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In the framework of the representation theory of finite groups, it was recently shown that a fully
constrained complex-symmetric mass matrix can be conveniently mapped into a sextet of Σð72 × 3Þ. In this
paper, we introduce an additional flavor group X24 in the model so that the vacuum alignment of the
Σð72 × 3Þ sextet is determined not only by the symmetries of Σð72 × 3Þ but also by that of X24. We define
several flavons which transform as multiplets under Σð72 × 3Þ as well as X24. The vacuum alignment of
each of these flavons is obtained as a simultaneous invariant eigenstate of specific elements of the groups
Σð72 × 3Þ and X24; i.e., the vacuum alignment is fully determined by its residual symmetries. These flavons
couple together uniquely resulting in the fully constrained sextet of Σð72 × 3Þ. Through this work we
propose a general formalism in which the flavor symmetry group (Gf) is obtained as the direct product,
Gf ¼ Gr × Gx. Fermions transform nontrivially only under Gr while they remain invariant under Gx.
Flavons, on the other hand, transform nontrivially under both Gr and Gx. The vacuum alignment of each
flavon multiplet transforming irreducibly under Gr ×Gx is uniquely identified by its corresponding
residual symmetry (a subgroup of Gr ×Gx). Several such flavons couple together to form an effective
multiple of Gr which remains invariant under Gx. This effective multiplet couples to the fermions.

DOI: 10.1103/PhysRevD.101.075004

I. INTRODUCTION

More than two decades [1] of experiments in neutrino
oscillations have provided us with measurements of the
neutrino mixing angles θ12, θ23, θ13 as well as the mass-
squared differences, Δm2

21, Δm2
31 [2,3]. Yet, several features

of neutrinos remain a mystery. Ordering of neutrino masses,
CP violation in neutrino sector, nature of neutrinos (Majorana
or Dirac), and existence of sterile neutrinos are some of them.
Parameters such as the light neutrino mass and the complex
phases in the mixing matrix also need to be measured. Many
of these questions are expected to be resolved by future
experiments in the coming decades [4–10].
The initial measurements of large solar (θ12) and

atmospheric (θ23) mixing angles stimulated the theoretical
study of flavor symmetries in the neutrino sector based on
discrete finite groups [11–14]. Tribimaximal mixing [15]
with θ12 ¼ sin−1ð1= ffiffiffi

3
p Þ, θ23 ¼ π=4, and θ13 ¼ 0 was

widely used as a template for building models in the
neutrino sector. With the measurement of the nonzero

reactor (θ13) mixing angle inconsistent with tribimaximal
mixing, theorists have turned to alternative mixing
schemes. A natural approach is to extend tribimaximal
mixing with one or more free parameters [16–25]. One
such ansatz, called tri-phi-maximal mixing (TϕM) [26],
leads to a mixing matrix of the form
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0
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The angle ϕ parametrizes the nonzero reactor mixing angle.
Like tribimaximal mixing, tri-phi-maximal mixing also has
a trimaximal second column and is CP conserving.
An ansatz of neutrino Majorana mass matrices,
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which leads to TϕM with ϕ ¼ �π=16, was proposed [27]
shortly after the discovery of nonzero θ13 by the Daya Bay
experiment. These matrices are fully constrained in the
sense that they do not contain free parameters. In Ref. [27],
the neutrino Dirac mass matrix was constructed to be
proportional to the identity. As a result, the light neutrino
masses obtained through the type-1 seesaw mechanism
become proportional to the inverse of the eigenvalues of the
Majorana mass matrices, Eqs. (2). They are given by1

m1∶m2∶m3 ¼
ffiffiffi
2

p
tan

�
3π

16

�
∶1∶

ffiffiffi
2

p
tan

�
5π

16

�
: ð3Þ

These are consistent with the measured neutrino mass-
squared differences and also predict the experimentally
undetermined light neutrino mass to be around 25 meV. In
Fig. 1, we compare these ratios with the experimental mass-
squared differences.
Recently [28] it was shown that the group Σð72 × 3Þ can

be used to model such fully constrained mass matrices.
Σð72 × 3Þ can be obtained using four generators, namelyC,
E, V, and X [29]. For the three-dimensional representation,
we have

C≡
0
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0 ω 0

0 0 ω̄

1
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The tensor product expansion of two triplets of this group is
given by

3 ⊗ 3 ¼ 6 ⊕ 3̄; ð5Þ

3̄ ⊗ 3̄ ¼ 6̄ ⊕ 3: ð6Þ

Σð72 × 3Þ is the smallest group that produces a complex
sextet from the tensor product of two identical triplets as
shown in Eqs. (5) and (6). Note that the triplets of the
continuous group SUð3Þ also have the same tensor product
expansion. In Ref. [28], we assigned the right-handed
neutrinos to be a conjugate triplet,

νR ¼ ðνR1; νR2; νR3ÞT ≡ 3̄: ð7Þ

In the Majorana mass term, two of these conjugate triplets
couple to produce a conjugate sextet,

X
jk

SijkνRj · νRk ≡ 6̄i; ð8Þ

where are the Lorentz invariant products of the right-
handed neutrino Weyl spinors. Sijk are the familiar
Clebsch-Gordan (C-G) coefficients for the symmetric
tensor product of two triplets of SUð3Þ. We use the
conventional basis where the nonzero coefficients are given
by

S111 ¼ S222 ¼ S333 ¼ 1;

S423 ¼ S432 ¼ S531 ¼ S513 ¼ S612 ¼ S621 ¼
1ffiffiffi
2

p : ð9Þ

We also introduced a flavon sextet,

ξ ¼ ðξ1; ξ2; ξ3; ξ4; ξ5; ξ6ÞT ≡ 6; ð10Þ

which couples with the conjugate sextet, Eq. (8), to produce
the Σð72 × 3Þ-invariant mass term,

FIG. 1. The neutrino mass ratios Eq. (3) represented as a
straight line in the Δm2

31 vs Δm2
21 plane. We have Δm2

21 ¼
m2

1ð12 tan2ð5π16Þ − 1Þ and Δm2
31 ¼ m2

1ðtan4ð5π16Þ − 1Þ where m1 is the
lightest neutrino mass. The black dots denote m1 in the units of
milli-electron-volt. The experimental range of Δm2

21 and Δm2
31

corresponds to the red dot and the shaded regions (the best fit
value along with the 1σ and the 3σ errors).
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The flavon sextet acquires a vacuum expectation value
(VEV) through spontaneous symmetry breaking (SSB),
and this VEV determines the structure of the mass matrix.
Comparing Eq. (10) with Eq. (11), it is clear that there is a
one-to-one correspondence between the components of the
sextet and the elements of the 3 × 3 complex-symmetric
Majorana mass matrix. A specific VEV of the sextet fully
constrains the mass matrix. The VEVs which correspond to
the Majorana mass matrices, Eqs. (2), are

hξi ∝
�
iþ 1 − iffiffiffi

2
p ; 1;−iþ 1þ iffiffiffi

2
p ; 0; ð

ffiffiffi
2

p
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2
p ; 1; iþ 1 − iffiffiffi

2
p ; 0; ð

ffiffiffi
2

p
− 1Þ; 0

�
T
: ð13Þ

In Ref. [28] we constructed flavon potentials that, through
SSB, resulted in these VEVs, and this reproduced the mass
matrices, Eqs. (2). These mass matrices are diagonalized by
2 × 2 unitary matrices. The mixing matrix of the form
TϕMðϕ ¼ � π

16
Þ is obtained as the product of a 3 × 3

trimaximal contribution from the charged-lepton sector and
the above-mentioned 2 × 2 contribution from the neutrino
sector. The mixing angles extracted from TϕMðϕ ¼ � π

16
Þ

are quite close to the experimental values. We used higher
order corrections in the charged-lepton sector to account for
the small discrepancy between the TϕMðϕ ¼ � π

16
Þ and the

experimental values.

