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In a model with an extraUð1Þ gauge to SM gauge group, we have shown the allowed region of masses of
the extra gauge boson and the dark matter which is the lightest one among other right-handed Majorana
fermions present in themodel. To obtain this region,we have used bounds coming from constraints on active-
sterile neutrino masses and mixing from various oscillation experiments, constraint on dark matter relic
density obtained by PLANCK together with the constraint on the extra gauge boson mass and its gauge
coupling recently obtained by ATLAS Collaboration at LHC. From the allowed regions, it is possible to get
some lower bounds on themasses of the extra gauge boson and the darkmatter and considering thosevalues it
is possible to inferwhat could be the spontaneous symmetry breaking scale of an extraUð1Þ gauge symmetry.
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I. INTRODUCTION

Although Standard Model (SM) has got tremendous
success in describing various phenomena at the elementary
particle level, but SM failed to account for two major
experimental results, one related to the existence of dark
matter (DM) [1] in the Universe and the other related to
neutrino oscillation phenomena that require neutrinos to be
massive and significant mixings among different flavors of
neutrinos. To accommodate neutrino masses and a viable
dark matter candidate something beyond SM is necessary.
One such example is minimal extension of SM gauge group
with an extraUð1ÞX gauge symmetry.Additional symmetries
[2] either global or gauged are imposedwhich play the role in
guaranteeing the stability of darkmatter candidate. There are
several Uð1ÞX gauge extended models with minimal exten-
sion to the SM [3–5]. An important feature of thesemodels is
that in comparison to SM there is one extra neutral gauge
boson. In general, there could be mixing of the extra gauge
boson X with the SM Z boson, which results in the
modification of neutral current phenomena. The Z pole data
could be affected indirectly through such mixing and could
shift the measured Z mass and its coupling to SM fermions.
But nice agreement of the mass and coupling with SM
predictions constrains such mixing to be lower than 1% [6].

On the other hand, in cosmology to explain the rotational
curves of the heavy massive body inside the galaxies, one
need to propose the presence of dark matter [7,8]. Dark
matter relic density has been constrained from PLANCK
experiment [9].

ΩDMh2 ¼ 0.1200� 0.0012; ð1Þ

where ΩDM is the density parameter for dark matter and
h ¼ H0=ð100 km s−1 Mpc−1Þ. Recently, CMS and ATLAS
[10–12] Collaborations at LHC have obtained stringent
bound on the mass and gauge coupling associated with the
extra Uð1Þ gauge boson. In the light of recent neutrino
oscillation phenomena [13,14], there is a proposition of the
presence of sterile neutrino apart from three active neutrinos.
There are recent indications in the Fermilab experiment [15]
about some nonzero mixing among active and sterile
neutrinos with sterile neutrino mass in the eV scale [16].
In connection with these observational results, we have

considered here anUð1Þ gauge extended model [17], which
contains dark matter fields and also can accommodate
active-sterile neutrino masses and mixing. In this model,
right-handed Majorana fermion is found to be a suitable
candidate for dark matter as discussed later. There are some
studies on the constraints on model parameters of Uð1Þ
gauge extended models based on collider phenomenology
and cosmological constraints [18]. However, in this work,
we have shown in detail the allowed region in the dark
matter mass mψ and the extra Uð1Þ gauge boson mass MX

plane. For that, we have considered PLANCK constraint
on dark matter relic abundance. Besides, we consider
constraints coming from active and sterile neutrino masses
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and their mixing to find the allowed region. In the model
considered here, the presence of appropriate active and
sterile neutrino mass and their mixing requires the presence
of appropriate range of mixing (angle θ) of dark matter with
another right-handed Majorana fermion and their mass gap
Δ as discussed later. In any extra Uð1Þ gauge model, the
Majorana fermion (which is dark matter in our case) can be
annihilated to SM fermion and antifermions through X
boson as mediator. However, in our work, due to active-
sterile mixing resulting in the nonzero value of θ, the
coannihilation of dark matter with other Majorana fermion
is also present. So the observed dark matter relic density
will depend on both annihilation and coannihilation of dark
matter in general in our work. With LHC constraint along
with relic abundance constraint and constraint on Δ and θ
(from neutrino oscillation data), we have also studied
the possibility of lower bounds on mass of X boson and
the dark matter mass and the corresponding Uð1Þ gauge
coupling gX.
Particularly, the allowed region is more for higher values

of MX and mψ . It is found that the allowed regions do not
significantly vary withΔ values but are more sensitive to the
variations of θ—the mixing of the dark matter with other
heavy right-handedMajorana field considered in the model.
All these analyses have been done considering Z − X
mixing to be zero at the tree level. Later on, we have shown
that higher order corrections of this Z − X mixing remain
very small of the order of 10−5 and have been neglected.
In Sec. II, we have discussed the salient features of a

model which is an Uð1Þ extension of the SM gauge group
and the model can successfully explain active and sterile
neutrino mass and mixing and also there is scope of dark
matter. We have discussed the interaction of right-handed
Majorana field in the mass basis with an extra gauge boson
which will be useful for calculation of cross section for
annihilation and coannihilation of dark matter. In Sec. III,
using the experimental data on the active and sterile
neutrino mass and their mixing, we have obtained the
allowed region of the mass difference parameter Δ of dark
matter with the next heavier right-handed Majorana fer-
mion and their mixing angle θ. In Sec. IV, dark matter relic
density has been studied, taking into account annihilation
as well as coannihilation of dark matter with next heavier
right-handed Majorana fermion going into final states of
SM fermion antifermion pair. In Sec. V, in finding allowed
model parameters, we have considered certain allowed
values of Δ and θ as obtained in Sec. III from active and
sterile neutrino mass and mixing. We have obtained the
allowed parameter space for dark matter massmψ , X boson
massMX based on constraints coming from LHC, and relic
abundance and also neutrino oscillation mass and mixing
constraint corresponding to various Δ and θ values. In
Sec. VI, we have discussed possible modification of Z − X
mixing after including higher order correction. In Sec. VII,
we have concluded our work.

