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We extend the recently proposed SUð5Þ × T 13 model for the asymmetric texture to the up-type quark
and seesaw sectors. The hierarchical up-type quark masses are generated from higher-dimensional
operators involving family-singlet Higgses, gauge-singlet familons, and vectorlike messengers. The
complex-tribimaximal seesaw mixing arises from the vacuum structure of a minimal number of familons,
resulting in an alignment between the Yukawa and Majorana matrices of the seesaw formula. Introducing
four right-handed neutrinos, normal ordering of the light neutrino masses is obtained, with
mν1 ¼ 27.6 meV, mν2 ¼ 28.9 meV and mν3 ¼ 57.8 meV. Their sum almost saturates Planck’s cosmo-
logical upper bound (120 meV). The right-handed neutrino masses are expressed in terms of two
parameters for a particular choice of familon vacuum alignment. We predict the CP Jarlskog-Greenberg
invariant to be jJ j ¼ 0.028, consistent with the current Particle Data Group (PDG) estimate, and Majorana
invariants jI1j ¼ 0.106 and jI2j ¼ 0.011. A sign ambiguity in the model parameters leads to two
possibilities for the invariant mass parameter jmββj: 13.02 or 25.21 meV, both within an order of magnitude
of the most rigorous experimental upper limit (61–165 meV).
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I. INTRODUCTION

In Ref. [1], three of us proposed a minimally asymmetric
Yukawa texture for the down-type quark matrix, Yð−1=3Þ,
and charged lepton matrix, Yð−1Þ, in the context of SUð5Þ
gauge unification. Assuming a diagonal up-type quark
Yukawa matrix Yð2=3Þ, this texture successfully reproduces
the quark mixing angles and the mass ratios of the down-
type quarks and charged leptons in the deep ultraviolet. The
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) lepton mix-
ing matrix bridges the ΔIw ¼ 1

2
physics of charged leptons

to the unknown ΔIw ¼ 0 physics of the seesaw sector:

UPMNS ¼ Uð−1Þ†Useesaw: ð1Þ
The large atmospheric and solar angles in the PMNSmatrix
are explained by tribimaximal (TBM) [2] seesaw mixing,

whereas the small reactor angle emerges entirely from the
“Cabibbo haze” [3] provided by the charged leptons.
Adding a single CP phase [4] to TBM reproduces all three
angles within 1σ of their PDG global fits [5]. Moreover, the
phase yields the CP Jarlskog-Greenberg invariant [6] to be
jJ j ¼ 0.028, consistent with PDG [5].
In Ref. [7], we introduced a model where the “fine-

tunings” of the asymmetric texture are upgraded to “natural”
relations with the addition of a discrete family symmetry
(see [8] and the references therein) T 13 ¼ Z13 ⋊ Z3, the
smallest subgroup of SUð3Þ with two inequivalent triplets
[9], which are necessary to generate the asymmetry. Folded
in with grand-unified theory (GUT) SUð5Þ, this model
explains the features of the ΔIw ¼ 1

2
down-type quark

and charged-lepton Yukawa matrices constructed from
higher-dimensional operators in terms of gauge-singlet
familons, family-singlet Higgses, and messengers with
heavy vectorlike masses. A key feature of the model is
“crystallographic” familon vacuum alignments, implying
that all nonzero components of the triplet and antitriplet
familons obtain the same order of vacuum expectation
values.
This paper expands the analysis to the up-type quark and

seesaw sectors of the model. The up-type quark masses are
explained by dimension-five, -six, and -seven operators,
which yield a diagonal Yð2=3Þ and reproduce their ultraviolet
hierarchy.
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Turning to the ΔIw ¼ 0 seesaw sector, we show how the
complex-TBM seesaw mixing arises from the vacuum
structure of a minimal number of familons, resulting
from the T 13 Clebsch-Gordan coefficients.1 It requires
an alignment between the Yukawa (Yð0Þ) and Majorana
(M) matrices of the seesaw formula

S ¼ Yð0ÞM−1Yð0ÞT ; ð2Þ

without the need to specify familon vacuum expectation
values. The minimal construction with three right-handed
neutrinos with TBM mixing yields mass relations between
the light neutrinos incompatible with the oscillation data
[5]. The addition of a gauge-singlet fourth right-handed
neutrino is shown to produce TBM seesaw mixing, and
mν2 ¼ 1

2
mν3 in two different scenarios, and by using the

oscillation data [5] generates the three light neutrino masses
in normal ordering: mν1 ¼ 27.6 meV, mν2 ¼ 28.9 meV
and mν3 ¼ 57.8 meV, with their sum close to the Planck
value (120 meV) [13].
The four right-handed neutrino masses are calculated in

terms of two parameters assuming simple vacuum align-
ments of the seesaw familons. We find curious cases of
degeneracies in their mass spectrum.
We also calculate the CP Dirac and Majorana phases

[14] yielded by the asymmetric texture with complex-TBM
seesaw mixing. Together with the light neutrino masses,
they predict the invariant mass parameter jmββj in neu-
trinoless double-beta decay [15] to be either 13.02 or
25.21 meV, depending on the sign of the parameters, within
an order of magnitude of the recently measured upper limit
of 61–165 meV by the KamLAND-Zen experiment [16].
The SUð5Þ × T 13 symmetry still allows for some

unwanted tree-level vertices which can be prohibited by
introducing a Zn symmetry, where n ¼ 14 or 12 depending
on which of the two aforementioned scenarios is realized in
the seesaw sector. The full symmetry of the unified model is
therefore SUð5Þ × T 13 × Zn, successfully explaining the
masses and mixings of both quarks and leptons.
The organization of the paper is as follows. In Sec. II,

we review the construction of the asymmetric texture, its
key features, and how they are realized by a T 13 family
symmetry. Section III explains how the hierarchical up-type
quark Yukawa texture is built from higher-dimensional
operators. Section IV discusses the seesaw sector in detail.
In Sec. V, we calculate the Majorana phases and the
invariant mass parameter jmββj. We summarize the unified
model in Sec. VI. Section VII discusses the theoretical
outlook and we conclude in Sec. VIII.

II. ASYMMETRIC TRIBIMAXIMAL
TEXTURE FROM T 13

In this section we review the key features of the
asymmetric texture and how it emerges from the discrete
family symmetry T 13. Our approach is inspired by “gauge
simplicity” and “seesaw simplicity” in the deep ultraviolet.
Gauge simplicity leads to SUð5Þ grand unification of the
Standard Model gauge groups and relates Yð−1=3Þ to Yð−1Þ.
Renormalization group running to the deep ultraviolet hints
at suggestive relations between quark and charged-lepton
masses:

mu

mc
≈
mc

mt
≈ λ4;

ms

mb
≈
λ2

3
;

me

mτ
≈
λ4

9
;

mμ

mτ
≈ λ2; mb ≈mτ; ð3Þ

relating quark mass ratios to mixing angles through the
Gatto relation [17]

ffiffiffiffiffiffi
md

ms

r
≈ λ; ð4Þ

and implies that

detYð−1=3Þ ≈ detYð−1Þ; ð5Þ

where λ ≈ 0.225 is the Wolfenstein parameter. The GUT-
scale relations of Eq. (3) imply ðmμ=msÞðmd=meÞ≈9, which
is in tension with the recent estimate ðmμ=msÞðmd=meÞ≈
10.7þ1.8

−0.8 [18].
Seesaw simplicity suggests that the two large angles in

the PMNS lepton mixing matrix arise from a bilarge mixing
matrix, e.g., TBM, assuming that the small reactor angle is
entirely generated by Cabibbo haze from the charged
leptons.
However, symmetric Yð−1=3Þ textures in SUð5Þ are

incompatible with TBMmixing [19], and seesaw simplicity
requires us to search for the minimal asymmetry in Yð−1=3Þ
that yields the PMNS angles [1]. Under the assumption that
all Yukawa couplings are real, and there is only one 45
coupling (inspired by minimality), a unique Georgi-
Jarlskog-like [20] texture at the GUT scale emerges [1]:

Yð2=3Þ ∼ diagðλ8; λ4; 1Þ;

