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We consider local (or perturbative) gauge anomalies in models which extend the rank of the
Standard Model (SM) gauge group and the chiral fermion content only by n SM singlets. We give a
general solution to the anomaly cancellation conditions (ACCs) of an additional Uð1Þ subgroup for the
ACCs that involve only SM fermions and we examine whether a corresponding solution exists for the
remaining ACCs. We show that a solution to the remaining ACCs always exists for n ≥ 5 in the family-
nonuniversal case or n ≥ 3 in the family-universal case. In the special case where only a single family
carries nonvanishing charges, we find a general solution to all ACCs, for any value of n.
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I. INTRODUCTION

Countless gauge extensions of the Standard Model (SM)
have been constructed in the literature. Most of these
involve an increase in rank with respect to the usual SM
gauge group,1 so there is usually at least one additional,
nonlinearly realized Uð1Þ subgroup in the extension. But if
one wishes to tinker with the gauge structure of the SM in
this way, one should check that basic requirements of
locality and unitarity of the theory are not violated via
anomalies in the fermionic path integral.
Our goal here is to carry out the necessary due diligence2

on the local part3 of the anomaly. Apart from one crucial

detail (to which we return shortly), the local anomaly
depends only on the Lie algebra which, when the rank
increases by one, is unambiguously isomorphic to
suð3Þ ⊕ suð2Þ ⊕ uð1Þ ⊕ uð1Þ.4
The main purpose of our work is to study and restrict the

parameter space of additional-uð1Þ charges of chiral fer-
mions, thus informing themodel building of SM extensions.
The gauged, spontaneously broken Uð1Þ subgroup leads

to a massive SM-neutral spin-1 particle which we may
dub a Z0. Models with Z0 have been studied exhaustively in
the literature: to explain dark matter [6–13], the anomalous
magnetic moment of the muon [14], axions [15] or lepto-
genesis [16], proton stabilization [17], supersymmetry
breaking [18], fermion masses and mixing (via the
Froggatt-Nielsen mechanism) [19], and, most recently
[8,20–57], apparent lepton family nonuniversality (FNU)
in certain rare neutral current B-meson decays [58–60].
Several of these applications require FNU couplings of the
Z0, corresponding to FNU charge assignments to its under-
lying Uð1Þ gauge group. There is also a generic phenom-
enological motivation for Z0 fields as follows: the existence
of neutrinos and dark matter, among other things, motivates
the existence of a rich hidden sector, and it is natural to
wonder whether this hidden sector, just like the visible
sector, has a gauge symmetry of its own. If that gauge
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1An obvious, rare, exception is the SUð5Þ grand unified theory.
2It is well known that local anomalies place nontrivial con-

straints upon representations of chiral fermions. For example, in
the SM, if we allow the hypercharges of the fermions to vary over
the reals, the combination of gauge and gravitational anomaly
cancellation implies that the charges must be commensurate [1].
Conversely, if the hypercharges are commensurate but otherwise
free, gauge anomaly cancellation of a family of SMchiral fermions
implies gravitational anomaly cancellation [2] within that family.

3The global part is somewhat tricky to study in such models,
not least because we do not know (though some might say we do
not care) what the gauge group is (see [3,4] for details).

4When the rank increases by more than one, this is a
subalgebra and all of the considerations in this work remain
applicable, but there will, of course, be yet further constraints. For
a concrete example in which two additional Uð1Þ factors are
gauged, viz. those corresponding to baryon and lepton numbers,
see [5].
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symmetry algebra has a uð1Þ factor, then the SM fermions
can be charged with respect to it, giving us a possible
“portal” to the hidden sector.
Returning now to our discussion of the algebra

suð3Þ ⊕ suð2Þ ⊕ uð1Þ ⊕ uð1Þ, we can choose a basis X,
Y for the subalgebra uð1Þ ⊕ uð1Þ in which Y corresponds
to the SM hypercharge and X to the Z0, such that the X
anomaly cancellation conditions (ACCs) become5

32X∶ 0 ¼
X3
j¼1

ð2Qj þ Uj þDjÞ; ð1aÞ

22X∶ 0 ¼
X3
j¼1

ð3Qj þ LjÞ; ð1bÞ

Y2X∶ 0 ¼
X3
j¼1

ðQj þ 8Uj þ 2Djþ3Lj þ 6EjÞ; ð1cÞ

YX2∶ 0 ¼
X3
j¼1

ðQ2
j − 2U2

j þD2
j − L2

j þ E2
jÞ; ð1dÞ

grav2X∶
Xn
i¼1

xi ¼ −
X3
j¼1

ð6Qj þ 3Uj þ 3Djþ2Lj þ EjÞ;

ð1eÞ

X3∶
Xn
i¼1

x3i ¼ −
X3
j¼1

ð6Q3
j þ 3U3

j þ 3D3
jþ2L3

j þ E3
jÞ; ð1fÞ

where Fj denote the charges of SM fermions6 (F ∈ fQ;U;
D; L; Eg, j ∈ f1; 2; 3g) with respect to the Z0 and xi denote
the charges of n ≥ 0 hypothetical SM-singlet fermions with
respect to the Z0. We posit that SM-singlet fermions are
highly likely to exist in nature given the fact that neutrinos
are massive and the simplest way of providing neutrino
masses is via Yukawa terms with SM-singlet fermions (they
also have a number of other phenomenological applica-
tions, such as dark matter). By way of shorthand, we refer
to the Fj as “visible charges” and the xi as “invisible
charges.” Most previous studies of these ACCs have made
additional assumptions, those of family universality or two
zero-charged families being particularly common. We wish
our analysis to be more general, ultimately allowing the
visible charges to freely vary between generations. This
will lead to a larger set of solutions that contains subsets
with additional assumptions. Aside from being more

general, family dependence is often desirable in applica-
tions to flavor physics.
Now comes the crucial point at which the global

structure of the gauge group plays a rôle. In the general
case, the charges must be real, but if the group is compact
(as we might expect on the basis of a variety of theoretical
arguments and empirical observations, the most compelling
of which are perhaps the apparent unification of gauge
couplings and the fact that the observed electric charges
themselves appear to be commensurate), then the X charges
must be commensurate, and since (1a)–(1f) are invariant
under an overall real rescaling, we may take them to be
rational.
Of course, by clearing denominators, we could also take

them to be coprime integers7 and indeed we will always
write charges in this way. Thus, for example, we write
the SM fermion’s hypercharges as yQj