II. THE MODEL

Here we have considered a model [17] which is an Uð1Þ
extension of SM, in which neutrino masses have been
studied extensively and the mass of neutrinos has been
connected to dark matter which is stabilized by a residualZ2

symmetry of the spontaneously broken Uð1Þ gauge sym-
metry. The model has only one electroweak symmetry
breaking doublet ϕðþ;0Þ from which tree-level masses to
quarks are obtained. Charged leptonmasses are generated at
one-loop level with darkmatter asmediator. The three active
and one sterile neutrino masses as well as mixing between
active-sterile neutrinos have been generated through one
loop. The model contains two heavy right-handed fermion

triplet Σðþ;0;−Þ
1R;2R and three neutral singlet fermions NR, S1R,

S2R. These have been chosen so as to cancel all anomalies
with each other. Uð1ÞX gauge symmetry is spontaneously
broken by singlet scalar χ01;2 and residual Z2 symmetry is
obtained. The other scalars are added to obtainmasses for all
fermions. There are two scalar doublets η1;2—one couples to
S1R and other to two Σ’s.
The fermionic and the scalar particles of the model are

given in Tables I and II, respectively. Although there are
several Uð1Þ charges corresponding to different fields but

TABLE I. Fermion fields in the model.

Particle Uð1ÞX Z2

ðu; dÞL n1 þ
uR 1

4
ð7n1 − 3n4Þ þ

dR 1
4
ðn1 þ 3n4Þ þ

ðν; lÞL n4 þ
lR 1

4
ð−9n1 þ 5n4Þ þ

Σðþ;0;−Þ
1R;2R

3
8
ð3n1 þ n4Þ −

NR − 3
4
ð3n1 þ n4Þ þ

S1R 1
8
ð3n1 þ n4Þ −

S2R 5
8
ð3n1 þ n4Þ −

TABLE II. Scalar fields in the model.

Particle Uð1ÞX Z2

ϕðþ;0Þ 3
4
ðn1 − n4Þ þ

ηðþ;0Þ
1

1
8
ð3n1 − 7n4Þ −

ηðþ;0Þ
2

1
8
ð9n1 − 5n4Þ −

χ01
1
4
ð3n1 þ n4Þ þ

χ02
3
4
ð3n1 þ n4Þ þ

χ03
1
8
ð3n1 þ n4Þ −

χþ4
3
8
ðn1 − 5n4Þ −

ξðþþ;þ;0Þ 1
8
ð9n1 − 13n4Þ −
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using the anomaly cancellation equations all of them can be
expressed in terms of the other twoUð1Þ charges n1 and n4,
corresponding to quark doublet and lepton doublet, respec-
tively. Under Z2 symmetry, odd and even fields are
specified in the last column of the above tables. The
relevant Yukawa Lagrangian part of the model is

L ⊃ hΣijΣiRΣjRχ
0
2 þ hS12S1RS2Rχ

0
2 þ hS11S1RS1Rχ

0
1

þ hN23NRS2Rχ03 þ hη2ijΣ0
jRνiη

0
2 þ hη1i1S1Rνiη

0
1

þ hη2ij liLΣjRη
þ
2 þ hξijliRΣjRξ

þ þ hη1i1liLS1Rη
þ
1

þ hχi2liRS2Rχ
þ
4 :

The first six terms are relevant for masses of Majorana
fermions (shown in Table 1), and also these terms are
relevant for active-sterile mixing of neutrinos at one-loop
level as discussed later. Last four Yukawa interactions are
relevant for charged lepton mass generation and have not
been discussed here. χ01;2, which breaks Uð1ÞX gauge

symmetry spontaneously, give masses to Σðþ;0;−Þ
1R;2R and

S1R; S2R through interaction as shown in first three terms
above and so these scalars have even Z2 parity. Also from
these interactions, Uð1ÞX charge of χ01;2 is specified by the
corresponding Uð1ÞX charge of triplet and singlet fermions
as shown in the table. The active neutrinos get masses at
one-loop level, through interactions shown in fifth and sixth
terms in above interactions Lagrangian [17]. From Uð1ÞX
charges of the active neutrinos νi and the S1R, S2R fermions,
it follows that the scalar fields in fifth and sixth terms are
different from χ01;2. They do not have nonzero vacuum
expectation value (vev). So η01;2 is considered an odd under
Z2. The SM fields are even under Z2. So from fifth and

sixth terms in above interactions, it follows that Σðþ;0;−Þ
1R;2R and

S1R, S2R are odd under Z2. Interestingly, this oddness is
decided by the Uð1ÞX charge as discussed. Thus, these
fermions could play the role of dark matter. From the
required interactions for one-loop fermion masses for
sterile neutrinos NR and charged leptons, the Z2 parity
of other nonstandard model fields is decided [17]. NR is the
singlet neutrino which is massless at tree level. Mixing of
NR with active neutrinos as shown later in Fig. 1 and also
the mass of NR at one-loop level are obtained through
interactions of NR with S2R and a scalar field χ3. Here also
scalar field different from χ1;2 is required because of the
Uð1ÞX charges of the fermions in this interaction and χ3
which does not have nonzero vev is required to be odd
under Z2. Then NR is required to be even under Z2 and for
that it is suitable for consideration as light sterile neutrino.
The neutral scalars, odd under Z2, in their mass basis have
components, which are in general not electroweak singlets
and as such they are not good dark matter candidate. This is
because they will have too large cross section for their
direct detection in underground experiments because of

their interactions with Z boson. Σ0
1R;2R as dark matter has

been discussed in [19] and they do not play role in active-
sterile neutrino mixing. However, S1R;2R could play the role
of dark matter and also lead to active and sterile neutrino
mixing as mediator at one loop and has been considered as
possible dark matter candidate in our work.
We discuss in short the generation of mass of an extra

gauge boson X and its mixing with SM neutral gauge boson
Z. Let the vevs of various neutral scalars fields be hϕ0i ¼
v1 and hχ01;2i ¼ u1;2, then the mass-squared elements, that
determines mass for Z and X, are given as

