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In this work we introduce CPT-odd nonminimal Lorentz-symmetry violating couplings to the
electroweak sector modifying the interaction between leptons and gauge bosons. The vertex rules allow
us to calculate tree-level processes modified by the presence of the novel dimension-five operators. For
definitiveness, we investigate theW decay into a lepton-neutrino pair, the Z decay into pairs of charged and
neutral leptons, as well as the decay of the muon. By comparing the experimental measurements on these
processes to our results we are able to bound several combinations of the background 4-vectors to be
≲10−4 GeV−1.
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I. INTRODUCTION

The StandardModel (SM) is based on gauge and Lorentz
symmetries and most of its predictions have been exper-
imentally confirmed, including the 2012 discovery of the
long-sought Higgs boson. Nonetheless, it is believed that
the SM must be the low-energy limit of some broader
theory. In many such beyond the SM scenarios, such as
string theory and quantum gravity, it is possible that
Lorentz symmetry is broken at very high energies as
generic tensor fields acquire vacuum expectation values
and become time-independent. These are generally coupled
to the remaining dynamic physical—matter, Higgs and
gauge—fields in the low-energy theory that contains the
SM, which is no longer Lorentz invariant, since these tensor
coefficients select a preferred direction in space-time [1–7].
The resulting terms, which are typically suppressed by
inverse powers of some large mass or energy scale (e.g., the
Planck scale), could generate small physical effects poten-
tially accessible at current or future experiments.
V.A. Kostelecký and D. Colladay have systematically

collected the possible low-energy terms arising from
Lorentz-symmetry violation (LSV) into the so-called
StandardModel extension (SME) [8,9], which complements

the usual SMby introducing novel LSVinteractions in all its
sectors, from quantum chromodynamics to gravitation.
Diverse experimental tests, ranging from atomic spectros-
copy to astrophysical observations passing by collider
experiments, have placed bounds on many of the possible
LSV coefficients, which are conveniently collected in
Ref. [10] (see also Ref. [11]).
Experimental tests of standard quantum electrodynamics

(QED) are extremely precise, allowing the corresponding
sector in the SME to be well constrained. A prime example
is the Chern-Simons-like, CPT-odd Carroll-Field-Jackiw
(d ¼ 3) correction to the photon sector [12], which is
tightly constrained by the nonobservation of the rotation
in the polarization of radiation from astrophysical sources
[13,14]. Though complementary, laboratory-based tests are
not entirely competitive [15]. TheCPT-even sector (d ¼ 4),
on the other hand, can be strongly bounded by a variety of
laboratory experiments and by astrophysical observations
such as gravitational-wave detectors [10,16]. Both sectors
are renormalizable and are at most quadratic in the photon
fields. Nonrenormalizable, higher-derivative termsmay also
be introduced, but are expected to be suppressed relative to
their renormalizable counterparts [17,18].
The electroweak sector of the SME, on the other hand,

has not been studied to the same extent. In the SM
electroweak processes are generally harder to detect than
pure electromagnetic ones due to the presence of inverse
powers of the large mass of the mediating bosons in the
amplitudes. In well-measured processes, such as Bhabha
scattering [19,20], QED effects are the leading contribu-
tions, whereas electroweak effects amount to only a few
percent at energies already close to the Z pole [21,22].
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Since at low energies W- and Z-mediated processes are
strongly suppressed relative to photon-mediated ones, we
are going to focus on purely electroweak interactions.
Lorentz-symmetry violation may be incorporated into

the electroweak sector by considering couplings analogous
to those in the QED sector of the (minimal) SME. A
possibility is to introduce a Chern-Simons-like operator
which generalizes the Carroll-Field-Jackiw case, but with
the interesting feature of a term coupling the photon and Z
boson, which leads to photon-Z mixing [23]. Another
interesting possibility is to modify the propagator of the
intermediate bosons, thus affecting any W- or Z-mediated
processes such as muon decay [24], neutron β decay [25]
and nuclear processes [26–28]. There is however another
interesting possibility, namely to directly modify the
interaction vertices between mediators and matter fields.
In QED and, more generally, in the SM, gauge fields are

introduced as the result of the invariance of the fermionic
Lagrangian under local phase transformations. These fields
are coupled to matter in such a way that the usual partial
derivative in the fermionic kinetic terms may be generalized
into a covariant derivative à la ∂μ → Dμ ¼ ∂μ þ iqAμ,
where q is a (conserved) charge and Aμ is the gauge field
associated to the—here Abelian—symmetry. The ensuing
coupling between the gauge field and matter fields is called
minimal, but it is not the only possibility.
If a premium is placed on gauge invariance, an interest-

ing possibility is the introduction of nonminimal couplings,
which consist of coupling the fermionic bilinears not to
the gauge fields themselves, but to their field-strength
tensors as in the Pauli term [29]. Nonminimal couplings
have been explored in many different contexts within
Lorentz-violating QED, such as the spectrum of the hydro-
gen atom [30], magnetic and electric dipole moments of
charged leptons [31–33], scattering processes [22,34], and
topological effects [35,36].
In this paper, we generalize the couplings discussed

above and introduce LSV terms directly coupling the
leptonic bilinears with the field-strength tensors of the
non-Abelian gauge bosons, thereby extending the lepton-
gauge interactions beyond the usual, Lorentz-preserving
minimal couplings from the SULð2Þ × Uð1ÞY symmetry of
the SM. These novel terms produce modifications already
at tree level and in this context we shall address the effects
of LSV inW decayW− → ν̄ll, the Z decay Z → f̄f, where
f is any SM lepton or neutrino, as well as to muon decay, a
purely leptonic process of historical and practical impor-
tance in tests of the SM [37]. By using the data presented
in the latest edition of the Particle Data Group [38], we
are able to constrain different combinations of the LSV
coefficients.
This paper is organized as follows: in Sec. II we

present the novel LSV terms and explicitly construct the
Lagrangian for the lepton-gauge sector with LSV inter-
actions. In Sec. III we apply the LSV-modified Feynman

rules to a few processes at tree level to obtain upper bounds
on the LSV parameters. Finally, in Sec. IV we summarize
our results and present our concluding remarks. In our
calculations we employed the Package-X [39] to automati-
cally evaluate the traces and contractions involving
spinors and Dirac gamma matrices. We use natural units
(c ¼ ℏ ¼ 1) throughout.