¼ þ1, yUj
¼ −4,

yDj
¼ þ2, yLj

¼ −3, and yEj
¼ þ6. Doing so avoids

having to worry about annoying normalization factors.8

But considering them to lie in the field of rational numbers
allows us to benefit from the not inconsiderable machinery,
and geometric insights, of (projective) algebraic geometry.
Indeed, the six equations (1) are homogeneous in 15þ n
unknowns with coefficients in Q and so, given any field
extension k of Q (such as Q, R, or C), they define a
projective variety in the 14þ n-dimensional projective
space over k, i.e., the space of lines through the origin
in the affine space k15þn.
The holy grail would be to find all k points for each value

of n. For generic polynomial equations, this is hard enough
even for the case k ¼ R (corresponding to a noncompact
gauge group); in the case k ¼ Q of interest to us (corre-
sponding to a compact gauge group), the best efforts of
number theorists over the millennia have yielded scant
reward.9

The outlook as regards the search for the holy grail is
thus somewhat bleak. Fortunately (or unfortunately,
depending on one’s point of view), a general solution is
hardly required, given that so little is known about SM-
singlet fermions. It seems likely that they exist (given that

5Given that the symmetry corresponding to the Z0 is non-
linearly realized, there is always the possibility that the anomalies
from chiral fermions do not vanish but are rather compensated by,
e.g., a Wess-Zumino-Witten term. We ignore this possibility here.

6As usual, we consider all Weyl fermions as being left-handed.

7That is, integers whose greatest common divisor is 1.
8It also allows us to mention another subtle point. Depending

on the choice of the global gauge group, not all rational points
lead to admissible representations. Suppose, for example, that the
Z0 together with the W and Z gauge bosons actually make up the
group Uð2Þ. In this case, the usual global Witten anomaly of
SUð2Þ is absent and appears instead as a local anomaly. The
number of even-dimensional representations of Uð2Þ must be
even, and if it is nonzero, this implies that the number of odd
integer charges must be even; for details, see [3,4]. We will
concentrate here on the case in which the global group is assumed
to be SUð3Þ × SUð2Þ × Uð1Þ ×Uð1Þ (which is universal in the
sense that it covers any other compact group with the same
algebra), such that all rational points are allowed.

9The state of the art is elliptic curves, described by a single
cubic equation in 2D.
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neutrinos are massive), but we do not know howmany there
are (two or more suffice to fit neutrino data), and we are
certainly not yet in a position to measure their charges with
respect to a Z0 boson which is itself yet to be discovered and
may well not exist. So, at least for the time being, it seems
reasonable to leave the number theorists in peace in their
ivory towers and to focus our attention instead on questions
which are of more immediate interest to phenomenologists.
Happily, we will find that most such questions are also easy
enough for phenomenologists to answer.
Paramount among such questions, in our opinion, is the

following: can we find all possible values of the visible
charges Fj for which there exists a solution of the ACCs (1)
for some n and xi? We may wish to know the visible
charges because these largely determine the phenomenol-
ogy of the Z0. On the other hand, since n and xi are almost
completely unconstrained by observations, we hardly need
to know the values they take in particular solutions; rather,
we might care only whether such values exist.
To this end, our strategy is to first give a general solution

of the equations, namely (1a)–(1d), that only involve the
visible charges Fj. The first three of these equations are
linear and are thus trivial to solve over Q. The fourth and
last equation is quadratic and finding its general solution is
also a triviality (albeit an algebraically unpleasant one),
once we employ some insight from geometry. Indeed,
suppose that we are somehow able to find just one rational
point. We may then construct all rational lines through that
point. Each such line must either lie in the surface, in which
case every rational point on it gives another solution, or it
must intersect the surface in another rational point,10 giving
us a way to generate new solutions from old ones.
Moreover, since any two points in (either affine or
projective) space are joined by a line, all solutions can
be obtained in this way.
The two equations which remain, (1e) and (1f), involve

the invisible charges and involve a cubic, so are typically
much harder to solve. Instead we attack the simpler problem
of fixing n and asking whether a solution exists. To this end,
it is convenient to write (1e) and (1f) in the form

Xn
i¼1

xi ¼ J; ð2Þ

Xn
i¼1

x3i ¼ M þ J3; ð3Þ

where

J ≔ −
X3
j¼1

ð6Qj þ 3Uj þ 3Dj þ 2Lj þ EjÞ; ð4Þ

M ≔ −
X3
j¼1

ð6Q3
j þ 3U3

j þ 3D3
j þ 2L3

j þ E3
jÞ − J3; ð5Þ

and evidently M; J ∈ Z. In the case where two families of
charges are set to zero, we will see thatM ¼ 0 and that this
allows us to solve (2) and (3) generally. The form of J in this
case allows us to connect the solution to this problem to the
solution obtained for the visible charges, allowing the
general solution to the full set of ACCs to be found.
In more general cases, including the apparently very

similar family-universal (FU) case, we are not able to
obtain a general solution. But in this FU case, we show in
Sec. III that (1e) and (1f) always have a solution over Z for
n ≥ 3. In the fully family-nonuniversal (FNU) case, we
similarly show in Sec. IV D that (1e) and (1f) always have
a solution for n ≥ 5. Thus, that any of the solutions to
(1a)–(1d) can be extended to a solution of the full set of
ACCs (1a)–(1f) when n is large enough. In contrast, we
shall show that sometimes a solution cannot be found for
n ≤ 2 in the FU case and n ≤ 4 in the FNU case. We
catalog the values of M and J for which solutions can be
found for n ≤ 2 in the FU case and n ≤ 3 in the FNU
case.11 These results hinge crucially on the not-so-obvious
fact that M ∈ 6Z. For all cases where a solution exists, we
provide a general parameterization of the visible charges.
Thus, we obtain a factorization of the problem in a way