M2
ZZ ¼ 1

2
g2Zðv21Þ; ð2Þ

M2
ZX ¼ M2

XZ ¼ 3

8
gZgXðn1 − n4Þv21; ð3Þ

M2
XX ¼

1

2
g2Xð3n1þn4Þ2ðu21þ9u22Þþ

9

8
g2Xðn1−n4Þ2v21: ð4Þ

Although in general, there is Z − X mixing but it is
expected to be very small so that electroweak precision
measurements could be satisfied. The condition for no
Z − X mixing between neutral electroweak gauge boson
and the extra Uð1ÞX gauge boson is obtained for M2

ZX ¼ 0
which gives n1 ¼ n4. With this zero mixing consideration,
the mass of the extra Uð1ÞX gauge boson is

M2
XX ¼ 1

2
g2Xð4n1Þ2ðu21 þ 9u22Þ: ð5Þ

Later on, we consider this zero mixing condition in dark
matter relic density calculation.
Since the dark matter is Majorana in nature, its vector

coupling withX boson is zero and it has only nonzero axial-
vector coupling with X. The vector coupling gfv and axial-
vector coupling gfa of the SM fermion fields with an extra
gauge boson are given in Table III. These couplings are
related to the chiral couplings [3] as follows:

gfðv;aÞ ¼
1

2
½ϵLðfÞ � ϵRðfÞ�; ð6Þ

FIG. 1. One-loop active-sterile neutrino mixing [17].
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where the chiral couplings ϵL;RðfÞ are gX times Uð1ÞX
charges corresponding to left- and right-handed chiral
fields as shown in Table III.
Let the mass eigenstates of the four Majorana fermions

S1R, S2R, Σ0
1R, Σ0

2R be ψk with mass mψk
. The interaction

basis ψ 0T
j ¼ ½S1R; S2R;Σ0

1R;Σ0
2R� could be written in terms of

this mass basis ψk as

ψ 0
j ¼

X
k

zjkψk; ð7Þ

with j; k ¼ 1;…4 where Σ0
1R and Σ0

2R are SUð2ÞL triplets
and S1R and S2R are singlets. One of the lightest among ψk
say, ψ1 is a dark matter candidate in this model, which we
assume that it mainly contains S1R and S2R. We consider ψ2

as the next to lightest among these four mass eigenstates,
and the masses mψ1

and mψ2
are not far apart.

In considering interactions of an extra gauge boson X
with S1R and S2R in the mass basis of ψk, we are
considering for simplicity that zij mixing matrix elements
have nonzero 1–2 block with mixing angle θ which is
decoupled from 3 to 4 block. Then the interaction can be
written as

X
i;j

¯SiR γμðgijγ5ÞSjRXμ

¼ ðgS1Racos2θ þ gS2Rasin
2θÞψ̄1γμγ

5ψ1Xμ

þ ðgS1Rasin2θ þ gS2Racos
2θÞψ̄2γμγ

5ψ2Xμ

þ 1

2
sin 2θðgS1Ra − gS2RaÞψ̄1γμγ

5ψ2Xμ

þ 1

2
sin 2θðgS1Ra − gS2RaÞψ̄2γμγ

5ψ1Xμ; ð8Þ

where i, j ¼ 1, 2, gS1Ra ¼ 5=8ð3n1 þ n4ÞgX, and gS2Ra ¼
1=8ð3n1 þ n4ÞgX. Here gX is the gauge coupling for the
extra gauge boson and the subscript a denotes that these are
axial-vector couplings. The interactions shown in terms of
mass basis will be useful in Sec. IV in our calculation of
cross section of annihilation and coannihilation of dark
matter.

III. ACTIVE AND STERILE NEUTRINO
MASS AND MIXING

There are eight real scalar fields, spanning
ffiffiffi
2

p
Reðη01;2Þ,ffiffiffi

2
p

Imðη01;2Þ,
ffiffiffi
2

p
Reðχ03Þ,

ffiffiffi
2

p
Imðχ03Þ,

ffiffiffi
2

p
Reðξ0Þ, ffiffiffi

2
p

Imðξ0Þ,
with mass eigenstate as ζl with mass ml. These fields are
present in the one-loop diagram giving radiative masses to
active and sterile neutrinos. For details about the one-loop
diagrams giving masses to active and sterile neutrinos, we
refer readers to Ref. [17]. However, we have shown the
one-loop diagram in Fig. 1 gives rise to active and sterile
neutrino mixing.
Apart from three light active neutrinos, NR plays the role

of fourth neutrino as sterile in thismodel asmentioned earlier.
The masses of active and sterile neutrinos are given as

ðMνÞð2Þij ¼ hη2i1h
η2
j1

16π2
X
k

ðz3kÞ2mψk
A1

þ hη2i2h
η2
j2

16π2
X
k

ðz4kÞ2mψk
A2; ð9Þ

where A1 ¼
P

l½ðyR2lÞ2FðxlkÞ − ðyI2lÞ2FðxlkÞ� and A2 ¼P
l½ðyR2lÞ2FðxlkÞ − ðyI2lÞ2FðxlkÞ� Σ0

1R ¼ P
k z3kψk, Σ0

2R ¼P
k z4kψk,

ffiffiffi
2

p
Reðη02Þ ¼

P
l y

R
2lζl,

ffiffiffi
2

p
Imðη02Þ ¼

P
l y

I
2lζl,

with
P

kðz3kÞ2 ¼
P

kðz4kÞ2 ¼
P

lðyR2lÞ2 ¼
P

lðyI2lÞ2 ¼ 1,
and xlk ¼ m2

l =m
2
ψk

and FðxlkÞ ¼ xlk ln xlk=ðxlk − 1Þ.
Equation (9) is the contribution to the active neutrino
masses from Σ1R and Σ2R.
Let S̄1Rνiη01 coupling be h