Yð−1=3Þ ∼

0
B@

bdλ4 aλ3 bλ3

aλ3 cλ2 gλ2

dλ gλ2 1

1
CA and

Yð−1Þ ∼

0
B@

bdλ4 aλ3 dλ

aλ3 −3cλ2 gλ2

bλ3 gλ2 1

1
CA; ð6Þ

1Reference [10] scans over subgroups of SUð3Þ and identifies
T 13 as one of the groups that can yield TBMmixing. See [11] for
other approaches to study neutrino mixing with TBM in relation
to T 13 family symmetry as well as [12] for a recent review of
neutrino flavor symmetries.
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where in terms of the Wolfenstein parameters A, ρ, and η,
the Oð1Þ prefactors [1] are2

a¼ c¼ 1

3
; g¼ A; b¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þ η2

q
; d¼ 2a

g
¼ 2

3A
:

The solo 45 coupling c appears only in the (22) position
and implies that the subdeterminant with respect to it must
vanish to satisfy Eq. (5). This texture successfully repro-
duces the Cabibbo-Kobayashi-Maskawa (CKM) mixing
angles, the Gatto relation, and the GUT-scale mass relations
(up to an overall constant) [1]:

mb ¼ 1.019; md ¼ 0.994λ4=3; ms ¼ 0.951λ2=3;

mτ ¼ 1.019; me ¼ 0.912λ4=9; mμ ¼ 1.036λ2: ð7Þ

These yield ðmμ=msÞðmd=meÞ ≈ 10.7, in agreement with
Ref. [18] but in slight disagreement with Georgi-Jarlskog’s
relations in SUð5Þ, and do not change the structure of the
texture.
With TBM seesaw mixing, the texture of Eq. (6) slightly

overestimates the reactor and solar angles and underesti-
mates the atmospheric angle. All angles are brought within
1σ of their PDG fit [5] by introducing a single phase δ ¼
78° [1] in the TBM matrix:

UTBMðδÞ ¼

0
B@

1 0 0

0 1 0

0 0 eiδ

1
CA ·

0
BBB@

ffiffi
2
3

q
1ffiffi
3

p 0

− 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

1ffiffi
6

p − 1ffiffi
3

p 1ffiffi
2

p

1
CCCA: ð8Þ

It generates a CP Dirac phase jδCPj ¼ 0.68π, yielding the
Jarlskog-Greenberg invariant [6] jJ j ¼ 0.028, consistent
with the current PDG estimate [5].
Although phenomenologically successful, the asymmet-

ric TBM texture was constructed without concern for fine-
tuning. Its key features are

(i) an asymmetric term in Yð−1=3Þ and Yð−1Þ,
(ii) a vanishing subdeterminant with respect to the (22)

element of Yð−1=3Þ and Yð−1Þ,
(iii) a diagonal hierarchical Yð2=3Þ, and
(iv) TBM seesaw mixing with a phase.

These fine-tuned features become natural when they
originate from a discrete family symmetry.
In Ref. [7], we identified T 13 ¼ Z13 ⋊ Z3 as the

smallest non-Abelian discrete subgroup of SUð3Þ capable
of reproducing the first two features. Assuming the
fermions F and T transform as T 13 triplets but the
HiggsH as a family singlet, theΔIw ¼ 1

2
effective operators

are at least of dimension five: FTHφ, constructed with

gauge-singlet family-triplet and -antitriplet familons φ.
These interactions are mediated by heavy messengers with
vectorlike mass. The vacuum alignment of the familons are
“crystallographic,” pointing toward the sides or face diag-
onals of a three-dimensional cube.
T 13 contains two different triplet representations

required by the asymmetry. Considering F≡ðF1;F2;F3Þ∼
ð5̄;31Þ and T ≡ ðT1; T3; T2Þ ∼ ð10; 32Þ under SUð5Þ × T 13,
it labels each matrix element FiTj of the texture with a
unique Z13 charge and thus separates out the asymmetric
term. The vanishing of the (22) subdeterminant is achieved
naturally by coupling the operator FTH to three familons,
orthogonal in the vacuum. The first two, φ and φ0, couple at
dimension five and generate the F1T3 and F3T3 elements,
respectively. The third familon φ00 then couples to both
dimension-five operators, generating the F1T1 and F3T1

elements at dimension six; their T 13 coupling structure
and vacuum alignments then implement the requisite

relation between the matrix elements Yð−1=3Þ
11 Yð−1=3Þ

33 ¼
Yð−1=3Þ
13 Yð−1=3Þ

31 , irrespective of the coupling constants.
In this paper we complete the SUð5Þ × T 13 model by

implementing the last two features—diagonal Yð2=3Þ and
complex-TBM seesaw mixing—of the asymmetric
texture. In the next section, we show how the hierarchical
structure of the up-type quark matrix appears naturally in
the T 13 model.

III. Yð2=3Þ TEXTURE

Assuming a family-singlet Higgs H̄5, the up-type quark
Yukawa matrix Yð2=3Þ is constructed from terms like
TTH̄5φ, where φ is a gauge-singlet T 13 triplet or antitriplet
familon (or combination of such familons) and H̄5 is the
complex conjugate of the field H5̄ that couples to Yð−1=3Þ

and Yð−1Þ. In terms of T 13 Clebsch-Gordan coefficients, the
product T ⊗ T yields

0
B@

T1

T3

T2

1
CA

32

⊗

0
B@

T1

T3

T2

1
CA

32

→

0
B@

T3T3

T2T2

T1T1

1
CA

3̄1

⊕

0
B@

T3T2

T2T1

T1T3

1
CA

3̄2

⊕

0
B@

T2T3

T1T2

T3T1

1
CA

3̄2

: ð9Þ

With simple familon vacuum alignments, the hierarchi-
cal structure of Yð2=3Þ suggests the operators

TTH̄5φ
ðtÞ
31

for the top-quark mass;

TTH̄5φ
ðtÞ
31
φ3i for the charm-quark mass; and

TTH̄5φ
ðtÞ
31
φ3iφ3i for the up-type quark mass

2Curiously, there are numerical coincidences between prefac-
tors: 2

3A ≈ A ¼ 0.81 implying g ≈ d, and b ¼ 0.31 is close to
a ¼ c ¼ 0.33.
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in vacuum, with the hierarchical factor of λ4 supplied by

hφ3ii0. φðtÞ
31

transforms as a 31, while φ3i is a triplet or
antitriplet whose exact representation is unresolved at
this stage.

A. Top-quark mass

The dimension-five operator TTH̄5φ
ðtÞ
31

yields the top-

quark mass when hφðtÞ
31
i0 ∼mtð1; 0; 0Þ. It arises from tree-

level vertices TΓφðtÞ
31

and TΓ̄H̄5, where Γ ∼ ð10; 32Þ under
SUð5Þ × T 13 is a heavy messenger field with vectorlike
mass:

This diagram implements the contractions ðTφðtÞ
31
Þ3̄2 ·ðTH5Þ32 . The first contraction yields mtð0; T3; 0Þ3̄2 and

the second ðT1; T3; T2Þ32 , resulting in the top-quark mass
term mtT3T3.

3

B. Charm-quark mass

From Eq. (9), we want the familon combination φðtÞ
31
φ3i

to transform as a 31, with a vacuum alignment along
(0, 1, 0). The T 13 Kronecker products then uniquely
determine φ3i ≡ φ32 .
The dimension-six operator TTH̄5φ

ðtÞ
31
φ32 can be con-

structed by adding two new tree-level vertices TΩφðtÞ
31

and

Ω̄Γφ32 to TΓ̄H̄5:

giving the contraction ðTφðtÞ
31
Þ
32
· ðTHφ32Þ3̄2 , where a new

vectorlike messenger Ω ∼ ð10; 3̄2Þ is required to pick out
mtT2 from the first contraction. With hφ32i0 ∼ λ4ð1;α; 0Þ,
where α is still unresolved, the second contraction

contributes λ4T2, thus resulting in the charm-quark mass
term mtλ

4T2T2 in vacuum.

C. Up-quark mass

Again consulting Eq. (9), the familon combination

φðtÞ
31
φ32φ32 must transform as a 31 and be aligned along

(0, 0, 1) in vacuum. This fixes α to be 1.
The dimension-seven operator TTH̄5φ

ðtÞ
31
φ32φ32 can be

constructed by adding three new tree-level vertices TΘφðtÞ
31
,

Θ̄Θφ32 and Θ̄Γφ32 to TΓ̄H̄5, where Θ ∼ ð1̄0; 3̄1Þ is a new
messenger:

implementing the contractions ððTφðtÞ
31
Þ31 ·φ32Þ31 ·ðTH5φ32Þ3̄1 .

