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We extend the recently proposed SU(5) x 7 ;3 model for the asymmetric texture to the up-type quark
and seesaw sectors. The hierarchical up-type quark masses are generated from higher-dimensional
operators involving family-singlet Higgses, gauge-singlet familons, and vectorlike messengers. The
complex-tribimaximal seesaw mixing arises from the vacuum structure of a minimal number of familons,
resulting in an alignment between the Yukawa and Majorana matrices of the seesaw formula. Introducing
four right-handed neutrinos, normal ordering of the light neutrino masses is obtained, with
m,, =27.6 meV, m, =289 meV and m, = 57.8 meV. Their sum almost saturates Planck’s cosmo-
logical upper bound (120 meV). The right-handed neutrino masses are expressed in terms of two
parameters for a particular choice of familon vacuum alignment. We predict the C7 Jarlskog-Greenberg
invariant to be | 7| = 0.028, consistent with the current Particle Data Group (PDG) estimate, and Majorana
invariants |Z;| =0.106 and |Z,| = 0.011. A sign ambiguity in the model parameters leads to two
possibilities for the invariant mass parameter |n4|: 13.02 or 25.21 meV, both within an order of magnitude

of the most rigorous experimental upper limit (61-165 meV).
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I. INTRODUCTION

In Ref. [1], three of us proposed a minimally asymmetric
Yukawa texture for the down-type quark matrix, Y(='/3),
and charged lepton matrix, Y(=1), in the context of SU(5)
gauge unification. Assuming a diagonal up-type quark
Yukawa matrix Y(?>/3), this texture successfully reproduces
the quark mixing angles and the mass ratios of the down-
type quarks and charged leptons in the deep ultraviolet. The
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) lepton mix-
ing matrix bridges the Al,, = % physics of charged leptons
to the unknown Al,, = 0 physics of the seesaw sector:

Upmns = u(_l)#useesaW' (1)

The large atmospheric and solar angles in the PMNS matrix
are explained by tribimaximal (TBM) [2] seesaw mixing,
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whereas the small reactor angle emerges entirely from the
“Cabibbo haze” [3] provided by the charged leptons.
Adding a single CP phase [4] to TBM reproduces all three
angles within 1o of their PDG global fits [5]. Moreover, the
phase yields the CF Jarlskog-Greenberg invariant [6] to be
| 7| = 0.028, consistent with PDG [5].

In Ref. [7], we introduced a model where the “fine-
tunings” of the asymmetric texture are upgraded to “natural”
relations with the addition of a discrete family symmetry
(see [8] and the references therein) 7 ;3 = Z;3 X Z3, the
smallest subgroup of SU(3) with two inequivalent triplets
[9], which are necessary to generate the asymmetry. Folded
in with grand-unified theory (GUT) SU(S5), this model
explains the features of the AF, :% down-type quark
and charged-lepton Yukawa matrices constructed from
higher-dimensional operators in terms of gauge-singlet
familons, family-singlet Higgses, and messengers with
heavy vectorlike masses. A key feature of the model is
“crystallographic” familon vacuum alignments, implying
that all nonzero components of the triplet and antitriplet
familons obtain the same order of vacuum expectation
values.

This paper expands the analysis to the up-type quark and
seesaw sectors of the model. The up-type quark masses are
explained by dimension-five, -six, and -seven operators,
which yield a diagonal Y/3) and reproduce their ultraviolet
hierarchy.

Published by the American Physical Society
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Turning to the Al,, = 0 seesaw sector, we show how the
complex-TBM seesaw mixing arises from the vacuum
structure of a minimal number of familons, resulting
from the 7,3 Clebsch-Gordan coefficients." It requires
an alignment between the Yukawa (Y©) and Majorana
(M) matrices of the seesaw formula

S=YOM1yO" )

without the need to specify familon vacuum expectation
values. The minimal construction with three right-handed
neutrinos with TBM mixing yields mass relations between
the light neutrinos incompatible with the oscillation data
[5]. The addition of a gauge-singlet fourth right-handed
neutrino is shown to produce TBM seesaw mixing, and
m,, = %ml,3 in two different scenarios, and by using the
oscillation data [5] generates the three light neutrino masses
in normal ordering: m, = 27.6 meV, m,, = 28.9 meV
and m,, = 57.8 meV, with their sum close to the Planck
value (120 meV) [13].

The four right-handed neutrino masses are calculated in
terms of two parameters assuming simple vacuum align-
ments of the seesaw familons. We find curious cases of
degeneracies in their mass spectrum.

We also calculate the CP Dirac and Majorana phases
[14] yielded by the asymmetric texture with complex-TBM
seesaw mixing. Together with the light neutrino masses,
they predict the invariant mass parameter |mg;| in neu-
trinoless double-beta decay [15] to be either 13.02 or
25.21 meV, depending on the sign of the parameters, within
an order of magnitude of the recently measured upper limit
of 61-165 meV by the KamLLAND-Zen experiment [16].

The SU(5) x T3 symmetry still allows for some
unwanted tree-level vertices which can be prohibited by
introducing a Z, symmetry, where n = 14 or 12 depending
on which of the two aforementioned scenarios is realized in
the seesaw sector. The full symmetry of the unified model is
therefore SU(5) x T3 x Z,,, successfully explaining the
masses and mixings of both quarks and leptons.

The organization of the paper is as follows. In Sec. II,
we review the construction of the asymmetric texture, its
key features, and how they are realized by a 7 |3 family
symmetry. Section III explains how the hierarchical up-type
quark Yukawa texture is built from higher-dimensional
operators. Section IV discusses the seesaw sector in detail.
In Sec. V, we calculate the Majorana phases and the
invariant mass parameter |m4|. We summarize the unified
model in Sec. VI. Section VII discusses the theoretical
outlook and we conclude in Sec. VIIIL.

'Reference [10] scans over subgroups of SU(3) and identifies
T 15 as one of the groups that can yield TBM mixing. See [11] for
other approaches to study neutrino mixing with TBM in relation
to 7 |3 family symmetry as well as [12] for a recent review of
neutrino flavor symmetries.

II. ASYMMETRIC TRIBIMAXIMAL
TEXTURE FROM T,

In this section we review the key features of the
asymmetric texture and how it emerges from the discrete
family symmetry 7 ;5. Our approach is inspired by “gauge
simplicity” and “seesaw simplicity” in the deep ultraviolet.
Gauge simplicity leads to SU(5) grand unification of the
Standard Model gauge groups and relates Y(~'/3) to (=1,
Renormalization group running to the deep ultraviolet hints
at suggestive relations between quark and charged-lepton
masses:

2 4
My Me o M Ao me A
~ T 8, ~ ~
m, m, my, 3 m, 9
m
£~ 22, m, & m,, (3)
m‘L’

relating quark mass ratios to mixing angles through the
Gatto relation [17]

M 2, (4)

mS
and implies that
det Y=1/3) x det Y=, (5)

where 4~ 0.225 is the Wolfenstein parameter. The GUT-
scale relations of Eq. (3) imply (m,,/m)(m,/m,)~9, which
is in tension with the recent estimate (m,/m)(my/m,) ~
10.7538 [18].

Seesaw simplicity suggests that the two large angles in
the PMNS lepton mixing matrix arise from a bilarge mixing
matrix, e.g., TBM, assuming that the small reactor angle is
entirely generated by Cabibbo haze from the charged
leptons.

However, symmetric Y(~!/3) textures in SU(5) are
incompatible with TBM mixing [19], and seesaw simplicity
requires us to search for the minimal asymmetry in Y(~1/3)
that yields the PMNS angles [1]. Under the assumption that
all Yukawa couplings are real, and there is only one 45
coupling (inspired by minimality), a unique Georgi-
Jarlskog-like [20] texture at the GUT scale emerges [1]:

Y3 ~ diag(28, 2%, 1),
bdi* aX* bA}
YR o | ard ear ga? and

i g 1
bdi*  al®  di
YEU ~ [ ad =3e22 g2 |, (6)

b3 g2 1
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where in terms of the Wolfenstein parameters A, p, and 7,
the O(1) prefactors [1] are’

1 2a 2
—c=-, =A, b=A\/p*+n*, d="=—.
a=c 3 g p-+n g 34

The solo 45 coupling ¢ appears only in the (22) position
and implies that the subdeterminant with respect to it must
vanish to satisfy Eq. (5). This texture successfully repro-
duces the Cabibbo-Kobayashi-Maskawa (CKM) mixing
angles, the Gatto relation, and the GUT-scale mass relations
(up to an overall constant) [1]:

my, = 1.019,
m, = 1.019,

my = 0.99424/3,
m, =0.91214/9,

m, =0.95142/3,
m, =1.03642.  (7)

These yield (m,/my)(m,/m,) = 10.7, in agreement with
Ref. [18] but in slight disagreement with Georgi-Jarlskog’s
relations in SU(5), and do not change the structure of the
texture.

With TBM seesaw mixing, the texture of Eq. (6) slightly
overestimates the reactor and solar angles and underesti-
mates the atmospheric angle. All angles are brought within
1o of their PDG fit [5] by introducing a single phase 0 =
78° [1] in the TBM matrix:

1 0 0 I 5 0

Ugm(d) =0 1 0 _% \/% %ﬁ (8)
0 0 ei‘s 1 11
NG NV

It generates a CF Dirac phase |5¢-p| = 0.687, yielding the
Jarlskog-Greenberg invariant [6] |7| = 0.028, consistent
with the current PDG estimate [5].

Although phenomenologically successful, the asymmet-
ric TBM texture was constructed without concern for fine-
tuning. Its key features are

(i) an asymmetric term in Y(=/3) and Y-V,

(i1) a vanishing subdeterminant with respect to the (22)

element of Y(=1/3) and Y=V,
(iii) a diagonal hierarchical Y (2/3) and

(iv) TBM seesaw mixing with a phase.

These fine-tuned features become natural when they
originate from a discrete family symmetry.

In Ref. [7], we identified 7,3 = Z3 X Z5 as the
smallest non-Abelian discrete subgroup of SU(3) capable
of reproducing the first two features. Assuming the
fermions F and 7 transform as 73 triplets but the
Higgs H as a family singlet, the A, = %effective operators
are at least of dimension five: FTHg, constructed with

2 . . ..
Curiously, there are numerical coincidences between prefac-

tors: %zA = 0.81 implying g~ d, and b = 0.31 is close to

a=c=0.33

gauge-singlet family-triplet and -antitriplet familons ¢.
These interactions are mediated by heavy messengers with
vectorlike mass. The vacuum alignment of the familons are
“crystallographic,” pointing toward the sides or face diag-
onals of a three-dimensional cube.