η1
i1 , then the contribution toMν

is given by

ðMνÞij ¼
hη1i1h

η1
j1

16π2
X
k

ðz1kÞ2mψk
A; ð10Þ

where A ¼ P
l½ðyR1lÞ2FðxlkÞ − ðyI1lÞ2FðxlkÞ�, and S1R ¼P

k z1kψk,
ffiffiffi
2

p
Reðη01Þ ¼

P
l y

R
1lζl,

ffiffiffi
2

p
Imðη01Þ ¼

P
l y

I
1lζl,

with
P

kðz1kÞ2 ¼
P

lðyR1lÞ2 ¼
P

lðyI1lÞ2 ¼ 1. We have
assumed that the first contribution to active neutrino mass
shown in Eq. (9) is somewhat lesser than the second
contribution shown in Eq. (10) which gives masses to
heavier neutrinos and the combination gives rise to appro-
priate mixing among different active neutrinos. We have
considered only the mass scale for active neutrinos in our
work and will be concerned with only Eq. (10).
Let S2RNRχ

0
3 coupling be hN23, then the mass of sterile

neutrino is given as

mNN ¼ hN23h
N
23

16π2
X
k

ðz2kÞ2mψk
B; ð11Þ

where B ¼ P
l½ðyR3lÞ2FðxlkÞ − ðyI3lÞ2FðxlkÞ� and S2R ¼P

k z2kψk,
ffiffiffi
2

p
Reðχ03Þ ¼

P
l y

R
3lζl,

ffiffiffi
2

p
Imðχ03Þ ¼

P
l y

I
3lζl,

with
P

kðz2kÞ2 ¼
P

lðyR3lÞ2 ¼
P

lðyI3lÞ2 ¼ 1.

TABLE III. Couplings of SM fermions with extra gauge boson
X in terms of Uð1Þ charges n1 and n4. U and D are up and down
type quarks, respectively.

gfv=gX gfa=gX

l=e, μ, τ 9
8
ðn4 − n1Þ 1

8
ðn4 − 9n1Þ

νl
n4
2

− n4
2

U 1
8
ð11n1 − n4Þ 3

8
ðn1 − n4Þ

D 1
8
ð5n1 þ 3n4Þ 3

9
ðn4 − n1Þ
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The active-sterile neutrino mixing is possible because of
interaction hS12S1RS2Rχ̄

0
2 as shown in Fig. 1, and non-

diagonal mass matrix elements related to mixing in
active-sterile neutrino mass matrix are given as

mνN ¼ hη1i1ðhN23Þ
16π2

X
k

z1kz2kmψk
C; ð12Þ

where C¼P
l½yR1LyR3lFðxlkÞ−yI1ly

I
3lFðxlk� and

P
k z1kz2k ¼P

l y
R
1ly

R
3l ¼

P
l y

I
1ly

I
3l ¼ 0. A, B, and C are loop factors

corresponding to the one-loop diagrams that give masses
and mixing of neutrinos. Based on the recent global fit [20]
of neutrino oscillation experiment with sterile neutrino in
3þ 1 scheme, the best fit values are Δm2

41 ¼ 1.3 eV2,
jUe4j ¼ 0.1, and jUμ4j ≲ 10−2. Also, taking into account
the cosmological constraint on sum of three active neutrino
masses [21,22], we consider active neutrino masses, sterile
neutrino mass, and active-sterile mixing as

ðMνÞij ∼ 0.1 eV; MNN ∼ 1.14 eV;

MνN ∼ 0.114 eV: ð13Þ

The product of the mixing matrix element and mψk which
are present in Eqs. (10)–(12) can be rewritten in terms
of the mixing angle θ and the mass gap parameter
Δ ¼ ðmψ2

−mψ1
Þ=mψ1

after we consider z11 ¼ cos θ,
z12 ¼ − sin θ, z21 ¼ sin θ, and z22 ¼ cos θ. Following
these, we can write

X
k

z1kz2kmψk
¼ Δmψ1

sin 2θ

2X
k

ðz2kÞ2mψk
¼ mψ1

ð1þ Δcos2θÞ
X
k

ðz1kÞ2mψk
¼ mψ1

ð1þ Δsin2θÞ: ð14Þ

Using Eqs. (13) and (14) for active neutrino mass scale and
the mixing of sterile neutrino Ue4, we can write Eqs. (10)–
(12) in terms of Δ and θ parameters and can be written as

hη111h
η1
11

16π2
mψ1

ð1þ Δsin2θÞ A ≈ 0.1; ð15Þ

hN23h
N
23

16π2
mψ1

ð1þ Δcos2θÞ B ≈ 1.14; ð16Þ

hη111h
N
23

16π2
mψ1

ðΔ sin 2θ
2

Þ C ≈ 0.1: ð17Þ

If we consider
P

z2mψk
of Eq. (14) of the order of 1 TeV

and couplings h ∼ 0.1, then from Eqs. (15)–(17), it is found
that A, B, and C are in the range of 10−8 to 10−9. However,
considering the variation of two couplings hη111 and hN23 in

the range of 0.05–1 and A, B, and C in the range of 10−9 −
10−6 in Eqs. (15)–(17), we obtain the allowed region of θ
and Δ as shown in Fig. 2. In Fig. 2, we consider two
different conditions among A, B, and C: (1) A ¼ B ¼ C
and (2) C < A, B. The condition (1) gives the allowed
almost semicircle outer line, whereas condition (2) gives
region inside covered by that almost semicircle line. One
may note here that A and B as mentioned just after Eqs. (10)
and (11) are very similar in nature with the sum over the
product of the mixing matrix elements of y being 1 for both
A and B, whereas for C as mentioned just after Eq. (12) due
to orthogonality condition the sum over the product
of the mixing matrix elements of y vanishes. Due to this
difference, C is expected to be lesser than both A and B.
In that sense, we should consider the proper allowed
region of Δ and θ as that given by the region inside the
almost semicircle line in Fig. 2 and Δ ≥ 1 is found to be
preferred.
For active and sterile neutrino mixing, one important

conclusion follows from both Figs. 1 and 2 is that there is
necessarily nonzero mixing θ between S1R and S2R;
otherwise, there will be zero contribution from Fig. 1.
Figure 2, however, shows apart from nonzero mixing, the
simultaneous constraint on both θ and Δ. These imply that
apart from annihilation of two dark matter fields (ψ1) into
SM fermion and antifermion pair, there is coannihilation of
dark matter field ψ1 with other next heavier Majorana field
ψ2 through the interactions mentioned in Eq. (8).