The first contraction extractsmtT1, the second λ4, while the
third gives λ4T1, thus yielding the up-quark mass term
mtλ

8T1T1 in vacuum.
In summary, the above diagrams yield the desired

hierarchical up-type quark masses:

mu∶mc∶mt ¼ λ8∶λ4∶1:

IV. THE SEESAW SECTOR

In this section we show how TBM seesaw mixing is
realized in the SUð5Þ × T 13 model. It requires four right-
handed neutrinos and three familons, whose vacuum
expectation values need not be fine-tuned to yield TBM
diagonalization.
The necessity of the fourth right-handed neutrino

becomes apparent by first considering the simpler three-
neutrino case.

A. Three right-handed neutrinos

We introduce three right-handed neutrinos N̄ ≡
ðN̄1; N̄3; N̄2Þ, their order mimicking T ≡ ðT1; T3; T2Þ
inspired by an SOð10Þ extension of the gauge group and
transforming as ð1; 32Þ under SUð5Þ × T 13. Their ΔIw ¼ 1

2

coupling is given by the dimension-five operator FN̄H̄5φA,
where φA is a familon transforming as ð1; 3̄1 × 3̄2Þ ¼
ð1; 3̄1Þ ⊕ ð1; 3̄2Þ ⊕ ð1; 32Þ. This operator can be con-
structed from tree-level vertices yAFΛH̄5 and yA0N̄ Λ̄φA:

3The dimension-five operator generating the top-quark mass is
the leading-order operator. As will be discussed in Sec. VI and the
Appendix C, this is guaranteed by introducing a Zn symmetry to
restrict “dangerous” operators from coupling to unwanted matrix
elements. Even without the Zn symmetry, the next-to-leading-
order operator contributing to the top-quark mass is of dimension
six: TTH̄5φ

ðtÞ�
31

φ32
, which is suppressed by a factor of λ4.
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ð10Þ

Here, yA and yA0 are dimensionless Yukawa
couplings and Λ is a complex messenger with heavy
vectorlike mass M. Denoting the combination of
vacuum expectation values of the familon and Higgs as
1
M yAyA0hH̄5i0hφAi0 ≡ ða1; a2; a3Þt, T 13 yields three pos-
sibilities for the coupling matrix A:

φA ∼ 3̄1∶

0
B@

a2 0 0

0 0 a1
0 a3 0

1
CA; φA ∼ 3̄2∶

0
B@

0 a3 0

a2 0 0

0 0 a1

1
CA;

φA ∼ 32∶

0
B@

0 0 a1
0 a3 0

a2 0 0

1
CA; ð11Þ

where the ai have dimension of mass.
The ΔIw ¼ 0 coupling of the right-handed neutrinos is

given minimally by the dimension-four operator yBN̄ N̄ φB
for some dimensionless coupling constant yB, where φB

transforms as ð1; 3̄2 × 3̄2Þ ¼ ð1; 31Þ ⊕ ð1; 32Þ ⊕ ð1; 32Þ.
Denoting its vacuum expectation value by yBhφBi0 ≡
ðb1; b2; b3Þt, T 13 offers two possibilities for the symmetric
Majorana matrix B:

φB∼32∶

0
B@

0 b2 b3
b2 0 b1
b3 b1 0

1
CA; φB∼31∶

0
B@
b3 0 0

0 b2 0

0 0 b1

1
CA; ð12Þ

where again the bi have dimension of mass.
Minimality dictates we introduce the least number of

right-handed neutrinos and familons in the seesaw sector.
In this spirit, we adopt φA ∼ 3̄2 in Eq. (11) and φB ∼ 32 in
Eq. (12). The implications of the alternative choices are
discussed in Appendix B.
The seesaw matrix S is related to theΔIw¼ 1

2
andΔIw¼0

matrices by

S ¼ AB−1At; ð13Þ

for detB ≠ 0. We choose a particular decomposition of B:

B ¼ CGCt; ð14Þ

where C depends on hφBi0:

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1b2b3

p 0
B@

b−11 0 0

0 b−13 0

0 0 −b−12

1
CA; ð15Þ

and G is a purely numerical matrix:

G ¼

0
B@

0 1 −1
1 0 −1
−1 −1 0

1
CA: ð16Þ

Surprisingly, G is diagonalized by the TBM matrix

G ¼ UTBMDbU t
TBM; ð17Þ

where Db ¼ diagð−1; 2;−1Þ. G is invariant under the
transformation P0:

P0GP0t ¼ G; ð18Þ

so that C can be redefined as

C → CP0 ð19Þ

in Eq. (14), where P0 is the identity matrix or any of the
following permutation matrices (up to a sign):

ð12Þ∶

0
B@
0 1 0

1 0 0

0 0 1

1
CA; ð23Þ∶

0
B@
−1 0 0

0 0 1

0 1 0

1
CA; ð31Þ∶

0
B@
0 0 1

0 −1 0

1 0 0

1
CA;

ð123Þ∶

0
B@
0 −1 0

0 0 1

1 0 0

1
CA; ð321Þ∶

0
B@

0 0 1

−1 0 0

0 1 0

1
CA: ð20Þ

Using the decomposition of Eq. (14), the seesaw matrix
is given by

S ¼ AðC−1ÞtUTBMD−1
b U t

TBMC
−1At: ð21Þ

S is itself diagonalized by UTBMðδÞ only if

AðCtÞ−1 ¼ ffiffiffiffiffiffi
mν

p
diagð1; 1; eiδÞP0t

⇒ A ¼ ffiffiffiffiffiffi
mν

p
diagð1; 1; eiδÞðCP0Þt ð22Þ

for some mass parameter mν.
Equation (22) embodies two requirements: (i) A must

have the same form as ðCP0Þt, and (ii) the vacuum align-
ment of φA, given by ai, is determined by that of φB, given
by bi.
Requirement (i) can always be satisfied; for any A in

(11), there exists a P0 in (20) that satisfies Eq. (22). With
φA ∼ 3̄2 and P0 ≡ ð12Þ, we have
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C → CP0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1b2b3

p 0
B@

0 b−11 0

b−13 0 0

0 0 −b−12

1
CA; ð23Þ

yielding the same G as in Eq. (16). With this form of C,
requirement (ii) is fulfilled by the alignment

0
B@

a1
a2
a3

1
CA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mνb1b2b3

p 0
B@

−b−12 eiδ

b−11
b−13

1
CA: ð24Þ

Applying Eq. (22), the seesaw matrix becomes

S ¼ mνUTBMðδÞdiag
�
−1;

1

2
;−1

�
U t
TBMðδÞ ð25Þ

and yields three relations among the light neutrino masses:

mν2 ¼
1

2
mν3 ; mν1 ¼ 2mν2 ; and mν1 ¼ mν3 :

The first relation is consistent with normal ordering, but the
other two, involving mν1 , contradict oscillation data [5]. If
mν1 can be corrected to a smaller value, the first relation can
be used along with oscillation data to calculate the light
neutrino masses in normal ordering. We are then compelled
to enlarge the neutrino sector.

B. Four right-handed neutrinos

Following our minimalist approach, we choose a gauge-
and family-singlet fourth right-handed neutrino N̄4. It
introduces the extra operators

ΔIw ¼ 1

2
∶ FN̄4H̄5φv; where φv ∼ ð1; 3̄1Þ;

ΔIw ¼ 0∶yzN̄ N̄4φz; and mN̄4N̄4; where φz ∼ ð1; 3̄2Þ:

The dimension-five operator FN̄4H̄5φv can be constructed
from tree-level vertices yAFΛH̄5 and y0vN̄ Λ̄φv in a similar
way as in Eq. (10), using the same messenger field Λ. For
1
M yAyv0 hH̄5i0hφvi≡ v≡ ðv1; v2; v3Þt, the numerator of the
seesaw formula is a ð3 × 4Þ ΔIw ¼ 1

2
matrix

ðA v Þ:

The ð4 × 4Þ ΔIw ¼ 0 Majorana matrix in vacuum is
given by

M ¼
�
B z

zt m

�
; ð26Þ

where yzhφzi0 ≡ z≡ ðz1; z2; z3Þt. For detB ≠ 0,

M−1 ¼
�
B z

zt m

�−1

¼ 1

μ

�
μB−1 þ B−1zztB−1 −B−1z

−ztB−1 1

�
; ð27Þ

with

μ ¼ m − ztB−1z: ð28Þ

The seesaw matrix now has two terms:

S ≡ S1 þ S2 ¼ AB−1At þ 1

μ
WWt; ð29Þ

where

W ¼ AB−1z − v:

The first term is the same as in the three right-handed
neutrinos case:

S1 ¼ mνUTBMðδÞdiag
�
−1;

1

2
;−1

�
U t
TBMðδÞ: ð30Þ

The second term S2 ¼ 1
μWWt has two zero eigenvalues.