II. THE LSV LEPTON-GAUGE INTERACTIONS

In the SM, the leptons are minimally coupled to the
gauge bosons via the covariant derivative

Dμ ≡ ∂μ − ig0YBμ − igWa
μσ

a=2; ð1Þ

where g0 and g are the respective Uð1ÞY and SULð2Þ
coupling constants, Y is the weak hypercharge and fσag are
the Pauli matrices. The tree-level interactions between
leptons ψ and gauge bosons in the SM are exclusively
derived from terms ∼iψ̄γμDμψ .
Here we introduce LSV non-minimal couplings, i.e.,

interaction terms between the leptons and the field-strength
tensors of the Uð1ÞY and SULð2Þ gauge fields, Bμν ¼
∂μBν − ∂νBμ and Wa

μν ¼ ∂μWa
ν − ∂νWa

μ þ gεabcWb
μWc

ν

(a ¼ 1, 2, 3), respectively. This is accomplished via two
real (constant) 4-vectors ξμ and ρμ that give rise to the
following LSV lepton-gauge Lagrangian

LLSV
gl ¼ −ψ̄lLγ

μ

�
1

2
ξνBμν þ ρνWa

μν
σa

2

�
ψlL

− l̄Rγ
μ

�
1

2
ξνBμν

�
lR; ð2Þ

which introduces interactions with extra momentum-de-
pendent contributions—a typical signature of such LSV
couplings [22,34]. We would like to mention that similar
couplings have been explored in Refs. [40,41]. Here,
however, we conduct a more general analysis by consid-
ering the SULð2Þ and Uð1ÞY sectors together.
A few comments are in order. The internal symmetries of

the theory remain untouched: the charge operator is given by
Qem ¼ Y þ I3, where I3 ¼ σ3=2, so that the charge assign-
ments of the matter fields are the same as in the SM, namely
ψlL ¼ ðνllÞTL ∼ ð2;−1=2Þ and lR ∼ ð1;−1Þ, in which l ¼
fe; μ; τg. Here, ψR;L ¼ PR;Lψ , where PR;L ≡ 1

2
ð1� γ5Þ are

the right- and left-handed projection operators. Right-
handed neutrinos are singlets under SULð2Þ ×Uð1ÞY and
are a priori not contained in the SMapart from issues related
to neutrino masses and mixing, which are not going to be of
consequence here, since we treat neutrinos as massless.
It is important to note that the LSV 4-vectors above may

distinguish between lepton families. We tacitly assume that
the process leading to the breaking of Lorentz symmetry
equally affects the gauge sectors of the SULð2Þ and Uð1ÞY
symmetries. However, there is no reason to suppose that the
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matter fields are indiscriminately affected, meaning that the
LSV 4-vectors are actually family-dependent parameters:
ξ → ξðlÞ and ρ → ρðlÞ. To avoid overloading the notation,
we shall specialize to each family only at the end of the
respective calculation, where different experimental limits
may apply.
The interaction terms fromDμ, Eq. (1), explicitly depend

on the hypercharge and isospin of the leptons. The LSV
terms in Eq. (2), however, are insensitive to those
[30,42,43]. The mass terms from the Yukawa interactions
are not affected, since the LSV terms do not influence them
at tree level, meaning that the equations of motion for the
free leptons are unchanged and the propagators—and
associated Feynman rules—will be the same as in the SM.
At last but not least, we would like to mention that the

LSV couplings have negative canonical dimension, i.e., the
LSV terms are nonrenormalizable. This is a general feature
of such nonminimal couplings and indicates that the
associated Lagrangian is, in fact, only an effective theory.
This will not disturb us here, since we are only dealing with
relatively low-energy processes—exclusively at tree level—
so no divergences are expected.
We arenowable to dissect Eq. (2) further and determine the

Feynman rules governing the lepton-boson interactions. We
may decompose the lepton-gauge Lagrangian into Lgl ¼
LSM
gl þ LLSV

gl , where the first term contains the SM contri-
butions to processes involving neutral and charged currents
and the second contains only LSV terms from Eq. (2).
The mechanism of spontaneous symmetry breaking is the

same as in the SM, so we apply the standard Weinberg
rotation to write Bμ andW3

μ in terms of Aμ and Zμ [44]. The
physical fields W� and Z have masses mW ¼ 80 GeV and
mZ ¼ 91 GeV, respectively, and A represents the massless
photon. The field-strength tensors of the photon and the Z
boson are defined as Fμν ¼ ∂μAν − ∂νAμ and Zμν ¼
∂μZν − ∂νZμ, whileW3

μν andFþ
μν (withF−

μν being its complex
conjugate and W�

μν ≡ ∂μW�
ν − ∂νW�

μ ) are given by

W3
μν ¼ cos θWZμν þ sin θWFμν

− igðWþ
μ W−

ν −Wþ
ν W−

μ Þ; ð3Þ

Fþ
μν ¼ Wþ

μν þ ig cos θWðWþ
μ Zν − ZμWþ

ν Þ
þ ig sin θWðWþ

μ Aν −Wþ
ν AμÞ: ð4Þ

With the relations above we write the LSV piece as

LLSV
gl ¼ 1

2
cosθWξμðψ̄lLγ

νψlL þ l̄Rγ
νlRÞFμν

−
1

2
sinθWξμðψ̄lLγ

νψlL þ l̄Rγ
νlRÞZμν

þ ρμψ̄lLγ
ν

�
Fþ
μν
σþ

2
þF−

μν
σ−

2
þW3

μν
σ3

2

�
ψlL; ð5Þ

where
ffiffiffi
2

p
σ� ¼ σ1 � iσ2. The Lagrangian involving only

left-handed leptons reads then

LLSV
gl;L ¼ 1

2
vμ1l̄Lγ

νlLFμν þ
1

2
vμ2ν̄lLγ

ννlLFμν

þ 1

2
vμ3l̄Lγ

νlLZμν þ
1

2
vμ4ν̄lLγ

ννlLZμν

þ ig
2
ρμðl̄Lγ

νlL − ν̄lLγ
ννlLÞWþ

½μW
−
ν�

þ 1ffiffiffi
2

p ρμl̄Lγ
ννlLðW−

μν − ieA½μW−
ν�

− ie cot θWZ½μW−
ν�Þ þ H:c:; ð6Þ

where we defined A½μBν� ≡ AμBν − BμAν. The coupling
constants g and g0 are connected via e¼gsinθW¼g0cosθW ,
where e ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π=128

p
≃ 0.31 is the fundamental electric

charge and θW is the Weinberg angle satisfying sin2 θW ¼
0.23 [38]. For simplicity, we have defined the rotated
vectors

v1μ ¼ cos θWξμ − sin θWρμ; ð7aÞ

v2μ ¼ cos θWξμ þ sin θWρμ; ð7bÞ

v3μ ¼ − sin θWξμ − cos θWρμ; ð7cÞ

v4μ ¼ − sin θWξμ þ cos θWρμ: ð7dÞ

Let us now return to the full LSV interaction Lagrangian.
Including the results from Eq. (6) and using the definition
of the left- and right-handed projectors, we are able to
rewrite Eq. (5) in terms of the basic lepton fields with the
usual V-A vertex structure of the electroweak theory. The
result is

