfied:

(i) yT þ y ¼ 0,
(ii) RTR ¼ I2,
(iii) rT3 r3 ¼ 1.
In the following, we build on these conditions and use

them to compute explicitly G and the αi parameters, with
i ¼ 1, 2, 3. The combination of the R matrix in Eq. (D13)
and the resulting expressions will constitute the most
general solution to m ¼ yTMy with an antisymmetric y
matrix. First, we note that condition (ii) is equivalent to
FTF þ G2 ¼ FTr3rT3F ¼ ααT . Now, the antisymmetry
condition (i) can be used together with Eq. (D13) to derive

yT þ y ¼ 0 ⇔ RF̄T þ F̄RT ¼ 0

⇔ ðF − r3rT3FÞG−1F̄T − F̄G−1ðFT − FTr3rT3 Þ ¼ 0:

ðD14Þ

Multiplying on the left by ðFT

fT
3

Þ and on the right by

ðF f3 Þ, invertible matrices in both cases, and taking into
account rT3F ¼ αT and condition (ii), we get after some
simplifications

yT þ y ¼ 0 ⇔

�
0 B1

BT
1 B2

�
¼ 0; ðD15Þ

where

B1 ¼ G−1FTFF̄Tf3 þG−1α3α; ðD16Þ

B2 ¼ −ðfT3 F̄FTF þ α3α
TÞG−1F̄Tf3

þ fT3 F̄G
−1ðFTFF̄Tf3 þ α3αÞ: ðD17Þ

It is easy to see that Eq. (D15) is equivalent to
FTFF̄Tf3 þ α3α ¼ 0. Therefore, in summary, conditions
(i)–(iii) are equivalent to the following:

(i) FTFF̄Tf3 þ α3α ¼ 0,
(ii) FTF ¼ G2 þ ααT ,
(iii) rT3 r3 ¼ 1.
These three conditions are better suited to find G (or,

equivalently, G12) and the αi parameters. We define
L ¼ FTF, L̄ ¼ F̄TF̄, and ¯̄L ¼ F̄Tf3. We distinguish the
following two possibilities:
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(i) L12 ≠ 0
If L12 ≠ 0, it is straightforward to use conditions

(i) and (iii) to explicitly compute G12 and the αi
parameters. We find

α1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L12ðL ¯̄LÞ11
ðL ¯̄LÞ21

s
; ðD18Þ

α2 ¼
L12

α1
; ðD19Þ

α3 ¼ −
ðL ¯̄LÞ11
α1

; ðD20Þ

G12 ¼ ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L22 − α22

q
; ðD21Þ

with ϵ ¼ �1. In addition, one finds two nontrivial
restrictions on the parameters of the model, given by

α41L̄11 þ α21½−1þ 2L12L̄12 − 2 ¯̄L11ðL ¯̄LÞ11�
þ ½L2

12L̄22 − 2L12
¯̄L21ðL ¯̄LÞ11 þ ðL ¯̄LÞ211� ¼ 0;

ðD22Þ

α41 þ α21ðL22 − L11Þ − L2
12 ¼ 0: ðD23Þ

(ii) L12 ¼ 0
If L12 ¼ 0, three solutions exist which are as

follows:
Solution 1

α1 ¼ 0; ðD24Þ

α2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L22 − L11

p
≠ 0; ðD25Þ

α3 ¼ −
L22

¯̄L21

α2
; ðD26Þ

G12 ¼ ϵ
ffiffiffiffiffiffiffi
L11

p
; ðD27Þ

with the conditions L11 ≠ 0, ¯̄L11 ¼ 0, and ðL22 −
L11ÞL̄22 − 2L22

¯̄L21 ¼ 1.
Solution 2

α2 ¼ 0; ðD28Þ

α1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L11 − L22

p
≠ 0; ðD29Þ

α3 ¼ −
L11

¯̄L11

α1
; ðD30Þ

G12 ¼ ϵ
ffiffiffiffiffiffiffi
L22

p
; ðD31Þ

with the conditions L22 ≠ 0, ¯̄L21 ¼ 0 and ðL11 −

L22ÞL̄11 − 2L11
¯̄L11 þ L2

11
¯̄L2
11

L11−L22
¼ 1.