that ought to be adequate for phenomenologists’ needs: a
general parametric solution to the allowed visible charges is
given; for any such solution one can be sure that a suitable
set of invisible charges exists, if n is large enough.
In an “anomaly-free atlas” [61], solutions of the ACCs

considered here were found numerically for jFjj ≤ 10 and
n ¼ 0, 1, 2 or 3. In the present paper, we are interested in
analytic solutions without any such restrictions upon Fj.
The outline of our paper is as follows. We begin in

Sec. II by considering the simple case where only one
family is charged. Here we will show that M ¼ 0, and as a
consequence the ACCs can be solved exactly, using
previously known results. In Sec. III, we discuss the FU
case. In Sec. IV, we discuss the more general case where
visible charges vary between generations. We summarize
and conclude in Sec. V. Though it is something of a
curiosity, it turns out that one can also find a general
solution for odd n in the family-universal case; this solution
is given in Appendix A. In Appendix B, we supply
additional parameterizations of the solutions for the visible
charges which avoid the need to consider the degenerate
cases where our main parameterization yields entire lines
of solutions. The special case where there are only
two independent families of charges (which may be

10This point may, of course, coincide with the original point—
i.e., we have a double point—or the other point of intersection
may be “at infinity” in affine space.

11There is a small lacuna in the case n ¼ 4, which can be traced
back to the difficulty of solving a cubic equation in one unknown
over Z.
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phenomenologically relevant given the apparent similarity
of the two light SM families) is dealt with in Appendix C.

II. ONE-FAMILY CASE

The simplest case we examine is where two families
have zero charge and only one family is charged. As such
we have F2 ¼ F3 ¼ 0 and define F1 ¼ F. We start our
analysis by imposing (1a)–(1c), which imply

D ¼ −2Q −U; L ¼ −3Q; E ¼ 2Q − U: ð6Þ

Substituting this into (1d) yields 0.12 Thus (6) provides a
general solution to the visible ACCs (1a)–(1d) for
any Q;U ∈ Z.
Substituting (6) into (4) and (5) gives J ¼ 4Qþ U and

M ¼ 0 and so we reduce (2) and (3) to

Xn
i¼1

xi ¼ J;
Xn
i¼1

x3i ¼ J3: ð7Þ

For n ¼ 0, there exists a solution to all ACCs iff J ¼ 0,
corresponding to a one-parameter family of solutions given
by (6) with U ¼ −4Q already found in Ref. [61]. For
n > 0, by defining xnþ1 ¼ −J, we obtain a set of diop-
hantine equations equivalent to the ACCs of a pure Uð1Þ
gauge theory, the general solution to which is known
[62,63], and which parameterize xi in terms of a set of
parameters R (say). Thus in this case the general solution to
the ACCs can be found in terms of the parameters fR;Qg:

U¼−4Q−xnþ1ðRÞ; D¼2Qþxnþ1ðRÞ; L¼−3Q;

E¼6Qþxnþ1ðRÞ; xi¼xiðRÞ ∀ 1≤ i≤n: ð8Þ

III. FAMILY-UNIVERSAL CASE

The next step in our discussion is the FU case. Like for
the one-family case above, we start our analysis by
imposing (1a)–(1c), leading to (6) again, but where
F1 ¼ F2 ¼ F3 ¼ F.13

Substituting (6) into (4), (5) gives us J ¼ 3ð4QþUÞ and
M ¼ −24ð4Qþ UÞ3. Notice, here is where our analysis
diverges from the one-family case. The fact that M ≠ 0
prevents us from solving (2) and (3) in a way identical to
[62,63]. As such we are left to study (2) and (3) on a case-by-
case basis, looking at the existence of solutions. Forn ¼ 0, it is
obvious that we need J ¼ 0 ⇒ M ¼ 0, leading to the same
one-parameter set of solutions as in then ¼ 0 one-family case.
For n ¼ 1, x1 ¼ J and x31 ¼ M þ J3, soM ¼ 0 ⇒ J ¼ 0 as
well. For n ¼ 2, x1 þ x2 ¼ J and x31 þ x32 ¼ M þ J3, elimi-
nating x2 from the latter equation gives

9Kx21 − 27K2x1 þ 24K3 ¼ 0; ð9Þ
where K ≡ J=3 ∈ Z and we have used that M ¼ −24K3.
This equation has no real roots (ergo no integer roots) unless
K ¼ 0 ⇒ J ¼ M ¼ 0 again. For n ≥ 3, we always have a
solution given by x1 ¼ x2 ¼ x3 ¼ K ¼ ð4QþUÞ and
xi ¼ 0 for i > 3. While this is a solution, we do not claim
that it is themost general one. However, in the case of n odd it
is anoddity thatwe can find themost general solution.14This is
detailed in Appendix A.
We will see in Sec. IV D that we will be less lucky when

considering the equivalent problem in the FNU case, and
we will have to resort to less trivial techniques.