If it is to be diagonalized by UTBMðδÞ, the column vector
U†
TBMðδÞW must be one of the following forms:

ð0; 1; 0Þt; ð0; 0; 1Þt; ð1; 0; 0Þt:

The first two are incompatible with data. A nonzero entry
in the second element implies that S2 corrects only mν2,
leaving mν1 and mν3 degenerate. The third nonzero element
is also unphysical because it leads to mν1 > mν2 .
Phenomenology requires us to choose the third possibil-

ity, in which case W is of the form

W ∝ UTBMðδÞ

0
B@

1

0

0

1
CA ∝

0
B@

2

−1
eiδ

1
CA; ð31Þ

which further aligns φz, φv and φB in vacuum and corrects
mν1 . Thus S2 negates the two unwanted mass relations
in S1, but the relation mν2 ¼ 1

2
mν3 singling out normal

ordering remains unaltered. Together with oscillation data,
it can determine all three light neutrino masses.
We present two minimal scenarios with either φv or φz

absent in the seesaw formula. Both scenarios yield the same
light neutrino mass spectrum.

1. Scenario 1: φB ∼ 32;φz ∼ 3̄2;φA ∼ 3̄2
In this case φv is absent, and W ¼ AB−1z. Applying

Eqs. (22) and (17), we obtain
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W ¼ ffiffiffiffiffiffi
mν

p
UTBMðδÞD−1

b U t
TBMC

−1z: ð32Þ

For C given by Eq. (23), it becomes

W¼
ffiffiffiffiffiffi
mν

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6b1b2b3

p UTBMðδÞ

0
B@

ðb1z1−2b3z2þb2z3Þ
1ffiffi
2

p ðb1z1þb2z3þb3z2Þ
−
ffiffiffi
3

p ðb1z1−b2z3Þ

1
CA: ð33Þ

Comparing this to Eq. (31), we require

b1z1 þ b2z3 þ b3z2 ¼ 0; b1z1 − b2z3 ¼ 0: ð34Þ

These constraints yield a vacuum alignment condition
between φB and φz:

b1z1 ¼ b2z3 ¼ −
1

2
b3z2 ≡m2

bz; ð35Þ

where the parameter mbz has dimension of mass. Then
hφzi0 becomes

0
B@

z1
z2
z3

1
CA ¼ m2

bz

0
B@

b−11
−2b−13
b−12

1
CA: ð36Þ

From Eq. (28), μ is evaluated as

μ ¼ 6m4
bz þmb1b2b3
b1b2b3

; ð37Þ

and S2 becomes

S2¼
6mνm4

bz

6m4
bzþmb1b2b3

UTBMðδÞdiagð1;0;0ÞU t
TBMðδÞ: ð38Þ

Combining S1 and S2 yields the light neutrino masses in
normal ordering:

mν1 ¼ −
m
μ
mν; mν2 ¼

1

2
mν; mν3 ¼ −mν; ð39Þ

in terms of three undetermined parameters m, μ and mν. As
we will show below, m

μ and mν can be extracted from
oscillation data, albeit with a sign ambiguity.

2. A circle parametrization for neutrino oscillations

We introduce a convenient geometrical representation of
oscillation parameters and neutrino masses. The neutrino
oscillation parameters for normal ordering Δ31 ≡

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

p
and Δ32 ≡

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

32

p
and the light neutrino masses mν1 , mν2

and mν3 are represented as the sides and diagonals of the
inscribed quadrilateral ABCD in Fig. 1. The largest mass,
mν3 , is chosen to be the diameter of the circle.

The relation mν2 ¼ 1
2
mν3 implies ∠CAD ¼ 30°. Using

PDG values [5] of the oscillation data (see [21] for other
recent global fits) for normal ordering, we find

Δ31 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

32 þ Δm2
21

q
¼ 50.8 meV;

Δ32 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Δm2

32

q
¼ 50.1 meV:

Our prediction for the light neutrino masses follow:

mν1 ¼27.6meV; mν2 ¼28.9meV; mν3 ¼57.8meV: ð40Þ

Their sum is 114.3 meV, very close to Planck’s cosmo-
logical upper bound [13]X

i

jmνi j ≤ 120 meV:

Comparing Eqs. (39) and (40), the parametersmν,m and
μ are given by

jmνj ¼ 57.8 meV;

����mμ
���� ¼ 0.48: ð41Þ

The sign ambiguity appears because these are determined
from mass-squared relations in the oscillation data.
Next we discuss the second scenario with four right-

handed neutrinos, where φz is absent in the seesaw formula.

3. Scenario 2: φB ∼ 32;φv ∼ 3̄1;φA ∼ 3̄2
In this case, W ¼ v and μ ¼ m. With the form of W

given by (31), we have0
B@

v1
v2
v3

1
CA ¼

ffiffiffiffiffiffiffiffiffiffi
mm0

v

p 0
B@

2

−1
eiδ

1
CA; ð42Þ

where m0
v is another mass parameter. Unlike the φz of

scenario 1, the vacuum alignment of φv here does not
depend on hφBi0.

FIG. 1. Circle parametrization of neutrino masses and oscil-
lation parameters.
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The second term in Eq. (29) becomes

S2 ¼
1

m
vvt ¼ 6m0

vUTBMðδÞdiagð1; 0; 0ÞU t
TBMðδÞ: ð43Þ

Combining with S1, we express the light neutrino masses in
terms of the parameters mν and m0

v:

mν1 ¼ −mν þ 6m0
v; mν2 ¼

1

2
mν; mν3 ¼ −mν; ð44Þ

yielding the same mass spectrum as in Eq. (40). Using
oscillation data for normal ordering [5] and the circle
diagram in Fig. 1, the parameters are

jmνj ¼ 57.8meV; jm0
vj ¼ 5.03 or 14.2meV: ð45Þ

The mass parameters we have introduced so far are either
completely determined from oscillation data or depend
only on b1, b2, b3 and m. Hence, there are only four
undetermined parameters.

C. TBM mixing and the familon vacuum structure

Central to the TBM seesaw mixing are Eqs. (24) and
(36), which align the familons φA and φz to φB in vacuum.
Suggestively, φA and φz can be expressed as quadratic
functions of φB in vacuum:

hφAi0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mν

b1b2b3

r 0
B@

0 −eiδ 0

1 0 0

0 0 1

1
CAhðφB · φBÞ3̄2i0;

hφzi0 ¼
m2

bz

b1b2b3

0
B@

1 0 0

0 0 −2
0 1 0

1
CAhðφB · φBÞ3̄2i0: ð46Þ

Equation (46) is expected to come from the minimization of
the familon potential in vacuum.
If we assume a simple vacuum alignment for φB, setting

hφBi0 ∼ bð1; 1; 1Þt, thus reducing the number of undeter-
mined mass parameters to two, φA and φz in scenario 1 are
also aligned in “crystallographic” directions:

0
B@
a1
a2
a3

1
CA¼

ffiffiffiffiffiffiffiffiffi
mνb

p 0
B@
−eiδ

1

1

1
CA;

0
B@
z1
z2
z3

1
CA¼m2

bz

b

0
B@

1

−2
1

1
CA: ð47Þ

In scenario 2, φz has similar vacuum alignment indepen-
dent of hφBi0.
In the next subsection we calculate the right-handed

neutrino masses from diagonalization of the Majorana
matrix. As we will see, setting b1 ¼ b2 ¼ b3 ≡ b greatly
simplifies the analysis and yields interesting cases of
degeneracy in the mass spectrum.

D. Right-handed neutrino mass spectrum

We now explore the right-handed neutrino masses in the
two scenarios discussed before. Although these scenarios
yield identical light neutrino mass spectra, their predictions
for the right-handed neutrinos are quite different.