II. VACUUM ALIGNMENT IN FLAVOR SPACE

In this section, we briefly review the salient features of
model building using flavons. Even though the principles
discussed are applicable for modeling mass matrices
involving various fermions, here we study the Majorana
mass matrix involving three families of right-handed
neutrinos. The three neutrino states are assumed to form
a triplet under a discrete flavor group, in general a subgroup
of the continuous group, Uð3Þ. To construct the Majorana
mass terms, we calculate the tensor product expansion of
two such triplets. This expansion gives rise to several
neutrino-neutrino terms that transform as various multiplets
under the flavor group. We theorize the existence of flavons
that also transform as multiplets under the flavor group.
The neutrino-neutrino multiplets and the corresponding
flavon multiplets (conjugates) couple, leading to flavor
group invariant mass terms. Through SSB, the flavons

acquire VEVs. These VEVs and the coupling constants
appearing along with the invariant mass terms constitute the
Majorana mass matrix.
One of the factors that determines the flavor structure of

a model is the relative orientation between the neutrino
flavor eigenstates and the flavon VEVs. Assigning the three
neutrinos as a triplet under the flavor group implies that
they are aligned along the basis states of the representation.
To obtain the alignment of flavon VEVs, we construct a
flavon potential invariant under the discrete flavor group.
The fact that the symmetry is discrete limits the extremum
points of the potential to a finite set. SSB randomly chooses
one among these extrema as the vacuum alignment. By
changing the nature of the flavon potential we may alter
the set of extremum points and thus change the possible
vacuum alignments. The flavon VEVs form the building
blocks of the mass matrix, so the alignment of the VEVs
in flavor space has important consequences for the structure
of the mass matrix. We expect that a given alignment has
specific symmetry properties under the flavor group, which
in turn imparts specific features to the mass matrix.
Let us use the discrete group S4 as an example to study

the alignment of states in the flavor space. The triplet
representation (3) of S4 corresponds to the 24 proper
rotations in three-dimensional real space that leaves a cube
invariant. A convenient basis (e.g., [29]) of 3 is where the
basis states are aligned along the face centers of the cube,
i.e., the x, y, and z axes as shown in Fig. 2. In this basis, we
may use

P≡
0
B@

0 0 1

0 −1 0

1 0 0

1
CA; Q≡

0
B@

0 1 0

0 0 1

1 0 0

1
CA ð14Þ

FIG. 2. The dots on the cubes represent extrema of two cases of
flavon potentials which have S4 symmetry (under 30). In the left
figure, the extrema are on the face centers of the cube. The VEV,
denoted by the red dot, is aligned along one of the axes of
symmetries of the cube. In the right figure, S4 symmetry of the
potential results in 24 extremum points positioned around the
cube. However, the VEV (the red dot) is not aligned along any
axis of symmetry.
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as the generators of the group. The group elements of 3
consist of 9 rotations (by angles �π=2, π) about the three
axes passing through face centers, 8 rotations (by angles
�2π=3) about the four axes passing through vertices, 6
rotations (by an angle π) about the six axes passing through
edge centers and the identity element.
When we assume that the neutrinos transform as a 3,

3≡ νR ¼ ðνR1; νR2; νR3ÞT; ð15Þ

we are assigning its components as the basis states of the
triplet representation. In other words, νR1, νR2, and νR3
correspond to ð1; 0; 0ÞT , ð0; 1; 0ÞT , and ð0; 0; 1ÞT , respec-
tively. These states, since they are oriented along the face
centers of the cube, have specific symmetry properties.
They form the axes of symmetries of the cube about which
rotations by multiples of π=2 keep the cube invariant. For
example, the group element

PQ≡
0
B@

1 0 0

0 0 −1
0 1 0

1
CA ð16Þ

generates three rotations (by angles�π=2, π) about the axis
ð1; 0; 0ÞT ≡ νR1. These rotations along with the identity
element form a C4 subgroup of S4. Similarly we have two
more C4 subgroups in relation to the states νR2 and νR3.
This shows that the neutrino states are uniquely defined by
the subgroup structure of S4.
The tensor product expansion of two triplets (3) is

given by

3 ⊗ 3 ¼ 1 ⊕ 2 ⊕ 30 ⊕ 3: ð17Þ

We couple two triplets of neutrinos using this expansion to
obtain

1≡ ðνR · νRÞs ¼ νR1 · νR1 þ νR2 · νR2 þ νR3 · νR3; ð18Þ

2≡ ðνR · νRÞd ¼ ð2νR1 · νR1 − νR2 · νR2 − νR3 · νR3;ffiffiffi
3

p
νR2 · νR2 −

ffiffiffi
3

p
νR3 · νR3ÞT; ð19Þ

30 ≡ ðνR · νRÞt ¼ ðνR2 · νR3 þ νR3 · νR2;νR3 · νR1 þ νR1 · νR3;

νR1 · νR2 þ νR2 · νR1ÞT: ð20Þ

The 3 in the right-hand side (RHS) of Eq. (17) is
antisymmetric and hence it vanishes. The generators,
corresponding to Eqs. (14), for the doublet (2) and the
triplet (30) are

P≡
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and

P≡
0
B@

0 0 −1
0 1 0

−1 0 0

1
CA; Q≡

0
B@

0 1 0

0 0 1

1 0 0

1
CA; ð22Þ

respectively, where the basis adopted is as per the Clebsch-
Gordan coefficients given in Eqs. (19) and (20).
For the purpose of this discussion, we introduce a flavon

triplet ϕ ¼ ðϕ1;ϕ2;ϕ3ÞT which transforms as a 30. It is
coupled to ðνR · νRÞt, Eq. (20), to obtain the invariant mass
term,

ðνR · νRÞTt ϕ: ð23Þ

The flavon acquires the VEV, hϕi ¼ ðhϕ1i; hϕ2i; hϕ3iÞT ,
through SSB. The mass matrix is obtained in terms of this
VEV,

ðνR · νRÞTt hϕi ¼

0
B@

νR1

νR2

νR3

1
CA

T
0
B@

0 hϕ3i hϕ2i
hϕ3i 0 hϕ1i
hϕ2i hϕ1i 0

1
CA:

0
B@

νR1

νR2

νR3

1
CA:

ð24Þ

The representation 30 also corresponds to 24 rotational
symmetries of the cube; however, 12 of them are improper
rotations. The proper rotations consist of 3 rotations (by an
angle π) about the three axes passing through face centers,
8 rotations (by angles �2π=3) about the four axes passing
through vertices and the identity element. The improper
rotations consist of 6 rotations (by angles �π=2) about the
three axes passing through face centers and 6 rotations (by
an angle π) about the six axes passing through edge centers
combined with space inversion.
Suppose we construct a flavon potential that has an

extremum point at ϕ ¼ ð1; 0; 0ÞT . Because of S4 symmetry,
the potential will have similar extrema at all points
generated by the action of S4 on ϕ ¼ ð1; 0; 0ÞT . There
are six such points,

ð�1; 0; 0Þ; ð0;�1; 0Þ; ð0; 0;�1Þ; ð25Þ

corresponding to the six face centers of the cube as shown
in Fig. 2 (left). Note that, even though the representation 30
has 24 distinct elements, the action of those elements
produces only six distinct points. This is explained using
the orbit-stabilizer theorem. The orbit of a point is defined
as the set of all points obtained by the group action on that
given point; i.e., Eq. (25) forms the orbit of ð1; 0; 0ÞT . The
stabilizer of a point is defined as the set of all group
elements under whose action the given point remains
invariant. ð1; 0; 0ÞT remains invariant under the action of
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ðPQÞ2≡
0
B@
1 0 0

0 −1 0

0 0 −1

1
CA; QPQ2≡

0
B@
1 0 0

0 0 −1
0 −1 0

1
CA: ð26Þ

ðPQÞ2 and QPQ2 generate C2 groups individually, and
they commute with each other. So they generate a C2 × C2

subgroup of S4. In other words, the stabilizer of ð1; 0; 0ÞT is
the C2 × C2 subgroup generated by ðPQÞ2 and QPQ2. The
orbit-stabilizer theorem states that

jOrbðxÞj ¼ jGj
jStabðxÞj ; ð27Þ

where jOrbðxÞj is the number of points in the orbit of x, jGj
is the number of elements in the group, and jStabðxÞj is the
number of elements in the stabilizer of x. In our case, the
stabilizer (C2 × C2) has four elements. Therefore we obtain
the number of points in the orbit (the number of extrema of
the potential) to be 24=4 ¼ 6, consistent with Eq. (25).
When the flavor symmetry group (S4) is broken through the
mechanism of SSB, the resulting vacuum alignment will be
along one of these extrema. So the symmetry breaking will
not be complete; the C2 × C2 stabilizer subgroup of the
given VEV will remain as the unbroken residual symmetry.
We may also construct a potential that has an extremum

at the point ð1; 1; 1ÞT . The orbit for this point is

ð1; 1; 1Þ; ð1;−1;−1Þ; ð−1; 1;−1Þ; ð−1;−1; 1Þ: ð28Þ

These points form one set of four nonopposing vertices of
the cube and they constitute a tetrahedron. The stabilizer of
ð1; 1; 1ÞT is generated by

Q≡
0
B@

0 1 0

0 0 1

1 0 0

1
CA; PQ2PQP≡

0
B@

1 0 0

0 0 1

0 1 0

1
CA: ð29Þ

Q and PQ2PQP generate C3 and C2, respectively, and
taken together they generate the dihedral group D6 which
forms the stabilizer of ð1; 1; 1ÞT . The number of elements in
the orbit is 24=6 ¼ 4 consistent with Eq. (28). We also have
a second set of four nonopposing vertices,