IV. FAMILY-NONUNIVERSAL CASE

We now move to the FNU case and find ourselves in the
fortunate situation that the ACCs (1a)–(1d) (those that
depend only on visible matter) can, when considered alone,
be solved generally using straightforward, if unpleasant,
techniques from diophantine analysis. To do so, it helps to
apply a common GLð3;ZÞ transformation to fF1; F2; F3g
similar to that in Ref. [61], so as to recast the equations into
a simpler form, while remaining within the realm of the
integers.
To wit, we set Fþ ¼ F1 þ F2 þ F3, Fα ¼ F1 − F2, and

Fβ ¼ F2 þ F3. The judiciousness of this transformation is
twofold. Firstly, the linear equations (1a)–(1c) become
dependent on Fþ only, whose general solution over Z is
immediately seen to be

Dþ ¼ −2Qþ −Uþ; Lþ ¼ −3Qþ;

Eþ ¼ 2Qþ −Uþ; ð10Þ
written in term of two arbitrary parameters Qþ; Uþ ∈ Z,
which we will see are further constrained by the quadratic.
Secondly, it makes it easy for us to recover the results in
situations with charge universality between any two fam-
ilies, which without loss of generality corresponds to
setting Fα ¼ 0; this is considered in Appendix C.

12This has a geometric explanation and holds for generic
choices of representations of the five fermionic species. Equa-
tion (6) defines a line L in PQ4, which must pass through the
point corresponding to hypercharge assignments. The quadratic
volume defined by (1d) must also pass through the hypercharge
assignment point and so it either must intersect L at one other
point or L must lie within the quadratic volume itself. Since (1c)
implies that the gradient of (1d) in the direction of the hyper-
charge point is zero, L lies within the quadratic volume. This
argument would not work for a larger number of fermionic
species, since then (6) would define a higher-dimensional space
rather than a line.

13This corresponds to the well-known (see e.g., [1]) fact that,
given the SUð3Þ × SUð2Þ representation content of the SM
fermions, the only gaugeable, FU Uð1Þ charges are a linear
combination of the usual hypercharge and B − L.

14It arises because the cubic hypersurface has double points,
and so all solutions can be obtained by constructing lines through
such a point.
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In the new variables the quadratic equation becomes

XTHX ¼ 0; ð11Þ

where we have used (10) to replace Dþ, Lþ and Eþ. It is a homogenous diophantine equation of degree 2 in the entries of
the 12-tuple

X ≔ ðQþ; Uþ; Qα; Qβ; Uα; Uβ; Dα; Dβ; Lα; Lβ; Eα; EβÞ:
ð12Þ

H is a 12 × 12 symmetric matrix with integer entries, the upper right triangle of which is

H ¼

0
BBBBBBBBBBBBBBBBBBBBBBBB@

0 0 −2 −4 0 0 4 8 −6 −12 −4 −8
0 0 0 4 8 2 4 0 0 2 4

2 3 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

−4 −6 0 0 0 0 0 0

−12 0 0 0 0 0 0

2 3 0 0 0 0

6 0 0 0 0

−2 −3 0 0

−6 0 0

2 3

6

1
CCCCCCCCCCCCCCCCCCCCCCCCA

: ð13Þ

We shall now show that (11), which defines a hypersurface
Γ ⊂ PQ11, can be solved generally over Z given only
one nontrivial solution. We consider lines L ¼ αX̃ þ βR
through a known solution X̃ ∈ PQ11, where R ∈ PQ11, and
½α∶β� ∈ PQ1. On substitution into (11) we obtain

βð2RTHX̃αþ RTHRβÞ ¼ 0: ð14Þ

Thus either the line L intersects Γ at β ¼ 0 (returning the
point X̃) and at ½α∶β� ¼ ½RTHR∶ − 2RTHX̃�, or L ⊂ Γ with
(14) being automatically satisfied for any α and β.
For L⊈Γ, after returning to affine space, the solutions

generated from the second intersection point are

X ¼ k
GCDðX0ÞX

0;

where X0 ¼ ðRTHRÞX̃ − 2ðRTHX̃ÞR; ð15Þ

where k ∈ Z is an overall factor and GCDðX0Þ denotes the
greatest common divisor of the integers in X0.

A. Solution for SM chiral fermion charges

A specific choice of X̃ has Qα ¼ 1 and Lα ¼ 1, with all
other parameters zero. Using the formula (15) we obtain

Q0þ ¼ 2RQþΛ; U0þ ¼ 2RUþΛ; Q0
α ¼ 2RQα

Λþ Σ;

Q0
β ¼ 2RQβ

Λ; U0
α ¼ 2RUα

Λ; U0
β ¼ 2RUβ

Λ;

D0
α ¼ 2RDα

Λ; D0
β ¼ 2RDβ

Λ; L0
α ¼ 2RLα

Λþ Σ;

L0
β ¼ 2RLβ

Λ; E0
α ¼ 2REα

Λ; E0
β ¼ 2REβ

Λ; ð16Þ

where

Λ ¼ ð8RQþ þ 2RLα
þ 3RLβ

− 2RQα
− 3RQβ

Þ; ð17Þ

Σ ¼ RTHR: ð18Þ

We invert the GLð3;ZÞ transformation used above using
(10) and (16) to yield a parameterization of a solution for
the visible charges
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Q1 ¼ 2ΛðRQþ − RQβ
Þ;

Q2 ¼ 2ΛðRQþ − RQα
− RQβ

Þ − Σ;

Q3 ¼ 2Λð2RQβ
þ RQα

− RQþÞ þ Σ;

U1 ¼ 2ΛðRUþ − RUβ
Þ;

U2 ¼ 2ΛðRUþ − RUα
− RUβ

Þ;
U3 ¼ 2Λð2RUβ

þ RUα
− RUþÞ;

D1 ¼ −2Λð2RQþ þ RUþ þ RDβ
Þ;

D2 ¼ −2ΛðRDα
þ RDβ

þ 2RQþ þ RUþÞ;
D3 ¼ 2ΛðRDα

þ 2RDβ
þ 2RQþ þ RUþÞ;

L1 ¼ −2ΛðRLβ
þ 3RQþÞ;

L2 ¼ −2ΛðRLα
þ RLβ

þ 3RQþÞ − Σ;

L3 ¼ 2ΛðRLα
þ 2RLβ

þ 3RQþÞ þ Σ;

E1 ¼ 2Λð2RQþ − REβ
− RUþÞ;

E2 ¼ 2Λð2RQþ − REα
− REβ

− RUþÞ;
E3 ¼ 2Λð−2RQþ þ REα

þ 2REβ
þ RUþÞ ð19Þ

in terms of the 12 integer-valued variables

fRQþ ; RUþ ; RQα
; RQβ

; RUα
; RUβ

; RDα
; RDβ

;

RLα
; RLβ

; REα
; REβ

g:

Note that, for this X̃, those solutions for which Qα ¼ Lα

lie on lines which themselves lie in Γ. These points can be
caught by either scanning over all R and noting that when
RTHX̃ ¼ 0 all rational points on the line are solutions or by
taking a series of different X̃. In Appendix B we give a set
of X̃, such that all solutions can be found as the unique
second intersection point of Γ with a line through X̃.