1. Scenario 1: φB ∼ 32;φz ∼ 3̄2;φA ∼ 3̄2
In this case, the Majorana matrix is

M ¼

0
BBBBBB@

0 b2 b3
m2

bz
b1

b2 0 b1 − 2m2
bz

b3

b3 b1 0
m2

bz
b2

m2
bz
b1

− 2m2
bz

b3

m2
bz
b2

m

1
CCCCCCA
; ð48Þ

where bi ≠ 0. From Eqs. (37) and (41),

b1b2b3m
b1b2b3mþ 6m4

bz

¼ 0.48≡ 1

k
ð49Þ

⇒ m4
bz ¼

k − 1

6
mb1b2b3: ð50Þ

Setting b1 ¼ b2 ¼ b3 ≡ b, the characteristic equation for
M becomes

x4 −mx3 − bð3bþmðk − 1ÞÞx2
þ b2ðmðkþ 2Þ − 2bÞxþ 2b3km ¼ 0: ð51Þ

Its solutions yield the four right-handed neutrino masses:

mN 1
¼ −b;

mN 2
¼ 2b;

mN 3
¼ b

2

 �
m
b
− 1

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m
b
− 1

�
2

þ 4k
m
b

s !
;

mN 4
¼ b

2

 �
m
b
− 1

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m
b
− 1

�
2

þ 4k
m
b

s !
: ð52Þ

In Fig. 2, we plot the normalized mass spectrum with
respect to m

b.
There are several interesting cases of degeneracy in

the mass spectrum. mN 3
and mN 4

are degenerate for
−6.23 ≤ m

b ≤ −0.16. We also have two degenerate masses
at mb ¼ 0.65, 1, 1.46. And three of the masses are degenerate
for m

b ¼ −1.91;−0.48. Such degeneracies or near degener-
acies in the right-handed neutrino spectrum may be
interesting from the point of leptogenesis, where an
enhancement of the CP asymmetry is achieved for near-
degenerate masses [22].
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2. Scenario 2: φB ∼ 32;φv ∼ 3̄1;φA ∼ 3̄2
In this case the Majorana matrix M is simpler:

M ¼

0
BBB@

0 b2 b3 0

b2 0 b1 0

b3 b1 0 0

0 0 0 m

1
CCCA: ð53Þ

Again setting b1 ¼ b2 ¼ b3 ≡ b, the right-handed neutrino
masses are given by the following eigenvalues of M:

mN 1
¼−b; mN 2

¼−b; mN 3
¼ 2b; mN 4

¼m: ð54Þ

Unlike the previous scenario, the masses are dependent on
either b or m, but not both. The first two masses are
degenerate.
This ends our discussion of neutrino masses and mix-

ings. In the next section, we calculate the CP phases
predicted by the asymmetric texture and discuss their
implication for neutrinoless double-beta decay.

V. CP PHASES AND jmββj
In order to analyze the CP phases in the asymmetric

texture, consider the Jarlskog-Greenberg invariant J [6]
given by

ImðU ijUklU�
ilU

�
kjÞ ¼ J

X
n;m

ϵikmϵjln: ð55Þ

Letting i ¼ j ¼ 1 and k ¼ l ¼ 2 in the above equation
“fixes” the sign so that

J ¼ ImðU11U22U�
12U

�
21Þ: ð56Þ

The two analogous invariants associated with the Majorana
phases [23] are then

I1 ¼ ImðU12U�
11Þ2; I2 ¼ ImðU13U�

11Þ2: ð57Þ

Next, let U ¼ UPMNS in the PDG convention [5], so that

U ¼

0
B@

c12c13 c13s12 e−iδCPs13
−c23s12 − c12s13s23eiδCP c12c23 − s12s13s23eiδCP c13s23
s12s23 − c12c23s13eiδCP −c12s23 − c23s12s13eiδCP c13c23

1
CAP; ð58Þ

where P ¼ diagð1; eiα21=2; eiα31=2Þ is a diagonal matrix
of Majorana phases, sij ¼ sin θij and cij ¼ cos θij. The
Jarlskog-Greenberg invariant from Eq. (56) in the PDG
convention is given as

J PDG ¼ c12c213c23s12s13s23 sin δCP

¼ 1

8
s012s

0
13s

0
23c13 sin δCP; ð59Þ

where s0ij ¼ sin 2θij. Finally, the PDG Majorana invariants
are given by

IPDG
1 ¼ c212c

4
13s

2
12 sin α21;

IPDG
2 ¼ c212c

2
13s

2
13 sin ðα31 − 2δCPÞ: ð60Þ

From Eqs. (59) and (60), it is possible to extract the three
CP phases knowing the values of the angles in the PDG
convention.
The PMNS mixing matrix resulting from the asymmetric

texture [1] is parametrized as UPMNS ¼ Uð−1Þ†UTBMðδÞ,
where

Uð−1Þ ¼

0
BB@

1 − ð 2
9A2 þ 1

18
Þλ2 λ

3
2λ
3A

− λ
3

1 − λ2

18
Aλ2

− 2λ
3A ð−A − 2

9AÞλ2 1 − 2λ2

9A2

1
CCA

þOðλ3Þ: ð61Þ

From UPMNS, we calculate the mixing angles in the PDG
convention [cf. Eq. (58)] as

FIG. 2. Normalized right-handed neutrino mass spectrum. A
small number has been added to mN 3

to separate it from mN 4
in

the degenerate region −6.23 ≤ m
b ≤ −0.16. Note that these masses

become complex in this region; thus their modulus is degenerate,
although they have a relative phase.

TRIBIMAXIMAL MIXING IN THE SUð5Þ × T 13 … PHYS. REV. D 101, 075018 (2020)

075018-9



θ13¼
λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þ4Acosδþ4

p

3
ffiffiffi
2

p
A

þOðλ3Þ;

θ23¼
π

4
þð4−4ð9A3þAÞcosδ−A2Þ

36A2
λ2þOðλ3Þ;

θ12¼sin−1
�

1ffiffiffi
3

p
�
þ2cosδ−A

3
ffiffiffi
2

p
A

λþ sin2δ

9
ffiffiffi
2

p
A2

λ2þOðλ3Þ: ð62Þ

Notice that angles in the above equation are just perturba-
tive corrections in the expansion parameter λ to the initial
angle starting points of UTBMðδ ¼ 0Þ.
Using the perturbatively calculated angles of Eq. (62), it

is possible to find the Jarlskog-Greenberg invariant of
Eq. (59) and Majorana invariants of Eq. (60):

J ¼ λ sin δ
9A

−
λ2 sin δ
27A

þOðλ3Þ;

I1 ¼
4λ sin δ
9A

−
2λ2 sin δðA − 2 cos δÞ

27A2
þOðλ3Þ;

I2 ¼
4λ2 sin δðAþ 2 cos δÞ

27A2
þOðλ3Þ: ð63Þ

Note that, in the asymmetric texture, all the invariants have
the same sign, determined by sinðδÞ.
Following the results of Ref. [1], we calculate, to Oðλ3Þ,

the mixing angles as

θ13 ¼ 8.33°; θ23 ¼ 44.87°; θ12 ¼ 34.09°; ð64Þ

and the invariants as

J ¼ 0.028;

I1 ¼ 0.106;

I2 ¼ 0.011;

or

J ¼ −0.028;
I1 ¼ −0.106;
I2 ¼ −0.011:

ð65Þ

The above values can be used to extract values for the CP
phases [cf. Eqs. (59) and (60)]:

sinδCP ¼ 0.854;

sinα21¼ 0.515;

sinðα31−2δCPÞ¼ 0.809;

or

sinδCP ¼−0.854;
sinα21¼−0.515;
sinðα31−2δCPÞ¼−0.809:

ð66Þ

With the three light neutrino masses and the Dirac and
Majorana phases determined, we can now express the
effective Majorana mass parameter in neutrinoless double-
beta decay as [24]

jmββj ¼ jc213c212mν1 þ c213s
2
12e

iα21mν2 þ s213mν3e
iðα31−2δCPÞj:

ð67Þ

Note that in Eq. (66) all the signs are either positive or
negative. This does not make any difference in evaluating
jmββj in Eq. (67). However, there are ambiguities in the signs
of the light neutrino masses. For example, in Eq. (39), these
masses have been expressed in terms of m

μ and mν. The
absolute value of mμ andmν has been determined in Eq. (41),
but the signs remain undetermined.Depending onwhich sign
is realized, jmββj is predicted to be one of the following:

jmββj ¼ 13.02 or 25.21 meV: ð68Þ

The most stringent experimental upper bound on jmββj is
in between 61 and 165 meV, reported recently by the
KamLAND-Zen experiment [16].4 Both of our predicted
values are within an order of magnitude of this limit.
This ends our discussion of the seesaw sector. In the next

section, we summarize the components and predictions of
the model.