Solution 3

α1 ¼ α2 ¼ 0; ðD32Þ

α3 ¼ 1; ðD33Þ

G12 ¼ ϵ
ffiffiffiffiffiffiffi
L11

p
¼ ϵ

ffiffiffiffiffiffiffi
L22

p
; ðD34Þ

with the conditions L22 − L11 ¼ ¯̄L11 ¼ ¯̄L21 ¼ 0.

APPENDIX E: YUKAWA PARAMETRIZATION,
LOOP CORRECTIONS, AND FINE-TUNING

In this Appendix, we discuss how fine-tunings in the
parametrization of the Yukawa matrices might be spoiled
by higher-order loop corrections. We will then demonstrate
how one can easily take these contributions into account in
Eq. (1), such that neutrino masses (and angles) remain
correctly fitted, even in such particularly sensitive parts of
the parameter space. In this discussion, we will use the
simplest type-I seesaw with three right-handed neutrinos as
an example. For other models one can use a similar, albeit
in some cases more involved procedure.
In the main text, we have treated the parameters entering

the various matrices W, A, B, and so on as completely free
parameters. Nevertheless, physically there are restrictions
on these parameters from the requirement that the Yukawa
couplings do not enter the nonperturbative regime. It is, of
course, easy to check that all jyijj are smaller than some
critical value ycr, say, for example, ycr ≤

ffiffiffiffiffiffi
4π

p
, for any

given choice of the other free parameters.
However, even for Yukawa couplings jyijj ≪ 1, the tree-

level formulas may fail in some regions of parameter space.
Consider the total neutrino mass matrix m, written as

m ¼ mTree þ δm1-loop þ � � � : ðE1Þ

Here, the dots stand for higher-order corrections, while
the superscripts Tree and 1-loop indicate the tree-level and
one-loop contributions to m. It is natural to assume that
δm1-loop=mTree ≪ 1, which for seesaw type-I is true in most
parts of parameter space, but not in a particular region, on
which we will from now on concentrate.13

As explained in Sec. III A, in the type-I seesaw with
three right-handed neutrinos the neutrino mass matrix is
given at tree level bym ¼ − v2

2
yTMN

−1y, an expression that
can be obtained with the master formula by taking f ¼ −1,
n1 ¼ n2 ¼ 3, y1 ¼ y2 ¼ y=

ffiffiffi
2

p
, and M ¼ v2

2
M−1

N . In this

13Recall that precision global fits [56] now give error bars for
Δm2

ij of a few percent only. Thus, even small loop terms might
induce numerically important shifts in the final result.
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minimal type-I seesaw, one can always go to a basis where
the mass matrix of the right-handed neutrinos is diagonal,
MN → M̂N , with eigenvalues mNi

, which are free param-
eters. In this basis, the master parametrization reduces to
the well-known Casas-Ibarra parametrization in Eq. (32),
which introduces the 3 × 3 orthogonal matrix R, para-
metrized in Appendix B in terms of three complex angles;
see Eqs. (B9) and (B10).
One-loop corrections to the seesaw formula have been

calculated several times in the literature [59,60]. They can
be written as

δm1-loop ¼ −
v2

2
yTM−1

R Δ̂Loopy; ðE2Þ

where [60]

Δ̂Loop ¼ g2

64π2m2
W

�
m2

h ln

�
M̂2

N

m2
h

�
þ 3m2

Z ln

�
M̂2

N

m2
h

��
: ðE3Þ

Note that Δ̂Loop is dimensionless and typically of order per-
mille to percent for right-handed neutrino masses of order
Oð0.1–1Þ TeV. We stress that Eq. (E2) has again the form
of the master formula.
Let us parametrize the complex angles in R as [48]

zi ¼ κi · e2iπαi ; ðE4Þ

where αi are real numbers ∈ ½0; 1�, and κ ∈ ½0; κmax�. One
can consider the upper limit κmax as a measure of how much
fine-tuning is allowed in the Yukawas. Maximal fine-tuning
(as function of κi) occurs for αi ¼ 1=4.