LLSV
gl ¼ l̄ðcμ1γνþ cμ2γ

νγ5ÞlFμνþ
1

4
vμ2ν̄lγ

νð1− γ5ÞνlFμν

þ l̄ðcμ3γνþ cμ4γ
νγ5ÞlZμνþ

1

4
vμ4ν̄lγ

νð1− γ5ÞνlZμν

þ ig
4
ρμWþ

½μW
−
ν�½l̄γνð1− γ5Þl− ν̄lγ

νð1− γ5Þνl�

þ 1

2
ffiffiffi
2

p ρμl̄γνð1− γ5Þνl
× ðW−

μν − ieA½μW−
ν�− iecotθWZ½μW−

ν�ÞþH:c:; ð8Þ

where the coefficients cμi are given by

c1μ ¼
1

2

�
cos θWξμ −

1

2
sin θWρμ

�
; ð9aÞ

c2μ ¼
1

4
sin θWρμ; ð9bÞ
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c3μ ¼ −
1

2

�
sin θWξμ þ

1

2
cos θWρμ

�
; ð9cÞ

c4μ ¼
1

4
cos θWρμ: ð9dÞ

Equation (8) is our final result and shows how Eq. (2)
modifies the usual lepton-boson interactions. Several ver-
tices from the SM receive small LSV corrections and other
new purely LSV vertices are introduced. Now we may
extract the interaction vertices to compute physical observ-
ables (cf. Tables I and II.).
It is worthwhile mentioning that some of the interaction

terms displayed in Eq. (8), in particular the first one that
concerns charged leptons and the photon field-strength
tensor, have already been defined in the SME [10] (see
Table P58). These are analogous to að5ÞμαβF and bð5ÞμαβF ,
which couple the vector and pseudovector matter currents
to the electromagnetic field-strength tensor, respectively. In
Appendix B we discuss the connection between our LSV
coefficients and the ones listed in Ref. [10] in more detail.
Contrary to other, unrelated dimension-5 couplings, like

aeff , â and a
∘
(and corresponding b versions) [45,46], these

coefficients have not been extensively constrained in the
literature. Indeed, the only bound available is<10−3 GeV−1

from Bhabha scattering (see Ref. [22] and Table D22 in

Ref. [10]). In what follows we will improve this limit by up
to one order of magnitude.

III. APPLICATION TO SELECTED
ELECTROWEAK PROCESSES

In the previous section we developed the LSV
Lagrangian and attained Eq. (8), from where we may read
the Feynman rules for the vertices as listed in Tables I and
II. Our goal is to calculate observable quantities, in
particular decay widths, that have been experimentally
measured and, under the—so far justified—assumption that
the SM appropriately describes the central value of the
experimental results, use the quoted uncertainties to extract
upper limits on the LSV coefficients.

A. The W decay width

Let us first consider the decay of the W− boson into
a lepton and its antineutrino. The W− boson starts with
4-momentum kμ and polarization vector ϵμðkÞ, whereas
the decay products have 4-momenta qμ (lepton) and q0μ
(antineutrino). The tree-level amplitude is

iMðW− → lν̄lÞ ¼ ϵμðkÞūlðqÞVμ
Wlν̄l

ðkÞvν̄ðq0Þ; ð10Þ
where ūl and vν̄ are the Dirac spinors for the lepton and
antineutrino, respectively. The relevant vertex, including
the charged-current interaction from the SM and the LSV
contribution (cf. Table I), is

Vμ
Wlν̄l

ðkÞ ¼ −
ig

2
ffiffiffi
2

p γμð1 − γ5Þ

þ 1

2
ffiffiffi
2

p ðρνγμ − ρμγνÞð1 − γ5Þkν: ð11Þ

Since we are interested in the unpolarized decay rate,
we need to average the squared amplitude over initial
polarizations and sum over final spins. Using the fact
that ð1 − γ5Þγμð1þ γ5Þ ¼ 2γμð1þ γ5Þ, the spin-averaged
square amplitude is given by

hjMj2i ¼ 1

12

�
−ημλ þ

kμkλ
m2

W

�
q0αqβ

× Tr½Γ̄μ
þγαð1þ γ5ÞΓ̄λ

−γ
β�; ð12Þ

where the Γ̄μ
� matrices are defined by

Γ̄μ
� ¼ gγμ � iðρνγμ − ρμγνÞkν: ð13Þ

It is now convenient to move to the rest frame of theW−

boson, where kμ ¼ ðmW; 0Þ. SincemW ≫ ml; mνl , we may
ignore the smaller masses, so that Eq. (12) is the sum of the
following partial amplitudes:

hjMj2iSM ¼ g2

3m2
W
½2ðk · qÞðk · q0Þ þm2

Wq · q0�; ð14Þ

TABLE I. List of vertices that are present at tree level in the SM
and receive a (small) LSV correction from Eq. (8). Here, qμ is the
4-momentum of the photon, W or Z boson flowing into the
vertex. The coefficients vμi and c

μ
i are listed in Eqs. (7a)–(7d) and

in Eqs. (9a)–(9d), respectively.

Interaction Vertex factor

γll̄ ðc½μ1 γν� þ c½μ2 γ
ν�γ5Þqν

Z0ll̄ ðc½μ3 γν� þ c½μ4 γ
ν�γ5Þqν

Z0νlν̄l 1
4
v½ν4 γ

μ�ð1 − γ5Þqν
W−lν̄l 1

2
ffiffi
2

p ρ½νγμ�ð1 − γ5Þqν

TABLE II. List of novel vertices from Eq. (8) that are in
principle absent from the SM at tree level. Here, qμ is the 4-
momentum of the photon, W or Z boson flowing into the vertex.
The coefficients vμi and cμi are listed in Eqs. (7a)–(7d) and in
Eqs. (9a)–(9d), respectively.