ð−1;−1;−1Þ; ð−1; 1; 1Þ; ð1;−1; 1Þ; ð1; 1;−1Þ; ð30Þ

which form another orbit. A VEV aligned along a point in
one of these orbits, Eqs. (28) and (30), breaks S4 into the
corresponding D6 subgroup which would remain as the
unbroken residual symmetry. The orbits we have discussed,
Eqs. (25), (28), and (30), are the only ones that are uniquely
defined in terms of the symmetries of the 30 of S4.
It is also possible to construct a potential whose extrema

are oriented in directions not defined by any symmetry. In
general, such a potential will have 24 distinct extrema as

shown in Fig. 2 (right). These points also form an orbit, but
it is not uniquely defined unlike the orbits discussed earlier.
In other words, the stabilizers of points in such an orbit are
trivial subgroups.2 A VEV along one of these extrema
breaks S4 completely so that there remains no residual
symmetry. By appropriately tuning the potential, we will be
able to orient the extremum points and the resulting VEV in
almost any direction we may want. This is true for all
discrete groups, not just S4. For explicit construction of
flavon potentials of S4, refer to the Appendix A.
When the VEV as shown in Fig. 2 (right) breaks S4

symmetry, we may be tempted to conclude that there is a
1 in 24 chance of obtaining such a choice. Even though this
is true for a given potential, the directions of its 24 minima
can be continuously tuned using the parameters appearing
in the potential. As a result, the net probability of obtaining
the VEValong a specific direction is vanishingly small (1 in
infinity). This is unlike the case of the VEV shown in
Fig. 2 (left). Here, varying the parameters in the potential
will not continuously alter the directions of the six minima
of the potential, because these directions are fully defined
by the structure of the discrete group itself. The net
probability of obtaining the given VEV, Fig. 2 (left),
remains to be 1 in 6.
We note that a considerable number of publications rely

almost entirely on flavon potentials to determine their
vacuum alignments. Authors utilize quite complicated
potentials to obtain VEVs that are phenomenologically
viable, but they fail to provide a justification for these
VEVs in terms of the symmetries of the flavor group. Even
though this procedure is technically valid, we argue that it
goes against the very spirit of using the properties of the
discrete groups for determining the flavor structure. If the
VEV is made to orient in an arbitrary direction with no
apparent connection to the original symmetry, the whole
purpose of using discrete symmetries can be called into
question. We argue that the orientations of the neutrino
(fermion) basis states as well as the flavon VEVs should be
uniquely specifiable in terms of the residual symmetries
that form subgroups of the discrete flavor group. The
mathematical elegance of the subgroup structure of the
flavor group should manifest as the restrictiveness of
the orientations of the flavor states and thus the predictive-
ness of the flavor model.
Flavor models generally involve several irreducible

multiplets of flavons. We can assign different discrete
charges to these multiplets so that they are decoupled in
the flavon potential.3 In such a scenario, the vacuum

2The stabilizer of a point being nontrivial does not always
ensure that the orbit of the point is unique. Consider the point
ðα; 1; 1ÞT . This point remains invariant under the action of the C2

subgroup generated by PQ2PQP, Eq. (29). This C2 subgroup
forms the nontrivial stabilizer of ðα; 1; 1ÞT . It is clear that this
orbit is not unique; rather it depends on the arbitrary parameter α.

3A detailed discussion of how this decoupling can be achieved
is beyond the scope of this work.
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alignment of one multiplet can be chosen independently of
the others. For example, an S4 invariant potential can be
constructed with two decoupled irreducible triplets (30).
One of them may obtain a VEV ∝ ð�1; 0; 0Þ which is fully
defined by a C2 × C2 residual symmetry of S4 and which
has a probability of 1 in 3. The other triplet may obtain a
VEV ∝ ð0;�1; 0Þ which is fully defined by another
C2 × C2 symmetry and which also has a probability of 1
in 3. We have a total probability of 1 in 9 to obtain both of
these VEVs. Taken together, the two VEVs fully break S4
and we are left with no residual symmetries. However, we
argue that this situation is quite different from the case
where a single irreducible multiplet fully breaks S4 as
shown in Fig. 2 (right). In that case, the probability is
vanishingly small.
When the flavon vacuum alignments, Eqs. (12) and (13),

for the sextet of Σð72 × 3Þ were proposed [28], they were
not uniquely defined using their symmetry properties. In
this paper, we combine Σð72 × 3Þ with a new discrete
symmetry group which we call X24. We introduce flavons
which transform under both Σð72 × 3Þ and X24. Their
VEVs uniquely break the combined flavor group into its
subgroups; i.e., the VEVs are completely determined by
their residual symmetries alone. These flavons are coupled
together to obtain the sextet of Σð72 × 3Þ. This sextet in
turn couples with the neutrino triplets resulting in the
Majorana mass term. In this work, we do not construct
flavon potentials. Instead, we follow the arguments pre-
sented in this section to obtain the VEVs; i.e., all the flavon
irreducible multiplets are assigned VEVs which are fully
defined in terms of their respective residual symmetries.

III. THE DISCRETE GROUP X24

We construct discrete group, X24, using the following
generators:

A¼

0
BBBBBBBB@

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

1
CCCCCCCCA
; B¼

0
BBBBBBBB@

ω 0 0 0 0 0

0 0 τ 0 0 0

0 τ̄ 0 0 0 0

0 0 0 0 τ̄ 0

0 0 0 τ 0 0

0 0 0 0 0 ω̄

1
CCCCCCCCA
; ð31Þ

where ω ¼ ei
2π
3 and ω̄ ¼ e−i

2π
3 are the cube roots of unity

and τ ¼ ei
π
4 and τ̄ ¼ e−i

π
4 are the eighth roots of unity. The

largest cyclic subgroup of this group is C24, generated by
ωτ and hence the subscript 24 in X24. These generators,
Eq. (31), are selected so that the group constructed from
them helps to uniquely define the required flavon VEVs.
The rest of this section covers the mathematical study of the
properties of this group. A reader who is more inclined
toward applying the group theoretical results for the
construction of the VEVs and the mass matrix may skip

over to Sec. IV and may revert to this section when it is
deemed necessary.
As the first step in analyzing X24, we construct the group

elements,

CðτÞ1 ¼ ðA2BA3BA3Þ9 ¼ Diagð1; τ̄; τ; 1; 1; 1Þ; ð32Þ

CðτÞ2 ¼ ðA2BA5BAÞ9 ¼ Diagð1; 1; 1; τ; τ̄; 1Þ: ð33Þ

Using CðτÞ1, CðτÞ2, and B we obtain the group element,

jBj ¼ CðτÞ1CðτÞ2B3 ¼

0
BBBBBBBB@

1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1

1
CCCCCCCCA
: ð34Þ

A and jBj generate the group S3 × S3 which forms a
subgroup of X24. To show this we obtain

D1¼

0
BBBBBBBB@

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

1
CCCCCCCCA
; E1¼

0
BBBBBBBB@

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

1
CCCCCCCCA
; ð35Þ

D2¼

0
BBBBBBBB@

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1
CCCCCCCCA
; E2¼

0
BBBBBBBB@

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

1
CCCCCCCCA
; ð36Þ

where

D1 ¼ A2ðAjBjÞ3; E1 ¼ A2; ð37Þ

D2 ¼ A3; E2 ¼ ðAjBjÞ2: ð38Þ

D1;E1 and D2;E2 in Eqs. (35) and (36) separately form
the generators of the group S3, because they satisfy the
following group presentation:

hDi;Ei jD2
i ¼ E3

i ¼ ðDiEiÞ2 ¼ 1i for i ¼ 1; 2; ð39Þ

along with the relationship,

EiDi ¼ DiE2
i for i ¼ 1; 2: ð40Þ
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S3 group elements, g1 and g2, generated by D1;E1 and
D2;E2, respectively, can be expressed as

g1 ¼ Di1
1 E

j1
1 ; g2 ¼ Di2

2 E
j2
2 ; ð41Þ

where i1, i2 ∈ f1; 2g and j1, j2 ∈ f1; 2; 3g. The first set of
generators, Eq. (35), commutes with the second set,
Eq. (36), i.e.,

½Di;Dj� ¼ ½Ei;Ej� ¼ ½Di;Ej� ¼ 0 for i ≠ j; ð42Þ

so that we obtain the direct product of two S3 groups. Thus
we show thatA and jBj generate the group S3 × S3 with the
total number of elements equal to 2 × 3 × 2 × 3. Note that
the elements of S3 × S3 in the basis given by Eqs. (35) and
(36) are matrices with 1’s and 0’s only.
CðτÞ1 and CðτÞ2, Eqs. (32) and (33), individually

generate the cyclic group C8. In X24, we can find two
more such generators of C8,

CðτÞ3 ¼ E1CðτÞ1E1
2 ¼ Diagðτ; 1; τ̄; 1; 1; 1Þ; ð43Þ

CðτÞ4 ¼ E2CðτÞ2E2
2 ¼ Diagð1; 1; 1; τ̄; 1; τÞ: ð44Þ

Four elements, similar to Eqs. (32), (33), (43), and (44),
which individually generate the cyclic group C3 can also be
found:

CðωÞ1¼D2B2D2E1B2E1
2¼Diagð1; ω̄;ω;1;1;1Þ; ð45Þ

CðωÞ2 ¼ D1CðωÞ1D1 ¼ Diagð1; 1; 1;ω; ω̄; 1Þ; ð46Þ

CðωÞ3 ¼ E1CðωÞ1E1
2 ¼ Diagðω; 1; ω̄; 1; 1; 1Þ; ð47Þ

CðωÞ4 ¼ E2CðωÞ2E2
2 ¼ Diagð1; 1; 1; ω̄; 1;ωÞ: ð48Þ

We also find a fifth independent C3 generator,

CðωÞ5 ¼ B2 ¼ Diagðω̄; 1; 1; 1; 1;ωÞ: ð49Þ

Using 6 × 6 special unitary diagonal matrices, the maxi-
mum number of independent Cn generators that can be
constructed is five, and in Eqs. (45)–(49) we have listed all
of them forC3. For the case of the diagonalC8 subgroups of
X24, it so happens that the upper and the lower 3 × 3
diagonal matrices are individually special unitary. This
additional constraint limits the total number of independent
generators to four, i.e., Eqs. (32), (33), (43), and (44).
Equations (32), (33), (43), (44), and (45)–(49) constitute an
exhaustive list of generators producing all the diagonal
elements within X24. These elements form the subgroup
C8 ×C8 ×C8 ×C8 ×C3 ×C3 ×C3 ×C3 ×C3 of X24. The
diagonal elements commute with each other, and they form
the largest Abelian subgroup of X24. Note that 3 and 8 are
co-prime numbers that imply C8 × C3 is C24. This can also

be inferred from the multiplication of C8 andC3 generators,
for example,

CðτÞ1CðωÞ1 ¼ Diagð1; τ̄ ω̄; τω; 1; 1; 1Þ ¼ CðτωÞ1: ð50Þ

In other words, the group C24 × C24 × C24 × C24 × C3

forms the largest Abelian subgroup of X24.
Every representation matrix of X24 is of the form of a

representation matrix of S3 × S3 with phases replacing
certain number of 1’s in the S3 × S3 matrix. These phases
can be extracted out using a diagonal phase matrix, i.e., an
element of the aforementioned Abelian subgroup. In other
words, any element of X24 can be obtained by left
multiplying (or right multiplying) the corresponding
element of S3 × S3 with an appropriate diagonal phase
matrix. Therefore, C24×C24×C24×C24×C3 and S3 × S3
form a normal subgroup and the associated quotient group,
respectively, of X24. Using this information, we may
express X24 as a semidirect product,

X24 ¼ ðC24 × C24 × C24 × C24 × C3Þ ⋊ ðS3 × S3Þ: ð51Þ

Any element of X24 can be uniquely expressed as

g ¼ CðτÞm1

1 CðτÞm2

2 CðτÞm3

3 CðτÞm4

4

× CðωÞn11 CðωÞn22 CðωÞn33 CðωÞn44 CðωÞn55
× D1

i1E1
j1D2

i2E2
j2 ; ð52Þ

where m1;…; m4 ∈ f1;…; 8g; n1;…; n5 ∈ f1; 2; 3g; i1,
i2 ∈ f1; 2g; and j1, j2 ∈ f1; 2; 3g. So it is clear that the
order of the group X24 is 84352232. We used the group
theory package GAP and verified that the group generated
byA andB has this order, thus confirming our calculations.
We also verified that the sextet representation, Eqs. (31), is
irreducible. We note that X24 is not a subgroup of Uð3Þ.

IV. THE MODEL

The complete flavor group for our model is
Gf ¼ Σð72 × 3Þ × C3 × C4 × X24 × X24. This is of the
form Gf ¼ Gr ×Gx where Gr ¼ Σð72 × 3Þ × C3 × C4

and Gx ¼ X24 × X24. Gx, which we call the auxiliary
group, is defined as the group under which only the flavons
transform nontrivially. This group provides additional
symmetries to the flavons and helps us to define their
VEVs in terms of these symmetries. Fermions are invariant
singlets under Gx. On the other hand, Gr is defined as the
group under which both fermions and flavons are allowed
to transform nontrivially. Table I shows how the fermion
and the flavon fields transform under Gf. The C3 group
helps in the construction of the charged-lepton mass term
using the flavons ϕμ and ϕτ. The neutrino Majorana mass

term is constructed using the flavons ϕ́, ϕ̀, and Δ. The C4
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group is added so that ϕμ and ϕτ do not couple in the
Majorana sector.
The mass term in the charged-lepton sector is given by

yμL̄
ϕμ

Λ
μRH þ yτL̄

ϕτ

Λ
τRH þ yeL̄

ðϕ̄μϕ̄τÞ3̄
Λ2

eRH; ð53Þ

where

ðϕ̄μϕ̄τÞ3̄
¼ ðϕ̄μ2ϕ̄τ3 − ϕ̄μ3ϕ̄τ2; ϕ̄μ3ϕ̄τ1 − ϕ̄μ1ϕ̄τ3; ϕ̄μ1ϕ̄τ2 − ϕ̄μ2ϕ̄τ1ÞT

ð54Þ
transforms as a 3̄ under Σð72 × 3Þ.
The flavons ϕτ and ϕμ are assigned the following

vacuum alignments:

hϕμi ¼ vμð1; ω̄;ωÞT; hϕτi ¼ vτð1;ω; ω̄ÞT: ð55Þ

Equations (54) and (55) lead to

hðϕ̄μϕ̄τÞ3̄i ¼ vμvτi
ffiffiffi
3

p
ð1; 1; 1ÞT: ð56Þ

Substituting the flavon VEVs along with the Higgs VEV,
hHi ¼ ð0; vÞT , in the Lagrangian, Eq. (53), we obtain the
charged-lepton mass term after spontaneous symmetry
breaking,

l̄LMllR; ð57Þ
where

lL ¼ ðeL; μL; τLÞT; lR ¼ ðeR; μR; τRÞT; ð58Þ
and

Ml ¼ i
ffiffiffi
3

p vyevμvτ
Λ2

0
B@
1 0 0

1 0 0

1 0 0

1
CAþ v

Λ

0
B@
0 yμvμ yτvτ
0 ω̄yμvμ ωyτvτ
0 ωyμvμ ω̄yτvτ

1
CA:

ð59Þ
Ml is diagonalized using the unitary matrix V, Eq. (4), as
follows:

VMldiagð1; i; iÞ ¼ diagðme;mμ; mτÞ; ð60Þ
where me ¼ 3yev

vμvτ
Λ2 , mμ ¼

ffiffiffi
3

p
yμv

vμ
Λ , and mτ ¼

ffiffiffi
3

p
yτv

vτ
Λ

are the charged-lepton masses. The diagonalizing matrix,
V, is the same as that obtained in Ref. [28].
For the neutrinos, the Dirac mass term is given by

yνL̄νRH̃: ð61Þ
This term leads to a diagonal mass matrix as given in
Ref. [28]. The rest of this section deals with the con-
struction of the Majorana mass term using the flavons ϕ́, ϕ̀,

andΔ. The flavons ϕ́ and ϕ̀ are triplets under Σð72 × 3Þ and
sextets under the first and the second copies of X24,
respectively, Table I. The flavon Δ transforms as a con-
jugate sextet under both copies of X24. In this paper, we use
Latin and Greek letters to denote the indices that transform
under Σð72 × 3Þ and X24, respectively, e.g., νRi, ϕ́αi,
ϕ̀αi, Δαβ.
Using the C-G coefficients, Eqs. (9), and considering the

transformation properties given in Table I, we construct the
invariant term in the Majorana sector,

T Maj ¼
X

SijkSimnϕ́αmϕ̀βnΔαβνRjνRk; ð62Þ

where the summation is over all repeated indices.
Comparing this invariant with Eq. (11), we obtain

ξi ¼
X

Simnϕ́αmϕ̀βnΔαβ: ð63Þ

The flavon ϕ́ (and ϕ̀) can be considered as a set of six
Σð72 × 3Þ triplets. In Eq. (63), we have a composite system
of these triplets coupled together with Δ to obtain ξ, which
is a sextet under Σð72 × 3Þ and an invariant singlet
under X24.
The flavons ϕ́, ϕ̀, and Δ acquire VEVs through SSB. Let

these vacuum alignments be

hϕ́i¼hϕ̀i∝

0
BBBBBBBB@

τ 0 0

0 ω 0

0 0 τ̄

−i 0 0

0 ω̄ 0

0 0 i

1
CCCCCCCCA
; hΔi∝

0
BBBBBBBB@

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1
CCCCCCCCA
: ð64Þ

Here we have listed the components of the flavons with the
help of matrices. The rows and the columns of Δ denote the
indices of the first and the second copies of X24 in the flavor
group. The rows and the columns of ϕ́ (ϕ̀) denote the first
(second) X24 index and the Σð72 × 3Þ index, respectively.
Substituting the values of the VEVs, Eqs. (64), in the
expression for ξi, Eq. (63), we obtain hξi as given in
Eq. (12). On the other hand, if we use the conjugates of
Eqs. (64) we obtain hξi as given in Eq. (13). The mass term,
Eq. (62), can be written as a matrix equation,

T Maj ¼ νTR
1

2
ðϕ́TΔϕ̀þ ϕ̀TΔTϕ́Þ:νR: ð65Þ

TABLE I. The flavor structure of the model.

eR μR τR L ϕμ ϕτ νR ϕ́ ϕ̀ Δ

Σð72 × 3Þ 1 1 1 3̄ 3̄ 3̄ 3̄ 3 3 1
C3 × C4 i ωi ω̄i i ω̄ ω i 1 1 −1
X24 × X24 1 1 1 1 1 1 1 6 × 1 1 × 6 6̄ × 6̄
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Consequently, the expression for the 3 × 3 Majorana mass
matrix becomes

MMaj ¼
1

2
ðhϕ́iThΔihϕ̀i þ hϕ̀iThΔiThϕ́iÞ: ð66Þ

Substituting the flavon VEVs, Eqs. (64) [or their conjugates
in Eq. (66)], we obtain the Majorana mass matrices,
Eqs. (2). Using this Majorana mass matrix and the diagonal
mass matrix in the Dirac sector we can construct the type-1
seesaw mass matrix. The product of the diagonalizing
matrices of the charged-lepton mass matrix and the seesaw
mass matrix gives rise to TϕM mixing with ϕ ¼ �π=16.
This proceeds in the same way as given in Ref. [28]. For a
discussion of the resulting phenomenology, the reader may
go through the aforementioned reference.
It may be noted that the VEVs (hϕ́i, hϕ̀i, hΔi), Eqs. (64),

are composed of zeros and complex roots of unity. These
VEVs are analogous to the points of residual symmetries on
the cube, Eqs. (25), (28), and (30), which are composed of
zeros and the two real roots of unity (�1). The points on the
cube live in three-dimensional real space while the flavon
VEVs live in higher dimensional (18, 18, and 36) complex
spaces. In the next section, we prove that hϕ́i, hϕ̀i, and hΔi
are indeed points having residual symmetries. Their
orbits are uniquely defined with specific subgroups of
Σð72 × 3Þ × X24 × X24 forming the stabilizer groups.