B. Gauge-invariant Yukawa couplings

As an example of how the parameterization in (19) could
be used, we ask the question: what are conditions on R from
the existence of Yukawa couplings?
First, we note that a necessary and sufficient condition

for the presence of all possible gauge-invariant Yukawa
couplings is that we have family universality, as shown in
Ref. [61]. We analyzed this case in Sec. III. Going to the
family-nonuniversal case, we write the Yukawa couplings
in the Lagrangian density:

LY ¼ ðYUÞijqiHcucj þ ðYDÞijqiHdcj þ ðYEÞijliHecj þ H:c:;

ð20Þ

where fqi; uci ; dci ; li; eci g are the left-handed fermion fields
in the family indexed by i, H is the SM Higgs doublet field

and ðYU;D;EÞij are 3 by 3 matrices of dimensionless Yukawa
couplings for the up quarks, down quarks and charged
leptons, respectively. In the SM, the top Yukawa coupling is
∼Oð1Þ, so we require that it is allowed by the additional
Uð1Þ symmetry at the unbroken level, i.e.,

H0 ¼ Q1 þU1; ð21Þ
where H is a charge of H0 with respect to the Z0.
Identifying the left- and (anti-)right-handed top fields with
Q1 and uc1, we then obtain from (19) the charges for field
operators multiplying the Yukawa coupling in Table I. If the
charge combination is nonzero, then the Yukawa coupling
is absent from the unbroken theory (by gauge symmetry).
We note that there are many different choices that one

could make, by identifying the top quark with Q2;3 and/or
u2;3 fields or indeed by choosing one of the other sets of
solutions shown in Table III. However, rather than provide
an encyclopedia of Yukawa couplings for all possible
solutions, our purpose here is to illustrate how our solutions
may be used and what some of the issues are.
Since the top, bottom and tau have large masses

compared to the other fermions, we might expect each
of their Yukawa couplings to be present, being gauge
invariant under the additional Uð1Þ subgroup. This sub-
group may well ban other tree-level, renormalizable
Yukawa couplings, but because the additional Uð1Þ sym-
metry is spontaneously broken, we expect small corrections
to any zeros in the Yukawa matrices. This is the philosophy
behind many models of fermion masses, including the third
family hypercharge model [49], where such hierarchies are
successfully employed to qualitatively explain two fea-
tures: small quark mixing and the relative heaviness of the
third family of fermions. A discussion of neutrino masses
requires an analysis involving the SM singlets, whose
charges we do not yet have a general solution for, and so we
leave these for future work.
Let us, for the sake of illustration, further identify the tau

lepton with L1 and e1 and the bottom quark withQ1 and d1.
By consulting Table I, we see that for the (11) entry of each
Yukawa matrix to be allowed under the additional Uð1Þ
subgroup,

H0 ¼ −Q1 −D1 ¼ −L1 − E1; ð22Þ
in addition to (21). Using (19) the additional constraints
become requirements on R, given by either

RUþ ¼ −RDβ
þ REβ

þ RLβ
− RQβ

− RQþ ;

RUβ
¼ −RDβ

− 2RQβ
; ð23Þ

or the trivial solution Λ ¼ 0, which we discount as being
uninteresting, having only zero Z0 charges for the SM
fermions. For the nontrivial solution, (23) reduces the
dimensionality of the solutions from 12 to 10.
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C. A lemma on M

Here we show that M ∈ 6Z [see (5) for the definition
of M], a result that will be of use later. From (1a) we
have

P
3
jðUj þDjÞ ¼ 0 mod 2 and from (1b) we haveP

3
j Lj ¼ 0 mod 3 which also imply that

P
3
jðU3

j þD3
jÞ ¼

0 mod 2 and
P

3
j L

3
j ¼ 0 mod 3, respectively. Hence

J¼−
P

3
j Ejmod6 and M þ J3 ¼ −

P
3
j E

3
j mod 6, which

gives us M ¼ 3ðE1 þ E2ÞðE2 þ E3ÞðE3 þ E1Þ mod 6.
Since ðE1 þ E2ÞðE2 þ E3ÞðE3 þ E1Þ is always even for
any integers Ei, we haveM ¼ 0 mod 6QEDĠiven this it is
convenient for us to define 6P ¼ M.

D. The number of SM singlets

Although we were lucky with the visible ACCs, allowing
us to solve them generally, we will be less lucky with the

remaining two ACCs (2) and (3) which describe the
invisible charges. As such, we will proceed in a similar
manner to the FU case and establish the following facts: for
n ≤ 4 a solution does not always exist; for n ≥ 5 a solution
always exists. Furthermore, for n ≤ 3 we give a complete
characterization of the solutions. Let us begin with a
discussion of these cases.