Interaction Vertex factor

γνlν̄l 1
4
v½ν2 γ

μ�ð1 − γ5Þqν
W−γlν̄l − ie

2
ffiffi
2

p ρ½νγμ�ð1 − γ5Þ
W−Z0lν̄l − ie cot θW

2
ffiffi
2

p ρ½νγμ�ð1 − γ5Þ
WþW−ll̄ ig

4
ρ½νγμ�ð1 − γ5Þ

WþW−νlν̄l − ig
4
ρ½νγμ�ð1 − γ5Þ
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hjMj2ið1ÞLSV ¼ −
2g
3
kμq0νqαρβϵμναβ; ð15Þ

hjMj2ið2ÞLSV ¼ 2mWρ0
3

�
ðk · qÞðρ · q0Þ þ ðk · q0Þðρ · qÞ

þ −
ρ2

2mWρ0
½2ðk · qÞðk · q0Þ −m2

Wq · q0�
�
:

ð16Þ

In the rest frame of the W− boson we may use
momentum conservation to show that qμ ¼ mW

2
ð1; ûÞ and

q0μ ¼ mW
2
ð1;−ûÞ, where û is a unitary vector in the

direction of the 3-momentum of the outgoing lepton.
Furthermore, at the vertex we have k ¼ qþ q0, which
makes Eq. (15) identically zero. Incorporating all this in the
equations above finally gives us

hjMj2i ¼ g2m2
W

3

�
1þm2

Wρ
2
0

g2

�
; ð17Þ

which shows no first-order LSV contribution It is also
worthwhile noticing that the LSV piece depends only on
the isotropic time component ρ0.
The general expression for the unpolarized two-body

decay rate of the W− boson is

ΓðW− → lν̄lÞ ¼
1

32π2mW

Z
d3qd3q0

ElEν̄l

× hjMj2iδð4Þðk − q − q0Þ; ð18Þ

and, given that both the SM and LSV contributions contain
no angular factors, we are able to perform the phase-space
integrals in the same way as in the SM. Dividing this by the
full width ΓW gives us the branching ratio for the channel
W− → lν̄l, so that, using GF ¼ ffiffiffi

2
p

g2=8m2
W , we have

BRðW− → lν̄lÞ ¼
GFm3

W

6
ffiffiffi
2

p
πΓW

�
1þ ρ20

4
ffiffiffi
2

p
GF

�
: ð19Þ

The first term in Eq. (19) is the well-known result from
the SM, whereas the second is a small deviation arising
from the couplings introduced in Eq. (2). As mentioned in
the Introduction, the LSV couplings are actually family
dependent, so we may use the experimentally measured
branching ratios for each channel [38]

BRðW− → e−ν̄eÞexp ¼ ð10.71� 0.16Þ%; ð20aÞ

BRðW− → μ−ν̄μÞexp ¼ ð10.63� 0.15Þ%; ð20bÞ

BRðW− → τ−ν̄τÞexp ¼ ð11.38� 0.21Þ%; ð20cÞ
to constrain our LSV coefficients.

The results above are well fitted by the SM, given by the
first term in Eq. (19), so we may assume that the LSV
effects are hidden within the experimental uncertainties and
demand the second term in Eq. (19) to be smaller that the
relative experimental errors in Eqs. (20a)–(20c). By doing
so we obtain the upper bounds (at 1σ)

jρ0ðeÞj ≲ 9.8 × 10−4 GeV−1; ð21aÞ

jρ0ðμÞj ≲ 9.6 × 10−4 GeV−1; ð21bÞ

jρ0ðτÞj ≲ 1.1 × 10−3 GeV−1: ð21cÞ

B. The Z decay width

As a second application we calculate the correction to the
decay width of the Z boson into a lepton/antilepton and a
neutrino/antineutrino pair. The tree-level amplitude for
Z → f̄f, with f being either a lepton or a neutrino, is

iMðZ → f̄fÞ ¼ ϵμðkÞūfðqÞVμ
Zf̄f

ðkÞvf̄ðq0Þ ð22Þ

with the vertex factor Vμ
Zf̄f

ðkÞ (including the SM and LSV

terms)

Vμ
Zf̄f

ðkÞ ¼ −
ig

4 cos θW
γμðgV − γ5Þ

þ δlfðc½μ3 γν� þ c½μ4 γ
ν�γ5Þkν

þ 1

4
ð1 − δlfÞv½ν4 γμ�ð1 − γ5Þkν; ð23Þ

where we have briefly introduced the Kroenecker delta δlf,
which is one if f is a lepton (f ¼ l) and zero otherwise
(f ¼ νl). As in the SM, gV ¼ 1–4 sin2 θW for f ¼ l and
gV ¼ 1 for f ¼ νl.

1. Z decay into charged leptons

Let us start with the Z decaying into a lepton/antilepton
pair. The calculation is very similar to the one leading to
Eq. (17) and the unpolarized tree-level amplitude for the
process is

hjMj2i¼g2m2
Zð1þg2VÞ

12cos2θW

�
1þ16cos2θWm2

Z

g2ð1þg2VÞ
ðc230þc240Þ

�
ð24Þ

and we notice that, again, no SM-LSV interference term is
left, so that the first nonzero correction is of second order in
the LSV parameters.
Plugging this fully isotropic amplitude into Eq. (18)

(mutatis mutandis), dividing by the full Z width ΓZ and
using mW ¼ cos θWmZ gives us the branching ratio
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BRðZ→ l̄lÞ ¼GFm3
Zð1þ g2VÞ

24
ffiffiffi
2

p
πΓZ

�
1þ 2

ffiffiffi
2

p

1þ g2V

�
c230 þ c240

GF

��
:

ð25Þ

The decay rates of the Z boson into lepton/antilepton
pairs have been experimentally determined and read [38]