IV. DARK MATTER (ψ1) RELIC DENSITY

Relic density is obtained from the Boltzmann equation
[23] governing the evolution of number density of the DM
with the thermally averaged cross section for the process
ψ1ψ1 → ff̄. The Boltzmann equation is written as

_nψ1
þ 3Hnψ1

¼ hσviððneqbψ1
Þ2 − n2ψ1

Þ; ð18Þ

FIG. 2. Allowed region of Δ and θ (in radian) from active-
sterile neutrino masses and mixing.
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where nψ1
is the number density and neqbψ1

is thermal
equilibrium number density of the DM particle. H is
Hubble expansion rate of the Universe, and hσvi is the
thermally averaged cross section for the process ψ1ψ1 →
ff̄ and is given by [24]

hσvi¼ 1

8m4
ψ1
TK2

2ðm=TÞ
Z

∞

4m2
ψ1

σðs−4m2
ψ1
Þ ffiffiffi

s
p

K1ð
ffiffiffi
s

p
=TÞds;

ð19Þ

where K1, K2 are modified Bessel functions of first and
second kinds, respectively. Here s is the center of mass
energy squared. The thermally averaged cross section can
be expanded in powers of relative velocity of two dark
matter particle to be scattered and is written as hσvi ¼
aþ bv2. Numerical solution of the above Boltzmann
equation gives [25]

Ωψ1
h2 ≈

1.04 × 109xf
Mpl

ffiffiffiffiffi
g�

p ðaþ 3b=xfÞ
; ð20Þ

where xf ¼ mψ1
=Tf, Tf is the freeze-out temperature, g� is

the number of relativistic degrees of freedom at the time of
freeze-out. xf can be found from

xf ¼ ln
0.038MPlmψ1

hσvi
g1=2� x1=2f

: ð21Þ

We assume ψ1 to be lighter than ψ2 and it plays the role
of dark matter. The lighter ψ1 will be pair annihilated to SM
fermions and antifermions through the extra gauge boson
mediator but not Z boson as we are considering Z − X
mixing to be zero. This pair annihilation has been consid-
ered above. However, it could also coannihilate with ψ2.
Both annihilation and coannihilation cross sections could
control the relic abundance of the dark matter ψ1 [26,27].
To take into account coannihilation, we discuss the neces-
sary modifications in the Boltzmann equation below.
If the mass difference between ψ1 and ψ2 is very large,

ψ2 will be out of thermal equilibrium much earlier than ψ1

and coannihilation will not play a significant role in the
evolution of the number density of ψ1. However, we
consider the case where the mass difference may not to
be too large. In that case, we consider the annihilation as
well as the coannihilation channel in the coupled
Boltzmann equation to find out the evolution of the number
density of ψ1 and hence find the relic density of dark
matter. Using the formalism of Ref. [26], we can reduce the
system of two Boltzmann equations governing number
densities n1 and n2 of ψ1 and ψ2, respectively, into one
Boltzmann equation which governs the evolution of
n ¼ n1 þ n2 in the early Universe as given below.

_n ¼ −3Hn −
X2
i;j¼1

hσijviððninj − neqi n
eq
j Þ; ð22Þ

where hσijvi is the thermally averaged scattering cross
section for the process ψ iψ j → ff̄. This equation can be
further simplified as

_n ¼ −3Hn −
X2
i;j¼1

hσeffviððn2 − ðneqÞ2Þ; ð23Þ

where σeff is given as

σeff≈
X2
i;j¼1

σij
gigj
g2eff

ð1þΔiÞ3=2ð1þΔjÞ3=2exp−xðΔiþΔjÞ : ð24Þ

Here x ¼ mψ1
=T and Δi ¼ mψ i

−mψ1
mψ1

. Then Δ1 ¼ 0 by

definition. Later on, Δ2 is written as Δ. gi is the internal
degrees of freedom of the interacting particles and geff is
defined as

geff ¼
X2
i¼1

gið1þ ΔiÞ3=2 exp−xΔi : ð25Þ

For comparison with the general weakly interacting
massive particle formulas, we have Taylor expanded the
thermally averaged cross sections,

hσijvi ¼ aij þ bijv2; hσeffvi ¼ aeff þ beffv2; ð26Þ

where aeff and beff are given by

aeff≈
X2
i;j¼1

aij
gigj
g2eff

ð1þΔiÞ3=2ð1þΔjÞ3=2exp−xðΔiþΔjÞ; ð27Þ

beff≈
X2
i;j¼1

bij
gigj
g2eff

ð1þΔiÞ3=2ð1þΔjÞ3=2exp−xðΔiþΔjÞ : ð28Þ

The phase space integration part for all the process of
ψ iψ j → ff̄ is almost same for cross section calculation,
and the difference in the cross sections is mainly due to the
strength of couplings gij in which both the indices i, j run
from 1 to 2. Because of this, we can write

σ11
jg11j2

≈
σ12
jg12j2

≈
σ21
jg21j2

≈
σ22
jg22j2

: ð29Þ

Using this approximation σeff in Eq. (24), it can be written
in terms of σ11 as

σeff ¼
gigj
g2eff

�
1þ 2r12

g212
g211

þ r22
g222
g211

�
σ11: ð30Þ
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Here, r12 ¼ ð1þ ΔÞ3=2e−xΔ, r22 ¼ ð1þ ΔÞ3e−2xΔ, and
Δ ¼ ðmψ2

−mψ1
Þ=mψ1

and σ11 is annihilation cross section
of ψ1ψ1 → ff̄, and hσ11vi can be Taylor expanded in the
form of a11 þ b11v2. For Majorana fermions gi ¼ gj ¼ 2