T3 contains two different triplet representations
required by the asymmetry. Considering F = (F,F,,F3) ~
(5,3))and T = (T, T3, T,) ~ (10,3,) under SU(5) x 7T 3,
it labels each matrix element F;T; of the texture with a
unique Z;3 charge and thus separates out the asymmetric
term. The vanishing of the (22) subdeterminant is achieved
naturally by coupling the operator FTH to three familons,
orthogonal in the vacuum. The first two, ¢ and ¢’, couple at
dimension five and generate the ;T3 and F;T5 elements,
respectively. The third familon ¢” then couples to both
dimension-five operators, generating the F7 and F3T,
elements at dimension six; their 7 ;3 coupling structure
and vacuum alignments then implement the requisite
relation between the matrix elements Y g;l/ Vy g;l/ =
Y (1;1/ Iy ;1/ 3>, irrespective of the coupling constants.

In this paper we complete the SU(5) x 7|3 model by
implementing the last two features—diagonal ¥(2/3) and
complex-TBM seesaw mixing—of the asymmetric
texture. In the next section, we show how the hierarchical
structure of the up-type quark matrix appears naturally in
the 7 ;3 model.

IIL. Y?/3 TEXTURE

Assuming a family-singlet Higgs Hs, the up-type quark
Yukawa matrix Y(?/3) is constructed from terms like
TTHsp, where ¢ is a gauge-singlet 7 5 triplet or antitriplet
familon (or combination of such familons) and Hs is the
complex conjugate of the field Hz that couples to Y(=1/3)
and Y=V In terms of 7|5 Clebsch-Gordan coefficients, the
product T @ T yields

T, T,

T, ® | Ts

T, 3, T, 3
T5T; T5T, T,Ts

- | T, & | T.T, | T\ T, | . (9
T, 3 TI\Ts 3, I5T, 3,

With simple familon vacuum alignments, the hierarchi-
cal structure of Y?/3) suggests the operators

TTHS(pg? for the top-quark mass,
TTH S(/)(;l)(ﬂ:;i for the charm-quark mass, and
TTH 540;)(!’3,-(03,- for the up-type quark mass

075018-3
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in vacuum, with the hierarchical factor of 1* supplied by
(@3,)0- gay]) transforms as a 3;, while ¢3 is a triplet or

antitriplet whose exact representation is unresolved at
this stage.

A. Top-quark mass

The dimension-five operator TTI:IS(ng) yields the top-

quark mass when ((p§?>0 ~m,(1,0,0). It arises from tree-

level vertices Tl“q)g? and TT Hs, where I" ~ (ﬁ 3,) under

SU(5) x T3 is a heavy messenger field with vectorlike
mass:

T T
r rv
2% Hs

This diagram implements the contractions (T(pg?)gz'

(THs)s,. The first contraction yields m,(0,73,0)5 and
the second (7', T3, T,);,, resulting in the top-quark mass
term mlT3T3.3

B. Charm-quark mass

From Eq. (9), we want the familon combination (pgt]) ®3,

to transform as a 3;, with a vacuum alignment along
(0, 1, 0). The 73 Kronecker products then uniquely
determine @3 = @3,.

The dimension-six operator TTI_JS(/);’I)%Z can be con-

structed by adding two new tree-level vertices TQ(pé? and

Ql'g;, to TT'Hs:

(t)
9031 @32

giving the contraction (T(pgfl))32 - (THes,)5,, where a new

vectorlike messenger Q ~ (10, 32) is required to pick out
m,T, from the first contraction. With (¢3,)y ~ 1*(1.a,0),
where o 1is still unresolved, the second contraction

3The dimension-five operator generating the top-quark mass is
the leading-order operator. As will be discussed in Sec. VI and the
Appendix C, this is guaranteed by introducing a Z,, symmetry to
restrict “dangerous” operators from coupling to unwanted matrix
elements. Even without the Z, symmetry, the next-to-leading-
order operator contributing to the top-quark mass is of dimension

six: TTI:IS(pg?*%Z, which is suppressed by a factor of 1*.

contributes 14T, thus resulting in the charm-quark mass
term m,A*T,T, in vacuum.

C. Up-quark mass

Again consulting Eq. (9), the familon combination

(p(3tl)(p32(p32 must transform as a 3; and be aligned along

(0, 0, 1) in vacuum. This fixes a to b_e 1.
The dimension-seven operator TTH5§0gtl)(ﬂ32(p32 can be

constructed by adding three new tree-level vertices T@qog?,
©0¢;, and Olg;, to TTHs, where © ~ (10,3,) is a new

messenger:

implementing the contractions ((Tgogll) )3, ®3,) 3 (THs¢3,)5,-

The first contraction extracts m,T, the second A%, while the
third gives A*T,, thus yielding the up-quark mass term
m, 8T, T, in vacuum.

In summary, the above diagrams yield the desired
hierarchical up-type quark masses:

myim.im, = A8 2% 1.

IV. THE SEESAW SECTOR

In this section we show how TBM seesaw mixing is
realized in the SU(5) x 7 |3 model. It requires four right-
handed neutrinos and three familons, whose vacuum
expectation values need not be fine-tuned to yield TBM
diagonalization.

The necessity of the fourth right-handed neutrino
becomes apparent by first considering the simpler three-
neutrino case.

A. Three right-handed neutrinos

We introduce three right-handed neutrinos N =
(Ny,N3,N,), their order mimicking T = (T}, T5,T>)
inspired by an SO(10) extension of the gauge group and
transforming as (1,3,) under SU(5) x T 5. Their Al,, =1
coupling is given by the dimension-five operator FNHs¢ 4,
where ¢4 is a familon transforming as (1,3, x 3,) =
(1,3,) ® (1.3,) ® (1,3,). This operator can be con-
structed from tree-level vertices y 4FAHs and y /N A ¢ 4:

075018-4
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F N
A_A = -
) R — Lyaya(Hs)olpa)oFN. (10)
s ©a
Here, y, and 1y, are dimensionless Yukawa

couplings and A is a complex messenger with heavy
vectorlike mass M. Denoting the combination of
vacuum expectation values of the familon and Higgs as
ﬁYAyA/<H5>0<f/’A>0 = (ay.a,,a3)", T3 yields three pos-
sibilities for the coupling matrix .A:

a 0 0 0 a3 O
os~3:10 0 a |. @u~3:|a 0 0.
0 a3 O 0 0 a
0 0 a
@Ps~3:10 a3 O |, (11)
a 0 O

where the @; have dimension of mass.

The AI,, = 0 coupling of the right-handed neutrinos is
given minimally by the dimension-four operator yzN N ¢
for some dimensionless coupling constant ygz, where ¢g
transforms as (1,3, x3,) = (1,3;) @ (1.3,) & (1.3,).
Denoting its vacuum expectation value by yz{@g),=
(by, by, b3)', T 3 offers two possibilities for the symmetric
Majorana matrix B:

0 by by by 0 0
¢5N32: b2 0 bl s (pBN3l: 0 b2 0 s (12)
by by 0 0 0 b

where again the b; have dimension of mass.

Minimality dictates we introduce the least number of
right-handed neutrinos and familons in the seesaw sector.
In this spirit, we adopt ¢ 4 ~ 3, in Eq. (11) and ¢ ~ 3, in
Eq. (12). The implications of the alternative choices are
discussed in Appendix B.

The seesaw matrix S is related to the A7, :% and A/,,=0
matrices by

S=AB"1A, (13)
for det 3 # 0. We choose a particular decomposition of B:
B =CgC', (14)

where C depends on (@g),:

byt 0 0
C: \/blb2b3 O b;l O 5 (15)
0 0 =b;!

and G is a purely numerical matrix:

Surprisingly, G is diagonalized by the TBM matrix
G = UrgmDpUigy (17)

where D, = diag(—1,2,—1). G is invariant under the
transformation P’:

PGP =g, (18)
so that C can be redefined as
C—-CP (19)

in Eq. (14), where P’ is the identity matrix or any of the
following permutation matrices (up to a sign):

010 100 001

(12): 1100, (23):] 0 01]. 31):|0-10],
001 010 100
0-10 001

(123): {0 0 1], 321):[-100]. (20)
100 010

Using the decomposition of Eq. (14), the seesaw matrix
is given by

8 == A(C_I)IUTBMDZIU%BMC_IAI. (21)
S is itself diagonalized by Urpy(5) only if

ACH™! = /m,diag(1,1, e®)P"
= A= /m,diag(1, 1, ¢?)(CP") (22)

for some mass parameter m,.

Equation (22) embodies two requirements: (i) .4 must
have the same form as (CP’)’, and (ii) the vacuum align-
ment of ¢ 4, given by a,, is determined by that of ¢, given
by b;.

Requirement (i) can always be satisfied; for any A in
(11), there exists a P’ in (20) that satisfies Eq. (22). With

@4 ~3, and P' = (12), we have

075018-5
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0 b 0
C— CP/ = 4/ b1b2b3 b;l 0 0 s (23)
0 0 -=b!

yielding the same G as in Eq. (16). With this form of C,
requirement (ii) is fulfilled by the alignment

a; _bgleiﬁ
ar = v/ myb]b2b3 bl_l . (24)
as bgl

Applying Eq. (22), the seesaw matrix becomes

1
8 = mUrpu(®)diag (~1.5.~1)Uipy(8)  (25)
and yields three relations among the light neutrino masses:

1

m, =—m m, =2m

v =5 My 1 by, and m, =m,,.

3

The first relation is consistent with normal ordering, but the
other two, involving m,, , contradict oscillation data [S]. If
m,,, can be corrected to a smaller value, the first relation can
be used along with oscillation data to calculate the light
neutrino masses in normal ordering. We are then compelled
to enlarge the neutrino sector.

B. Four right-handed neutrinos

Following our minimalist approach, we choose a gauge-
and family-singlet fourth right-handed neutrino N,. It
introduces the extra operators

1 . _
Alw:§3 FN4Hsp,, where ¢, ~(1,3;),

Al,=0:y.NNsp,, and mN,N,, whereqp,~(1,3,).