VI. SUMMARY OF THE MODEL

We proposed a phenomenologically successful
framework—a diagonal Yð2=3Þ, asymmetric Yð−1=3Þ and
Yð−1Þ related by SUð5Þ grand unification, and a complex-
TBM seesaw mixing—in Ref. [1]. In Ref. [7], we built a
model based on SUð5Þ × T 13 symmetry that constructs the
asymmetric Yð−1=3Þ and Yð−1Þ textures. In this paper, we
show how the diagonal Yð2=3Þ texture and the complex-TBM
seesaw mixing follows from the SUð5Þ × T 13 symmetry.
We now put all the pieces of the puzzle together to construct
a unified model that describes both quarks and leptons.
The gauge and family symmetry of the model are SUð5Þ

and T 13, respectively. This still allows some unwanted
operators at the tree level. In Appendix C, we show that
such operators can be prevented by introducing a Zn
“shaping” symmetry, where n is determined to be 14 for
the scenario with no φv and 12 with no φz. Thus the full
symmetry of the unified model is SUð5Þ × T 13 × Zn.

A. Particle content and their
transformation properties

The tree-level Lagrangian of the model is

L¼ y0TΔ̄H5̄ þ y1FΔφð1Þ þ y2FΔφð2Þ þ y3Δ̄Δφð3Þ þ y4FΔφð4Þ þ y5FΔφð5Þ þMΔΔ̄Δþ y6FΣ̄H4̄5 þ y7TΣφð6Þ þMΣΣ̄Σ

þ y8TΓφ
ðtÞ
31
þ y9TΩφ

ðtÞ
31
þ y10TΘφ

ðtÞ
31
þ y11TΓ̄H̄5 þ y12ΓΩ̄φ32 þ y13ΘΘ̄φ32 þ y14ΓΘ̄φ32 þMΓΓ̄ΓþMΩΩ̄ΩþMΘΘ̄Θ

þ yAFΛH̄5 þ y0AN̄ Λ̄φA þ yBN̄ N̄ φB þ y0vN̄ Λ̄φv þMΛΛ̄Λþ yzN̄N̄4φz þmN̄4N̄4; ð69Þ

4See [25] for other recent results.
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where only one of φz and φv is present. The first line
describe the down-type quarks and charged leptons, the
second line yield the up-type quark masses and the last line
depict the seesaw sector of the model. The Zn symmetry
ensures that the familons and messengers in one sector do
not mix with fields in the other sector. In Table I, we show
the transformation properties of the fields in each sector.

B. Familon vacuum structure

The familons in the quark and charged-lepton sectors
have a “crystallographic” feature in vacuum, in the sense
that they are aligned along sides or face diagonals of a cube.
The seesaw sector familons, which depend on b1, b2, b3,
are also similarly aligned if we set b1 ¼ b2 ¼ b3 ≡ b. In
Table II, we list all vacuum alignments.
Note that the vacuum expectation values of φA and φv

contain a nontrivial phase δ, as required by the alignment
conditions of the seesaw sector. We view this as an
interesting constraint on the parameters of the familon
vacuum potential, to be studied in a follow-up work.

C. Predictions

The model successfully reproduces the CKM mixing
angles, Gatto relation, GUT-scale mass ratios of up-type
quarks, down-type quarks and charged leptons as well as
the PMNS mixing angles.
The key predictions of the model are
(i) leptonic CP violation, with the Jarlskog-Greenberg

invariant jJ j ¼ 0.028, Majorana invariants jI1j ¼
0.106 and jI2j ¼ 0.011,

(ii) normal ordering of light neutrino masses: mν1 ¼
27.6 meV, mν2 ¼ 28.9 meV, and mν3 ¼ 57.8 meV,
and

(iii) invariant mass parameter in neutrinoless double-beta
decay jmββj ¼ 13.02 or 25.21 meV.

The first prediction (jJ j) is consistent with the current
PDG fit [5] and translates into δCP ¼ �0.68π [1]. Although
the current expected error in global fit for δCP is too wide, it
is expected that next-generation experiments like DUNE
[26] and Hyper-K [27] will measure this with 5σ precision
in the next decade.
The second prediction for ordering of light neutrino

masses can, in principle, be tested experimentally in three
ways [21]: (i) oscillation experiments that directly measure
the sign of Δm2

31, (ii) cosmological bounds on
P

i jmνi j,
and (iii) measurement of jmββj in neutrinoless double-beta
decay experiments. If

P
i jmνi j<10meV or jmββj<10meV,

we can rule out inverted ordering [21], assuming neutrinos
are Majorana particles; but neither of these materializes in
this model. Hence, we must rely on oscillation experiments
to determine the mass ordering. The current fit from various
experiments (e.g., Super-Kamiokande [28], T2K [29], and
NOvA [30]) gives above 3σ preference for normal over
inverted ordering. A 3σ rejection of the wrong mass
ordering will be obtained in Hyper-K [27] after 5 yr of
data taking. DUNE will be able to measure the mass

TABLE I. Charge assignments of matter, Higgs, messenger and familon fields. Z14 charges apply for the scenario with no φv and Z12

for no φz. The symbol × implies not applicable. Here η14 ¼ ζ12 ¼ 1.

Higgs Down-type quark and charged-lepton sector

Fields H5̄ H45 F T Δ Σ φð1Þ φð2Þ φð3Þ φð4Þ φð5Þ φð6Þ

SUð5Þ 5̄ 45 5̄ 10 5 10 1 1 1 1 1 1
T 13 1 1 32 31 32 31 3̄2 32 3̄1 3̄2 3̄1 32
Z14 η3 η4 η1 η1 η4 η5 η9 η9 1 η9 η9 η8

Z12 ζ3 ζ1 ζ1 1 ζ3 ζ2 ζ8 ζ8 1 ζ8 ζ8 ζ10

Up-type quark sector Seesaw sector

Fields Γ Ω Θ φðtÞ
31

φ32 N̄ N̄4 Λ φA φB φz φv

SUð5Þ 10 10 10 1 1 1 1 1 1 1 1 1
T 13 32 3̄2 3̄1 31 32 32 1 3̄1 3̄2 32 3̄2 3̄1
Z14 η12 η12 η12 η1 1 η5 η7 η2 η11 η4 η2 ×
Z12 ζ9 ζ9 ζ9 ζ3 1 ζ3 1 ζ2 ζ11 ζ6 × ζ2

TABLE II. Vacuum alignment of familons, setting
b1 ¼ b2 ¼ b3 ≡ b.

Down-type quark and
charged-lepton sector

Up-type quark and
seesaw sector

hφð1Þi0 ∼mbð1; 0; 0Þ hφðtÞ
31
i0 ∼mtð1; 0; 0Þ

hφð2Þi0 ∼ dλmbð0; 1; 0Þ hφ32i0 ∼ λ4ð1; 0; 0Þ
hφð3Þi0 ∼ bλ3mbð0; 0; 1Þ hφBi0 ∼ bð1; 1; 1Þ
hφð4Þi0 ∼ aλ3mbð0; 1; 1Þ hφAi0 ∼

ffiffiffiffiffiffiffiffiffi
mνb

p ð−eiδ; 1; 1Þ
hφð5Þi0 ∼ gλ2mbð1; 0; 1Þ hφzi0 ∼ m2

bz
b ð1;−2; 1Þ

hφð6Þi0 ∼ cλ2mbð0; 0; 1Þ hφvi0 ∼
ffiffiffiffiffiffiffiffiffiffi
mm0

2

p ð2;−1; eiδÞ
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ordering with a significance above 5σ after 7 yr of data
taking [26].
The second prediction also gives

P
i jmνi j¼114.3meV,

to be compared with the strictest cosmological upper
bound of 120 meV reported recently by combining various
sources of data by the Planck Collaboration [13].
Combining the data from large-scale structure surveys,
e.g., Euclid [31] and LSST [32] to DESI [33] and WFIRST
[34], the error margin on

P
i jmνi j will be constrained to

less than 11 [35], and 8 meV [36], respectively. These
estimates can test our prediction in coming years.
The third prediction is consistent with the recently

reported upper bound of 61–165 meV by the
KamLAND-Zen experiment [16] and is expected to be
tested in next-generation experiments in R&D [37]
(LEGEND, 11–28 meV [38]; CUPID, 6–17 meV [39];
nEXO, 8–22 meV [40]; SNOþ-II, 20–70 meV [41];
AMoRE-II, 15–30 meV [42]; PandaX-III, 20–55 meV
[43]), which will be sensitive to the range of our predic-
tions. If either of our predictions is correct, these experi-
ments will detect neutrinoless double-beta decay [37].