V. THE FLAVON VACUUM ALIGNMENTS

Consider the VEV, hϕμi, Eq. (55). It remains invariant
under the group action,

ωEhϕμi ¼ hϕμi: ð67Þ

The group elementωE generates aC3 group, fωE; ω̄E2; 1g.
The vacuum alignment, hϕμi, breaks the flavor group into
this C3 residual group which, in turn, uniquely defines the
alignment. Similarly, the VEV, hϕτi, is uniquely defined by
another C3 subgroup, fω̄E;ωE2; 1g.
In the rest of this section, we show that each VEV in

Eqs. (64) can be expressed as a unique and simultaneous
invariant eigenstate of a set of group elements of
Σð72 × 3Þ × X24 × X24. These elements constitute a sub-
group of the flavor group. In other words, each VEV is
uniquely identified by a specific subgroup of the fla-
vor group.
Let us study the VEVof the flavonΔ. Consider the group

element

OCΔ ¼ CðωÞ1CðωÞ2 ×CðωÞ12 CðωÞ22 CðωÞ42 ð68Þ

acting on hΔi, Eq. (64). The direct product, Eq. (68)
(corresponding to X24 × X24), acts on the two indices of
hΔi. As a matrix equation, the operation of this group
element on the VEV can be written as

0
BBBBBBBB@

1 0 0 0 0 0

0 ω̄ 0 0 0 0

0 0 ω 0 0 0

0 0 0 ω 0 0

0 0 0 0 ω̄ 0

0 0 0 0 0 1

1
CCCCCCCCA

0
BBBBBBBB@

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1
CCCCCCCCA

0
BBBBBBBB@

1 0 0 0 0 0

0 ω 0 0 0 0

0 0 ω̄ 0 0 0

0 0 0 1 0 0

0 0 0 0 ω 0

0 0 0 0 0 ω̄

1
CCCCCCCCA

T

; ð69Þ

where the rows and columns of hΔi correspond to the first and the second X24 in the direct product. It is clear that this
operation multiplies all the vanishing elements in the VEVs with ω or ω̄. Therefore, invariance of the VEV under OCΔ
ensures that these elements vanish.
Consider the group element

ODcΔ ¼ I ×D2; ð70Þ

where I is the identity. As a matrix equation, the operation of this element on the VEV can be written as

0
BBBBBBBB@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1
CCCCCCCCA

0
BBBBBBBB@

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1
CCCCCCCCA

0
BBBBBBBB@

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1
CCCCCCCCA

T

: ð71Þ
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This operation interchanges the columns 1, 2, 3 of the VEV
with the columns 4, 5, 6, respectively. Invariance under this
operation ensures that the columns 1, 2, 3 become equal to
the columns 4, 5, 6, respectively. This condition is satisfied
by our VEV.

Now consider the group element

ODrΔ ¼ D1 × I: ð72Þ
As a matrix equation, its operation on the VEV can be
written as

0
BBBBBBBB@

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

1
CCCCCCCCA

0
BBBBBBBB@

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1
CCCCCCCCA

0
BBBBBBBB@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1
CCCCCCCCA

T

: ð73Þ

This operation interchanges the rows 1, 2, 3 of the VEV with the rows 6, 5, 4, respectively. Invariance under this operation
ensures that the rows 1, 2, 3 become equal to the rows 6, 5, 4, respectively. This condition is also satisfied by our VEV.
Finally we consider the group element

OEΔ ¼ E2 ×E1: ð74Þ

As a matrix equation, its operation on the VEV is

0
BBBBBBBB@

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

1
CCCCCCCCA

0
BBBBBBBB@

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1
CCCCCCCCA

0
BBBBBBBB@

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

1
CCCCCCCCA

T

: ð75Þ

This operation cycles various sets of three elements of the
VEV. There are 12 such sets. These include (11, 22, 33),
(14, 25, 36), (61, 52, 43), (64, 55, 46) where the pairs
denote the indices of hΔi. Invariance under this operation
ensures that the elements within a set are equal to one
another. Our VEV satisfies this condition also.
The flavon, Δ, transforms in a vector space on which the

flavor group acts.4 In a vector space, a state that does not
change under the operation of a group element is an
invariant eigenstate of the element. hΔi, Eq. (64), is an
invariant eigenstate of four group elements, Eqs. (68), (70),
(72), and (74). Invoking the condition that the VEV is an
invariant eigenstate of all these four elements fixes the
orientation of the VEV in the vector space ensuring that the
VEV is proportional to hΔi, Eqs. (64).
The group elements OCΔ and OEΔ, Eqs. (68) and (74),

generate two C3 groups. This is evident by inspecting the
corresponding matrix operations in Eqs. (69) and (75).

Similarly the group elements ODcΔ and ODrΔ, Eqs. (70)
and (72), generate two C2 groups, as is clear from the
corresponding matrix operations, Eqs. (71) and (73). To
denote the action of a direct product element, we used
left and right multiplications with the corresponding
matrices. To represent a direct product element using a
single matrix, we need to obtain the Kronecker product of
the left and the right matrices. It can be shown that the four
Kronecker product matrices, corresponding to the four
direct product elements, Eqs. (68), (70), (72), and (74),
commute with each other5; i.e., they generate the subgroup
C3 × C2 × C2 × C3. Therefore, the flavon VEV hΔi breaks
X24 × X24 into C3 × C2 × C3 × C2 ¼ C6 × C6. To summa-
rize, the C6 × C6 subgroup generated byOCΔ,ODcΔ,ODrΔ,
andOEΔ remains as the residual symmetry of the VEV, and
it uniquely defines the VEV (up to multiplication by an
overall complex constant). In the language of orbits and

4The left and the right multiplying matrices acting on Δ form
an unfaithful matrix representation of the full flavor group in this
space.

5Taken separately, the left (the right) parts of the direct product
elements, i.e., the left (the right) multiplying matrices, do not
commute with each other.
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stabilizers, the C6 × C6 subgroup is the stabilizer of hΔi
and it uniquely defines the orbit of hΔi.
Now we turn our attention to the flavons, ϕ́ and ϕ̀.

Consider the group element

OCϕ ¼ CðωÞ1CðωÞ2CðωÞ4 × C ð76Þ

operating on the flavon VEVs hϕ́i or hϕ̀i, Eqs. (64). Note
that C is an element of Σð72 × 3Þ, Eqs. (4). The X24 and
Σð72 × 3Þ parts of OCϕ act on the corresponding indices of
the flavon. As a matrix equation, the operation of OCϕ on
the VEV can be written as

0
BBBBBBBB@

1 0 0 0 0 0

0 ω̄ 0 0 0 0

0 0 ω 0 0 0

0 0 0 1 0 0

0 0 0 0 ω̄ 0

0 0 0 0 0 ω

1
CCCCCCCCA

0
BBBBBBBB@

τ 0 0

0 ω 0

0 0 τ̄

−i 0 0

0 ω̄ 0

0 0 i

1
CCCCCCCCA

0
B@
1 0 0

0 ω 0

0 0 ω̄

1
CA

T

: ð77Þ

It is clear that this operation multiplies all the vanishing
elements in the VEV with ω or ω̄. Therefore, invariance of
the VEV under OCϕ ensures that these elements vanish.
Consider the group element

ODϕ

¼CðωÞ1CðωÞ22CðωÞ3CðωÞ42CðωÞ5CðτÞ33CðτÞ43D2×I:

ð78Þ

As a matrix equation, its operation on the VEV is

0
BBBBBBBB@

0 0 0 −τ̄ 0 0

0 0 0 0 ω̄ 0

0 0 0 0 0 −τ
−τ 0 0 0 0 0

0 ω 0 0 0 0

0 0 −τ̄ 0 0 0

1
CCCCCCCCA

0
BBBBBBBB@

τ 0 0

0 ω 0

0 0 τ̄

−i 0 0

0 ω̄ 0

0 0 i

1
CCCCCCCCA

0
B@
1 0 0

0 1 0

0 0 1

1
CA

T

: ð79Þ

This operation interchanges the rows, 1, 2, 3, of the VEV
with the rows, 4, 5, 6, respectively, along with multipli-
cation of these rows with certain specific values of phases.
Invariance under this operation ensures that the elements in
the upper and the corresponding lower rows in the VEV
have the same magnitude, but differ by specific phases. Our
VEV satisfies this condition.
Finally consider the group element