BRðZ → ēeÞexp ¼ ð3.3632� 0.0042Þ%; ð26aÞ

BRðZ → μ̄μÞexp ¼ ð3.3662� 0.0066Þ%; ð26bÞ

BRðZ → τ̄τÞexp ¼ ð3.3696� 0.0083Þ%; ð26cÞ

so that, assuming once again that the LSVeffects are buried
under the respective experimental errors, we find the
following upper bounds (at 1σ)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðeÞ30 þ c2ðeÞ40

q
≲ 7.4 × 10−5 GeV−1; ð27aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðμÞ30 þ c2ðμÞ40

q
≲ 9.3 × 10−5 GeV−1; ð27bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðτÞ30 þ c2ðτÞ40

q
≲ 1.1 × 10−4 GeV−1: ð27cÞ

2. Z decay into neutrinos

Next we consider the Z boson decaying into a neutrino/
antineutrino pair. For this process we find that the unpo-
larized amplitude is (using gV ¼ 1)

hjMj2i ¼ g2m2
Z

6 cos2 θW

�
1þ cos2 θWm2

Z

g2
v240

�
; ð28Þ

so that the corresponding branching ratio is

BRðZ → ν̄lνlÞ ¼
GFm3

Z

12
ffiffiffi
2

p
πΓZ

�
1þ v240

4
ffiffiffi
2

p
GF

�
: ð29Þ

In collision experiments neutrinos are not directly
detected due to their feeble interactions with matter.
Detectors in high-energy experiments usually measure
the tracks of electrons, muons and photons, which are
typical final products of the heavier particles emerging in
energetic collisions. From these tracks it is possible to
reconstruct the energy and momentum of the original
products of the collision and, given that energy and
momentum are conserved, it is then possible to infer
how much energy and momentum are missing and these
are attributed to so-called invisible products. In the SM, the
three neutrino families are able to successfully account for
the partial width into invisible final states [44].
The inferred branching ratio of the Z boson into invisible

products is [38,47]

BRðZ → invisibleÞexp ¼ ð20.000� 0.055Þ%; ð30Þ
which is well fitted by the SM assuming lepton universality,
i.e., essentially using the first term in Eq. (29) multiplied by
three to account for the neutrino families.
Contrary to the two other processes already discussed,

here we are unable to explicitly differentiate between the
lepton families in the final states, as invisible final states
cannot be further discriminated. However, from the bounds
above, we see that the magnitudes of the LSV coefficients
are not considerably different, varying up to a factor of two.
We shall therefore assume that the LSV coefficients for the
three families have comparable sizes and treat them as
identical, i.e., vðeÞ40 ¼ vðμÞ40 ¼ vðτÞ40.
Under these circumstances, from Eq. (30) we see that the

relative uncertainty is ∼3 × 10−3, so we obtain the follow-
ing 1σ upper bound

jvðlÞ40j≲ 4 × 10−4 GeV−1; ð31Þ

C. Muon decay

Now we analyze the process μ− → νμe−ν̄e, which
accounts to practically 100% of the branching ratio for
muon decay; other channels are responsible for <1% of the
total decay rate and will be ignored [38]. This is also a
purely leptonic process and we analyze it at tree level,
where the amplitude is

iMðμ− → νμe−ν̄eÞ ¼
ηαβ
m2

W
ūμðp1ÞVα

Wlνl
ðp1 − p3Þuνμðp3Þ

× ūeðp4ÞVβ
Wlν̄l

ðp2 þ p4Þvνeðp2Þ;
ð32Þ

with the interaction vertex given by Eq. (11).
It is important to observe that the vertex is defined with the

momentum transfer k flowing into the vertex, so that the
LSV part of Vμ

Wlν̄l
ðkÞ has opposite signs in the two vertices.

Another issue here is the family index implicit in each vertex
above. The only LSV couplings involved are ρðeÞ and ρðμÞ,
which were constrained in Eqs. (21a) and (21b), respectively.
These bounds differ by only 2%, thus allowing us to simplify
the expressions below by making ρðeÞ ¼ ρðμÞ ≡ ρ.
Taking care of the sign of the momentum transfer and

averaging over the initial spin, we obtain the following
amplitude squared

hjMj2i ¼ 1

128m4
W
Tr½Γ̄−μð1 − γ5Þ=p2ð1þ γ5ÞΓ̄þν=p4�

× Tr½Γ̄μ
þð1 − γ5Þð=p1 þmμÞð1þ γ5ÞΓ̄ν

−=p3� ð33Þ
where the matrix operators are defined in Eq. (13). As
usual, we have neglected the mass of the electron relative to
that of the muon. The squared amplitude is then the sum of
the following partial amplitudes:
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hjMj2iSM ¼ g4m2
μ

m4
W

E2ðmμ − 2E2Þ; ð34Þ

hjMj2ið1ÞLSV ¼ g3m2
μ

m4
W

pμ
2p

ν
3p

α
4ρ

βϵμναβ; ð35Þ

hjMj2ið2ÞLSV ¼ g2m2
μ

4m4
W
fm2

μρ
2E3ð2E3 −mμÞ þ 4E2ðmμ − 2E2Þ½ðp2 · ρÞ2 þ ðp4 · ρÞ2�

þ 2ðmμρ0 − p3 · ρÞ½2E2mμρ0ðmμ − 2E2Þ þ p3 · ρð4E2
2 − 2ðE2 þ E3Þmμ þm2

μÞ�
þ 2p2 · ρ½mμð2E2 −mμÞðmμρ0 − p3 · ρÞ − 2p4 · ρð4E2

2 − 2E2mμ − E3mμÞ�
− 2mμp4 · ρðmμ − 2E4Þðmμρ0 − p3 · ρÞg: ð36Þ

The decay rate of the muon is the generalization of
Eq. (18) to the case of a three-body decay, that is

Γðμ−→ νμe−ν̄eÞ¼
1

16ð2πÞ5mμ

Z
d3p2d3p3d3p4

E2E3E4

× hjMj2iδð4Þðp1−p2−p3−p4Þ; ð37Þ

which can be simplified using δ4ðp1 − p2 − p3 − p4Þ ¼
δðmμ − E2 − E3 − E4Þδ3ðp2 þ p3 þ p4Þ, thus making
p3 ¼ −ðp2 þ p4Þ and E3 ¼ jp2 þ p4j upon integration
over p3. This leaves us with