VII. THEORETICAL MUSINGS

We have presented an asymmetric unified texture of
quarks and leptons. Under the grand-unified SUð5Þ times
the discrete family symmetry T 13 its fermion content
T; F; N̄; N̄4 is

ð10; 32Þ ⊕ ð5̄; 31Þ ⊕ ð1; 32Þ ⊕ ð1; 1Þ:

By upgrading SUð5Þ to SOð10Þ, we get a simpler
particle content:

SOð10Þ × T 13∶ ð16; 32Þ ⊕ ð10; 31Þ ⊕ ð1; 1Þ: ð70Þ

The decomposition SOð10Þ ⊃ SUð5Þ ×Uð1Þ,

16 ¼ 10−1 ⊕ 5̄3 ⊕ 1−5; 10 ¼ 52 ⊕ 5̄−2;

shows that the 5 in the 10 can couple to the 5̄ in the 16 and
acquire a heavy ΔIw ¼ 0 vectorlike mass. This leaves T
and N̄ embedded inside the 16 and explains their similar
labeling.
The grand-unified group above SOð10Þ is the excep-

tional group E6. Its complex 27-dimensional fundamental
representation decomposes under E6 ⊃ SOð10Þ × Uð1Þ as

27 ¼ 161 ⊕ 10−2 ⊕ 14;

which are precisely the representations in the asymmetric
texture’s particle set. It is a suggestive pattern: matching the
representations of the gauge group to those of the discrete
group. The mother symmetry could be E6 × Gf, where Gf

is a continuous group that contains T 13 [44].

There are several ways to see how T 13 fits in a
continuous group. The first is

G2 ⊃ PSL2ð13Þ ⊃ Z13 ⋊ Z6 ⊃ Z13 ⋊ Z3 ¼ T 13

with the embeddings

7 →
7

70
→ 6 →

31
32

which occurs through the embedding of G2 ’s real 7
representation.
The second way is more direct with

G2 ⊃ SUð3Þ ⊃ Z13 ⋊ Z3 ¼ T 13;

7 → 1 ⊕ 3 ⊕ 3̄ →
31
32

:

All paths seem to lead to the continuous exceptional group
G2, whose seven-dimensional representation describes the
coset manifold of 11-dimensional space-time.
It would be nice to obtain the particle content of Eq. (70)

as the result of a spontaneously broken theory. For this we
need both SOð10Þ and T 13 to be extended so as to be able
to pair their representations as described. To that purpose
the representations must be tagged. On the gauge side it is
easy since the E6 decomposition into SOð10Þ contains a
continuous Uð1Þ. On the family side, there is no available
tag, so we must invent one.

VIII. CONCLUSION

Continuing from our recent work in Ref. [7], we have
derived the up-type quark sector of the asymmetric texture
[1] and the complex-tribimaximal seesaw mixing from an
SUð5Þ × T 13 × Zn symmetry. This results in a unified
model for quarks and leptons from SUð5Þ gauge unification
and T 13 family symmetry.5

T 13, an off-the-beaten-road subgroup of SUð3Þ, is a
powerful family symmetry. Its ability to label each matrix
element of a Yukawa texture with a distinct Z13 charge
makes it an ideal candidate for constructing the asymmetric
texture. Although not evident straightaway, we showed in
Ref. [7] that it is capable of naturally producing the zero-
subdeterminant condition of the Yð−1=3Þ and Yð−1Þ textures.
In this paper we have shown how it yields the hierarchical
diagonal structure of the Yð2=3Þ texture.
What comes as a true surprise is how the complex-

tribimaximal mixing arises from the familon vacuum
structure in T 13. The Clebsch-Gordan coefficients of the

5See, e.g., [45] for other unified models employing gauge and
family symmetry.
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group yield a off-diagonal symmetric Majorana submatrix,
whose decomposition offers TBM seesaw mixing without
fine-tuning the familon vacuum expectation values. All
familons in the seesaw sector take crystallographic vacuum
alignments for the special case where the familon gen-
erating the Majorana submatrix lies along (1, 1, 1) in
vacuum.
The seesaw sector uses a minimal number of familons.

However, the conventional three right-handed neutrino case
fails to yield a light neutrino mass spectrum consistent with
oscillation data. Introducing a fourth right-handed neutrino,
we predict normal ordering of light neutrino masses:
mν1 ¼ 27.6 meV, mν2 ¼ 28.9 meV and mν3 ¼ 57.8 meV.
Compared to the sum of neutrino masses restricted
by cosmological upper bound (120 meV), our prediction
yields 114.3 meV. The model presented in this paper
can be falsified with a slight improvement in the cosmo-
logical bound.
In Ref. [1], we required a phase in the TBM seesaw

mixing to reproduce the experimentally determined PMNS
angles. In our analysis, this phase arises from the vacuum
expectation value of the seesaw familons. Reference [46]
discusses a different approach where this phase can arise
from the residual flavor and generalized CP symmetries
[47] of the effective neutrino mass matrix. This phase
yields CP phases in the lepton sector, best represented in
terms of invariants to avoid ambiguity with many existing
definitions. We predict the Jarlskog-Greenberg invariant
jJ j ¼ 0.028 for Dirac CP violation and Majorana invar-
iants jI1j ¼ 0.106 and jI2j ¼ 0.011. Although no strict
bound exists on the Majorana invariants from current
experiments [48], our prediction for J matches with the
current PDG fit, albeit with a sign ambiguity. Light
neutrino masses and CP phases make a prediction for
neutrinoless double-beta decay, with the invariant mass
parameter jmββj determined to be either 13.02 or
25.21 meV depending on the sign of model parameters.
Compared to the latest upper bound (61–165 meV) from
the KamLAND-Zen experiment, both of these are only an
order of magnitude away.
We also explore the right-handed neutrino mass spec-

trum in terms of two parameters. Several curious cases of
degeneracy arise for a range of values of the parameters. We
think these degeneracies may lead to interesting physics,
particularly when one considers the decay of the right-
handed neutrinos in the context of leptogenesis. Exploring
this is the aim of a future publication.
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APPENDIX A: T 13 GROUP THEORY

T 13 ¼ Z13 ⋊ Z3 has two generators a and b, related to
the subgroups Z13 and Z3. These generators are non-
trivially related to each other, yielding the presentation

ha; bja13 ¼ b3 ¼ I; bab−1 ¼ a3i:

Its order is 13 × 3 ¼ 39 and it is a subgroup of both SUð3Þ
and G2.
It has a trivial singlet, a complex singlet (and its

conjugate) and two complex triplets (and their conjugates),
so that

12 þ 12 þ 12 þ 32 þ 32 þ 32 þ 32 ¼ 39:

The complex singlet is denoted by 10 and the complex
triplets are denoted by 31 and 32.
In this Appendix, we list the Kronecker products and

Clebsch-Gordan coefficients of T 13. For further details,
see [49].