1. n ≤ 3

For n ¼ 0, the ACCs clearly have a solution iff
P ¼ J ¼ 0. For any n ≥ 1, we can eliminate xn from (2)
and (3); the resulting equation, which must be symmetric
under permutations of the remaining n − 1 charges, may be
recast in terms of the elementary symmetric polynomials
ejðx1;…; xn−1Þ≡P

1≤i1<i2<���<ij≤n−1 xi1xi2…xij as

TABLE I. Z0 charges of field operators multiplying each entry of a Yukawa matrix from (19). In the unbroken
Uð1Þ theory, the Yukawa term may only be present if the charge is equal to zero. The first column labels the entry of
the matrix; the second gives the charge. Λ and Σ are given in (17) and (18), respectively.

ij Charge

ðYUÞ
11 0
12 −2ΛRUα

13 2ΛðRUα
þ 3RUβ

− 2RUþÞ
21 −2ΛRQα

− Σ
22 −2ΛðRQα

þ RUα
Þ − Σ

23 2Λð−RQα
þ RUα

þ 3RUβ
− 2RUþÞ − Σ

31 2ΛðRQα
þ 3RQβ

− 2RQþÞ þ Σ
32 2ΛðRQα

þ 3RQβ
− 2RQþ − RUα

Þ þ Σ
33 2ΛðRQα

þ 3RQβ
− 2RQþ þ RUα

þ 3RUβ
− 2RUþÞ þ Σ

ðYDÞ
11 −2ΛðRDβ

þ 2RQβ
þ RUβ

Þ
12 −2Λð2RDα

þ RDβ
þ 2RQβ

− RQþ þ RUβ
Þ

13 2ΛðRDα
þ 2ðRDβ

− RQβ
þ 2RQþ þ RUþÞ − RUβ

Þ
21 −2ΛðRDβ

þ RQα
þ 2RQβ

þ RUβ
Þ − Σ

22 −2Λð2RDα
þ RDβ

þ RQα
þ 2RQβ

− RQþ þ RUβ
Þ − Σ

23 2ΛðRDα
þ 2RDβ

− RQα
− 2RQβ

þ 4RQþ − RUβ
þ 2RUþÞ − Σ

31 −2ΛðRDβ
− RQα

− RQβ
þ 2RQþ þ RUβ

Þ þ Σ
32 −2Λð2RDα

þ RDβ
− RQα

− RQβ
þ RQþ þ RUβ

Þ þ Σ
33 2ΛðRDα

þ 2RDβ
þ RQα

þ RQβ
þ 2RQþ − RUβ

þ 2RUþÞ þ Σ

ðYEÞ
11 −2ΛðREβ

þ RLβ
þ RQβ

þ RUβ
Þ

12 −2ΛðREα
þ REβ

þ RLβ
þ RQβ

þ RUβ
Þ

13 −2Λð−REα
− 2REβ

þ RLβ
þ RQβ

þ 4RQþ þ RUβ
− 2RUþÞ

21 −2ΛðREβ
þ RLα

þ 2RLβ
þ RQβ

þ RUβ
Þ − Σ

22 −2ΛðREα
þ REβ

þ RLα
þ 2RLβ

þ RQβ
þ RUβ

Þ − Σ
23 −2Λð−REα

− 2REβ
þ RLα

þ 2RLβ
þ RQβ

þ 4RQþ þ RUβ
− 2RUþÞ − Σ

31 −2ΛðREβ
þ RLα

þ RLβ
þ RQβ

þ RUβ
Þ þ Σ

32 −2ΛðREα
þ REβ

þ RLα
þ RLβ

þ RQβ
þ RUβ

Þ þ Σ
33 2ΛREα

þ 4ΛREβ
− 2ΛðRLα

þ RLβ
þ RQβ

þ 4RQþ þ RUβ
− 2RUþÞ þ Σ
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e3 ¼ 2Pþ e1e2 þ Je1ðJ − e1Þ: ð24Þ

This condition makes it relatively easy to deduce when we
have a solution for n ≤ 3, as follows.
For n ¼ 1, we have e1 ¼ e2 ¼ e3 ¼ 0 ⇒ P ¼ 0, in

which case the solution is x1 ¼ J.
For n ¼ 2, we have e2 ¼ e3 ¼ 0 ⇒ 0 ¼ 2Pþ

Je1ðJ − e1Þ. This quadratic equation in e1 has a solution
in the integers only if J divides 2P (barring the trivial case
J ¼ 0, for which the solution is x1 ¼ −x2). If so, we have
the equation e21 − Je1 − 2P=J ¼ 0 with integer coeffi-
cients. Since the leading coefficient is unity, any rational
solution is also an integer solution. To get a rational
solution, the discriminant J2 þ 8P=J must be square. So
we have an integer solution iff J divides 2P and J2 þ 8P=J
is square. (As a check, our result for n ¼ 2 subsumes the
result for n ¼ 1, since if P ¼ 0, then J2 þ 8P=J ¼ J2 is
certainly square.) The two invisible charges x1 and x2 are
then the two roots of x2 − Jx − 2P=J ¼ 0 and if a solution
exists, it is unique up to permutation of the charges.
For n ¼ 3, we have e3 ¼ 0 ⇒ 2P þ e1e2þ

Je1ðJ − e1Þ ¼ 0, such that the two charges x1 and x2
are fixed to be the two roots of the quadratic equation

0 ¼ x2 − e1xþ e1J − 2P=e1 − J2; ð25Þ
where the third charge is given by J − e1. Since both roots
x1 and x2 correspond to charges, they must both be valued
in the integers and so must their product, which equals
e1J − 2P=e1 − J2. Thus e1 must divide 2P. As for n ¼ 2,
any rational solution must then be an integer solution
because the leading coefficient is unity, and a rational
solution is obtained iff the discriminant ð2J − e1Þ2 þ
8P=e1 is square. In toto, we have that there exists a
solution iff there exists a divisor e1 of 2P such that
ð2J − e1Þ2 þ 8P=e1 is square. The number of possible
solutions is finite (at least for P ≠ 0), being at most (up to
permutation of roots) given by the number of divisors
of 2P.
To recover the result for n ¼ 2, set e1 ¼ J, such that the

third root is 0. Then we have a solution iff J2 þ 8P=J is
square, such that J divides 2P, which are precisely the
conditions found for n ¼ 2.