The dimension-five operator FN,Hs¢, can be constructed
from tree-level vertices y 4 FAHs and y,N A ¢, in a similar
way as in Eq. (10), using the same messenger field A. For
Lyayy (Hs)o(w,) = v = (v}, v,,v3)", the numerator of the
seesaw formula is a (3 x 4) Al,, = 1 matrix

(A wv).
The (4 x4) AI, =0 Majorana matrix in vacuum is
given by
Bz
M= , 26
() (20

where y_(¢.)o =z = (21, 22, 23)". For det B # 0,

B—l B—l tB—l _B—l
! (” b Z), (27)
JZ —7/B7! 1

with
u=m-zB"z. (28)

The seesaw matrix now has two terms:
1
S=8,+ 8, = AB 1A + - WW', (29)
/i

where
W= AB1z - .

The first term is the same as in the three right-handed
neutrinos case:

1
1 = mhrpO)ing (1.5 -1 Uiy @). (GO

The second term S, = 1 W' has two zero eigenvalues.
If it is to be diagonalize(f by Urgm(6), the column vector
Ultgri (6)VV must be one of the following forms:

(0,1,0), (0,0,1), (1,0,0)".

The first two are incompatible with data. A nonzero entry
in the second element implies that S, corrects only m,,,
leaving m,, and m,, degenerate. The third nonzero element
is also unphysical because it leads to m,, > m,,.

Phenomenology requires us to choose the third possibil-
ity, in which case WV is of the form

2

1
WoxUpm(8)| 0 | < | =1 |, (31)
0 eié
which further aligns ¢,, ¢, and ¢ in vacuum and corrects
m,, . Thus S, negates the two unwanted mass relations
in S, but the relation m,, =3m,, singling out normal
ordering remains unaltered. Together with oscillation data,
it can determine all three light neutrino masses.
We present two minimal scenarios with either ¢, or ¢,
absent in the seesaw formula. Both scenarios yield the same
light neutrino mass spectrum.

1. Scenario 1: @5 ~3,.0,~3,.0.4 ~3,

In this case ¢, is absent, and W = AB~'z. Applying
Egs. (22) and (17), we obtain
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W = «/m,/UTBM(5)D;1U5rBMC_1Z. (32)
For C given by Eq. (23), it becomes

(b1Z1 —2b322+b223)
MTBM(a) %(b1Z1+b2Z3+b3Z2) . (33)
_\/g(blzl_bZZS)

N

Ww=—Y_*_
/6b,b,b;

Comparing this to Eq. (31), we require
b1z + byz3 + b3z, =0, bizy —byzz3 = 0.  (34)

These constraints yield a vacuum alignment condition
between ¢ and ¢, :

1
bizy = byzz = —Ebﬂz =mj,, (35)

where the parameter m,, has dimension of mass. Then
(@), becomes

2] by!
2 | = m%z —2b3‘1 . (36)
23 bgl

From Eq. (28), u is evaluated as

_ 6m}, + mbbybs
bybybs ’

and S, becomes

4
6m,mj,

Sy=— M
2 6”7’[2‘Z +mb1b2b3

Urpm(8)diag(1,0,0)Upp (5). (38)

Combining S; and S, yields the light neutrino masses in
normal ordering:

= —my, (39)

m, =——m,, m, :zmw m,,

in terms of three undetermined parameters m, y and m,,. As

we will show below, % and m, can be extracted from

oscillation data, albeit with a sign ambiguity.

2. A circle parametrization for neutrino oscillations

We introduce a convenient geometrical representation of
oscillation parameters and neutrino masses. The neutrino
oscillation parameters for normal ordering As; = \/Am3,
and Az = 4/ Am%2 and the light neutrino masses m,, , m,,
and m,, are represented as the sides and diagonals of the
inscribed quadrilateral ABCD in Fig. 1. The largest mass,
m,, is chosen to be the diameter of the circle.

my,

D

FIG. 1. Circle parametrization of neutrino masses and oscil-
lation parameters.

The relation m,, = 3m,, implies ZCAD = 30°. Using
PDG values [5] of the oscillation data (see [21] for other
recent global fits) for normal ordering, we find

Ay = \/Am3, + Am3, = 50.8 meV,
Az, =/ Am3, = 50.1 meV.

Our prediction for the light neutrino masses follow:
m, =27.6meV, m,,=289meV, m, =57.8meV. (40)

Their sum is 114.3 meV, very close to Planck’s cosmo-
logical upper bound [13]

Z|mvi| <120 meV.

Comparing Egs. (39) and (40), the parameters m,, m and
u are given by

m,| = 57.8 meV, ‘T‘ — 0.48. (41)
u

The sign ambiguity appears because these are determined
from mass-squared relations in the oscillation data.

Next we discuss the second scenario with four right-
handed neutrinos, where ¢, is absent in the seesaw formula.

3. Scenario 2: pg~3,.90,~31.904~3,

In this case, W = v and u = m. With the form of W
given by (31), we have

(1 2
vy | = /mm, | -1 |, (42)
vs ol

where m/, is another mass parameter. Unlike the ¢, of
scenario 1, the vacuum alignment of ¢, here does not
depend on {@g),-
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The second term in Eq. (29) becomes
1
82 = E UUt = 6m',,UTBM(5)d1ag(l, 0, O)UEFBM((S) (43)

Combining with S, we express the light neutrino masses in
terms of the parameters m, and m/,:

1
m, = —nm, + 6mlb7 my, = Eml/’ my,, = —m,, (44)

1 2 3
yielding the same mass spectrum as in Eq. (40). Using
oscillation data for normal ordering [5] and the circle
diagram in Fig. 1, the parameters are

|m,|=57.8meV, |m),|=5.03 or 142meV. (45)

The mass parameters we have introduced so far are either
completely determined from oscillation data or depend
only on by, b, b; and m. Hence, there are only four
undetermined parameters.

C. TBM mixing and the familon vacuum structure

Central to the TBM seesaw mixing are Eqgs. (24) and
(36), which align the familons ¢ 4 and ¢, to @z in vacuum.
Suggestively, ¢ 4 and ¢, can be expressed as quadratic
functions of ¢gz in vacuum:

0 —e” 0
ml/
(@a)o = brbybs 0 [ (@5 ®8)3,)0;
1
1 0 O
my,
(@lo=7—"7>10 0 =2 |((¢5 ®5)3)0- (46)
bibybs .

Equation (46) is expected to come from the minimization of
the familon potential in vacuum.

If we assume a simple vacuum alignment for ¢, setting
(pg)o ~ b(1,1,1)", thus reducing the number of undeter-
mined mass parameters to two, ¢ 4 and ¢, in scenario 1 are
also aligned in “crystallographic” directions:

a; —ei5 21 2 1

m
ar = ml,b 1 s 27 = % -2 1. (47)
as 1 23 1

In scenario 2, ¢, has similar vacuum alignment indepen-
dent of (pg)-

In the next subsection we calculate the right-handed
neutrino masses from diagonalization of the Majorana
matrix. As we will see, setting b; = b, = by = b greatly
simplifies the analysis and yields interesting cases of
degeneracy in the mass spectrum.

D. Right-handed neutrino mass spectrum

We now explore the right-handed neutrino masses in the
two scenarios discussed before. Although these scenarios
yield identical light neutrino mass spectra, their predictions
for the right-handed neutrinos are quite different.

1. Scenario 1: @5~ 3,, ¢, ~ 32,¢A ~3,

In this case, the Majorana matrix is

0 by by =
m2
by 0 b -2k
M = . (48)
by b 0 =
m2. 2m?. mz,
WO

where b; # 0. From Egs. (37) and (41),

M = (048 = 1 (49)
b1b2b3m —+ 6mbz k
. k=1
= mbz = Tmb1b2b3. (50)

Setting b; = b, = by = b, the characteristic equation for
M becomes

x* —mx® = b(3b + m(k —1))x?
+b*(m(k +2) = 2b)x 4+ 2b%km =0.  (51)

Its solutions yield the four right-handed neutrino masses:

mN]:—b,
mN2:2b,

b 2
mN3—§<(%—l)—\/<%—l> +4k%>,

b 2
mM:z((’Z—l>+\/(’Z—l) +4k’Z>. (52)

In Fig. 2, we plot the normalized mass spectrum with
respect to 4.

There are several interesting cases of degeneracy in
the mass spectrum. my; and my,, are degenerate for
—6.23 <% < —0.16. We also have two degenerate masses
aty = 0.65, 1, 1.46. And three of the masses are degenerate
for it = —1.91, —0.48. Such degeneracies or near degener-
acies in the right-handed neutrino spectrum may be
interesting from the point of leptogenesis, where an
enhancement of the CP asymmetry is achieved for near-
degenerate masses [22].
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[ma| /b
7»
of — Mn,
5r — my
4' 2
_J\ 3t — M,
Az
5 m/b

-20 -15 -10 -5

FIG. 2. Normalized right-handed neutrino mass spectrum. A
small number has been added to m,, to separate it from m,, in
the degenerate region —6.23 < 4! < —0.16. Note that these masses
become complex in this region; thus their modulus is degenerate,
although they have a relative phase.

2. Scenario 2: ¢ ~33,9,~31,04~3,

In this case the Majorana matrix M is simpler:

0 by, by O
b, 0 b, O

M = (53)
by b, 0 0
0 0 0 m

Again setting b; = b, = bz = b, the right-handed neutrino
masses are given by the following eigenvalues of M:

my, =-b, my,==b, my, =2b, my, =m. (54)
|
C12€13
U= | —cps1p — cra813503€°r

is
812823 — C12C23813€ 77

where P = diag(1, e®/? ¢i%1/2) is a diagonal matrix
of Majorana phases, s;; = sin6;; and ¢;; = cos6;;. The
Jarlskog-Greenberg invariant from Eq. (56) in the PDG
convention is given as

_ 2 .
jPDG = C12€13C23512513523 smécp

1
_ / / / s
—§512S13S23C13 Sln5cp, (59)

where s ; = sin26;;. Finally, the PDG Majorana invariants
are given by
PDG _ 2 4 (2 o
IVP = cipci3stp sinayy,

I5PY = cfyeissis sin (azg — 26¢p). (60)

Unlike the previous scenario, the masses are dependent on
either b or m, but not both. The first two masses are
degenerate.

This ends our discussion of neutrino masses and mix-
ings. In the next section, we calculate the €F phases
predicted by the asymmetric texture and discuss their
implication for neutrinoless double-beta decay.