(internal degrees of freedom) and from Eq. (8), the
couplings involved in these annihilation and coannihilation
channels are

g11 ¼ gS1Racos
2θ þ gS2Rasin

2θ

g22 ¼ gS2Racos
2θ þ gS1Rasin

2θ

g12 ¼ g21 ¼
1

2
sin 2θðgS1Ra − gS2RaÞ: ð31Þ

In the presence of coannihilation of dark matter ψ1 with ψ2,
Eqs. (20) and (21) will be modified as

Ωψ1
h2 ≈

1.04 × 109xf
Mpl

ffiffiffiffiffi
g�

p ða11Ia þ 3b11Ib=xfÞ
; ð32Þ

where

Ia¼
xf
a11

Z
∞

xf

x−2aeffdx and Ib¼
2x2f
b11

Z
∞

xf

x−3beffdx ð33Þ

and xf can be obtained from

xf ¼ ln
0.038MPlmψ1

hσeffvi
g1=2� x1=2f

: ð34Þ

Following [28], the annihilation cross section of
Majorana fermion to SM ff̄ through s channel mediated
by X boson is given as

σ11¼
nc

12πs½ðs−M2
XÞ2þM2

XΓ2
X�
X
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4m2

f=s

1−4m2
ψ1
=s

s

×
�
g2fag

2
11

�
4m2

ψ1

�
m2

f

�
7−

6s
M2

X
þ 3s2

M4
X

�
− s

�

þ sðs−4m2
fÞ
�
þg2fvg

2
11ðsþ2m2

fÞðs−4m2
ψ1
Þ
�
; ð35Þ

where nc ¼ 3when f stands for quarks and nc ¼ 1 when f
stands for leptons and s ≈ 4m2

ψ1
þm2

ψ1
v2. In the above

equation, ΓX ¼ ΓX1
þ ΓX2

is the total decay width of an
extra gauge boson X, where ΓX1

is the decay width of the
extra gauge boson X to SM fermion antifermion pair and
ΓX2

is the decay width of the extra gauge boson decaying to
ψ iψ j Majorana fermions,

ΓX1
≡X

f

ΓðX→ff̄Þ

¼
X
f

ncMX

12πS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2
f

M2
X

s �
g2fa

�
1−

4m2
f

M2
X

�
þg2fv

�
1−2

m2
f

M2
X

��

ΓX2
¼
X
i;j

ΓðX→ψ iψ̄ jÞ¼
X
i;j

MXg2ij
12πS

�
1−

4mψ i
mψ j

M2
X

�
3=2

;

ð36Þ

where S ¼ 1 (2) for (in)distinguishable final state particles.
In the notation of Eq. (26), hσ11vi ¼ a11 þ b11v2, where

a11 ¼
ncg2fam

2
fg

2
11mψ1

24π½ðM2
X − 4m2

ψ1
Þ2þM2

XΓ2
X�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

m2
f

m2
ψ1

s �
12− 96

m2
ψ1

M2
X
þ 192

m4
ψ1

M4
X

�
;

b11 ¼ a11

2
64−1

4
þ m2

f

8ðm2
ψ1
−m2

fÞ
−

M4
X − 16M2

Xm
2
ψ1
þ 48m4

ψ1

4ððM2
X − 4m2

ψ1
Þ2þM2

XΓ2
XÞ

þ

�
−4þ 2

g2fv
g2fa

þ 4
m2

ψ1

m2
f
þ 4

g2fvm
2
ψ1

g2fam
2
f
− 24

m2
ψ1

M2
X
þ 96

m4
ψ1

M4
X

�
ð12− 96

m2
ψ1

M2
X
þ 192

m4
ψ1

M4
X
Þ

3
75:
ð37Þ

MassMX of the extra gauge boson in the above expressions
is given by Eq. (5), and g11 corresponds to axial-vector
coupling as follows from Eqs. (31) and (8).

V. ALLOWED REGION OF DARKMATTER MASS,
X BOSON MASS, AND ITS GAUGE COUPLING

Large Hadron Collider (LHC) operating at
ffiffiffi
s

p ¼
13 TeV has searched for new phenomena [10–12] which
are resonant as well as nonresonant and in which the final
state is dilepton/dijet. This is a robust test for all theories
beyond the SM. ATLAS at LHC has obtained the allowed
region of coupling gX of quarks and leptons with an extra
gauge boson massMX in Fig. 4 of [10] and Fig. 5(a) of [11]
at 95% confidence level. However, these two figures in
Refs. [10,11] do not differ too much. We have considered
the allowed region of gX andMX in Fig. 5(a) of Ref. [11] in
our numerical analysis. gX coupling in our paper is related
to coupling γ0 of this figure as gX ≈ 0.463γ0.
For our numerical analysis, Uð1Þ charges are fixed by

considering n1 ¼ n4 ¼ 1=
ffiffiffi
2

p
(normalizing n21 þ n24 ¼ 1)

which satisfies zero mixing condition of an extra gauge
boson X with SM Z boson. We have considered two values
of Δ as 1 as 1 and 2 and also different values of θ as 0.4,
π=4, and 1.2 as allowed by Fig. 2.
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In the later part, we have used the symbolmψ for the dark
matter massmψ1

. In Fig. 3, we first show the allowed region
in MX −mψ plane for only the annihilation channel
(ψ1ψ1 → ff̄) but no coannihilation of dark matter fermion.
As discussed earlier, this will not in general correspond to
active and sterile neutrino mixing in the model considered
by us because of the no coannihilation channel. For
comparing the allowed region with and without LHC
constraint, as shown in Fig. 3, we have considered the
variation of gX over the range (0.005–0.7), mψ up to
2.5 TeV, andMX up to 5 TeV, as this is the range considered
by LHC. The other two parameters θ and Δ are zero as this
figure is only for the annihilation case. In plotting Fig. 3(a),
we have considered only the constraint coming from relic
abundance on dark matter from PLANCK 2018 Ωh2 ∈
ð0.1188; 0.1212Þ [9]. But, in Fig. 3(b), we have also
considered the constraint on gX and MX given by
ATLAS Collaboration [10,11] at LHC. Comparing
Figs. 3(a) and 3(b), one can see that LHC constraint
significantly reduces the allowed region of dark matter
mass for lower values of MX < 4000 GeV and for further
lower MX the allowed range of dark matter mass mψ is
further constrained with respect to no LHC constraint in
Fig. 3(a). ForMX lesser than about 1600 GeVandmψ lesser
than about 700 GeV, it is difficult to get any allowed region.
In Fig. 4, apart from considering the constraint coming