OEϕ

¼CðωÞ12CðωÞ2CðωÞ32CðτÞ17CðτÞ22CðτÞ3CðτÞ44E1
2×E:

ð80Þ

As a matrix equation, its operation on the VEV is

0
BBBBBBBB@

0 ω̄τ 0 0 0 0

0 0 ωτ 0 0 0

−i 0 0 0 0 0

0 0 0 0 −iω 0

0 0 0 0 0 −iω̄
0 0 0 −1 0 0

1
CCCCCCCCA

0
BBBBBBBB@

τ 0 0

0 ω 0

0 0 τ̄

−i 0 0

0 ω̄ 0

0 0 i

1
CCCCCCCCA

0
B@
0 1 0

0 0 1

1 0 0

1
CA

T

:

ð81Þ

This operation cycles various sets of three elements of the
VEV, along with multiplying these elements with specific
phases. There are six such sets in the VEV. These include
(11, 22, 33) and (41, 52, 63), where the pairs denote the
indices of the VEV. Invariance under this operation ensures
that the elements within a set are equal to one another in
magnitude, but differ by specific phases. Our VEV satisfies
this condition also.
Invoking the condition that the VEVs of the flavons ϕ́

and ϕ̀, Eq. (64), are invariant under OCϕ, ODϕ, and OEϕ

uniquely defines the orientation of the VEVs in the flavor
space. The group elements OCϕ, ODϕ, and OEϕ, Eqs. (76),
(78), and (80), generate C3, C2, and C3 groups, respec-
tively. This is evident by inspecting the corresponding
matrix operations in Eqs. (77), (79), and (81). These three
elements also commute with each other, so that they
generate the subgroup C3 × C2 × C3 ¼ C6 × C3. To prove
that they commute we need to calculate the Kronecker
product matrices, as we discussed in the case of the Δ
flavon. To summarize, the C6 × C3 subgroup generated by
OCϕ, ODϕ, and OEϕ remains as the residual symmetry of
hϕ́i and hϕ̀i after SSB, and it uniquely defines these VEVs
(up to multiplication by an overall complex constant); i.e.,
the VEVs and their orbits are uniquely defined in terms of
the C6 × C3 stabilizer groups.
Since the neutrinos, νR, form a triplet under Σð72 × 3Þ,

the individual states, νR1, νR2, and νR3 correspond to the
flavor basis states, ð1; 0; 0ÞT , ð0; 1; 0ÞT , and ð0; 0; 1ÞT ,
respectively. These states are the invariant eigenstates of
the group elements C, E2CE, and ECE2, respectively,
where the group generators are given in Eqs. (4).
Individually, the above-mentioned group elements form
C3 subgroups of Σð72 × 3Þ. To summarize, we have shown
that the flavon VEVs as well as the neutrino states can be
uniquely defined in terms of their symmetry properties.
They are expressed as the invariant eigenstates of specific
group elements that form specific subgroups of the flavor
symmetry group. Thus the flavor structure of our model is
entirely determined by the subgroup structure of the flavor
symmetry group. It should be noted that, even though we
have used matrix representations in convenient bases, our
formalism is manifestly basis independent, i.e., expressible
in terms of the abstract group generators.
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Amotivation for using discrete groups in model building
is that they allow us to choose the flavon VEVs from
among a discrete set of alignments determined by their
symmetries. It is interesting to analyze how probable it is to
obtain the given VEVs from the set of minima of the flavon
potential through SSB. In this paper, we did not analyze the
flavon potential for our model. Nevertheless, let us assume
that a potential can be constructed that leads to the required
VEVs, Eqs. (55) and (64), through SSB. Let us also assume
that the different irreducible multiplets (ϕμ, ϕτ, ϕ́, ϕ̀, Δ) are
decoupled (at least at the renormalizable level) in the
potential so that the minima of the potential correspond
to the VEVs of the orbits of each multiplet independently of
the others.
At the beginning of this section, we showed that the

VEV, hϕμi, has a C3 residual symmetry. The flavon ϕμ

transforms under Σð72 × 3Þ and also under the C3 group
given in Table I. Therefore, a total of 216 × 3 group
elements act on ϕμ. Since the VEV has a C3 residual
symmetry, the orbit of hϕμi will have ð216 × 3Þ=3 distinct
points. Therefore, the probability of ϕμ acquiring the given
VEV through SSB is 1 in 216. It should also be noted that
the alignments hϕμi, ωhϕμi, and ω̄hϕμi (three different
minima in the orbit) leads to the same phenomenology. As a
result, the probability effectively increases to 1=72.
Similarly, we have a 1=72 probability to obtain hϕτi,
ωhϕτi, or ω̄hϕτi.
The flavon ϕ́ transforms under both Σð72 × 3Þ and X24.

We have found that X24 hasN ¼ 84352232 elements. Hence
a total of 216 × N group elements act on ϕ́. we have also
found that hϕ́i has a C6 × C3 residual symmetry. Therefore,
the orbit of hϕ́i will have 216 × N=18 ¼ 12N distinct
points. Similarly, there will also be 12N points in the orbit
of hϕ̀i. The flavon Δ transforms under two copies of X24,

6

and its VEV has a C6 × C6 residual symmetry. As a result,
there will be N2=36 points in the orbit of hΔi. Taking
the orbits of hϕ́i, hϕ̀i, and hΔi together, we obtain
12N × 12N × N2=36 ¼ 4N4 distinct points. So we con-
clude that the probability of obtaining the VEVs, Eqs. (64),
is 1 in 4N4. Consider a transformation hϕ́i → g1hϕ́i,
hϕ̀i → g2hϕ́i, and hΔi → ðgT1 Þ−1hϕ́ig−12 where g1 and g2
are elements of the two copies of X24, respectively. The
Majorana mass matrix, Eq. (66), and hence the phenom-
enology remain unaffected by this transformation. There
are a total of N2 elements in this transformation. Therefore
the effective probability increases to 1=ð4N2Þ.
Considering all the flavons (ϕμ;ϕτ; ϕ́; ϕ̀;Δ), we have an

effective probability of ð1=72Þ2 × 1=ð4N2Þ to achieve the
phenomenology described in our model. This probability is

very small. However, it is still better than the model
described in Ref. [28] where the same phenomenology
is obtained by tuning the parameters in the potential so as to
get the required vacuum alignment. As argued earlier in this
paper, such a tuning corresponds to a vanishing effective
probability.

VI. THE NEW FRAMEWORK

We have introduced a new framework in flavor physics
which involves the flavor group, Gf, expressed as a direct
product, Gf ¼ Gr ×Gx, where Gx, which we call the
auxiliary group, is a suitable discrete group under which
only the scalars (flavons) transform nontrivially. The
scalars may also transform under Gr. In contrast, the
fermions transform nontrivially only under Gr. In this
paper, we have Gr ¼ Σð72 × 3Þ × C3 × C4 and Gx ¼
X24 × X24. But in general, Gr can be any discrete group
commonly studied in the literature such as A4, S4, A5,
Δð3n2Þ, and Δð6n2Þ [30–69]. With three families of
fermions, Gr should be a discrete subgroup of Uð3Þ
(together with several Abelian discrete groups, i.e.,
Cn’s). On the other hand, Gx can be any discrete group
with the requisite symmetries, but not necessarily a Uð3Þ
subgroup. Until now, only the discrete subgroups of Uð3Þ
have been used as flavor symmetry groups in the literature.
By introducing the concept of the auxiliary group, which is
no longer required to be a Uð3Þ subgroup, we have
considerably broadened the model builders’ toolkit.
In this framework, the first step is to assume a flavon,

which is an irreducible multiplet under Gr × Gx. Then we
identify a specific flavon alignment that remains invariant
under the group transformations involving both Gr and Gx.
These transformations are used to fully define the align-
ment. Two or more flavons under Gr ×Gx with similar
uniquely defined alignments are also assumed. These
flavons are coupled together to obtain an object that is
an irreducible multiplet under Gr, but an invariant singlet
under Gx. The alignments of the constituent flavons give
rise to a unique alignment of this object. It should be noted
that this unique alignment of the effective Gr multiplet may
not possess any residual symmetry under Gr itself even
though the alignments of the constituent flavons are fully
defined in terms of their residual symmetries underGr×Gx.
For a further demonstration of this procedure refer to

Appendix B, where we construct a VEV for the triplet (30)
of S4 by using the dihedral group as the auxiliary group,
i.e., Gr ¼ S4 and Gx ¼ D2n. We obtain a VEVof the form
h30i∝ ðcosðmθÞ;cosðmθþ 2π

3
Þ;cosðmθ− 2π

3
ÞÞwhere θ ¼ 2π

n .
This shows that even the humble dihedral group can
produce an alignment for the S4 triplet that has not been
considered in the literature. We hope that this framework
will stimulate research involving various choices of aux-
iliary groups combined with the commonly studied sub-
groups of Uð3Þ. This may lead to novel choices of vacuum

6Δ also transforms under a C2, Table I. We have not included
this transformation in our analysis because both hΔi and −hΔi
lead to the same phenomenology and hence the effective
probability remains unaffected.
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alignments for the irreducible multiplets of the Uð3Þ
subgroups and new textures of mass matrices.
An important feature of this framework is that the

flavons transform under a larger group (Gr ×Gx) compared
to the fermions (Gr). Certain subgroups of Gr ×Gx remain
unbroken by the individual flavon VEVs. In some cases,
the same residual symmetry may be present in the VEVs of
all the flavons in the model; i.e., this symmetry is preserved
for the whole Lagrangian. If the residual symmetry is a
subgroup of the auxiliary group alone, then the fermions
themselves will not transform under it. These conditions
make the flavons stable against decay to fermions
(Standard Model particles). As a result, the lightest flavon
can become a dark-matter candidate. We will investigate
such a model in a future work.