1. Kronecker products

10 ⊗ 10 ¼ 1̄0; 10 ⊗ 1̄0 ¼ 1;

10 ⊗ 3i ¼ 3i; 1̄0 ⊗ 3i ¼ 3i;

31 ⊗ 31 ¼ 3̄1 ⊕ 3̄1 ⊕ 32;

32 ⊗ 32 ¼ 3̄2 ⊕ 3̄1 ⊕ 3̄2;

31 ⊗ 3̄1 ¼ 1 ⊕ 10 ⊕ 1̄0 ⊕ 32 ⊕ 3̄2;

32 ⊗ 3̄2 ¼ 1 ⊕ 10 ⊕ 1̄0 ⊕ 31 ⊕ 3̄1;

31 ⊗ 32 ¼ 3̄2 ⊕ 31 ⊕ 32;

31 ⊗ 3̄2 ¼ 3̄2 ⊕ 31 ⊕ 3̄1;

32 ⊗ 3̄1 ¼ 32 ⊕ 31 ⊕ 3̄1:
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2. Clebsch-Gordan coefficients0
B@

j1i
j2i
j3i

1
CA

31

⊗

0
B@

j10i
j20i
j30i

1
CA

31

¼

0
B@

j1ij10i
j2ij20i
j3ij30i

1
CA

32

⊕

0
B@

j2ij30i
j3ij10i
j1ij20i

1
CA

3̄1

⊕

0
B@

j3ij20i
j1ij30i
j2ij10i

1
CA

3̄1

;

0
B@

j1i
j2i
j3i

1
CA

32

⊗

0
B@

j10i
j20i
j30i

1
CA

32

¼

0
B@

j2ij20i
j3ij30i
j1ij10i

1
CA

3̄1

⊕

0
B@

j2ij30i
j3ij10i
j1ij20i

1
CA

3̄2

⊕

0
B@

j3ij20i
j1ij30i
j2ij10i

1
CA

3̄2

;

0
B@

j1i
j2i
j3i

1
CA

31

⊗

0
B@

j10i
j20i
j30i

1
CA

32

¼

0
B@

j3ij30i
j1ij10i
j2ij20i

1
CA

31

⊕

0
B@

j3ij10i
j1ij20i
j2ij30i

1
CA

3̄2

⊕

0
B@

j3ij20i
j1ij30i
j2ij10i

1
CA

32

;

0
B@

j1i
j2i
j3i

1
CA

31

⊗

0
B@

j10i
j20i
j30i

1
CA

3̄2

¼

0
B@

j1ij10i
j2ij20i
j3ij30i

1
CA

3̄1

⊕

0
B@

j2ij30i
j3ij10i
j1ij20i

1
CA

3̄2

⊕

0
B@

j2ij10i
j3ij20i
j1ij30i

1
CA

31

;

0
B@

j1i
j2i
j3i

1
CA

32

⊗

0
B@

j10i
j20i
j30i

1
CA

3̄1

¼

0
B@

j1ij10i
j2ij20i
j3ij30i

1
CA

31

⊕

0
B@

j1ij20i
j2ij30i
j3ij10i

1
CA

3̄1

⊕

0
B@

j3ij20i
j1ij30i
j2ij10i

1
CA

32

;

0
B@

j1i
j2i
j3i

1
CA

31

⊗

0
B@

j10i
j20i
j30i

1
CA

3̄1

¼

0
B@

j1ij20i
j2ij30i
j3ij10i

1
CA

3̄2

⊕

0
B@

j2ij10i
j3ij20i
j1ij30i

1
CA

32

⊕ ðj1ij10i þ j2ij20i þ j3ij30iÞ1
⊕ ðj1ij10i þ ωj2ij20i þ ω2j3ij30iÞ10
⊕ ðj1ij10i þ ω2j2ij20i þ ωj3ij30iÞ1̄0 ;0

B@
j1i
j2i
j3i

1
CA

32

⊗

0
B@

j10i
j20i
j30i

1
CA

3̄2

¼

0
B@

j2ij30i
j3ij10i
j1ij20i

1
CA

31

⊕

0
B@

j3ij20i
j1ij30i
j2ij10i

1
CA

3̄1

⊕ ðj1ij10i þ j2ij20i þ j3ij30iÞ1
⊕ ðj1ij10i þ ωj2ij20i þ ω2j3ij30iÞ10
⊕ ðj1ij10i þ ω2j2ij20i þ ωj3ij30iÞ1̄0 ;

ðj1iÞ10 ⊗

0
B@

j10i
j20i
j30i

1
CA

3i

¼

0
B@

j1ij10i
ωj1ij20i
ω2j1ij30i

1
CA

3i

;

ðj1iÞ1̄0 ⊗

0
B@

j10i
j20i
j30i

1
CA

3i

¼

0
B@

j1ij10i
ω2j1ij20i
ωj1ij30i

1
CA

3i

; ω3 ¼ 1:

APPENDIX B: ALTERNATIVE CHOICES FOR φA AND φB

We chose φA ∼ 3̄2 and φB ∼ 32 and showed how TBMmixing and normal ordering of light neutrino masses follow from
the familon vacuum structure.
The particular form of A in (11) becomes important in Eq. (22), which requires A to have the same form as CP0. For

φA ∼ 3̄1 and φA ∼ 32, choosing P0 ≡ ð23Þ and (1 3), respectively, matches A to CP0 and leads to similar results as
in Sec. IV.
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TBM diagonalization of the seesaw matrix requires the
decompositions in Eqs. (14) and (17). Choosing the
diagonal form of B in (12) implies that in Eq. (14) G must
be diagonal, which from Eq. (17) requires Db to be
proportional to diagð1; 1; 1Þ. This eventually leads to a
completely degenerate light neutrino mass spectrum for the
three right-handed neutrino case. Introducing a fourth right-
handed neutrino can only correct one of the light neutrino
masses, still leaving the other two degenerate, incompatible
with oscillation data.

APPENDIX C: THE Zn “SHAPING” SYMMETRY

The SUð5Þ × T 13 symmetry allows some operator such
as FΔφð3Þ (the detailed list of such operators is too
exhaustive) which could perturb the texture. Suppose there
is a Zn symmetry whose purpose is to prohibit these terms.
We use ½·� to denote the Zn charges of the respective

fields. Our starting point is to define the Zn charges of the
following fields:

½F� ¼ a; ½T� ¼ b; ½H5̄� ¼ c;

½H4̄5� ¼ d; ½N̄� ¼ e; ½N̄4� ¼ f: ðC1Þ

Then the Zn charges of the rest of fields in the scenario
with no φv can be deduced from the couplings in the
Lagrangian in Eq. (69):

½Δ� ¼ bþ c; ½Σ� ¼ aþ d; ½Γ� ¼ ½Ω� ¼ ½Θ� ¼ b− c;

½Λ� ¼ a− c; ½φðtÞ
31
� ¼ c− 2b;

½φð1Þ� ¼ ½φð2Þ� ¼ ½φð4Þ� ¼ ½φð5Þ� ¼ −a− b− c;

½φð6Þ� ¼ −a− b− d; ½φB� ¼ −2e;

½φz� ¼ −e− f; ½φA� ¼ c− a− e;

½φð3Þ� ¼ ½φ32 � ¼ 0: ðC2Þ

It is convenient to focus on the couplings of the familons
and define

a0 ¼ ½φA� ¼ c − a − e; ðC3Þ

b0 ¼ ½φðtÞ
31
� ¼ c − 2b; ðC4Þ

c0 ¼ ½φð1Þ� ¼ −a − b − c; ðC5Þ

d0 ¼ ½φð6Þ� ¼ −a − b − d; ðC6Þ

e0 ¼ ½φB� ¼ −2e; ðC7Þ

f0 ¼ ½φz� ¼ −e − f: ðC8Þ

To make sure these familons do not mix with each other,
they should obey the following constraints:

a0; b0; c0; d0; e0; f0 ≠ 0; ðC9Þ

2a0; 2b0; 2c0; 2d0 ≠ 0; ðC10Þ

a0 ≠ �b0;�c0;�d0;�e0;�f0; ðC11Þ

b0 ≠ �c0;�d0;�e0;�f0; ðC12Þ

c0 ≠ �d0;�e0;�f0; ðC13Þ

d0 ≠ �e0;�f0; ðC14Þ

e0 ≠ −f0; ðC15Þ

e0 − 2f0 ¼ 0; ðC16Þ

d0 − b0 ≠ �a0;�b0;�c0;�d0;�e0;�f0: ðC17Þ

These constraints have no solution for n < 14. For
n ¼ 14, there are many sets of solutions, from which we
adopt the following:

fn; a0; b0; c0; d0; e0; f0g ¼ f14; 11; 1; 9; 8; 4; 2g

and using Eqs. (C3)–(C8) we get

fa; b; c; d; e; fg ¼ f1; 1; 3; 4; 5; 7g:

Then Eqs. (C1) and (C2) give the Z14 charges of the fields
in the model.
For the scenario with no φz, we redefine f0 ¼ ½φv�. In

this case there is no solution for n < 12. For n ¼ 12, there
are many solutions, from which we adopt

fn; a0; b0; c0; d0; e0; f0g ¼ f12; 11; 3; 8; 10; 6; 2g:

In either case, there remains an unwanted vertex Θ̄Ωφ32
allowed for any choice of n, which yields the diagram

and contributes Oðλ8Þ terms to the up-type quark mass
matrix

Yð2=3Þ ¼

0
B@

2λ8 0 λ8

0 λ4 0

λ8 0 1

1
CA: ðC18Þ

Since it happens at Oðλ8Þ, we consider it insignificant.
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