V. CP PHASES AND |m|

In order to analyze the CP phases in the asymmetric
texture, consider the Jarlskog-Greenberg invariant 7 [6]
given by

Im(uijuklufzuitj) = jzeikmejln- (55)

Letting i =j=1 and k=[=2 in the above equation
“fixes” the sign so that

j = Im(UMUZZUTZZ/{;l). (56)

The two analogous invariants associated with the Majorana
phases [23] are then

I) = ImUpU)* I, = ImUUy, ). (57)

Next, let U = Upyns in the PDG convention [5], so that

C13812 e er gy,
is
C12€23 — S12813823€°F ci383 | P. (58)
i6
—C12823 — €238128513€°F  C13C3

|
From Egs. (59) and (60), it is possible to extract the three
CP phases knowing the values of the angles in the PDG
convention.

The PMNS mixing matrix resulting from the asymmetric
texture [1] is parametrized as Upyns = U Urpm (),
where

N
— 2
U-H = _% 1 _f_g A2
+ O(4%). (61)

From Upyns, We calculate the mixing angles in the PDG
convention [cf. Eq. (58)] as
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IVA*+4Acosd+4
0= +0(23),
B 324 @)
n (4—4(9A3+A)cos5—A?)
0y =— 224+03),
n=gt 36A2 +O(F)

1 2cos6—A sin?s

01, =sin"! (\ﬁ>+ VT A+9ﬁA2,12+0(,13). (62)

Notice that angles in the above equation are just perturba-
tive corrections in the expansion parameter A to the initial
angle starting points of Urgy (6 = 0).

Using the perturbatively calculated angles of Eq. (62), it
is possible to find the Jarlskog-Greenberg invariant of
Eq. (59) and Majorana invariants of Eq. (60):

Asiné  A%siné

= O3,
J="54 ~ 74 TOW)
4)sind  24?sin§(A — 2 cos d)
I, = - O3,
Y 27A2 +OW)
422 Sin8(A + 2 cos S
7, = s ;At €0sd) L o). (63)

Note that, in the asymmetric texture, all the invariants have
the same sign, determined by sin(§).

Following the results of Ref. [1], we calculate, to O(4%),
the mixing angles as
913 — 8.330,

0, = 44.87°, 0, =34.09°, (64)

and the invariants as

J = 0.028, J = —0.028,
7,=0.106, or Z,=-0.106, (65)
7, =0.011, 7, = —0.011.

The above values can be used to extract values for the CF
phases [cf. Egs. (59) and (60)]:

sindcp = 0.854,
sina21 = 0515,

sin(a31 - 26cp) = 0809,

sindcp = —0.854,
or sina,; =—0.515, (66)
sin(a31 - 26cp) =—0.809.

With the three light neutrino masses and the Dirac and
Majorana phases determined, we can now express the
effective Majorana mass parameter in neutrinoless double-
beta decay as [24]

|

22 2 2 ia 2 i3y 26
Imgs| = |etzcymy, + cizste'®im,, + 513’"1«3@( a1=2ce) |,

(67)

Note that in Eq. (66) all the signs are either positive or
negative. This does not make any difference in evaluating
|mgp| in Eq. (67). However, there are ambiguities in the signs
of the light neutrino masses. For example, in Eq. (39), these
masses have been expressed in terms of % and m,. The

absolute value of % and m,, has been determined in Eq. (41),

but the signs remain undetermined. Depending on which sign
is realized, |mjg| is predicted to be one of the following:

|mgg| = 13.02 or 25.21 meV. (68)

The most stringent experimental upper bound on || is
in between 61 and 165 meV, r%ported recently by the
KamLAND-Zen experiment [16]." Both of our predicted
values are within an order of magnitude of this limit.

This ends our discussion of the seesaw sector. In the next
section, we summarize the components and predictions of
the model.

VI. SUMMARY OF THE MODEL

We proposed a phenomenologically successful
framework—a diagonal Y3, asymmetric Y(-/3) and
Y=Y related by SU(5) grand unification, and a complex-
TBM seesaw mixing—in Ref. [1]. In Ref. [7], we built a
model based on SU(5) x 7 ;3 symmetry that constructs the
asymmetric Y(=!/3) and Y-V textures. In this paper, we
show how the diagonal ¥(%/3) texture and the complex-TBM
seesaw mixing follows from the SU(5) x 7 ;3 symmetry.
‘We now put all the pieces of the puzzle together to construct
a unified model that describes both quarks and leptons.

The gauge and family symmetry of the model are SU(5)
and 7 3, respectively. This still allows some unwanted
operators at the tree level. In Appendix C, we show that
such operators can be prevented by introducing a Z,
“shaping” symmetry, where n is determined to be 14 for
the scenario with no ¢, and 12 with no ¢,. Thus the full
symmetry of the unified model is SU(5) x T 3 x Z,,.

A. Particle content and their
transformation properties

The tree-level Lagrangian of the model is

L =y,TAHz + y, FA@) +y, FA@® + y;AAp®) + y, FAQW + ysFAQ®) + MAAA + yoFEH j5 + y;TZ9p®) + MsEX

(1) (1) (1)

+ 8Tl 3" + yoTQqp3" + y10TO@; + yuTTHs +y,T' Qs + y13000;3, + y1,IOps, + MIT + MaQQ + MO0
+yAFAHs + Y NA@ s+ ysNN g+ y,NAg, + M\AA + y NN,p, +mN,N,, (69)

*See [25] for other recent results.
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TABLE 1.
for no @,. The symbol x implies not applicable. Here 7'*

Charge assignments of matter, Higgs, messenger and familon fields. Z,4 charges apply for the scenario with no ¢, and 2,

=(12=1,

Higgs Down-type quark and charged-lepton sector
Fields Hs Hy F T A z oY o s oW o) @©
SU(5) 5 45 5 10 5 10 1 1 1 1 1 1
713 1 1 32 31 32 31 32 32 31 32 31 32
Z. i i it it i i’ i i 1 o] n n®
2 g ¢ ¢! 1 g g2 ¢ ¢t 1 e ¢ ¢
Up-type quark sector Seesaw sector
Fields r Q ©® 9y 03, N Ny A o4 o5 9. ?,
SU(5) 10 10 10 1 1 1 1 1 1 1 1 1
Tl} 32 32 31 31 32 32 1 31 32 32 32 31
2 2 2 2 it 1 i’ "y i lt i i x
Z1n & & & & 1 & 1 & ¢ ¢ x &

where only one of ¢, and ¢, is present. The first line
describe the down-type quarks and charged leptons, the
second line yield the up-type quark masses and the last line
depict the seesaw sector of the model. The Z, symmetry
ensures that the familons and messengers in one sector do
not mix with fields in the other sector. In Table I, we show
the transformation properties of the fields in each sector.

B. Familon vacuum structure

The familons in the quark and charged-lepton sectors
have a “crystallographic” feature in vacuum, in the sense
that they are aligned along sides or face diagonals of a cube.
The seesaw sector familons, which depend on by, b,, b5,
are also similarly aligned if we set by = b, = b3 =b. In
Table II, we list all vacuum alignments.

Note that the vacuum expectation values of ¢ 4 and ¢,
contain a nontrivial phase J, as required by the alignment
conditions of the seesaw sector. We view this as an
interesting constraint on the parameters of the familon
vacuum potential, to be studied in a follow-up work.

TABLE II. Vacuum
b] = b2 = bg = b

alignment of familons, setting

Down-type quark and
charged-lepton sector

Up-type quark and
seesaw sector

{@)g ~ my(1,0,0) (@3 ~ m,(1.0.0)
(@) ~ dim,(0.1,0) (93, )0 ~ 24(1.0.0)
(@))g ~ bA*m,(0,0,1) {#B)o~b(1,1,1)
(@“)g ~ a2’m,(0,1,1) (@a)o~ \/m( ?1,1)
(@) ~ g2%m;(1,0.1) ((p> e (1,2, 1)
(@) ~ cA?m;,(0,0,1) ~ \/— —1,¢

C. Predictions

The model successfully reproduces the CKM mixing
angles, Gatto relation, GUT-scale mass ratios of up-type
quarks, down-type quarks and charged leptons as well as
the PMNS mixing angles.

The key predictions of the model are

(i) leptonic CP violation, with the Jarlskog-Greenberg
invariant |7| = 0.028, Majorana invariants |Z,| =
0.106 and |Z,| = 0.011,

(ii) normal ordering of light neutrino masses: m, =
27.6 meV, m,, = 28.9 meV, and m,, = 57.8 meV,
and

(iii) invariant mass parameter in neutrinoless double-beta
decay |mgy| = 13.02 or 25.21 meV.

The first prediction (|7|) is consistent with the current
PDG fit [5] and translates into dcp = +0.68x [1]. Although
the current expected error in global fit for §.p is too wide, it
is expected that next-generation experiments like DUNE
[26] and Hyper-K [27] will measure this with 5S¢ precision
in the next decade.

The second prediction for ordering of light neutrino
masses can, in principle, be tested experimentally in three
ways [21]: (i) oscillation experiments that directly measure
the sign of Am3,, (ii) cosmological bounds on >, |m, |,
and (iii) measurement of |mﬂﬂ| in neutrinoless double-beta
decay experiments. If ) _[m, |<10meV or |mgs| < 10meV,
we can rule out inverted ordering [21], assuming neutrinos
are Majorana particles; but neither of these materializes in
this model. Hence, we must rely on oscillation experiments
to determine the mass ordering. The current fit from various
experiments (e.g., Super-Kamiokande [28], T2K [29], and
NOvA [30]) gives above 3¢ preference for normal over
inverted ordering. A 3o rejection of the wrong mass
ordering will be obtained in Hyper-K [27] after 5 yr of
data taking. DUNE will be able to measure the mass
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ordering with a significance above 5o after 7 yr of data
taking [26].

The second prediction also gives  ;|[m, |=114.3meV,
to be compared with the strictest cosmological upper
bound of 120 meV reported recently by combining various
sources of data by the Planck Collaboration [13].
Combining the data from large-scale structure surveys,
e.g., Buclid [31] and LSST [32] to DESI [33] and WFIRST
[34], the error margin on ), |m, | will be constrained to
less than 11 [35], and 8 meV [36], respectively. These
estimates can test our prediction in coming years.

The third prediction is consistent with the recently
reported upper bound of 61-165 meV by the
KamLAND-Zen experiment [16] and is expected to be
tested in next-generation experiments in R&D [37]
(LEGEND, 11-28 meV [38]; CUPID, 6-17 meV [39];
nEXO, 8-22 meV [40]; SNO+-II, 20-70 meV [41];
AMORE-II, 15-30 meV [42]; PandaX-III, 20-55 meV
[43]), which will be sensitive to the range of our predic-
tions. If either of our predictions is correct, these experi-
ments will detect neutrinoless double-beta decay [37].