Γðμ− → νμe−ν̄eÞ ¼
1

16ð2πÞ5mμ

Z
d3p2d3p4

E2E3E4

× hjMj2iδðmμ − E2 − E3 − E4Þ: ð38Þ

We now integrate over p2, the 3-momentum of the
electron neutrino. Here we may set the z axis along p4,
which is constant at this point, so that d3p2 ¼
E2
2dE2 sin θ2dθ2dϕ2. The θ2 integral may be approached

using E3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
2 þ E2

4 þ 2E2E4 cos θ2
p

. With this substitu-
tion we integrate over θ2 and Eq. (38) reduces to

Γðμ− → νμe−ν̄eÞ ¼
1

16ð2πÞ5mμ

Z
d3p4

E2
4

×
Z

dϕ2dE2hjMj2i; ð39Þ

where the ϕ2 and E2 integrals must be evaluated under the
following conditions: p4 ¼ E4ẑ, E3 ¼ mμ − E2 − E4 and
cos θ2 ¼ ðE2

3 − E2
2 − E2

4Þ=2E2E4.
Unlike the SM case, where at this point only p2 and p4

must be considered, we have also the background ρμ

contracted to the outgoing momenta. It is then convenient
to write ρ¼jρjðsinθρcosϕρ;sinθρsinϕρ;cosθρÞ and p2 ¼
E2ðsin θ2 cosϕ2; sin θ2 sinϕ2; cos θ2Þ, so that the integral

over ϕ2 may be performed. We will not quote this
intermediate result explicitly, but we remark that, due to
the totally antisymmetric contractions, the first-order
amplitude [cf. Eq. (35)] vanishes identically.
The limit of the E2 integral is determined by the

kinematics to be E2 ¼ ½mμ=2; mμ=2 − E4�. After perform-
ing this integral, the only dynamic variable is p4, the
4-momentum of the electron, which appears in combination
with the LSV background. The same trick as above
may be employed here, i.e., we let ρ ¼ jρjẑ and write
p4 ¼ E4ðsin θ4 cosϕ4; sin θ4 sinϕ4; cos θ4Þ, so that d3p4 ¼
E2
4dE4dΩ4. After integrating over Ω4 we obtain the energy

spectrum of the emitted electrons with the LSV correction
(making t≡ E4=mμ and denoting the decay rate by Γμ for
short)

dΓμ

dE4

¼ g4m4
μt2ð3 − 4tÞ

384π3m4
W

�
1 −

ð8t3 − 50t2 þ 65t − 15Þm2
μρ

2
0

10g2ð3 − 4tÞ

−
ð8t4 − 8t3 þ 39t2 þ 10t − 30Þm2

μjρj2
20tg2ð3 − 4tÞ

�
; ð40Þ

which is shown in Fig. 1 for different—unrealistically
large—values of the LSV parameters.
Equation (40) displays a few interesting features. For the

SM (at tree level) the peak energy of the emitted electron is
Emax
4 ¼ mμ=2, which is also a kinematical threshold

imposed by momentum conservation. The inclusion of
LSV disturbs the general shape of the spectrum as shown in
Fig. 1, where we see that a purely timelike background
would suppress the spectrum, whereas a purely space-like ρ
would enhance it. The peak energy also recedes from its
LSV-free value at different rates for purely time- or space-
like components. All these effects could potentially be
searched for in sensitive experiments, specially if time-
stamped data are taken (see discussion in Sec. IV and in
Appendix A).
Finally, integrating Eq. (40) in the range E4 ¼ ½0; mμ=2�

we obtain the decay rate of the muon
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Γμ ¼
G2

Fm
5
μ

192π3

�
1þ 113m2

μ

15360m2
WGF

�
ρ20 þ

55jρj2
226

��
ð41Þ

whose first term is the tree-level result from the SM. The
experimentally measured lifetime of the muon is [38]

τμ ¼ Γ−1
μ ¼ ð2.1969811� 0.0000022Þ × 10−6 s; ð42Þ

and, by demanding that the second term in Eq. (41) be
smaller than the relative uncertainty from Eq. (42) (∼10−6),
we find the following bound at the 1σ level

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20 þ

55jρj2
226

r
≲ 3 × 10−2 GeV−1: ð43Þ

IV. CONCLUDING REMARKS

We studied a modification to the Glashow-Salam-
Weinberg electroweak model through nonminimal couplings
in the non-Abelian and Abelian sectors of the lepton-boson
interaction. These couplings introduce LSV via two (family-
dependent) real 4-vectors that give rise to a preferred
orientation in space-time. Our results show that such LSV
interactions would lead to modifications in the branching
ratios of the W and Z bosons, as well as to the lifetime of
the muon.
The respective amplitudes have been evaluated at tree

level and we found that, for all processes considered, the
LSV parameters only contribute to second order. The SM-
LSV interference terms drop out from the amplitudes for
W− → lν̄l andZ → ν̄lνl due to antisymmetry [cf. Eq. (15)]
or, in the case of Z → l̄l and μ− → νμe−ν̄e, they automati-
cally cancel in the squared amplitude. This is in linewith the
results from a number of analyses of scattering and decay
processes [22,34,41,48–50].

Using recent experimental results we are able to constrain
the magnitude of combinations of the (family-dependent)
LSV parameters, cf. Eqs. (21a)–(21c), (27a)–(27c), (31),
and (43). It is important to note that these bounds were
obtained in the rest frame of the decaying particles, but he
LSVparameters are not static as seen from the particle’s own
rest frame, not to mention from Earth’s rotating reference
frame. Therefore, we need to introduce a reference frame in
which the LSV tensors are—at least approximately—static.
A convenient option is the so-called Sun-centered frame
(SCF), which is discussed in Appendix A.
The measurements determining theW and Z widths (and

branching ratios) have a center-of-mass energy ∼100 GeV,
which is the same order ofmagnitude of theirmasses [51,52],
so that the respective Lorentz factors γrest are very close to
unity (β ≪ 1). The MuLan experiment [53] used muons
created through pion decay with momenta∼30 MeV, which
also amounts to very small Lorentz factors. Therefore, the
components of a generic LSV 4-vector Vμ in the laboratory
frame (LAB) are approximately equal to those in the rest
frame, i.e., Vμ

LAB ≈ γrestV
μ
rest, where factors proportional to

γrestβ may be neglected. With γrest ≈ 1 and using Eqs. (A10)
and (A11) after averaging over T⊕, we have