VII. SUMMARY

In an earlier publication, we showed that a fully con-
strained Majorana mass matrix can be constructed using a
sextet of Σð72 × 3Þ. Specific VEVs for this sextet led to
TϕMmixing with ϕ ¼ �π=16 and the neutrino mass ratios
given in Eq. (3). In this paper, we obtain these VEVs
entirely using the principles of symmetries. To achieve this,
we propose a new discrete symmetry group, X24. Flavons
ϕ́, ϕ̀, and Δ which transform under the expanded flavor
group Σð72 × 3Þ × X24 × X24 are introduced. The VEV of
each of these flavons is uniquely identified as the invariant
eigenstate of several elements of the expanded flavor group.
Such a set of elements generates a specific subgroup of
Σð72 × 3Þ × X24 × X24 which forms the residual symmetry
of the given VEV. The VEVs of ϕ́, ϕ̀, and Δ are coupled
together to obtain the VEV of the sextet of Σð72 × 3Þ. By
imposing the condition that the VEVs of the constituent
flavons are invariant eigenstates under the simultaneous
action of Σð72 × 3Þ and X24, we make the VEVof the sextet
of Σð72 × 3Þ implicitly dependent on X24.
Using the irreducible triplet of S4 group as an example,

we show that flavon alignments fully defined by the
residual symmetries of S4 form unique orbits. On the other
hand, alignments obtained by extremizing flavon potentials
may not always be unique; i.e., by carefully adjusting the
parameters in the potential we may obtain almost any
arbitrary vacuum alignment having no residual symmetries.
We argue that constructing such arbitrary potentials goes
against the spirit of using discrete symmetries to explain the
flavor structure. Yet, to obtain phenomenologically viable
models, we may have to resort to using a VEV (of an
irreducible flavon multiplet) having no apparent residual
symmetry. It is in this context that we introduce the new
framework in which the flavor group is obtained as the
direct product, Gf ¼ Gr ×Gx, where the flavons transform
under both Gr and Gx while the fermions transform only
under Gr. By coupling together several flavons that trans-
form under Gr ×Gx, we obtain an effective irreducible

multiplet that transforms only under Gr. We define the
alignments of the constituent flavons in terms of the
residual symmetries under Gr ×Gx. As a result we
uniquely obtain the alignment of the effective Gr multiplet
as well, even though this multiplet may not possess any
residual symmetry underGr. We hope that more models are
constructed in this framework leading to interesting pre-
dictions in flavor physics.
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APPENDIX A: S4 VEVS OBTAINED FROM
POTENTIALS

Here we use the group S4 to construct a couple of toy
models for mass matrices. We investigate the flavon poten-
tials and show that they may or may not lead to VEVs with
specific symmetry properties. In Sec. II, we discussed the
properties of the triplet representations, 3 and 30. These
representations are faithful consisting of 24 distinct group
elements. However, the doublet representation (2) is not
faithful. The 2 × 2matrices, Eqs. (21), generate the dihedral
groupD6 which forms a quotient group of S4.D6 represents
the rotation as well as the reflection symmetries of an
equilateral triangle as shown in Fig. 3.
Let us define singlet (ϕs), doublet (ϕd), and triplet (ϕt)

flavons which transform as 1 (invariant), 2, and 30,
respectively. They couple with the neutrino multiplets,
Eqs. (18)–(20), to produce the S4 invariant mass term,

ksðνR · νRÞsϕs þ kdðνR · νRÞTdϕd þ ktðνR · νRÞTt ϕt; ðA1Þ

where ks, kd, and kt are the coupling constants. The flavons
and the coupling constants in Eq. (A1) can be written in a
matrix form,

ksϕsI

þ

0
B@
kdð2ϕd1Þ ktϕt3 ktϕt2

ktϕt3 kdð−ϕd1þ
ffiffiffi
3

p
ϕd2Þ ktϕt1

ktϕt2 ktϕt1 kdð−ϕd1−
ffiffiffi
3

p
ϕd2Þ

1
CA;

ðA2Þ

where we have expressed the doublet and the triplet flavons
in terms of their components, i.e., ϕd ¼ ðϕd1;ϕd2ÞT and
ϕt ¼ ðϕt1;ϕt2;ϕt3ÞT . Substituting a specific vacuum align-
ment for the flavons in Eq. (A2) produces the mass matrix.
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In the rest of this Appendix, two examples are provided
where we minimize flavon potentials to obtain the VEVs
and the corresponding mass matrices. In Example 1 the
VEVs can also be defined in terms of their symmetries
while in Example 2 they do not have such symmetry
properties.

1. Example 1

It is straightforward to write a potential for the invariant
flavon ϕs,

ðϕs − 1Þ2: ðA3Þ

Extremizing this potential leads to the VEV,

hϕsi ¼ 1: ðA4Þ

In order to construct a potential for the doublet flavon,
we first consider the tensor product of two doublets. It can
be shown that the tensor product leads to another doublet,

ðϕdϕdÞd ¼ ððϕ2
d1 − ϕ2

d2Þ;−2ϕd1ϕd2ÞT: ðA5Þ

Now we construct the potential,

jðϕdϕdÞd − ϕdj2; ðA6Þ

where the operator jj2 represents ðÞTðÞ. This potential has
three minima: ϕd ¼ ð1; 0Þ, ð− 1

2
;
ffiffi
3

p
2
Þ, and ð− 1

2
;−

ffiffi
3

p
2
Þ. They

form the vertices of the equilateral triangle as shown in
Fig. 3 (left). We assume that the flavon acquires one of
these minima as its VEV,

hϕdi ¼ ð1; 0ÞT: ðA7Þ

This VEV breaks D6 to one of its subgroups, C2,
generated by

PQ≡
�
1 0

0 −1

�
; ðA8Þ

where E and F are given in Eqs. (21). C2 represents the
reflection symmetry of the triangle which keeps ð1; 0ÞT
invariant. Conversely, the vacuum alignment, ð1; 0ÞT , can
be uniquely identified by this residual C2 symmetry.
Now we construct a potential for the triplet flavon, ϕt,

which transforms as a 30. From the tensor product of two ϕt
triplets, we obtain the second order triplet,

ðϕtϕtÞt ¼ ðϕt2ϕt3;ϕt3ϕt1;ϕt1ϕt2ÞT; ðA9Þ

similar to Eq. (20). Using ϕt and ðϕtϕtÞt, we construct the
potential,

ðjϕtj2 − 1Þ2 þ kjðϕtϕtÞtj2: ðA10Þ

This potential has six minima ϕt ¼ ð�1; 0; 0Þ, ð0;�1; 0Þ,
and ð0; 0;�1Þ. These are the face centers of the cube shown
in Fig. 2 (left). We assume that the flavon acquires one of
these minima as its VEV,

hϕti ¼ ð1; 0; 0ÞT: ðA11Þ

This VEV breaks S4 to one of its subgroups, C2 × C2,
generated by ðPQÞ2 and QPQ2, Eqs. (26), as discussed in
Sec. II. Therefore, the VEV is uniquely identified by this
residual C2 × C2 symmetry.
Substituting the VEVs, hϕsi, hϕdi, and hϕti in Eq. (A2),

we obtain the mass matrix,

0
B@

ks þ 2kd 0 0

0 ks − kd kt
0 kt ks − kd

1
CA: ðA12Þ

This matrix is diagonalized using the unitary matrix,

0
B@

1 0 0

0 1ffiffi
2

p −1ffiffi
2

p

0 1ffiffi
2

p 1ffiffi
2

p

1
CA; ðA13Þ

which provides a bimaximal contribution to mixing. By a
suitable selection of the coupling constants, ks, kd, kt, we
can obtain any set of values for the masses without affecting
the mixing part.