VII. THEORETICAL MUSINGS

We have presented an asymmetric unified texture of
quarks and leptons. Under the grand-unified SU(5) times
the discrete family symmetry 7 ;3 its fermion content
T, F s N s N 4 is

(10.3;) ® (5.3)) & (1.3;) @ (1.1).

By upgrading SU(5) to SO(10), we get a simpler
particle content:

SO(10) x T13: (16,3;) & (10,3;) & (1,1).  (70)
The decomposition SO(10) D SU(5) x U(1),

16 - 10_1 @ 53 @ 1_5, 10 - 52 @ 5_2,
shows that the 5 in the 10 can couple to the 5 in the 16 and
acquire a heavy Al,, = 0 vectorlike mass. This leaves T
and N embedded inside the 16 and explains their similar
labeling.

The grand-unified group above SO(10) is the excep-
tional group Eg. Its complex 27-dimensional fundamental
representation decomposes under Eg D SO(10) x U(1) as

27=16; 10_, & 14,

which are precisely the representations in the asymmetric
texture’s particle set. It is a suggestive pattern: matching the
representations of the gauge group to those of the discrete
group. The mother symmetry could be E¢ X G, where G
is a continuous group that contains 7 3 [44].

There are several ways to see how 7,3 fits in a
continuous group. The first is

Gz D P8£2(13) D 213 X Z6 D 213 Dl 23 = T13

with the embeddings

which occurs through the embedding of G,’s real 7
representation.
The second way is more direct with

GzDSU(?)):)ZlS )423:713,

.3
7-106303-> .
2

All paths seem to lead to the continuous exceptional group
G,, whose seven-dimensional representation describes the
coset manifold of 11-dimensional space-time.

It would be nice to obtain the particle content of Eq. (70)
as the result of a spontaneously broken theory. For this we
need both SO(10) and 7 |5 to be extended so as to be able
to pair their representations as described. To that purpose
the representations must be tagged. On the gauge side it is
easy since the E decomposition into SO(10) contains a
continuous U(1). On the family side, there is no available
tag, so we must invent one.

VIII. CONCLUSION

Continuing from our recent work in Ref. [7], we have
derived the up-type quark sector of the asymmetric texture
[1] and the complex-tribimaximal seesaw mixing from an
SU(5) x T3 x Z, symmetry. This results in a unified
model for quarks and leptons from SU(5) gauge unification
and 7,5 family symmetry.’

T3, an off-the-beaten-road subgroup of SU(3), is a
powerful family symmetry. Its ability to label each matrix
element of a Yukawa texture with a distinct Z5 charge
makes it an ideal candidate for constructing the asymmetric
texture. Although not evident straightaway, we showed in
Ref. [7] that it is capable of naturally producing the zero-
subdeterminant condition of the ¥(=!/3) and Y(=!) textures.
In this paper we have shown how it yields the hierarchical
diagonal structure of the Y/ texture.

What comes as a true surprise is how the complex-
tribimaximal mixing arises from the familon vacuum
structure in 7 3. The Clebsch-Gordan coefficients of the

>See, e. g., [45] for other unified models employing gauge and
family symmetry.
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group yield a off-diagonal symmetric Majorana submatrix,
whose decomposition offers TBM seesaw mixing without
fine-tuning the familon vacuum expectation values. All
familons in the seesaw sector take crystallographic vacuum
alignments for the special case where the familon gen-
erating the Majorana submatrix lies along (1, 1, 1) in
vacuum.

The seesaw sector uses a minimal number of familons.
However, the conventional three right-handed neutrino case
fails to yield a light neutrino mass spectrum consistent with
oscillation data. Introducing a fourth right-handed neutrino,
we predict normal ordering of light neutrino masses:
m, =27.6 meV, m, =289 meV and m, = 57.8 meV.
Compared to the sum of neutrino masses restricted
by cosmological upper bound (120 meV), our prediction
yields 114.3 meV. The model presented in this paper
can be falsified with a slight improvement in the cosmo-
logical bound.

In Ref. [1], we required a phase in the TBM seesaw
mixing to reproduce the experimentally determined PMNS
angles. In our analysis, this phase arises from the vacuum
expectation value of the seesaw familons. Reference [46]
discusses a different approach where this phase can arise
from the residual flavor and generalized CP symmetries
[47] of the effective neutrino mass matrix. This phase
yields CP phases in the lepton sector, best represented in
terms of invariants to avoid ambiguity with many existing
definitions. We predict the Jarlskog-Greenberg invariant
|7| = 0.028 for Dirac CP violation and Majorana invar-
iants |Z;| = 0.106 and |Z,| = 0.011. Although no strict
bound exists on the Majorana invariants from current
experiments [48], our prediction for 7 matches with the
current PDG fit, albeit with a sign ambiguity. Light
neutrino masses and C# phases make a prediction for
neutrinoless double-beta decay, with the invariant mass
parameter |mg;| determined to be either 13.02 or
25.21 meV depending on the sign of model parameters.
Compared to the latest upper bound (61-165 meV) from
the KamLAND-Zen experiment, both of these are only an
order of magnitude away.

We also explore the right-handed neutrino mass spec-
trum in terms of two parameters. Several curious cases of
degeneracy arise for a range of values of the parameters. We
think these degeneracies may lead to interesting physics,
particularly when one considers the decay of the right-
handed neutrinos in the context of leptogenesis. Exploring
this is the aim of a future publication.
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APPENDIX A: 73 GROUP THEORY

T3 = Z,3 X Z5 has two generators a and b, related to
the subgroups Z;3 and Z;. These generators are non-
trivially related to each other, yielding the presentation

(a,bla"® = b* =1,bab™" = a®).

Its order is 13 x 3 = 39 and it is a subgroup of both SU(3)
and G,.

It has a trivial singlet, a complex singlet (and its
conjugate) and two complex triplets (and their conjugates),
so that

124+ 12412 +32 432432432 =139,

The complex singlet is denoted by 1’ and the complex
triplets are denoted by 3; and 3,.

In this Appendix, we list the Kronecker products and
Clebsch-Gordan coefficients of 7 ;5. For further details,
see [49].

1. Kronecker products

el =1, el =1,
11®3, =3, 1®3, =3,
33, =3, 03, @3,

3,83, =303, @3,

33 =10101 83,83,
Zh=10101 3, &3,
383, =303, @3,
383,=3,®3, 03,
3,83,=3, 93,93,
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2. Clebsch-Gordan coefficients

Ry ) D) 2)13) 13)12)
2 | 2)] =|22)] o[BI [ &| L) ] .
3)/ 3, 30/ 5, 313 / 3, D12/ 5, 211/ 5,
1) 1) 2)12) 2)13) 3)12)
20 @ 2)] =R B[ &|[LI3)] .
3)/ 3, 3% /5, \IDIY /5, D12 /5, 211 /5,
1) 1) 3)137) 31 3)12)
2 2| =[N [ & 2)] & L) ] .
3)/ 3, 30 /5, \I2120 /5, 2)13") /3, 211} / 3,
Ry 1) DI 2)13) 2)[1)
2 @ 2)] =|22)] B[ &|B2)] .
3)/ 5, 3 /5 \BI3) /5 D12 /5, D130/ 5,
1) 1) DI D12) 3)12)
2 |2y =[R2 e[R2B) ] & L3)]| .
3)/ 3, 30/ 5, 3137/ 5, 31/ 5, 211/ 5,
) ) D12) 2)[1)
2 2| =23 & B2)
3)/ 3, 3%/ 3, 31 /3, D13/ 3,
& (IN|) +12)[2) +3)[3)
@ (IN[1) + w[2)[2) + ?[3)[3))y
@ (IN]1') + @?[2)[2') + w|3)[3))y-
1) 1) 2)13) 13)12)
2 2y ] =B | &3
3)/ 3, 3% /5 \IDI2Y /5, 211/ 5,
® (D) +2)12) +13)13)
@ (IN[1) + w[2)[2') + w?[3)[3))y
@ (IN[1) + @*[2)[2') + w3)[3))y-
) )
(Mr® | 12) ] = «bl2) |,
3) )5, \@’D3) /5,
) D)
(Do | 12) | =[eM2)] . =1
3/ 5, o[ 1)[3) /3,

APPENDIX B: ALTERNATIVE CHOICES FOR ¢ 4, AND @5

We chose ¢ 4 ~ 3, and ¢ ~ 3, and showed how TBM mixing and normal ordering of light neutrino masses follow from
the familon vacuum structure.

The particular form of A in (11) becomes important in Eq. (22), which requires A to have the same form as CP’. For
@4 ~3; and ¢4 ~3,, choosing P’ = (23) and (1 3), respectively, matches A to CP' and leads to similar results as
in Sec. IV.
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TBM diagonalization of the seesaw matrix requires the
decompositions in Eqgs. (14) and (17). Choosing the
diagonal form of B in (12) implies that in Eq. (14) G must
be diagonal, which from Eq. (17) requires D, to be
proportional to diag(1,1,1). This eventually leads to a
completely degenerate light neutrino mass spectrum for the
three right-handed neutrino case. Introducing a fourth right-
handed neutrino can only correct one of the light neutrino
masses, still leaving the other two degenerate, incompatible
with oscillation data.

APPENDIX C: THE Z, “SHAPING” SYMMETRY

The SU(5) x T |3 symmetry allows some operator such
as FA@®) (the detailed list of such operators is too
exhaustive) which could perturb the texture. Suppose there
is a Z, symmetry whose purpose is to prohibit these terms.

We use [] to denote the Z, charges of the respective
fields. Our starting point is to define the Z, charges of the
following fields:

Fl=a. [[]=b. [H;
Hgl=d  [N=e. [NJ=F.

:C’

(C1)

Then the Z,, charges of the rest of fields in the scenario
with no ¢, can be deduced from the couplings in the
Lagrangian in Eq. (69):

[E]l=a+d,
[A]=a-c, [(pg])} =c—2b,

o] =[p?] = [pW] = [p®] = -a-b~c,
0] =—a—b—d. lps)=2c,
lp)=—e—f. [pa]=c—a-e,
(0] = [p3,] =0 (C2)

It is convenient to focus on the couplings of the familons
and define

d=lps=c-a-e. (C3)
b = [py)] = c = 2. (C4)
' =lpV]=-a-b-c, (C5)
d =[p0]) =-a-b-d, (C6)
¢’ = [pp] = —2e. (C7)
f=lpl=—-e-f. (C8)

To make sure these familons do not mix with each other,
they should obey the following constraints:

a,b,c.d, e, f#0, (C9)
24',20',2¢,2d # 0, (C10)

@+ +b !, +d, e, £, (C11)

b # £, +d, e, £f, (C12)

¢ % +d e+, (C13)

d #+e, £f, (C14)

e #—f (C15)

¢ —2f =0, (C16)

d —b #+d, £V, £c, £d, £, £f. (C17)

These constraints have no solution for n < 14. For
n = 14, there are many sets of solutions, from which we
adopt the following:

{n,a,b',c.d, e f}={14,11,1,9,8,4,2}
and using Egs. (C3)-(C8) we get
{a,b,c,d,e, f} ={1,1,3,4,5,7}.