ðV0
restÞ2 ≈ ðVT

SCFÞ2; ð44Þ

jVrestj2 ≈
�
1

2
þ s2χ

�
ðVX

SCFÞ2 þ
�
1

2
þ c2χ

�
ðVY

SCFÞ2

þ ðVZ
SCFÞ2 − 2cχsχðVX

SCFÞðVY
SCFÞ; ð45Þ

sowe can translate our bounds—obtained in the rest frame of
the decaying particles—into the SCF.
As previously noted, the bounds for the different families

do not differ significantly—by at most a factor of 1.5 [see
Eqs. (27a) and (27c)]—so we shall adopt a simplifying
approach and use the overall branching ratios for W− →
lν̄l and Z → l̄l from Ref. [38], which read

BRðW− → lν̄lÞexp ¼ ð10.86� 0.09Þ%; ð46Þ

BRðZ → l̄lÞexp ¼ ð3.3658� 0.0023Þ%; ð47Þ

thus allowing us to obtain the following 1σ upper bounds

jρ0ðlÞj≲ 8 × 10−4 GeV−1; ð48Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðlÞ30 þ c2ðlÞ40

q
≲ 5 × 10−5 GeV−1: ð49Þ

Now we are finally able to translate our local limits into
the SCF for a generic lepton family ðlÞ. By using Eqs. (31),
(48) and (49) the bounds on combinations of the timelike
components in the SCF read

FIG. 1. Normalized energy spectrum of the emitted electrons
[cf. Eq. (40)] for different values of the LSV parameter (in units
of GeV−1). Left panel: ρ0 ≠ 0 and ρ ¼ 0; right panel: ρ0 ¼ 0 and
ρ ≠ 0. Here we made ρðeÞ ¼ ρðμÞ ≡ ρ.

Y. M. P. GOMES, P. C. MALTA, and M. J. NEVES PHYS. REV. D 101, 075001 (2020)

075001-8



jρTðlÞSCFj≲ 8 × 10−4 GeV−1; ð50Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρTðlÞSCFÞ2 þ 0.6ðξTðlÞSCFÞ2 þ ðρTðlÞSCFÞðξTðlÞSCFÞ

q
≲ 2 × 10−4 GeV−1; ð51Þ

jρTðlÞSCF − 0.6ξTðlÞSCFj ≲ 5 × 10−4 GeV−1; ð52Þ

whereas from Eqs. (43) with Eqs. (44) and (45), we find

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρTðlÞSCFÞ2 þ 0.23ðρXðlÞSCFÞ2 þ 0.25ðρYðlÞSCFÞ2 þ 0.24ðρZðlÞSCFÞ2 − 0.24ðρXðlÞSCFÞðρYðlÞSCFÞ

q
≲ 3 × 10−2 GeV−1; ð53Þ

where we used sin2 θW ¼ 0.23 and χ ≈ 43° for the co-
latitude of the MuLan experiment in Villigen, Switzerland
[53]. We note in passing that the limits above do not
constrain the spatial components of the 4-vector ξ.
In Fig. 2 we show the allowed regions for the time

components of the LSV backgrounds from Eqs. (50), (51)
and (52) without discriminating among lepton families, as
the family-specific bounds are similar. Incidentally, the
coupling studied in Ref. [22] in the context of QED is
analogous to c1 in Eq. (8), but our bounds are about one
order of magnitude stronger.
In Table I we list LSV corrections to existing SM

vertices, whereas in Table II we present terms originally
not possible at tree level in the SM. Of particular interest is
the γνν̄ term, which endows the neutrino with a tree-level
electromagnetic interaction that could be detected as a
magnetic or electric dipole moment—both only possible in
the SM at loop level and including nonzero neutrino masses
[54,55]. Also the quartic couplings in Table II would
provide distinctive signatures of LSV in collider experi-
ments, especially WþW−ll̄ and WþW−νlν̄l. These
represent LSV-induced vector-boson fusion as contact

interactions, thus strongly contrasting with the loop-medi-
ated SM processes [56].
As a closing remark we note that similar nonminimal

couplings were proposed in Ref. [40]. The main difference is
that we introduce LSV in the SULð2Þ and Uð1ÞY sectors
simultaneously. This is important after spontaneous sym-
metry breaking and becomes particularly evident inZ decays,
where both ξ and ρ contribute to the amplitudes, cf. eqs. (24)
and (28). Furthermore, in Ref. [40] the authors report a first-
orderLSVcorrection to the amplitudes.This is not the case, as
shown here and in other works on LSV nonminimal cou-
plings in scattering processes [22,34,48–50]. We have
pointed this out and the authors issued an erratum to their
original paper [41]. Their limits are nonetheless compatible
with ours modulo small multiplicative factors of order one.
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APPENDIX A: SUN-CENTERED
FRAME FOR LSV

In LSV models Lorentz symmetry is broken through
tensors that transform differently under observer- and
particle-Lorentz transformations and that are fixed in
space-time, i.e., they are static backgrounds. This means
that there is a reference frame where the LSV 4-vectors are
fixed, but the physical observables that we have discussed
are measured in Earth-bound reference frames and as such
cannot be taken as static. For this reason we must look for a
convenient reference frame where the aforementioned
coefficients are fixed.

FIG. 2. Allowed regions for time components of the LSV
parameters in the SCF from Eqs. (50), (51), and (52). The curves
represent 1σ limits and do not differentiate lepton families, as the
family-specific bounds do not differ significantly.
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It is clear that a frame fixed to Earth’s surface will not
suffice, as it is a noninertial reference frame, so we cannot
expect an external background to be fixed from our point of
view—in fact we would see it rotating. The next—and
perhaps most convenient—possibility is to use a reference
frame fixed relative to the Sun. This is a good choice for a
few reasons: it is approximately inertial over the timescale
of most experiments (its motion around the galaxy has a
period of ∼200 million years), it is experimentally acces-
sible, and may have its axes conveniently oriented relative
to the Earth.
We will adopt the Sun-centered frame (SCF) as a

standard reference frame where the LSV coefficients are
time independent [10]. Therefore, relative to an observer
fixed on Earth, the background will seem to rotate, so
experimental signals affected by LSV should generally
present time modulations, specially with sidereal frequen-
cies. In fact, even isotropic backgrounds in the SCF will
appear to be anisotropic in our frame because of both
rotational and translational motions of the Earth, which
produce boosts. In this sense, rotation-invariance violations
are a key signal for Lorentz violations in Earth-bound
experiments (also in space-based tests [57]).
According to refs. [10,57], the axes in the SCF are

defined such that the Z axis is directed parallel to Earth’s
rotational axis, X points from the Sun to the vernal equinox,
while Y completes a right-handed system; the origin of time
T is at the 2000 vernal equinox. Regarding the standard
Earth-bound frame for a point in the northern hemisphere,
the z axis is vertical from the surface (points to the local
zenith), x points south and y points east. The local time T⊕
is defined to be the time measured in the SCF from one of
the moments when y lies along Y.
To see how we can make the passage from the LSV

coefficients in the laboratory frame (LAB), where they are
in general time dependent, to the SCF, where they are fixed,
we use a generic background Vμ. The components of this
vector in the two frames are connected via