FIG. 3. The dots on the left and the right figures represent
extrema of two cases of flavon potentials which have D6

symmetry. In the left figure, the extrema are on vertices of the
triangle. The VEV, denoted by the red dot, is aligned along
the direction representing one of the reflection symmetries of the
triangle. In the right figure, D6 symmetry of the potential results
in 6 extremum points positioned symmetrically around the
triangle. However, the VEV (the red dot) is not aligned along
any special direction in relation to the triangle.
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2. Example 2

In this example we construct potentials for the flavons ϕd
and ϕt leading to VEVs that leave no residual symmetries.
For ϕd, we use the potential

ðjϕdj2 − 1Þ2 þ 1

Λ2
ðϕT

dðϕdϕdÞdÞ2; ðA14Þ

where the scale Λ is added with the higher dimensional
term. This potential has six minima which are of the form

ϕd ¼ gið0; 1ÞT; ðA15Þ

where gi are the six elements of the group D6. These
minima are shown in Fig. 3 (right). We assume that flavon
acquires one of the minima,

hϕdi ¼ ð0; 1ÞT: ðA16Þ

as its VEV. This VEV does not possess any residual
symmetry of D6.
For constructing the potential for the triplet flavon, we

first obtain a doublet from the tensor product of two triplets.
Similar to Eq. (19), we obtain

ðϕtϕtÞd ¼ ð2ϕ2
t1 − ϕ2

t2 − ϕ2
t3;

ffiffiffi
3

p
ϕ2
t2 −

ffiffiffi
3

p
ϕ2
t3ÞT: ðA17Þ

We construct the potential as

ðjϕtj2 − ð1þ κ21 þ κ22ÞÞ2
þ jðϕtϕtÞd −

ffiffiffi
3

p
ðκ21 − κ22Þϕd þ ð2 − κ21 − κ22ÞðϕdϕdÞdj2;

ðA18Þ

where κ1 and κ2 are arbitrary constants. In Eq. (A18) we
have coupled the doublet flavon, ϕd, with the triplet flavon,
ϕt. Therefore, we should extremize Eq. (A18), together
with the potential for the doublet flavon, Eq. (A14). If we
substitute ϕd ¼ ð0; 1ÞT and ϕt ¼ ð1; κ1; κ2ÞT , both terms in
Eq. (A18) as well as in Eq. (A14) vanish, indicating that
these states of the flavons constitute a minimum of the
potential. By transforming these flavon states under the
action of S4 we obtain further minima forming a discrete
set. For ϕt, these minima are shown in Fig. 2 (right) where
we have used κ1 ¼ 0.50 and κ2 ¼ −0.85. We select one of
these minima,

hϕti ¼ ð1; κ1; κ2ÞT; ðA19Þ

as the VEV. As mentioned previously, this VEV does not
possess any residual symmetry of S4. Using the VEVs of
the doublet and the triplet flavons we obtain the mass
matrix,

0
B@

ks ktκ2 ktκ1

ktκ2 ks þ
ffiffiffi
3

p
kd kt

ktκ1 kt ks −
ffiffiffi
3

p
kd

1
CA; ðA20Þ

which has more degrees of freedom compared to the
previous case, Eq. (A12). By suitably tuning these free
parameters, we can ensure that this mass matrix is con-
sistent with the current neutrino masses and mixing data.
However, we argue that since the VEVs, Eqs. (A16) and
(A19), have no apparent connection with the original flavor
symmetry (S4), we cannot claim that the texture of the
resulting mass matrix has its origin in the aforementioned
symmetry.

APPENDIX B: S4 VEVS DEFINED USING THE
AUXILIARY GROUP

In this section, we demonstrate the use of the auxiliary
group to obtain unique vacuum alignments for the triplet
(30) of S4. Here we use the dihedral group as the auxiliary
group. The dihedral group,D2n, is the symmetry group of a
regular polygon with n vertices. Such a polygon has n
rotational symmetries and n reflection symmetries, so that
the total number of elements of the group is 2n. The
generators for these rotations and reflections can be
given by

R≡
�

cos θ sin θ

− sin θ cos θ

�
; F≡

�
1 0

0 −1

�
; ðB1Þ

where θ ¼ 2π
n . The n rotations and the n reflections are

given by

Rm ≡
�

cosmθ sinmθ

− sinmθ cosmθ

�
; ðB2Þ

R−mFRm ≡
�
cos 2mθ sin 2mθ

sin 2mθ − cos 2mθ

�
; ðB3Þ

where m ¼ 1 � � � n. Rm rotates by an angle mθ and
R−mFRm reflects about the axis ðcosmθ; sinmθÞT .
Equations (B2) and (B3) form the real doublet representa-
tion (2) of D2n.
For the purpose of using D2n as the auxiliary group with

S4, we assume that the angle θ divides 2π
3
; i.e., n is a

multiple of 3. This assumption implies that we have

Rω ¼
� cos 2π

3
sin 2π

3

− sin 2π
3

cos 2π
3

�
ðB4Þ

as one of the group elements. Rω and F generate D6 which
forms a subgroup of the auxiliary group D2n.
Our flavor group is S4 ×D2n. We assume that there are

two flavons, ϕ́ and ϕ̀. They both transform as 30 under S4
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and 2 underD2n. For these flavons, we use Latin and Greek
indices to represent the 30 of S4 and the 2 of D2n,
respectively, i.e., ϕ́αi and ϕ̀αi. The two flavons are coupled
together to obtain an object that transforms as a 30 under S4
and an invariant under D2n,

ðϕ́ ϕ̀Þ30 ¼
X
i

ðϕ́2iϕ̀3i þ ϕ́3iϕ̀2i; ϕ́3iϕ̀1i þ ϕ́1iϕ̀3i;

ϕ́1iϕ̀2i þ ϕ́2iϕ̀1iÞ; ðB5Þ

where the triplet (30) is obtained as in Eq. (20). Note that the
doublet representation of D2n is real. Hence we construct
the invariant by simply taking the scalar product [summa-
tion over i in Eq. (B5)].
Consider the vacuum alignments,

hϕ́i ¼
� cos 0 cos 2π

3
cos −2π

3

sin 0 sin 2π
3

sin −2π
3

�
; ðB6Þ

hϕ̀i ¼
�
cosmθ cosðmθ − 2π

3
Þ cosðmθ þ 2π

3
Þ

sinmθ sinðmθ − 2π
3
Þ sinðmθ þ 2π

3
Þ

�
; ðB7Þ

where the rows and the columns correspond to the Greek
and the Latin indices, respectively. hϕ́i remains invariant
under the following transformations:

Rωhϕ́iQ2 ¼ hϕ́i; ðB8Þ

Fhϕ́iS ¼ hϕ́i; ðB9Þ

where S ¼ PQ2PQP, Eq. (29). The residual symmetry (the
stabilizer subgroup) of hϕ́i is generated by Q2 × Rω and
S × F in the favor space of S4 ×D2n. It can be shown that
these elements generate D6. In other words, the D6

subgroup of S4 ×D2n generated by Q2 × Rω and S × F
uniquely define hϕ́i.
hϕ́i and hϕ̀i, Eqs. (B6) and (B7), are related by the group

transformation,

Rmhϕ̀iS ¼ hϕ́i: ðB10Þ

Therefore, hϕ́i and hϕ̀i share the same orbit. The residual
symmetry of hϕ̀i can easily be found using Eqs. (B8), (B9),
and (B10),

R−mRωRmhϕ̀iSQ2S−1 ¼ Rωhϕ̀iQ ¼ hϕ̀i; ðB11Þ
R−mFRmhϕ̀iSSS−1 ¼ R−mFRmhϕ̀iS ¼ hϕ̀i; ðB12Þ

i.e., hϕ̀i remains invariant under the group action ofQ × Rω

and S × R−mFRm. These group elements generate another
D6 subgroup of S4 ×D2n, which uniquely defines hϕ̀i and
forms its stabilizer. The orbit that includes hϕ́i and hϕ̀i
contains 24×2n

6
elements.

Now that hϕ́i and hϕ̀i are uniquely defined using their
residual symmetries, we move on to construct the S4 triplet
using Eq. (B5). Substituting Eqs. (B6) and (B7) in Eq. (B5),
we obtain

ðhϕ́ihϕ̀iÞ30 ¼2

�
cosðmθÞ;cos

�
mθþ2π

3

�
;cos

�
mθ−

2π

3

��
:

ðB13Þ
The above VEV (30 of S4) does not possess any residual
symmetry of S4 even though hϕ́i and hϕ̀i are individually
fully determined by their residual symmetries under
S4 ×D2n. ðhϕ́ihϕ̀iÞ30 produces an orbit with 24 elements
in the space ofS4, similar toFig. 2 (right).However, the flavon
potential, Eq. (A18), from which this figure is constructed,
has arbitrary parameters κ1 and κ2. By varying these param-
eters, we can construct infinitely many orbits and obtain the
vacuum alignment along any direction we may choose. We
argue that such arbitrary choices of alignments should be
avoided. On the other hand, usingD2n as the auxiliary group
leads to alignments, Eq. (B13), which are uniquely defined in
terms of symmetries even if they fully break S4.
When the VEVs, Eqs. (12) and (13), were proposed in

Ref. [28], we obtained them by extremizing a potential for
the sextet flavon of Σð72 × 3Þ. However, under Σð72 × 3Þ
alone, these VEVs do not possess any residual symmetry.
Their orbits have 216 elements with trivial stabilizers. In
Ref. [28], these VEVs were obtained by simply adjusting
the parameters in the potential. In this paper, we got rid of
this arbitrariness by introducing the auxiliary group.
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