Then Egs. (C1) and (C2) give the Z4 charges of the fields
in the model.

For the scenario with no ¢., we redefine f = [p,]. In
this case there is no solution for n < 12. For n = 12, there
are many solutions, from which we adopt

{n.a.b.c.d. e f}=1{1211381062}.

In either case, there remains an unwanted vertex (:)Q(p32
allowed for any choice of n, which yields the diagram

(1)
¥3, P3, 3,

and contributes O(4%) terms to the up-type quark mass
matrix

228 0 A8
YCRA =10 1 0 (C18)
20 1

Since it happens at O(43), we consider it insignificant.

075018-15



PEREZ, RAHAT, RAMOND, STUART, and XU

PHYS. REV. D 101, 075018 (2020)

[1] M. H. Rahat, P. Ramond, and B. Xu, Phys. Rev. D 98,
055030 (2018).

[2] P.E. Harrison, D. H. Perkins, and W. Scott, Phys. Lett. B
530, 167 (2002); P. Harrison and W. Scott, Phys. Lett. B
535, 163 (2002); Z.-Z. Xing, Phys. Lett. B 533, 85 (2002);
X.-G. He and A. Zee, Phys. Lett. B 560, 87 (2003); L.
Wolfenstein, Phys. Rev. D 18, 958 (1978).

[3] A. Datta, L. Everett, and P. Ramond, Phys. Lett. B 620, 42
(2005); L. L. Everett, Phys. Rev. D 73, 013011 (2006); L.
Everett and P. Ramond, J. High Energy Phys. 01 (2007) 014;
J. Kile, M. J. Pérez, P. Ramond, and J. Zhang, J. High
Energy Phys. 02 (2014) 036.

[4] L.L. Everett, R. Ramos, A.B. Rock, and A.J. Stuart,
arXiv:1912.10139; M. Parida and R. Satpathy, Adv. High
Energy Phys. 2019, 3572862 (2019); Y. Shimizu, K. Takagi,
S. Takahashi, and M. Tanimoto, J. High Energy Phys. 2019
(2019) 74; P. Ballett, S. F. King, C. Luhn, S. Pascoli, and
M. A. Schmidt, J. High Energy Phys. 2014 (2014) 122;
Phys. Rev. D 89, 016016 (2014); S. Antusch, C. Hohl, C. K.
Khosa, and V. Susic, J. High Energy Phys. 2018 (2018) 25;
S. F. King, in Proceedings of Prospects in Neutrino Physics
(NuPhys2018), London (2019); T. Kitabayashi, Int. J. Mod.
Phys. A 34, 1950098 (2019); L. A. Delgadillo, L. L. Everett,
R. Ramos, and A. J. Stuart, Phys. Rev. D 97, 095001 (2018);
I. Girardi, S. Petcov, A.J. Stuart, and A. Titov, Nucl. Phys.
B902, 1 (2016); G.-J. Ding, N. Nath, R. Srivastava, and
J. W.E Valle, Phys. Lett. B 796, 162 (2019); P. Chen, G.-J.
Ding, R. Srivastava, and J. W.F. Valle, Phys. Lett. B 792,
461 (2019); Z.-C. Liu, C.-X. Yue, and Z.-h. Zhao, Phys.
Rev. D 99, 075034 (2019); S. Petcov, Eur. Phys. J. C 78, 709
(2018); I. Girardi, S. Petcov, and A. Titov, Eur. Phys. J. C
75, 345 (2015); Nucl. Phys. B894, 733 (2015); Nucl. Phys.
B911, 754 (2016); D. Dinh, L. Merlo, S. Petcov, and R.
Vega-Alvarez, J. High Energy Phys. 2017 (2017) 89; J.
Penedo, S. Petcov, and T. T. Yanagida, Nucl. Phys. B929,
377 (2018); S. K. Agarwalla, S. S. Chatterjee, S. Petcov, and
A. Titov, Eur. Phys. J. C 78, 286 (2018); S. Petcov, Nucl.
Phys. B908, 279 (2016); S.-F. Ge, D. A. Dicus, and W. W.
Repko, Phys. Lett. B 702, 220 (2011); Phys. Rev. Lett. 108,
041801 (2012); G.-J. Ding, Y.-F. Li, J. Tang, and T.-C.
Wang, Phys. Rev. D 100, 055022 (2019); A. E. Carcamo
Hernandez, J. C. Gémez-Izquierdo, S. Kovalenko, and M.
Mondragén, Nucl. Phys. 946, 114688 (2019); P. Chen, G.-J.
Ding, F. Gonzalez-Canales, and J. W. F. Valle, Phys. Lett. B
753, 644 (2016); P. Chen, S. Centelles Chulid, G.-J. Ding, R.
Srivastava, and J. W. F. Valle, Phys. Rev. D 98, 055019
(2018).

[5] M. Tanabashi, K. Hagiwara, K. Hikasa, K. Nakamura, Y.
Sumino, F. Takahashi, J. Tanaka, K. Agashe, G. Aielli, C.
Amsler et al., Phys. Rev. D 98, 030001 (2018).

[6] C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985); O.W.
Greenberg, Phys. Rev. D 32, 1841 (1985).

[7] M. J. Pérez, M. H. Rahat, P. Ramond, A.]J. Stuart, and B.
Xu, Phys. Rev. D 100, 075008 (2019).

[8] S.F. King and C. Luhn, Rep. Prog. Phys. 76, 056201
(2013); M. Tanimoto, AIP Conf. Proc. 1666, 120002
(2015); D. Meloni, Front. Phys. 5, 43 (2017); S. T. Petcov,
Eur. Phys. J. C 78, 709 (2018).

[9] G. A. Miller, H. Blichfeldt, and L. Dickson, Theory
and Applications of Finite Groups (Dover Publications,

New York, 1961); W. Fairbairn, T. Fulton, and W. Klink, J.
Math. Phys. (N.Y.) 5, 1038 (1964); P. O. Ludl, J. Phys. A 44,
255204 (2011); W. Grimus and P. O. Ludl, J. Phys. A: Math.
Theor. 47, 075202 (2014); H. Ishimori, T. Kobayashi, H.
Ohki, Y. Shimizu, H. Okada, and M. Tanimoto, Prog. Theor.
Phys. Suppl. 183, 1 (2010); Y. Kajiyama and H. Okada,
Nucl. Phys. B848, 303 (2011).

[10] K. M. Parattu and A. Wingerter, Phys. Rev. D 84, 013011
(2011).

[11] G.-J. Ding, Nucl. Phys. B853, 635 (2011); C. Hartmann and
A. Zee, Nucl. Phys. B853, 105 (2011); C. Hartmann, Phys.
Rev. D 85, 013012 (2012).

[12] F. Feruglio and A. Romanino, arXiv:1912.06028.

[13] N. Aghanim et al. (Planck Collaboration), arXiv:1807.06209.

[14] J. Schechter and J. W. Valle, Phys. Rev. D 25, 2951 (1982).

[15] S. Dell’Oro, S. Marcocci, M. Viel, and F. Vissani, Adv. High
Energy Phys. 2016, 2162659 (2016); J. Engel and J.
Menéndez, Rep. Prog. Phys. 80, 046301 (2017); J. Vergados,
H. Ejiri, and F. Simkovic, Int. J. Mod. Phys. E 25, 1630007
(2016); H. Pds and W. Rodejohann, New J. Phys. 17, 115010
(2015); S. F. King, A. Merle, and A. J. Stuart, J. High Energy
Phys. 2013 (2013) 5.

[16] A.Gando, Y. Gando, T. Hachiya, A. Hayashi, S. Hayashida,
H. Ikeda, K. Inoue, K. Ishidoshiro, Y. Karino, M. Koga
et al., Phys. Rev. Lett. 117, 082503 (2016).

[17] R. Gatto, G. Sartori, and M. Tonin, Phys. Lett. B 28, 128
(1968).

[18] S. Antusch and V. Maurer, J. High Energy Phys. 11 (2013)
115.

[19] J. Kile, M. J. Pérez, P. Ramond, and J. Zhang, Phys. Rev. D
90, 013004 (2014).

[20] H. Georgi and C. Jarlskog, Phys. Lett. B 86, 297 (1979).

[21] P. E. De Salas, S. Gariazzo, O. Mena, C. A. Ternes, and M.
Tértola, Front. Astron. Space Sci. 5, 36 (2018); 1. Esteban,
M. C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M.
Maltoni, and T. Schwetz, J. High Energy Phys. 01 (2019) 106.

[22] A. Pilaftsis and T. E.J. Underwood, Nucl. Phys. B692, 303
(2004); B. Dev, M. Garny, J. Klaric, P. Millington, and
D. Teresi, Int. J. Mod. Phys. A 33, 1842003 (2018); A.
Pilaftsis, J. Phys. Conf. Ser. 171, 012017 (2009).

[23] E. Jenkins and A.V. Manohar, Nucl. Phys. B792, 187
(2008).

[24] S. Bilenky and C. Giunti, Int. J. Mod. Phys. A 30, 1530001
(2015).

[25] G. Anton et al. (EXO-200 Collaboration), Phys. Rev. Lett.
123, 161802 (2019); M. Agostini et al. (GERDA Collabo-
ration), Phys. Rev. Lett. 120, 132503 (2018); F. Cappuzzello
et al., Eur. Phys. J. A 54, 72 (2018); V. Alenkov et al., Eur.
Phys. J. C 79, 791 (2019).

[26] B. Abi et al. (DUNE Collaboration), arXiv:1807.10334.

[27] K. Abe et al. (Hyper-Kamiokande Collaboration), arXiv:
1805.04163.

[28] K. Abe et al. (Super-Kamiokande Collaboration), Phys.
Rev. D 97, 072001 (2018).

[29] M. Hartz (T2K Collaboration), T2K neutrino oscillation
results with data up to 2017 summer, https://www.t2k.org/
docs/talk/282/kekseminar20170804 (2017).