from relic abundance on dark matter from Planck 2018, we
have also considered the coannihilation channel along with
the annihilation channel for the dark matter as required for
satisfying active and sterile neutrino masses and mixing. As
discussed in Sec. III, the preferred allowed region of Δ and
θ is shown in Fig. 2 inside the almost semicircular line. We
consider in Fig. 4 different values of Δ and θ based on
Fig. 2. But no LHC constraint has been imposed.
One can see after including the coannihilation channel

for all cases in Fig. 4 there is a significant constraint on

allowed dark matter mass for any MX value in comparison
to Fig. 3(a) with no coannihilation for which θ ¼ 0. A
significant change has come mainly due to nonzero θ value
considered in Fig. 4 as the coupling gij of ψ iψ jX as shown
in Eqs. (8) and (31) changes with the change in θ values. As
for example, for θ ¼ 0, g12 is zero. The second term (related
to the process χ1χ2 → ff̄) in σeff in Eq. (30) is zero for
θ ¼ 0, whereas this is nonzero for nonzero θ value. Δ plays
the role of more suppression of the effect of this process on
σeff for its higher values. The third term (related to the
process χ2χ2 → ff̄) in σeff is more exponentially sup-
pressed than the second term for higher Δ values. So, if Δ
values are increased further than those considered in Fig. 4,
there will be further lesser effect from second and third
terms in σeff . For smaller Δ values much lesser than 1, there
would have been more effect from the second and third
terms in σeff in Eq. (30) due to coannihilation. One may
note however that active and sterile neutrino mixing
constrains both Δ and θ simultaneously, as shown in
Fig. 2, and for Δ less than about 1, there is no allowed
θ value for coannihilation to occur. In Figs 4(a) and 4(b),
we have chosen Δ ¼ 2, θ ¼ π=4 and Δ ¼ 1m θ ¼ π=4,
respectively, to see how much the allowed region in
MX −mψ plane changes due to this variation of Δ for same
θ value. In fact, one can see that the change is insignificant as
both the figures are almost the same. However, it is also
expected that there will be change in σeff to some extent for
variations inmψ1

values also as follows from (30) but this is
subject to details of the Boltzman equations and the
corresponding freeze-out temperature T. In Figs 4(c) and
4(d), we have changed θ values to 0.4 and 1.2, respectively,
withΔ fixed at 2. Comparing Figs. 4(b)–4(d), it is found that
the allowed region changes significantly with such varia-
tions of θ value.
For freeze-out temperature T ∼mψ , one can see from

Eqs. (30) and (31) and (8) that σeff increase with increase in

FIG. 3. Allowed green region in the MX and mψ plane for the no coannihilation channel satisfies PLANCK relic density bound
Ωh2 ∈ ð0.1188; 0.1212Þ. (a),(b) correspond to no LHC constraints and LHC constraints on MX and gX, respectively.
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θ values and the constraint on relic density in Eq. (32)
reduces the allowed parameter space of dark matter
mass for any MX value further with increase in θ values.
In Fig. 4(c), the chosen θ value is relatively smaller and
the allowed region of MX and mψ is more than that in 4(b)
and 4(d).
Figure 5 is like previous Fig. 4 but with LHC constraint

onMX and gX imposed. Because of that, the allowed region
for lower MX is very much reduced while for higher MX
above 4000 GeV there is more allowed region. This feature
is similar to Fig. 3(b). Like Figs. 4(a) and 4(b), the allowed
region is almost the same in Figs. 5(a) and 5(b). This shows
that for Δ ≥ 1 with same value of θ there is an insignificant
change in the allowed region for the same reason as
discussed in the context of previous figure. With the
variation of θ again, the similar feature appears like in
the previous figure—namely for higher θ value there is
lesser allowed region. In Fig 5(c), the chosen θ value
is relatively smaller and the allowed region ofMX andmψ is
more than that of in (b) and (d). Due to LHC constraint in
Fig. 5, for different cases there are different lower bounds
on MX and mψ depending on different set of values of Δ
and θ. This feature is similar to Fig. 3(b). For higher θ
value, the lower bound values for both these parameters

increases to some extent with lesser allowed region. As, for
example, in Fig. 5(d), the lower bound on MX and mψ is at
about 2000 and 900 GeV, respectively, which are relatively
higher than those in Fig. 5(c).
Based on Figs. 3(b) and 5, we have shown the lower

values of MX and mψ in Table IV. The gX value as
mentioned in the table has been taken from the data file
corresponding to the lower values of MX and mψ related to
these figures. The vev of χ1 and χ2 fields has been evaluated
using the tree-level relationship of the model as given in
Eq. (5) to get an understanding of the possible scale of an
extra Uð1Þ spontaneous symmetry breaking. For the
coannihilation channel, the vev of χ1 and χ2 field (assuming
them to be equal) is around 10 TeV, whereas for the no
coannihilation channel it is around 17 TeV.