On the left-hand side of Fig. 8, we show examples of the
light neutrino masses, calculated from Yukawas as given by
the Casas-Ibarra parametrization in Eq. (32), for some
particular but random choice of inputs, as a function of κ,
assuming κi ¼ κ. Here, the neutrino mass matrix includes
the loop corrections, while the Casas-Ibarra parametriza-
tion is at tree level. For κ ≤ 1, the neutrino masses are
constant, demonstrating that the fit procedure is stable and
the output neutrino masses equal the input values.
However, for κ > 1, neutrino masses can deviate by orders
of magnitude from their desired values.
One can understand this behavior with the help of

the right-hand side of Fig. 8. For small values of κ the
Yukawa couplings do change, but remain of the same order
of magnitude. Typical values are of the naive order of
yii ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=mNi

p
. Increasing κ beyond 1 leads to Yukawas

larger than this naive estimate, which indicates that in the
neutrino mass matrix small neutrino masses are generated
by a cancellation among different terms. These cancella-
tions are unstable against radiative corrections, which
explains the behavior of the output neutrino masses for
large κ. We stress that this unwanted behavior occurs
already for Yukawas much smaller than one.
Given that the structure of Eq. (E2) is necessarily again

of the same form as the master formula, however, it is
straightforward to correct Eq. (32) in order to take the one-
loop contributions into account. One simply replaces the
eigenvalues in M̂R in Eq. (32) by

M̂−1
R → M̂−1

R ðI þ Δ̂LoopÞ: ðE5Þ

This (small) shift corrects the Yukawa couplings in the right
way, such that the change of output neutrino masses for

FIG. 8. Example neutrino masses versus κi ¼ κ, see Eq. (E4), for best-fit oscillation data and one particular choice of m1 ¼ 10−3 eV,
mN1

¼ 100 GeV, mN2
¼ 200 GeV, mN3

¼ 300 GeV, and all phases αi ¼ 1=4. To the left: eigenvalues calculated from the tree-level
expression for the Yukawa couplings; see the Casas-Ibarra parametrization in Eq. (32). To the right: absolute values of the Yukawa
couplings y11, y22, y33 for the same fit.
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κ ≳ 1 disappears. Note, however, that for κ larger than
κ ∼ 5, Yukawas enter the nonperturbative regime and the
calculation will fail in any case.

APPENDIX F: HYBRID SCENARIOS

A relatively natural question one can consider is whether
it is possible or not to use our master parametrization in a
model with several contributions to the neutrino mass
matrix. More precisely, let us consider a model leading
to a neutrino mass matrix of the form

m ¼
XN
i

m̄i ¼ m̄1 þ m̄2 þ � � � þ m̄N; ðF1Þ

where each of the contributions to the neutrino mass matrix
is given by m̄i.

14 Of course, the strategy is to bring the sumP
i m̄i into the form required by our master formula, since

that would make the master parametrization directly
applicable. This can be done in general, as we proceed
to illustrate now in a scenario with two contributions to the

neutrino mass matrix, m̄1 and m̄2, each given by a Yukawa
matrix, Y1 and Y2. In this case, Eq. (F1) reduces to

m ¼ m̄1 þ m̄2 ¼ YT
1M11Y1 þ YT

1M12Y2 þ YT
2M

T
12Y1

þ YT
2M22Y2: ðF2Þ

In case, the two contributions to the total neutrino mass
matrix are completely independent, M12 ¼ 0 and m is just
given by YT

1M11Y1 þ YT
2M22Y2. However, we consider

the possibility of a crossed term, given by M12 ≠ 0.
Equation (F2) can be rewritten as

m ¼ yTMy; ðF3Þ

with

y ¼
�
Y1

Y2

�
and M ¼

�
M11 M12

MT
12 M22

�
; ðF4Þ

and this is formally equivalent to the master formula in
Eq. (1), which in turn implies that the master parametriza-
tion can be directly applied. This procedure can be easily
generalized to hybrid scenarios with more than two con-
tributions (independent or not) to the total neutrino mass
matrix. We mention, however, that in case Y1 and/or Y2

have to fulfil some particular constraints, application of the
master parametrization may not be straightforward any-
more, as discussed in Sec. IV.
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