[30] A. Radovic (NOvA Collaboration), Latest oscillation
results from NOVA, http://nova-docdb.fnal.gov/cgi-bin/
ShowDocument?docid=25938 (2018).

075018-16


https://doi.org/10.1103/PhysRevD.98.055030
https://doi.org/10.1103/PhysRevD.98.055030
https://doi.org/10.1016/S0370-2693(02)01336-9
https://doi.org/10.1016/S0370-2693(02)01336-9
https://doi.org/10.1016/S0370-2693(02)01753-7
https://doi.org/10.1016/S0370-2693(02)01753-7
https://doi.org/10.1016/S0370-2693(02)01649-0
https://doi.org/10.1016/S0370-2693(03)00390-3
https://doi.org/10.1103/PhysRevD.18.958
https://doi.org/10.1016/j.physletb.2005.05.075
https://doi.org/10.1016/j.physletb.2005.05.075
https://doi.org/10.1103/PhysRevD.73.013011
https://doi.org/10.1088/1126-6708/2007/01/014
https://doi.org/10.1007/JHEP02(2014)036
https://doi.org/10.1007/JHEP02(2014)036
https://arXiv.org/abs/1912.10139
https://doi.org/10.1155/2019/3572862
https://doi.org/10.1155/2019/3572862
https://doi.org/10.1007/JHEP04(2019)074
https://doi.org/10.1007/JHEP04(2019)074
https://doi.org/10.1007/JHEP12(2014)122
https://doi.org/10.1103/PhysRevD.89.016016
https://doi.org/10.1007/JHEP12(2018)025
https://doi.org/10.1142/S0217751X19500982
https://doi.org/10.1142/S0217751X19500982
https://doi.org/10.1103/PhysRevD.97.095001
https://doi.org/10.1016/j.nuclphysb.2015.10.020
https://doi.org/10.1016/j.nuclphysb.2015.10.020
https://doi.org/10.1016/j.physletb.2019.07.037
https://doi.org/10.1016/j.physletb.2019.04.022
https://doi.org/10.1016/j.physletb.2019.04.022
https://doi.org/10.1103/PhysRevD.99.075034
https://doi.org/10.1103/PhysRevD.99.075034
https://doi.org/10.1140/epjc/s10052-018-6158-5
https://doi.org/10.1140/epjc/s10052-018-6158-5
https://doi.org/10.1140/epjc/s10052-015-3559-6
https://doi.org/10.1140/epjc/s10052-015-3559-6
https://doi.org/10.1016/j.nuclphysb.2015.03.026
https://doi.org/10.1016/j.nuclphysb.2016.08.019
https://doi.org/10.1016/j.nuclphysb.2016.08.019
https://doi.org/10.1007/JHEP07(2017)089
https://doi.org/10.1016/j.nuclphysb.2018.02.018
https://doi.org/10.1016/j.nuclphysb.2018.02.018
https://doi.org/10.1140/epjc/s10052-018-5772-6
https://doi.org/10.1016/j.nuclphysb.2016.02.032
https://doi.org/10.1016/j.nuclphysb.2016.02.032
https://doi.org/10.1016/j.physletb.2011.06.096
https://doi.org/10.1103/PhysRevLett.108.041801
https://doi.org/10.1103/PhysRevLett.108.041801
https://doi.org/10.1103/PhysRevD.100.055022
https://doi.org/10.1016/j.nuclphysb.2019.114688
https://doi.org/10.1016/j.physletb.2015.12.069
https://doi.org/10.1016/j.physletb.2015.12.069
https://doi.org/10.1103/PhysRevD.98.055019
https://doi.org/10.1103/PhysRevD.98.055019
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevLett.55.1039
https://doi.org/10.1103/PhysRevD.32.1841
https://doi.org/10.1103/PhysRevD.100.075008
https://doi.org/10.1088/0034-4885/76/5/056201
https://doi.org/10.1088/0034-4885/76/5/056201
https://doi.org/10.1063/1.4915578
https://doi.org/10.1063/1.4915578
https://doi.org/10.3389/fphy.2017.00043
https://doi.org/10.1140/epjc/s10052-018-6158-5
https://doi.org/10.1063/1.1704204
https://doi.org/10.1063/1.1704204
https://doi.org/10.1088/1751-8113/44/25/255204
https://doi.org/10.1088/1751-8113/44/25/255204
https://doi.org/10.1088/1751-8113/47/7/075202
https://doi.org/10.1088/1751-8113/47/7/075202
https://doi.org/10.1143/PTPS.183.1
https://doi.org/10.1143/PTPS.183.1
https://doi.org/10.1016/j.nuclphysb.2011.02.020
https://doi.org/10.1103/PhysRevD.84.013011
https://doi.org/10.1103/PhysRevD.84.013011
https://doi.org/10.1016/j.nuclphysb.2011.08.012
https://doi.org/10.1016/j.nuclphysb.2011.07.023
https://doi.org/10.1103/PhysRevD.85.013012
https://doi.org/10.1103/PhysRevD.85.013012
https://arXiv.org/abs/1912.06028
https://arXiv.org/abs/1807.06209
https://doi.org/10.1103/PhysRevD.25.2951
https://doi.org/10.1155/2016/2162659
https://doi.org/10.1155/2016/2162659
https://doi.org/10.1088/1361-6633/aa5bc5
https://doi.org/10.1142/S0218301316300071
https://doi.org/10.1142/S0218301316300071
https://doi.org/10.1088/1367-2630/17/11/115010
https://doi.org/10.1088/1367-2630/17/11/115010
https://doi.org/10.1007/JHEP12(2013)005
https://doi.org/10.1007/JHEP12(2013)005
https://doi.org/10.1103/PhysRevLett.117.082503
https://doi.org/10.1016/0370-2693(68)90150-0
https://doi.org/10.1016/0370-2693(68)90150-0
https://doi.org/10.1007/JHEP11(2013)115
https://doi.org/10.1007/JHEP11(2013)115
https://doi.org/10.1103/PhysRevD.90.013004
https://doi.org/10.1103/PhysRevD.90.013004
https://doi.org/10.1016/0370-2693(79)90842-6
https://doi.org/10.3389/fspas.2018.00036
https://doi.org/10.1007/JHEP01(2019)106
https://doi.org/10.1016/j.nuclphysb.2004.05.029
https://doi.org/10.1016/j.nuclphysb.2004.05.029
https://doi.org/10.1142/S0217751X18420034
https://doi.org/10.1088/1742-6596/171/1/012017
https://doi.org/10.1016/j.nuclphysb.2007.09.031
https://doi.org/10.1016/j.nuclphysb.2007.09.031
https://doi.org/10.1142/S0217751X1530001X
https://doi.org/10.1142/S0217751X1530001X
https://doi.org/10.1103/PhysRevLett.123.161802
https://doi.org/10.1103/PhysRevLett.123.161802
https://doi.org/10.1103/PhysRevLett.120.132503
https://doi.org/10.1140/epja/i2018-12509-3
https://doi.org/10.1140/epjc/s10052-019-7279-1
https://doi.org/10.1140/epjc/s10052-019-7279-1
https://arXiv.org/abs/1807.10334
https://arXiv.org/abs/1805.04163
https://arXiv.org/abs/1805.04163
https://doi.org/10.1103/PhysRevD.97.072001
https://doi.org/10.1103/PhysRevD.97.072001
https://www.t2k.org/docs/talk/282/kekseminar20170804
https://www.t2k.org/docs/talk/282/kekseminar20170804
https://www.t2k.org/docs/talk/282/kekseminar20170804
https://www.t2k.org/docs/talk/282/kekseminar20170804
http://nova-docdb.fnal.gov/cgi-bin/ShowDocument?docid=25938
http://nova-docdb.fnal.gov/cgi-bin/ShowDocument?docid=25938
http://nova-docdb.fnal.gov/cgi-bin/ShowDocument?docid=25938
http://nova-docdb.fnal.gov/cgi-bin/ShowDocument?docid=25938

TRIBIMAXIMAL MIXING IN THE SU(5) x 7 5 ...

PHYS. REV. D 101, 075018 (2020)

[31] L. Amendola et al., Living Rev. Relativity 21, 2 (2018).

[32] P. A. Abell et al. (LSST Science, LSST Project), arXiv:
0912.0201.

[33] M. Levi et al. (DESI Collaboration), arXiv:1308.0847; A.
Aghamousa et al. (DESI Collaboration), arXiv:1611.00036.

[34] D. Spergel et al., arXiv:1503.03757.

[35] A. Font-Ribera, P. McDonald, N. Mostek, B. A. Reid, H.-J.
Seo, and A. Slosar, J. Cosmol. Astropart. Phys. 05 (2014) 023.

[36] B. Jain et al., arXiv:1501.07897.

[37] A.S. Barabash, J. Phys. Conf. Ser. 1390, 012048 (2019).

[38] N. Abgrall et al. (LEGEND Collaboration), AIP Conf. Proc.
1894, 020027 (2017).

[39] G. Wang et al. (CUPID Collaboration), arXiv:1504.03599;
arXiv:1504.03612.

[40] J.B. Albert et al. (nEXO Collaboration), Phys. Rev. C 97,
065503 (2018).

[41] S. Andringa et al. (SNO+ Collaboration), Adv. High
Energy Phys. 2016, 6194250 (2016); V. Fischer (SNO+
Collaboration), in Proceedings of the 13th Conference on
the Intersections of Particle and Nuclear Physics (CIPANP
2018), Palm Springs (2018).

[42] H.-S. Jo (AMoRE Collaboration), J. Phys. Conf. Ser. 888,
012232 (2017).

[43] X. Chen et al., Sci. China Phys. Mech. Astron. 60, 061011
(2017).

[44] B. L. Rachlin and T. W. Kephart, J. High Energy Phys. 08
(2017) 110; A. Merle and R. Zwicky, J. High Energy Phys. 02
(2012) 128; C. Luhn, J. High Energy Phys. 03 (2011) 108.

[45] 1. de Medeiros Varzielas, G. G. Ross, and J. Talbert, J. High
Energy Phys. 03 (2018) 007; B.L. Rachlin and T. W.
Kephart, arXiv:1812.06235; M.-C. Chen, J. Huang, K. T.
Mahanthappa, and A. M. Wijangco, J. High Energy Phys.
10 (2013) 112.

[46] S. Centelles Chulia and A. Trautner, arXiv:1911.12043.