Vμ
LAB ¼ Λμ

νVν
SCF; ðA1Þ

with Λμ
ν representing an observer Lorentz transformation

between Earth and the SCF. From now on, we represent the
components of Vμ in the LAB frame by V0;x;y;z

LAB and those in
the SCF by VT;X;Y;Z

SCF .
The explicit form of the (time-dependent) Lorentz trans-

formation Λμ
ν is

Λ0
T ¼1; Λ0

I¼−βI; Λi
T ¼−ðR ·βÞi; Λi

I¼RiI; ðA2Þ

where β is the velocity (v=c in natural units) of the LAB
relative to the SCF and RiJ is a spatial rotation. Notice that
the Lorentz factor γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
is essentially unity due

to the smallness of the relative speed of Earth relative to
the Sun.
The boost components are given by (η ≈ 23.4° is the

inclination of Earth’s axis relative to the orbital plane)

βX ¼ β⊕ sinðΩ⊕TÞ − βL sinðω⊕T⊕Þ; ðA3Þ

βY ¼ −β⊕ cos η cosðΩ⊕TÞ þ βL cosðω⊕T⊕Þ; ðA4Þ

βZ ¼ −β⊕ sin η cosðΩ⊕TÞ ðA5Þ

and, defining sin χ ≡ sχ , cos χ ≡ cχ ; sinðω⊕T⊕Þ≡ s⊕,
cosðω⊕T⊕Þ≡ c⊕, the matrix RiJ is given by

RiJ ¼

0
B@

cχc⊕ cχs⊕ −sχ
−sχ cχ 0

sχc⊕ sχs⊕ cχ

1
CA: ðA6Þ

The Λi
T ¼ −ðR · βÞi read

Λx
T ¼ −cχc⊕βX − cχs⊕βY þ sχβZ; ðA7Þ

Λy
T ¼ sχβX − cχβY; ðA8Þ

Λz
T ¼ −sχc⊕βX − sχs⊕βY − cχβZ; ðA9Þ

where the numerical values of the parameters appearing
above are

β⊕ ≈ 10−4; Earth’s orb:vel:

βL ¼ r⊕ω⊕ sin χ < 10−6; Earth’s rot:vel:

ω⊕ ¼ 2π=day ≈ 7 × 10−5 s−1; Earth’s rot:angular vel:

Ω⊕ ¼ 2π=year ≈ 2 × 10−7 s−1; Earth’s orb:angular vel:

χ ¼ experiment’s co-latitude:

From the values above we see that Λ0
I ¼ −βI and Λi

T ¼
−ðR · βÞi are suppressed due to the smallness of the boost
factors and may be safely ignored. Applying this to our
generic vector we find that its components are translated
from the LAB frame to the SCF as

V0
LAB ¼ VT

SCF þOðβÞ; ðA10Þ

Vi
LAB ¼ RiIVI

SCF þOðβÞ; ðA11Þ

which means that, up to very small contributions propor-
tional to boost factors, time and space components of VLAB
and VSCF do not mix. We are therefore able to separately
analyze LSV background 4-vectors that have either purely
time or spatial components in the SCF.
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APPENDIX B: CONNECTION
WITH að5ÞμαβF AND bð5ÞμαβF

At the end of Sec. II we mentioned that the first terms in
Eq. (8) are analogous to að5ÞμαβF and bð5ÞμαβF , which couple
the vector and pseudo-vector currents, respectively, to the
photon field-strength tensor [10]. Indeed, following Table
P58 we have

að5ÞμαβF → −
1

2
Fαβψ̄γμψ ; ðB1Þ

bð5ÞμαβF → −
1

2
Fαβψ̄γ5γμψ : ðB2Þ

The couplings að5ÞμαβF may be treated as rank-3 tensors.
These are antisymmetric in ðα; βÞ because of the field-
strength tensor, meaning that there are in total 6 × 4 ¼ 24
components. As such they may be decomposed into

að5ÞμαβF ¼ 1

3
ðημαtβ − ημβtαÞ þ 1

6
εμαβκðt0Þκ þ āμαβ; ðB3Þ

with the different terms satisfying

ηαγāαβγ ¼ εμαβκāαβκ ¼ 0; ðB4Þ

ηαγa
ð5Þαβγ
F ¼ tβ; ðB5Þ

εμαβκa
ð5Þαβκ
F ¼ t0μ: ðB6Þ

The LSV Lagrangian with the að5ÞF term (and similarly for

bð5ÞF ) may be written using the irreducible components as

Ld¼5
LSV ⊃ −

1

2
að5ÞμαβF ψ̄γμψFαβ

¼ 1

3
tαψ̄γβψFαβ þ

1

6
ðt0Þαψ̄γβψF̃αβ

−
1

2
āμαβψ̄γμψFαβ; ðB7Þ

where F̃αβ ¼ 1
2
εαβμκFμκ. The first term above is compatible

with the first two terms in Eq. (8) and we see that (in the
charged lepton sector) the vector and pseudovector coeffi-
cients may be expressed as

cβ1 ¼
1

3
ηαγa

ð5Þαβγ
F;l ; ðB8Þ

cβ2 ¼
1

3
ηαγb

ð5Þαβγ
F;l ; ðB9Þ

where the sub index l refers to the lepton sector.
Similarly, looking at the neutrino sector, an analogous

correspondence can be found, namely

1

4
vβ2 ¼

1

3
ηαγa

ð5Þαβγ
F;ν ¼ −

1

3
ηαγb

ð5Þαβγ
F;ν ; ðB10Þ

where the subindex ν refers to the neutrino sector. This

indicates that að5ÞF and bð5ÞF , despite being essentially
combinations of ξðlÞ and ρðlÞ, will also be different for
charged and neutral leptons in each family.
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