VI. HIGHER ORDER EFFECT ON Z−X MIXING

Now we address the question of Z − X mixing due to
higher order corrections coming from one-loop Feynman
diagrams as shown in Fig. 6. The contribution from the
fermions in the loop is proportional to axial-vector coupling
only and as such for our choices of n1 ¼ n4 (corresponding
to tree-level zero Z − X mixing) the axial-vector coupling

FIG. 4. Allowed green region in theMX and mψ plane for coannihilation channels with different choices of Δ ¼ 2, θ ¼ 0.4, π=4, 1.2,
and Δ ¼ 1, θ ¼ π=4 (in radian). The allowed region satisfies PLANCK relic density bound Ωh2 ∈ ð0.1188; 0.1212Þ.
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vanishes for quarks as shown in Table III giving zero
contribution to M2

ZX due to quarks in the loop. The dark
fermion is not possible in the loop diagram as there is no
coupling of Z with dark fermion due to zero Z − X mixing
considered at the tree level. One-loop correction to M2

ZX
will have main contribution coming from τ lepton in the
loop because of nonzero axial coupling for our choice of
n1 ¼ n4. The general expression for one-loop correction to
M2

ZX can be written as

δM2
ZX ≈ −

1

4π2
X
f

cAgZgfamf
2

×

�
−
1

ϵ
þ γe − logð4πÞ þ log

mf
2

μ2

�
: ð38Þ

Here gZ is the SM neutral coupling constant and cA is
the coefficient depending on the particular SM fermion
coupling with Z boson, and gfa is the axial-vector coupling
of SM fermions with X boson as given in Table III.

TABLE IV. Lower values of MX and mψ and corresponding gX and vevs.

Δ θ gX MXðGeVÞ mψ ðGeVÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ 9u22

p
ðTeVÞ u1 ¼ u2ðTeVÞ

2 0.4 0.021 1702 850 40.523 12.814
π=4 0.035 1910 960 27.285 8.628
1.2 0.025 1970 990 39.40 12.45

1 π=4 0.035 1910 960 27.285 8.628

No coannihilation 0.015 1645 825 54.833 17.33

FIG. 5. Allowed green region in the MX and mψ plane for coannihilation channels with different choices of Δ ¼ 2, θ ¼ 0.4,
π=4, 1.2 and Δ ¼ 1, θ ¼ π=4 (in radian). The allowed region satisfies LHC bound and PLANCK relic density bound
Ωh2 ∈ ð0.1188; 0.1212Þ.

IMTIYAZ AHMAD BHAT and RATHIN ADHIKARI PHYS. REV. D 101, 075030 (2020)

075030-10



For completeness, we give the result for one-loop correc-
tion to M2

XX. As we do not know its tree-level value from
the model, this correction will not be used in our numerical
computation of mixing. The main contribution to it will
come from dark fermion ψ1 and ψ2 and also from top quark
as fermion in the loop and the one-loop corrections toM2

XX
due to dark matters are given by

δM2
XXðψ1Þ ≈ −

M2
XX

12π2

�
g211
4

−
3mψ1

2

8M2
XX

�

×

�
1

ϵ
− γe þ logð4πÞ − log

mψ1

2

μ2

�
: ð39Þ

Contribution to δM2
XX due to ψ2 in the fermionic loop will

have similar expression like above with the replacement of
g11 by g22 andmψ1

bymψ2
. One-loop correction toM2

XX due
to top quark and other fermions is given by

δM2
XXðSMfermionÞ≈−

NcM2
XX

12π2
X
f

�ðg2fv þ g2faÞ
4

−
3mf

2

8M2
XX

�

×

�
1

ϵ
− γe þ logð4πÞ− log

mf
2

μ2

�
;

ð40Þ
in which gfv and gfa are given explicitly in terms of n1, n4
and gX in Table III and Nc ¼ 3 for quarks and NC ¼ 1 for
leptons as well as for dark fermions.
We have followed MS scheme for numerical evaluation

of Z − X mixing. The corresponding mixing angle θZX is
given by

tan 2θZX ¼ 2ðMZX þ δMZXÞ
MXX −MZZ

: ð41Þ

In MZX, the one-loop correction is included for numerical
evaluation. As an example to find a possible value of
mixing, we have considered gX ¼ 0.035, MXX ¼
1910 GeV, mψ ¼ 960 GeV as one set of values from
Table IV for lowest possible values of MX and mψ for
which mixing could be little bit larger and have used MZZ
as the experimentally measured value of Z boson as
91.18ðGeVÞ. For such choices, we find θZX ¼ 6 × 10−5,
which is quite a small number and much lesser than the
possible experimental bound [6] of about 10−2, and one

may consider this mixing to be almost zero with n1 ¼ n4
even after higher order correction.

VII. CONCLUSION

Apart from Planck data constraint on relic abundance
and LHC constraint on an extra Uð1Þ gauge boson mass
and its gauge coupling, we have taken into account the
possible constraints coming from active, sterile neutrino
masses and their mixing from different oscillation experi-
ments to find the allowed region inMX andmψ plane. In the
extra Uð1Þ gauge model considered by us, the oscillations
constraints—particularly active-sterile mixing have led to
the requirement of nonzero mixing θ between dark matter
ψ1 with the other heavy right-handedMajorana fermion ψ2.
This has led to the consideration of the coannihilation
channel for the dark matter. Also, the oscillation data
constrain the allowed region of θ and Δ as shown in Fig. 2.
The allowed region in MX and mψ plane is found to be
reduced for the coannihilation channel with respect to the
no coannihilation channel. Particularly, the allowed region
with the coannihilation channel is sensitive to θ value as
shown in Sec. V and for higher θ values with same Δ value
there is lesser allowed region in the MX and mψ plane.
The other important thing is that particularlywith theLHC

constraint, in general there is some kind of lower bound on
bothMX andmψ as shown inFigs. 3(b) and 5 in Sec.V.Using
the corresponding gX value from Table IVas followed from
our numerical analysis for such lower values ofMX andmψ

and using the tree-level relationship of the model as given in
Eq. (5), which connects vevs of χ1 and χ2 with themass of an
extra gauge boson MX, we get an understanding of the
possible scale of the extra Uð1Þ spontaneous symmetry
breaking as shown in Table IV. However, for higher values of
MX, such specific conclusion is difficult to obtain because of
multiple possible values of MX, mψ , and gX in the allowed
region. The numerical analysis has been done considering
zeroZ − Xmixing at the tree level with n1 ¼ n4 which alters
insignificantly even after including higher order corrections
and satisfies various phenomenological low energy con-
straints. With the improvement on the constraint on the extra
Uð1Þ gauge boson mass and its gauge coupling from LHC
experiments, the allowed region in MX and mψ plane could
be further reduced and the lower boundsonMX andmψ could
be further higher.
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