2. n = 4

When n ¼ 4, we can use similar considerations to those
for n ≤ 3 to conclude that the three charges x1, x2, and x3
should be the three solutions of the cubic

x3 − e1x2 þ e2x − e3

¼ x3 − e1x2 þ e2x − ð2Pþ e1e2 þ Je1ðJ − e1ÞÞ ¼ 0:

ð26Þ

A necessary (but not sufficient) condition for the charges to
be integers is that the discriminant

−ðe1JðJ−e1Þþ2PÞð27e1J2−27e21Jþ4e31þ54PÞ
−4e32−8e22e

2
1−4e2e1ð9e1J2−9e21Jþe31þ18PÞ ð27Þ

must be expressible in the form r2s2ðr − sÞ2, for some
r; s ∈ Z. Indeed the discriminant is defined to be the
product of the squares of the differences of the roots and
we are free to shift the roots by an integer such that one root
vanishes, without changing the discriminant’s value. But
this condition is difficult to express in terms of conditions
on P and J. Thus we content ourselves with showing that
there exist P and J for which no solution can be found.
By explicit evaluation of the various possibilities for the

various charges modulo 9, we find the following conditions
on P and J ðmod 9Þ for a solution to exist:

J mod 9 ∈ f1; 4; 7grequiresP mod 9 ∉ f2; 5g;
J mod 9 ∈ f2; 5; 8grequiresP mod 9 ∉ f4; 7g: ð28Þ
Any of the 12 cases (mod 9) not covered above could
furnish us with a counterexample, if we could find
corresponding values for the visible charges. A particularly
simple counterexample is given by

Q1 ¼ −2; Q2 ¼ 0; Q3 ¼ 2;

E1 ¼ −1; E2 ¼ 1; E3 ¼ 1;

U1 ¼ −2; U2 ¼ 0; U3 ¼ 1;

L1 ¼ −1; L2 ¼ −1; L3 ¼ 2;

D1 ¼ −1; D2 ¼ 0; D3 ¼ 2; ð29Þ

which satisfy the ACCs (1a)–(1d) but give ðP; JÞ ¼ ð2; 1Þ.
Thus we see that it is not always possible to find suitable
charges for four invisible particles such that all anomalies
cancel.

3. n ≥ 5

For the case of n ≥ 5 and for any given P and J there is
always a set of invisible charges which satisfy (2) and (3).
To show this, we show it is true for the n ¼ 5 case, with the
n > 5 cases immediately following by setting the extra
charges to zero.
For n ¼ 5, we set x5 ¼ J and x4 ¼ −x1 − x2 − x3, which

immediately satisfies (2) and reduces (3) to

ðx2 þ x3Þðx3 þ x1Þðx1 þ x2Þ ¼ −2P: ð30Þ

The choice of charges x1 ¼ Pþ 1, x2 ¼ −P and x3 ¼ −P
satisfies the above equation and is integer. Thus the integer
set of charges

fPþ 1; P − 1;−P;−P; Jg ð31Þ

satisfies (2) and (3) for n ¼ 5.
The results of this section are summarized in Table II.
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V. SUMMARY AND CONCLUSION

Countless gauge extensions of the SM have been
constructed, most of them15 including a Uð1Þ subgroup
in the extension. In this paper, we have studied possible
values of the charges of chiral fermions under the additional
Uð1Þ with two assumptions: (i) that local anomalies cancel
and (ii) that the chiral fermion content is that of the SM plus
a number n of SM-singlet chiral fermions. The ACCs split
into two classes: the first class, with four equations,
involves no SM-singlet fermionic charges. The second
class, with two equations, does involve them. Assumption
(ii) is crucial; the assumption of additional SM singlets
allows a general solution to the problem, such as it is
specified, to be found: the charges of SM chiral fermions
under the additional Uð1Þ subgroup are parameterized in
(19). Solving for the SM-singlet charges in general from the
second class proves to be much trickier. We thus resort to
calculating how many of them are required to provide a
solution to all of the ACCs.
Before tackling the most general problem, we examine

two simpler and well-motivated cases where only one
family is charged and where all visible charges are family
universal. In the former case we were able to solve the
problem in full generality, specifying a parameterization of
the solution for the visible and SM-singlet charges (of a
specified number). For this case, a solution to the first class
of ACCs can always be extended to a full solution of all six
ACCs when there are three or more SM singlets.
We then moved onto the full family-nonuniversal case,

solving the first class of ACCs in full generality; cf. (19).
The result is a 12-dimensional parameterization of SM
fermion charges, shown in (19). We have illustrated how
the parameterization may be used in practice by examining
constraints leading to the presence or absence of Yukawa
couplings under the full gauge invariance in Sec. IV B.
Requiring gauge-invariant third-family Yukawa couplings
restricts the dimensionality of the parameterization further
and could be used as a basis for more detailed fermion mass
model building.
Our progress for the invisible charges followed a similar

path to the family-universal case. We found conditions on

functions of Uð1Þ charges of SM fermions J and M, such
that a solution to the first class of ACCs could be extended
to the full ACCs, for up to n ¼ 3 SM-singlet charges. We
also showed that the minimum number of SM-singlet
charges such that a solution can always be extended is
5. We give a solution for these five singlet charges.
If the SM is extended by some non-Abelian group G

with a Uð1Þ gauge subgroup, our analysis obviously still
applies to the charges of chiral fermions under the Uð1Þ
subgroup. One may take our solution parameterizations and
then apply any further constraints implied by the rest of G.
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APPENDIX A: SOLUTION FOR INVISIBLE
CHARGES FOR THE FAMILY-UNIVERSAL

CASE AND n ODD

In Sec. III we had the equations

Xn
i¼1

xi ¼ J ¼ 3K; ðA1Þ

Xn
i¼1

x3i ¼ J3 þM ¼ 3K3; ðA2Þ

where K ¼ 4Qþ U. It turns out that (A1) and (A2) can be
solved exactly for odd n. They imply that