[47] L.L. Everett and A.J. Stuart, Phys. Rev. D 96, 035030
(2017); G.-J. Ding, S.F. King, and A.J. Stuart, J. High
Energy Phys. 2013 (2013) 6; C.-C. Li, J.-N. Lu, and G.-J.
Ding, Nucl. Phys. B913, 110 (2016); C. Nishi, Phys. Rev. D
88, 033010 (2013); R. Sinha, P. Roy, and A. Ghosal, Phys.
Rev. D 99, 033009 (2019); G.-J. Ding and Y.-L. Zhou,
J. High Energy Phys. 2014 (2014) 23; C. Hagedorn, A.
Meroni, and E. Molinaro, Nucl. Phys. B891, 499 (2015);
G.-J. Ding and S. F. King, Phys. Rev. D 93, 025013 (2016);
C.-C. Li and G.-J. Ding, J. High Energy Phys. 2015 (2015)
100; A. Di Iura, C. Hagedorn, and D. Meloni, J. High
Energy Phys. 2015 (2015) 37; P. Ballett, S. Pascoli, and

J. Turner, Phys. Rev. D 92, 093008 (2015); J. Turner, Phys.
Rev. D 92, 116007 (2015); G.-J. Ding, S. F. King, C. Luhn,
and A.J. Stuart, J. High Energy Phys. 2013 (2013) 84; F.
Feruglio, C. Hagedorn, and R. Ziegler, J. High Energy Phys.
2013 (2013) 27; F. Feruglio, C. Hagedorn, and R. Ziegler,
Eur. Phys. J. C 74, 2753 (2014); C.-C. Li and G.-J. Ding,
Nucl. Phys. B881, 206 (2014); C.-C. Li and G.-J. Ding,
J. High Energy Phys. 2015 (2015) 17; J.-N. Lu and G.-J.
Ding, Phys. Rev. D 95, 015012 (2017); S.F. King and T.
Neder, Phys. Lett. B 736, 308 (2014); G.-J. Ding and S. F.
King, Phys. Rev. D 89, 093020 (2014); G.-J. Ding, S.F.
King, and T. Neder, J. High Energy Phys. 2014 (2014) 7; P.
Chen, C.-Y. Yao, and G.-J. Ding, Phys. Rev. D 92, 073002
(2015); P. Chen, S. C. Chuli4, G.-J. Ding, R. Srivastava, and
J. W. Valle, J. High Energy Phys. 2018 (2018) 77; J.-N. Lu
and G.-J. Ding, Phys. Rev. D 98, 055011 (2018); A.S.
Joshipura and K. M. Patel, J. High Energy Phys. 2018
(2018) 137; S.-j. Rong, Phys. Rev. D 95, 076014 (2017);
L.L. Everett, T. Garon, and A.J. Stuart, J. High Energy
Phys. 04 (2015) 069; 1. Girardi, A. Meroni, S. Petcov, and
M. Spinrath, J. High Energy Phys. 2014 (2014) 50; J.
Penedo, S. Petcov, and A. Titov, J. High Energy Phys. 2017
(2017) 22; C.-C. Li, J.-N. Lu, and G.-J. Ding, J. High
Energy Phys. 02 (2018) 038; C.-C. Li and G.-J. Ding, Phys.
Rev. D 96, 075005 (2017); J.-N. Lu and G.-J. Ding, Phys.
Rev. D 95, 015012 (2017); C.-C. Li, J.-N. Lu, and G.-J.
Ding, Nucl. Phys. B913, 110 (2016); C.-Y. Yao and G.-J.
Ding, Phys. Rev. D 94, 073006 (2016); P. Chen, G.-J. Ding,
F. Gonzalez-Canales, and J. W. F. Valle, Phys. Rev. D 94,
033002 (2016); P. Chen, G.-J. Ding, and S. F. King, J. High
Energy Phys. 03 (2016) 206; C.-C. Li, C.-Y. Yao, and G.-J.
Ding, J. High Energy Phys. 05 (2016) 007; G.-J. Ding and
Y.-L. Zhou, Chin. Phys. C 39, 021001 (2015); P. Chen, S. C.
Chulia, G.-J. Ding, R. Srivastava, and J. W. Valle, J. High
Energy Phys. 2019 (2019) 36; P. Chen, S. Centelles Chulid,
G.-J. Ding, R. Srivastava, and J. W. E. Valle, Phys. Rev. D
100, 053001 (2019); D. Barreiros, R. Felipe, and F.
Joaquim, J. High Energy Phys. 2019 (2019) 223; R. Sinha,
S. Bhattacharya, and R. Samanta, J. High Energy Phys.
2019 (2019) 81; R. Samanta and M. Sen, J. High Energy
Phys. 2001 (2020) 193.

[48] S.-F. Ge and M. Lindner, Phys. Rev. D 95, 033003 (2017);
H. Minakata, H. Nunokawa, and A.A. Quiroga, Prog.
Theor. Exp. Phys. 2015, 33B03 (2015).

[49] H. Ishimori, T. Kobayashi, H. Ohki, H. Okada, Y. Shimizu,
and M. Tanimoto, Lect. Notes Phys. 858, 102 (2012).

075018-17


https://doi.org/10.1007/s41114-017-0010-3
https://arXiv.org/abs/0912.0201
https://arXiv.org/abs/0912.0201
https://arXiv.org/abs/1308.0847
https://arXiv.org/abs/1611.00036
https://arXiv.org/abs/1503.03757
https://doi.org/10.1088/1475-7516/2014/05/023
https://arXiv.org/abs/1501.07897
https://doi.org/10.1088/1742-6596/1390/1/012048
https://doi.org/10.1063/1.5007652
https://doi.org/10.1063/1.5007652
https://arXiv.org/abs/1504.03599
https://arXiv.org/abs/1504.03612
https://doi.org/10.1103/PhysRevC.97.065503
https://doi.org/10.1103/PhysRevC.97.065503
https://doi.org/10.1155/2016/6194250
https://doi.org/10.1155/2016/6194250
https://doi.org/10.1088/1742-6596/888/1/012232
https://doi.org/10.1088/1742-6596/888/1/012232
https://doi.org/10.1007/s11433-017-9028-0
https://doi.org/10.1007/s11433-017-9028-0
https://doi.org/10.1007/JHEP08(2017)110
https://doi.org/10.1007/JHEP08(2017)110
https://doi.org/10.1007/JHEP02(2012)128
https://doi.org/10.1007/JHEP02(2012)128
https://doi.org/10.1007/JHEP03(2011)108
https://doi.org/10.1007/JHEP03(2018)007
https://doi.org/10.1007/JHEP03(2018)007
https://arXiv.org/abs/1812.06235
https://doi.org/10.1007/JHEP10(2013)112
https://doi.org/10.1007/JHEP10(2013)112
https://arXiv.org/abs/1911.12043
https://doi.org/10.1103/PhysRevD.96.035030
https://doi.org/10.1103/PhysRevD.96.035030
https://doi.org/10.1007/JHEP12(2013)006
https://doi.org/10.1007/JHEP12(2013)006
https://doi.org/10.1016/j.nuclphysb.2016.09.005
https://doi.org/10.1103/PhysRevD.88.033010
https://doi.org/10.1103/PhysRevD.88.033010
https://doi.org/10.1103/PhysRevD.99.033009
https://doi.org/10.1103/PhysRevD.99.033009
https://doi.org/10.1007/JHEP06(2014)023
https://doi.org/10.1016/j.nuclphysb.2014.12.013
https://doi.org/10.1103/PhysRevD.93.025013
https://doi.org/10.1007/JHEP05(2015)100
https://doi.org/10.1007/JHEP05(2015)100
https://doi.org/10.1007/JHEP08(2015)037
https://doi.org/10.1007/JHEP08(2015)037
https://doi.org/10.1103/PhysRevD.92.093008
https://doi.org/10.1103/PhysRevD.92.116007
https://doi.org/10.1103/PhysRevD.92.116007
https://doi.org/10.1007/JHEP05(2013)084
https://doi.org/10.1140/epjc/s10052-014-2753-2
https://doi.org/10.1016/j.nuclphysb.2014.02.002
https://doi.org/10.1007/JHEP08(2015)017
https://doi.org/10.1103/PhysRevD.95.015012
https://doi.org/10.1016/j.physletb.2014.07.043
https://doi.org/10.1103/PhysRevD.89.093020
https://doi.org/10.1007/JHEP12(2014)007
https://doi.org/10.1103/PhysRevD.92.073002
https://doi.org/10.1103/PhysRevD.92.073002
https://doi.org/10.1007/JHEP07(2018)077
https://doi.org/10.1103/PhysRevD.98.055011
https://doi.org/10.1007/JHEP07(2018)137
https://doi.org/10.1007/JHEP07(2018)137
https://doi.org/10.1103/PhysRevD.95.076014
https://doi.org/10.1007/JHEP04(2015)069
https://doi.org/10.1007/JHEP04(2015)069
https://doi.org/10.1007/JHEP02(2014)050
https://doi.org/10.1007/JHEP12(2017)022
https://doi.org/10.1007/JHEP12(2017)022
https://doi.org/10.1007/JHEP02(2018)038
https://doi.org/10.1007/JHEP02(2018)038
https://doi.org/10.1103/PhysRevD.96.075005
https://doi.org/10.1103/PhysRevD.96.075005
https://doi.org/10.1103/PhysRevD.95.015012
https://doi.org/10.1103/PhysRevD.95.015012
https://doi.org/10.1016/j.nuclphysb.2016.09.005
https://doi.org/10.1103/PhysRevD.94.073006
https://doi.org/10.1103/PhysRevD.94.033002
https://doi.org/10.1103/PhysRevD.94.033002
https://doi.org/10.1007/JHEP03(2016)206
https://doi.org/10.1007/JHEP03(2016)206
https://doi.org/10.1007/JHEP05(2016)007
https://doi.org/10.1088/1674-1137/39/2/021001
https://doi.org/10.1007/JHEP03(2019)036
https://doi.org/10.1007/JHEP03(2019)036
https://doi.org/10.1103/PhysRevD.100.053001
https://doi.org/10.1103/PhysRevD.100.053001
https://doi.org/10.1007/JHEP01(2019)223
https://doi.org/10.1007/JHEP03(2019)081
https://doi.org/10.1007/JHEP03(2019)081
https://doi.org/10.1007/JHEP01(2020)193
https://doi.org/10.1007/JHEP01(2020)193
https://doi.org/10.1103/PhysRevD.95.033003
https://doi.org/10.1093/ptep/ptv010
https://doi.org/10.1093/ptep/ptv010
https://doi.org/10.1007/978-3-642-30805-5