9
Xn
i¼1

x3i −
�Xn

i¼1

xi

�
3

¼ 0; ðA3Þ

defining a cubic surface C in the projective space PQn−1.
This cubic surface has a double point (a point on the surface
where all derivatives of the surface vanish) at (for n ≥ 3
and odd)

S ≔ ½1∶1∶1∶ − 1∶1∶ − 1∶1∶

� � � ∶ − 1∶1� ∈ PQn−1: ðA4Þ

TABLE II. Summary of the solutions to (2) and (3) for various n in the FNU case.

n Solutions exist Invisible charges are roots x of

0 iff J ¼ 0 and P ¼ 0 � � �
1 iff P ¼ 0 x ¼ J
2 iff Jj2P and J2 þ 8P=J is square x2 − Jx − 2P=J ¼ 0
3 iff ∃ e1 such that e1j2P and ð2J − e1Þ2 þ 8P=e1 is square ðx − J þ e1Þðx2 − e1xþ e1J − 2P=e1 − J2Þ ¼ 0
4 only if ðP; JÞ ∉ fðf2; 5g; f1; 4; 7gÞ; ðf4; 7g; f2; 5; 8gÞg ðx − J þ e1Þðx3 − e1x2 þ e2x − 2P − e1e2 − Je1ðJ − e1ÞÞ ¼ 0.
n ≥ 5 ∀P; J e.g., xn−5ðx − JÞðx − 1 − PÞðx − Pþ 1Þðxþ PÞ2 ¼ 0

15One notable exception is SUð5Þ, which has been studied ad
nauseam in the literature.
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Consider a line through this point, L ¼ αSþ βR, for
½α∶β� ∈ PQ1, and R ∈ PQn−1. Any point in PQn−1 must
lie on such a line, and each line must intersect the surface C
at a single other point or be in C. Thus by cycling through R
(and when appropriate α and β) we can parameterize all
solutions to the cubic equation.
For those lines not in C we can find the value of ½α∶β� by

substitution into the cubic equation. On such a substitution
we obtain

β2
�
3α

Xn
i¼1

Si

�
R2
i −

�Xn
i¼1

Ri

�
2
�

þβ
Xn
i¼1

Ri

�
R2
i −

�Xn
i¼1

Ri

�
2
��

¼ 0: ðA5Þ

Since β ¼ 0 returns S the other point of intersection
occurs at

½α∶β� ¼
�Xn
i¼1

Ri

�
R2
i −

�Xn
i¼1

Ri

�
2
�
∶ ðA6Þ

−3α
Xn
i¼1

Si

�
R2
i −

�Xn
i¼1

Ri

�
2
��

: ðA7Þ

APPENDIX B: CATCHING POINTS ON LINES IN
THE QUADRATIC HYPERSURFACE

In Sec. IV we stated that the parameterization of (15) did
not catch all of the solutions: it missed those which sit on
lines L through the known solution X̃, which themselves lie

in the hypersurface Γ. Using the construction in Sec. IV
with different known solutions X̃, we can ensure that every
point can be written as the second intersection of a line L
through a point X̃ for which L⊈Γ. Every solution X for
which XTHX̃ ≠ 0 is covered by the known solution X̃ (as
XTHX̃ ≠ 0 ⇔ RTHX̃ ≠ 0). Table III lists a set of 11 pairs
of X̃, X for which XTHX̃ ¼ 0. The only solution X which
satisfies all the given conditions is the trivial solution. Thus,
any nontrivial solution can be obtained by (15), using an
instance of X̃ from Table III.

APPENDIX C: SEMI-FAMILY-UNIVERSAL CASE

Our choice of GLð3;ZÞ allows us to study the case
where two families have equal charges with relative ease,
since we must set Fα to zero. This has the effect of reducing
the quadratic equation (11) to

2f3ðQ2
β − 2U2

β þD2
β − L2

β þ E2
βÞ

− 4QþðQβ − 2Dβ þ 3Lβ þ 2EβÞ
þ4Uþð2Uβ þDβ þ EβÞg ¼ 0: ðC1Þ

We can follow the same procedure as for the FNU case,
except now

XT ≡ ðQþ; Uþ; Qβ; Uβ; Dβ; Lβ; EβÞ: ðC2Þ

Suitable choices for X̃ may be read from 5 ≤ i ≤ 11 of
Table III.

TABLE III. A set of known solutions X̃, which together can generate all nontrivial solutions to XTHX ¼ 0, along
with a condition on X such that XTHX̃ ¼ 0. If X does not satisfy this condition, then it can be generated by the
corresponding X̃.

i Nonzero elements of X̃ Condition on X for XTHX̃ ¼ 0

1 Qα ¼ Lα ¼ 1 Qα ¼ Lα

2 Dα ¼ Lα ¼ 1 Dα ¼ Lα

3 Lα ¼ Eα ¼ 1 Eα ¼ Lα

4 Qα ¼ Uα ¼ Dα ¼ Lα ¼ Eα ¼ 1 Qα − 2Uα þDα − Lα þ Eα ¼ 0
5 Qβ ¼ Lβ ¼ 1 Qβ ¼ Lβ

6 Dβ ¼ Lβ ¼ 1 Dβ ¼ Lβ

7 Lβ ¼ Eβ ¼ 1 Eβ ¼ Lβ

8 Qβ ¼ Uβ ¼ Dβ ¼ Lβ ¼ Eβ ¼ 1 Qβ − 2Uβ þDβ − Lβ þ Eβ ¼ 0
9 Qα ¼ 3, Uβ ¼ 1, Lβ ¼ 1 Qα − 2Dβ − Lβ ¼ 0
10 Qþ ¼ 3, Qβ ¼ 4 3Qβ − 4Qþ ¼ 0
11 Uþ ¼ 3, Dβ ¼ −4 3Dβ þ 4Uþ ¼ 0
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